bullet3/examples/Importers/ImportMJCFDemo/ImportMJCFSetup.cpp
erwincoumans 22b4809891 leave m_useGlobalVelocities to false, until enabled, for backward compatibility
use URDF_GLOBAL_VELOCITIES_MB flag in PyBullet loadURDF.
fix robot_bases.py due to new fields in getJointInfo.
backward compabitibility: BulletMJCFImporter, keep creating btMultiSphereShape for MJCF capsules with fromto, instead of shifted btCapsuleShapeZ, unless if CUF_USE_IMPLICIT_CYLINDER is used.
2018-01-10 11:16:50 -08:00

399 lines
11 KiB
C++

#include "ImportMJCFSetup.h"
#include "BulletDynamics/ConstraintSolver/btGeneric6DofSpring2Constraint.h"
//#define TEST_MULTIBODY_SERIALIZATION 1
#include "BulletDynamics/Featherstone/btMultiBodyLinkCollider.h"
#include "Bullet3Common/b3FileUtils.h"
#include "BulletDynamics/Featherstone/btMultiBodyJointMotor.h"
#include "BulletDynamics/Featherstone/btMultiBodyDynamicsWorld.h"
#include "../CommonInterfaces/CommonParameterInterface.h"
#include "../../Utils/b3ResourcePath.h"
#include "../CommonInterfaces/CommonMultiBodyBase.h"
#include "../ImportURDFDemo/MyMultiBodyCreator.h"
#include "BulletMJCFImporter.h"
#include "../ImportURDFDemo/URDF2Bullet.h"
class ImportMJCFSetup : public CommonMultiBodyBase
{
char m_fileName[1024];
struct ImportMJCFInternalData* m_data;
bool m_useMultiBody;
btAlignedObjectArray<std::string* > m_nameMemory;
btScalar m_grav;
int m_upAxis;
public:
ImportMJCFSetup(struct GUIHelperInterface* helper, int option, const char* fileName);
virtual ~ImportMJCFSetup();
virtual void initPhysics();
virtual void stepSimulation(float deltaTime);
void setFileName(const char* mjcfFileName);
virtual void resetCamera()
{
float dist = 3.5;
float pitch = -28;
float yaw = -136;
float targetPos[3]={0.47,0,-0.64};
m_guiHelper->resetCamera(dist,yaw,pitch,targetPos[0],targetPos[1],targetPos[2]);
}
};
static btAlignedObjectArray<std::string> gMCFJFileNameArray;
#define MAX_NUM_MOTORS 1024
struct ImportMJCFInternalData
{
ImportMJCFInternalData()
:m_numMotors(0),
m_mb(0)
{
for (int i=0;i<MAX_NUM_MOTORS;i++)
{
m_jointMotors[i] = 0;
m_generic6DofJointMotors[i] = 0;
}
}
btScalar m_motorTargetPositions[MAX_NUM_MOTORS];
btMultiBodyJointMotor* m_jointMotors [MAX_NUM_MOTORS];
btGeneric6DofSpring2Constraint* m_generic6DofJointMotors [MAX_NUM_MOTORS];
int m_numMotors;
btMultiBody* m_mb;
btRigidBody* m_rb;
};
ImportMJCFSetup::ImportMJCFSetup(struct GUIHelperInterface* helper, int option, const char* fileName)
:CommonMultiBodyBase(helper),
m_grav(-10),
m_upAxis(2)
{
m_data = new ImportMJCFInternalData;
m_useMultiBody = true;
static int count = 0;
if (fileName)
{
setFileName(fileName);
} else
{
gMCFJFileNameArray.clear();
//load additional MJCF file names from file
FILE* f = fopen("mjcf_files.txt","r");
if (f)
{
int result;
//warning: we don't avoid string buffer overflow in this basic example in fscanf
char fileName[1024];
do
{
result = fscanf(f,"%s",fileName);
b3Printf("mjcf_files.txt entry %s",fileName);
if (result==1)
{
gMCFJFileNameArray.push_back(fileName);
}
} while (result==1);
fclose(f);
}
if (gMCFJFileNameArray.size()==0)
{
gMCFJFileNameArray.push_back("mjcf/humanoid.xml");
gMCFJFileNameArray.push_back("MPL/MPL.xml");
gMCFJFileNameArray.push_back("mjcf/inverted_pendulum.xml");
gMCFJFileNameArray.push_back("mjcf/ant.xml");
gMCFJFileNameArray.push_back("mjcf/hello_mjcf.xml");
gMCFJFileNameArray.push_back("mjcf/cylinder.xml");
gMCFJFileNameArray.push_back("mjcf/cylinder_fromtoX.xml");
gMCFJFileNameArray.push_back("mjcf/cylinder_fromtoY.xml");
gMCFJFileNameArray.push_back("mjcf/cylinder_fromtoZ.xml");
gMCFJFileNameArray.push_back("mjcf/capsule.xml");
gMCFJFileNameArray.push_back("mjcf/capsule_fromtoX.xml");
gMCFJFileNameArray.push_back("mjcf/capsule_fromtoY.xml");
gMCFJFileNameArray.push_back("mjcf/capsule_fromtoZ.xml");
gMCFJFileNameArray.push_back("mjcf/hopper.xml");
gMCFJFileNameArray.push_back("mjcf/swimmer.xml");
gMCFJFileNameArray.push_back("mjcf/reacher.xml");
}
int numFileNames = gMCFJFileNameArray.size();
if (count>=numFileNames)
{
count=0;
}
sprintf(m_fileName,"%s",gMCFJFileNameArray[count++].c_str());
}
}
ImportMJCFSetup::~ImportMJCFSetup()
{
for (int i=0;i<m_nameMemory.size();i++)
{
delete m_nameMemory[i];
}
m_nameMemory.clear();
delete m_data;
}
void ImportMJCFSetup::setFileName(const char* mjcfFileName)
{
memcpy(m_fileName,mjcfFileName,strlen(mjcfFileName)+1);
}
struct MyMJCFLogger : public MJCFErrorLogger
{
virtual void reportError(const char* error)
{
b3Error(error);
}
virtual void reportWarning(const char* warning)
{
b3Warning(warning);
}
virtual void printMessage(const char* msg)
{
b3Printf(msg);
}
};
void ImportMJCFSetup::initPhysics()
{
m_guiHelper->setUpAxis(m_upAxis);
createEmptyDynamicsWorld();
//MuJoCo uses a slightly different collision filter mode, use the FILTER_GROUPAMASKB_OR_GROUPBMASKA2
//@todo also use the modified collision filter for raycast and other collision related queries
m_filterCallback->m_filterMode = FILTER_GROUPAMASKB_OR_GROUPBMASKA2;
//m_dynamicsWorld->getSolverInfo().m_numIterations = 50;
m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
m_dynamicsWorld->getDebugDrawer()->setDebugMode(
btIDebugDraw::DBG_DrawConstraints
+btIDebugDraw::DBG_DrawContactPoints
+btIDebugDraw::DBG_DrawAabb
);//+btIDebugDraw::DBG_DrawConstraintLimits);
if (m_guiHelper->getParameterInterface())
{
SliderParams slider("Gravity", &m_grav);
slider.m_minVal = -10;
slider.m_maxVal = 10;
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(slider);
}
int flags=0;
BulletMJCFImporter importer(m_guiHelper, 0,flags);
MyMJCFLogger logger;
bool result = importer.loadMJCF(m_fileName,&logger);
if (result)
{
btTransform rootTrans;
rootTrans.setIdentity();
for (int m =0; m<importer.getNumModels();m++)
{
importer.activateModel(m);
// normally used with PhysicsServerCommandProcessor that allocates unique ids to multibodies,
// emulate this behavior here:
importer.setBodyUniqueId(m);
btMultiBody* mb = 0;
//todo: move these internal API called inside the 'ConvertURDF2Bullet' call, hidden from the user
//int rootLinkIndex = importer.getRootLinkIndex();
//b3Printf("urdf root link index = %d\n",rootLinkIndex);
MyMultiBodyCreator creation(m_guiHelper);
rootTrans.setIdentity();
importer.getRootTransformInWorld(rootTrans);
ConvertURDF2Bullet(importer,creation, rootTrans,m_dynamicsWorld,m_useMultiBody,importer.getPathPrefix(),CUF_USE_MJCF);
mb = creation.getBulletMultiBody();
if (mb)
{
std::string* name =
new std::string(importer.getLinkName(
importer.getRootLinkIndex()));
m_nameMemory.push_back(name);
#ifdef TEST_MULTIBODY_SERIALIZATION
s->registerNameForPointer(name->c_str(),name->c_str());
#endif//TEST_MULTIBODY_SERIALIZATION
mb->setBaseName(name->c_str());
mb->getBaseCollider()->setCollisionFlags(mb->getBaseCollider()->getCollisionFlags() | btCollisionObject::CF_HAS_FRICTION_ANCHOR);
//create motors for each btMultiBody joint
int numLinks = mb->getNumLinks();
for (int i=0;i<numLinks;i++)
{
int mbLinkIndex = i;
int urdfLinkIndex = creation.m_mb2urdfLink[mbLinkIndex];
std::string* jointName = new std::string(importer.getJointName(urdfLinkIndex));
std::string* linkName = new std::string(importer.getLinkName(urdfLinkIndex).c_str());
#ifdef TEST_MULTIBODY_SERIALIZATION
s->registerNameForPointer(jointName->c_str(),jointName->c_str());
s->registerNameForPointer(linkName->c_str(),linkName->c_str());
#endif//TEST_MULTIBODY_SERIALIZATION
m_nameMemory.push_back(jointName);
m_nameMemory.push_back(linkName);
mb->getLinkCollider(i)->setCollisionFlags(mb->getBaseCollider()->getCollisionFlags() | btCollisionObject::CF_HAS_FRICTION_ANCHOR);
mb->getLink(i).m_linkName = linkName->c_str();
mb->getLink(i).m_jointName = jointName->c_str();
m_data->m_mb = mb;
if (mb->getLink(mbLinkIndex).m_jointType==btMultibodyLink::eRevolute
||mb->getLink(mbLinkIndex).m_jointType==btMultibodyLink::ePrismatic
)
{
if (m_data->m_numMotors<MAX_NUM_MOTORS)
{
char motorName[1024];
sprintf(motorName,"%s q ", jointName->c_str());
btScalar* motorPos = &m_data->m_motorTargetPositions[m_data->m_numMotors];
*motorPos = 0.f;
SliderParams slider(motorName,motorPos);
slider.m_minVal=-4;
slider.m_maxVal=4;
slider.m_clampToIntegers = false;
slider.m_clampToNotches = false;
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(slider);
float maxMotorImpulse = 5.f;
btMultiBodyJointMotor* motor = new btMultiBodyJointMotor(mb,mbLinkIndex,0,0,maxMotorImpulse);
motor->setErp(0.1);
//motor->setMaxAppliedImpulse(0);
m_data->m_jointMotors[m_data->m_numMotors]=motor;
m_dynamicsWorld->addMultiBodyConstraint(motor);
m_data->m_numMotors++;
}
}
}
} else
{
// not multibody
if (1)
{
//create motors for each generic joint
int num6Dof = creation.getNum6DofConstraints();
for (int i=0;i<num6Dof;i++)
{
btGeneric6DofSpring2Constraint* c = creation.get6DofConstraint(i);
if (c->getUserConstraintPtr())
{
GenericConstraintUserInfo* jointInfo = (GenericConstraintUserInfo*)c->getUserConstraintPtr();
if ((jointInfo->m_urdfJointType ==URDFRevoluteJoint) ||
(jointInfo->m_urdfJointType ==URDFPrismaticJoint) ||
(jointInfo->m_urdfJointType ==URDFContinuousJoint))
{
int urdfLinkIndex = jointInfo->m_urdfIndex;
std::string jointName = importer.getJointName(urdfLinkIndex);
char motorName[1024];
sprintf(motorName,"%s q'", jointName.c_str());
btScalar* motorVel = &m_data->m_motorTargetPositions[m_data->m_numMotors];
*motorVel = 0.f;
SliderParams slider(motorName,motorVel);
slider.m_minVal=-4;
slider.m_maxVal=4;
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(slider);
m_data->m_generic6DofJointMotors[m_data->m_numMotors]=c;
bool motorOn = true;
c->enableMotor(jointInfo->m_jointAxisIndex,motorOn);
c->setMaxMotorForce(jointInfo->m_jointAxisIndex,10000);
c->setTargetVelocity(jointInfo->m_jointAxisIndex,0);
m_data->m_numMotors++;
}
}
}
}
}
}
m_guiHelper->autogenerateGraphicsObjects(m_dynamicsWorld);
}
}
void ImportMJCFSetup::stepSimulation(float deltaTime)
{
if (m_dynamicsWorld)
{
btVector3 gravity(0, 0, -10);
gravity[m_upAxis] = m_grav;
m_dynamicsWorld->setGravity(gravity);
for (int i=0;i<m_data->m_numMotors;i++)
{
if (m_data->m_jointMotors[i])
{
btScalar pos = m_data->m_motorTargetPositions[i];
int link = m_data->m_jointMotors[i]->getLinkA();
btScalar lowerLimit = m_data->m_mb->getLink(link).m_jointLowerLimit;
btScalar upperLimit = m_data->m_mb->getLink(link).m_jointUpperLimit;
if (lowerLimit < upperLimit)
{
btClamp(pos, lowerLimit, upperLimit);
}
m_data->m_jointMotors[i]->setPositionTarget(pos);
}
if (m_data->m_generic6DofJointMotors[i])
{
GenericConstraintUserInfo* jointInfo = (GenericConstraintUserInfo*)m_data->m_generic6DofJointMotors[i]->getUserConstraintPtr();
m_data->m_generic6DofJointMotors[i]->setTargetVelocity(jointInfo->m_jointAxisIndex,m_data->m_motorTargetPositions[i]);
}
}
//the maximal coordinates/iterative MLCP solver requires a smallish timestep to converge
m_dynamicsWorld->stepSimulation(deltaTime,10,1./240.);
}
}
class CommonExampleInterface* ImportMJCFCreateFunc(struct CommonExampleOptions& options)
{
return new ImportMJCFSetup(options.m_guiHelper, options.m_option,options.m_fileName);
}