bullet3/Demos3/bullet2/BasicDemo/main.cpp

431 lines
11 KiB
C++

#define ARRAY_SIZE_X 5
#define ARRAY_SIZE_Y 5
#define ARRAY_SIZE_Z 5
#include "OpenGLWindow/SimpleOpenGL3App.h"
#include "Bullet3Common/b3Vector3.h"
#include "assert.h"
#include <stdio.h>
#include "btBulletDynamicsCommon.h"
class Bullet2RigidBodyDemo
{
protected:
btDiscreteDynamicsWorld* m_dynamicsWorld;
btCollisionDispatcher* m_dispatcher;
btBroadphaseInterface* m_bp;
btCollisionConfiguration* m_config;
btConstraintSolver* m_solver;
public:
Bullet2RigidBodyDemo()
{
m_config = 0;
m_dispatcher = 0;
m_bp = 0;
m_solver = 0;
m_dynamicsWorld = 0;
}
virtual void initPhysics()
{
m_config = new btDefaultCollisionConfiguration;
m_dispatcher = new btCollisionDispatcher(m_config);
m_bp = new btDbvtBroadphase();
m_solver = new btSequentialImpulseConstraintSolver();
m_dynamicsWorld = new btDiscreteDynamicsWorld(m_dispatcher,m_bp,m_solver,m_config);
}
virtual void exitPhysics()
{
delete m_dynamicsWorld;
m_dynamicsWorld=0;
delete m_solver;
m_solver=0;
delete m_bp;
m_bp=0;
delete m_dispatcher;
m_dispatcher=0;
delete m_config;
m_config=0;
}
virtual ~Bullet2RigidBodyDemo()
{
btAssert(m_config == 0);
btAssert(m_dispatcher == 0);
btAssert(m_bp == 0);
btAssert(m_solver == 0);
btAssert(m_dynamicsWorld == 0);
}
};
class BasicDemo : public Bullet2RigidBodyDemo
{
SimpleOpenGL3App* m_glApp;
btRigidBody* m_pickedBody;
btTypedConstraint* m_pickedConstraint;
btVector3 m_oldPickingPos;
btVector3 m_hitPos;
btScalar m_oldPickingDist;
public:
BasicDemo(SimpleOpenGL3App* app)
:m_glApp(app),
m_pickedBody(0),
m_pickedConstraint(0)
{
}
virtual ~BasicDemo()
{
}
void initPhysics()
{
Bullet2RigidBodyDemo::initPhysics();
//create ground
int cubeShapeId = m_glApp->registerCubeShape();
float pos[]={0,0,0};
float orn[]={0,0,0,1};
{
float color[]={0.3,0.3,1,1};
float halfExtents[]={50,50,50,1};
btTransform groundTransform;
groundTransform.setIdentity();
groundTransform.setOrigin(btVector3(0,-50,0));
m_glApp->m_instancingRenderer->registerGraphicsInstance(cubeShapeId,groundTransform.getOrigin(),groundTransform.getRotation(),color,halfExtents);
btBoxShape* groundShape = new btBoxShape(btVector3(btScalar(halfExtents[0]),btScalar(halfExtents[1]),btScalar(halfExtents[2])));
//We can also use DemoApplication::localCreateRigidBody, but for clarity it is provided here:
{
btScalar mass(0.);
//rigidbody is dynamic if and only if mass is non zero, otherwise static
bool isDynamic = (mass != 0.f);
btVector3 localInertia(0,0,0);
if (isDynamic)
groundShape->calculateLocalInertia(mass,localInertia);
//using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
btDefaultMotionState* myMotionState = new btDefaultMotionState(groundTransform);
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,groundShape,localInertia);
btRigidBody* body = new btRigidBody(rbInfo);
//add the body to the dynamics world
m_dynamicsWorld->addRigidBody(body);
}
}
{
float halfExtents[]={1,1,1,1};
b3Vector4 colors[4] =
{
b3MakeVector4(1,0,0,1),
b3MakeVector4(0,1,0,1),
b3MakeVector4(0,1,1,1),
b3MakeVector4(1,1,0,1),
};
btTransform startTransform;
startTransform.setIdentity();
btScalar mass = 1.f;
btVector3 localInertia;
btBoxShape* colShape = new btBoxShape(btVector3(halfExtents[0],halfExtents[1],halfExtents[2]));
colShape ->calculateLocalInertia(mass,localInertia);
for (int k=0;k<ARRAY_SIZE_Y;k++)
{
for (int i=0;i<ARRAY_SIZE_X;i++)
{
for(int j = 0;j<ARRAY_SIZE_Z;j++)
{
static int curColor=0;
b3Vector4 color = colors[curColor];
curColor++;
curColor&=3;
startTransform.setOrigin(btVector3(
btScalar(2.0*i),
btScalar(20+2.0*k),
btScalar(2.0*j)));
m_glApp->m_instancingRenderer->registerGraphicsInstance(cubeShapeId,startTransform.getOrigin(),startTransform.getRotation(),color,halfExtents);
//using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
btDefaultMotionState* myMotionState = new btDefaultMotionState(startTransform);
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,colShape,localInertia);
btRigidBody* body = new btRigidBody(rbInfo);
m_dynamicsWorld->addRigidBody(body);
}
}
}
}
m_glApp->m_instancingRenderer->writeTransforms();
}
void exitPhysics()
{
Bullet2RigidBodyDemo::exitPhysics();
}
void drawObjects()
{
//sync graphics -> physics world transforms
{
for (int i=0;i<m_dynamicsWorld->getNumCollisionObjects();i++)
{
btVector3 pos = m_dynamicsWorld->getCollisionObjectArray()[i]->getWorldTransform().getOrigin();
btQuaternion orn = m_dynamicsWorld->getCollisionObjectArray()[i]->getWorldTransform().getRotation();
m_glApp->m_instancingRenderer->writeSingleInstanceTransformToCPU(pos,orn,i);
}
m_glApp->m_instancingRenderer->writeTransforms();
}
m_glApp->m_instancingRenderer->renderScene();
}
btVector3 getRayTo(int x,int y)
{
if (!m_glApp->m_instancingRenderer)
{
btAssert(0);
return btVector3(0,0,0);
}
float top = 1.f;
float bottom = -1.f;
float nearPlane = 1.f;
float tanFov = (top-bottom)*0.5f / nearPlane;
float fov = b3Scalar(2.0) * b3Atan(tanFov);
btVector3 camPos,camTarget;
m_glApp->m_instancingRenderer->getCameraPosition(camPos);
m_glApp->m_instancingRenderer->getCameraTargetPosition(camTarget);
btVector3 rayFrom = camPos;
btVector3 rayForward = (camTarget-camPos);
rayForward.normalize();
float farPlane = 10000.f;
rayForward*= farPlane;
btVector3 rightOffset;
btVector3 m_cameraUp=btVector3(0,1,0);
btVector3 vertical = m_cameraUp;
btVector3 hor;
hor = rayForward.cross(vertical);
hor.normalize();
vertical = hor.cross(rayForward);
vertical.normalize();
float tanfov = tanf(0.5f*fov);
hor *= 2.f * farPlane * tanfov;
vertical *= 2.f * farPlane * tanfov;
b3Scalar aspect;
float width = m_glApp->m_instancingRenderer->getScreenWidth();
float height = m_glApp->m_instancingRenderer->getScreenHeight();
aspect = width / height;
hor*=aspect;
btVector3 rayToCenter = rayFrom + rayForward;
btVector3 dHor = hor * 1.f/width;
btVector3 dVert = vertical * 1.f/height;
btVector3 rayTo = rayToCenter - 0.5f * hor + 0.5f * vertical;
rayTo += btScalar(x) * dHor;
rayTo -= btScalar(y) * dVert;
return rayTo;
}
bool mouseMoveCallback(float x,float y)
{
// if (m_data->m_altPressed!=0 || m_data->m_controlPressed!=0)
// return false;
if (m_pickedBody && m_pickedConstraint)
{
btPoint2PointConstraint* pickCon = static_cast<btPoint2PointConstraint*>(m_pickedConstraint);
if (pickCon)
{
//keep it at the same picking distance
btVector3 newRayTo = getRayTo(x,y);
btVector3 rayFrom;
btVector3 oldPivotInB = pickCon->getPivotInB();
btVector3 newPivotB;
m_glApp->m_instancingRenderer->getCameraPosition(rayFrom);
btVector3 dir = newRayTo-rayFrom;
dir.normalize();
dir *= m_oldPickingDist;
newPivotB = rayFrom + dir;
pickCon->setPivotB(newPivotB);
}
}
return false;
}
bool mouseButtonCallback(int button, int state, float x, float y)
{
if (state==1)
{
if(button==0)// && (m_data->m_altPressed==0 && m_data->m_controlPressed==0))
{
btVector3 camPos;
m_glApp->m_instancingRenderer->getCameraPosition(camPos);
btVector3 rayFrom = camPos;
btVector3 rayTo = getRayTo(x,y);
btCollisionWorld::ClosestRayResultCallback rayCallback(rayFrom,rayTo);
m_dynamicsWorld->rayTest(rayFrom,rayTo,rayCallback);
if (rayCallback.hasHit())
{
btVector3 pickPos = rayCallback.m_hitPointWorld;
btRigidBody* body = (btRigidBody*)btRigidBody::upcast(rayCallback.m_collisionObject);
if (body)
{
//other exclusions?
if (!(body->isStaticObject() || body->isKinematicObject()))
{
m_pickedBody = body;
m_pickedBody->setActivationState(DISABLE_DEACTIVATION);
//printf("pickPos=%f,%f,%f\n",pickPos.getX(),pickPos.getY(),pickPos.getZ());
btVector3 localPivot = body->getCenterOfMassTransform().inverse() * pickPos;
btPoint2PointConstraint* p2p = new btPoint2PointConstraint(*body,localPivot);
m_dynamicsWorld->addConstraint(p2p,true);
m_pickedConstraint = p2p;
btScalar mousePickClamping = 30.f;
p2p->m_setting.m_impulseClamp = mousePickClamping;
//very weak constraint for picking
p2p->m_setting.m_tau = 0.001f;
}
}
// pickObject(pickPos, rayCallback.m_collisionObject);
m_oldPickingPos = rayTo;
m_hitPos = pickPos;
m_oldPickingDist = (pickPos-rayFrom).length();
// printf("hit !\n");
//add p2p
}
}
} else
{
if (button==0)
{
if (m_pickedConstraint)
{
m_dynamicsWorld->removeConstraint(m_pickedConstraint);
delete m_pickedConstraint;
m_pickedConstraint=0;
m_pickedBody = 0;
}
//remove p2p
}
}
//printf("button=%d, state=%d\n",button,state);
return false;
}
void stepSimulation()
{
m_dynamicsWorld->stepSimulation(1./60,0);
}
};
BasicDemo* sDemo = 0;
static void MyMouseMoveCallback( float x, float y)
{
bool handled = false;
if (sDemo)
handled = sDemo->mouseMoveCallback(x,y);
if (!handled)
b3DefaultMouseMoveCallback(x,y);
}
static void MyMouseButtonCallback(int button, int state, float x, float y)
{
bool handled = false;
//try picking first
if (sDemo)
handled = sDemo->mouseButtonCallback(button,state,x,y);
if (!handled)
b3DefaultMouseButtonCallback(button,state,x,y);
}
int main(int argc, char* argv[])
{
float dt = 1./120.f;
#ifdef BT_DEBUG
char* name = "Bullet 2 CPU BasicDemo (Debug build=SLOW)";
#else
char* name = "Bullet 2 CPU BasicDemo";
#endif
SimpleOpenGL3App* app = new SimpleOpenGL3App(name,1024,768);
app->m_instancingRenderer->setCameraDistance(40);
app->m_instancingRenderer->setCameraPitch(0);
app->m_instancingRenderer->setCameraTargetPosition(b3MakeVector3(0,0,0));
app->m_window->setMouseMoveCallback(MyMouseMoveCallback);
app->m_window->setMouseButtonCallback(MyMouseButtonCallback);
BasicDemo* demo = new BasicDemo(app);
demo->initPhysics();
sDemo = demo;
GLint err = glGetError();
assert(err==GL_NO_ERROR);
do
{
GLint err = glGetError();
assert(err==GL_NO_ERROR);
app->m_instancingRenderer->init();
app->m_instancingRenderer->updateCamera();
demo->stepSimulation();
demo->drawObjects();
app->drawGrid(10,0.01);
char bla[1024];
static int frameCount = 0;
frameCount++;
sprintf(bla,"Simulation frame %d", frameCount);
app->drawText(bla,10,10);
app->swapBuffer();
} while (!app->m_window->requestedExit());
demo->exitPhysics();
delete demo;
delete app;
return 0;
}