bullet3/demo/gpudemo/ParticleDemo.cpp
2013-03-13 15:03:08 -07:00

480 lines
12 KiB
C++

#include "ParticleDemo.h"
#include "OpenGLWindow/GLInstancingRenderer.h"
#include "OpenGLWindow/ShapeData.h"
#include "basic_initialize/btOpenCLUtils.h"
#define MSTRINGIFY(A) #A
static char* particleKernelsString =
#include "ParticleKernels.cl"
#define INTEROPKERNEL_SRC_PATH "demo/gpudemo/ParticleKernels.cl"
#include "BulletCommon/btVector3.h"
#include "OpenGLWindow/OpenGLInclude.h"
#include "OpenGLWindow/GLInstanceRendererInternalData.h"
#include "parallel_primitives/host/btLauncherCL.h"
//#include "../../opencl/primitives/AdlPrimitives/Math/Math.h"
//#include "../../opencl/broadphase_benchmark/btGridBroadphaseCL.h"
#include "gpu_broadphase/host/btGpuSapBroadphase.h"
#include "GpuDemoInternalData.h"
#include "BulletCommon/btQuickprof.h"
//1000000 particles
//#define NUM_PARTICLES_X 100
//#define NUM_PARTICLES_Y 100
//#define NUM_PARTICLES_Z 100
//512k particles
//#define NUM_PARTICLES_X 80
//#define NUM_PARTICLES_Y 80
//#define NUM_PARTICLES_Z 80
//256k particles
//#define NUM_PARTICLES_X 60
//#define NUM_PARTICLES_Y 60
//#define NUM_PARTICLES_Z 60
//27k particles
#define NUM_PARTICLES_X 30
#define NUM_PARTICLES_Y 30
#define NUM_PARTICLES_Z 30
ATTRIBUTE_ALIGNED16(struct) btSimParams
{
BT_DECLARE_ALIGNED_ALLOCATOR();
btVector3 m_gravity;
float m_worldMin[4];
float m_worldMax[4];
float m_particleRad;
float m_globalDamping;
float m_boundaryDamping;
float m_collisionDamping;
float m_spring;
float m_shear;
float m_attraction;
float m_dummy;
btSimParams()
{
m_gravity.setValue(0,-0.03,0.f);
m_particleRad = 0.023f;
m_globalDamping = 1.0f;
m_boundaryDamping = -0.5f;
m_collisionDamping = 0.025f;//0.02f;
m_spring = 0.5f;
m_shear = 0.1f;
m_attraction = 0.001f;
m_worldMin[0] = -1.f;
m_worldMin[1] = -2*m_particleRad;
m_worldMin[2] =-1.f;
m_worldMax[0] = 5.f;
m_worldMax[1] = 5.f;
m_worldMax[2] = 5.f;
}
};
struct ParticleInternalData
{
cl_kernel m_updatePositionsKernel;
cl_kernel m_updatePositionsKernel2;
cl_kernel m_updateAabbsKernel;
cl_kernel m_collideParticlesKernel;
btGpuSapBroadphase* m_broadphaseGPU;
cl_mem m_clPositionBuffer;
btAlignedObjectArray<btVector3> m_velocitiesCPU;
btOpenCLArray<btVector3>* m_velocitiesGPU;
btAlignedObjectArray<btSimParams> m_simParamCPU;
btOpenCLArray<btSimParams>* m_simParamGPU;
ParticleInternalData()
:
m_clPositionBuffer(0),
m_velocitiesGPU(0),
m_simParamGPU(0),
m_updatePositionsKernel(0),
m_updatePositionsKernel2(0),
m_updateAabbsKernel(0),
m_collideParticlesKernel(0)
{
m_simParamCPU.resize(1);
}
};
ParticleDemo::ParticleDemo()
:m_instancingRenderer(0)
{
m_data = new ParticleInternalData;
}
ParticleDemo::~ParticleDemo()
{
exitCL();
delete m_data;
}
void ParticleDemo::exitCL()
{
if (m_clData->m_clInitialized)
{
clReleaseKernel(m_data->m_updatePositionsKernel);
clReleaseKernel(m_data->m_updatePositionsKernel2);
clReleaseKernel(m_data->m_updateAabbsKernel);
clReleaseKernel(m_data->m_collideParticlesKernel);
}
GpuDemo::exitCL();
}
void ParticleDemo::initCL(int preferredDeviceIndex, int preferredPlatformIndex)
{
GpuDemo::initCL(preferredDeviceIndex,preferredPlatformIndex);
}
void ParticleDemo::setupScene(const ConstructionInfo& ci)
{
initCL(ci.preferredOpenCLDeviceIndex,ci.preferredOpenCLPlatformIndex);
int numParticles = NUM_PARTICLES_X*NUM_PARTICLES_Y*NUM_PARTICLES_Z;
int maxObjects = NUM_PARTICLES_X*NUM_PARTICLES_Y*NUM_PARTICLES_Z+1024;
int maxPairsSmallProxy = 32;
float radius = 3.f*m_data->m_simParamCPU[0].m_particleRad;
m_data->m_broadphaseGPU = new btGpuSapBroadphase(m_clData->m_clContext ,m_clData->m_clDevice,m_clData->m_clQueue);//overlappingPairCache,btVector3(4.f, 4.f, 4.f), 128, 128, 128,maxObjects, maxObjects, maxPairsSmallProxy, 100.f, 128,
/*m_data->m_broadphaseGPU = new btGridBroadphaseCl(overlappingPairCache,btVector3(radius,radius,radius), 128, 128, 128,
maxObjects, maxObjects, maxPairsSmallProxy, 100.f, 128,
m_clData->m_clContext ,m_clData->m_clDevice,m_clData->m_clQueue);
*/
m_data->m_velocitiesGPU = new btOpenCLArray<btVector3>(m_clData->m_clContext,m_clData->m_clQueue,numParticles);
m_data->m_velocitiesCPU.resize(numParticles);
for (int i=0;i<numParticles;i++)
{
m_data->m_velocitiesCPU[i].setValue(0,0,0);
}
m_data->m_velocitiesGPU->copyFromHost(m_data->m_velocitiesCPU);
m_data->m_simParamGPU = new btOpenCLArray<btSimParams>(m_clData->m_clContext,m_clData->m_clQueue,1,false);
m_data->m_simParamGPU->copyFromHost(m_data->m_simParamCPU);
cl_int pErrNum;
cl_program prog = btOpenCLUtils::compileCLProgramFromString(m_clData->m_clContext,m_clData->m_clDevice,particleKernelsString,0,"",INTEROPKERNEL_SRC_PATH);
m_data->m_updatePositionsKernel = btOpenCLUtils::compileCLKernelFromString(m_clData->m_clContext, m_clData->m_clDevice,particleKernelsString, "updatePositionsKernel" ,&pErrNum,prog);
oclCHECKERROR(pErrNum, CL_SUCCESS);
m_data->m_updatePositionsKernel2 = btOpenCLUtils::compileCLKernelFromString(m_clData->m_clContext, m_clData->m_clDevice,particleKernelsString, "integrateMotionKernel" ,&pErrNum,prog);
oclCHECKERROR(pErrNum, CL_SUCCESS);
m_data->m_updateAabbsKernel= btOpenCLUtils::compileCLKernelFromString(m_clData->m_clContext, m_clData->m_clDevice,particleKernelsString, "updateAabbsKernel" ,&pErrNum,prog);
oclCHECKERROR(pErrNum, CL_SUCCESS);
m_data->m_collideParticlesKernel = btOpenCLUtils::compileCLKernelFromString(m_clData->m_clContext, m_clData->m_clDevice,particleKernelsString, "collideParticlesKernel" ,&pErrNum,prog);
oclCHECKERROR(pErrNum, CL_SUCCESS);
m_instancingRenderer = ci.m_instancingRenderer;
int strideInBytes = 9*sizeof(float);
bool pointSprite = true;
int shapeId =-1;
if (pointSprite)
{
int numVertices = sizeof(point_sphere_vertices)/strideInBytes;
int numIndices = sizeof(point_sphere_indices)/sizeof(int);
shapeId = m_instancingRenderer->registerShape(&point_sphere_vertices[0],numVertices,point_sphere_indices,numIndices,BT_GL_POINTS);
} else
{
int numVertices = sizeof(low_sphere_vertices)/strideInBytes;
int numIndices = sizeof(low_sphere_indices)/sizeof(int);
shapeId = m_instancingRenderer->registerShape(&low_sphere_vertices[0],numVertices,low_sphere_indices,numIndices);
}
float position[4] = {0,0,0,0};
float quaternion[4] = {0,0,0,1};
float color[4]={1,0,0,1};
float scaling[4] = {0.023,0.023,0.023,1};
int userIndex = 0;
for (int x=0;x<NUM_PARTICLES_X;x++)
{
for (int y=0;y<NUM_PARTICLES_Y;y++)
{
for (int z=0;z<NUM_PARTICLES_Z;z++)
{
float rad = m_data->m_simParamCPU[0].m_particleRad;
position[0] = x*(rad*3);
position[1] = y*(rad*3);
position[2] = z*(rad*3);
color[0] = float(x)/float(NUM_PARTICLES_X);
color[1] = float(y)/float(NUM_PARTICLES_Y);
color[2] = float(z)/float(NUM_PARTICLES_Z);
int id = m_instancingRenderer->registerGraphicsInstance(shapeId,position,quaternion,color,scaling);
void* userPtr = (void*)userIndex;
int collidableIndex = userIndex;
btVector3 aabbMin,aabbMax;
btVector3 particleRadius(rad,rad,rad);
aabbMin = btVector3(position[0],position[1],position[2])-particleRadius;
aabbMax = btVector3(position[0],position[1],position[2])+particleRadius;
m_data->m_broadphaseGPU->createProxy(aabbMin,aabbMax,collidableIndex,1,1);
userIndex++;
}
}
}
m_data->m_broadphaseGPU->writeAabbsToGpu();
float camPos[4]={1.5,0.5,2.5,0};
m_instancingRenderer->setCameraTargetPosition(camPos);
m_instancingRenderer->setCameraDistance(4);
m_instancingRenderer->writeTransforms();
}
void ParticleDemo::initPhysics(const ConstructionInfo& ci)
{
setupScene(ci);
}
void ParticleDemo::exitPhysics()
{
}
void ParticleDemo::renderScene()
{
if (m_instancingRenderer)
{
m_instancingRenderer->RenderScene();
}
}
void ParticleDemo::clientMoveAndDisplay()
{
int numParticles = NUM_PARTICLES_X*NUM_PARTICLES_Y*NUM_PARTICLES_Z;
GLuint vbo = m_instancingRenderer->getInternalData()->m_vbo;
glBindBuffer(GL_ARRAY_BUFFER, vbo);
glFlush();
int posArraySize = numParticles*sizeof(float)*4;
cl_bool blocking= CL_TRUE;
char* hostPtr= (char*)glMapBufferRange( GL_ARRAY_BUFFER,m_instancingRenderer->getMaxShapeCapacity(),posArraySize, GL_MAP_WRITE_BIT|GL_MAP_READ_BIT );//GL_READ_WRITE);//GL_WRITE_ONLY
GLint err = glGetError();
assert(err==GL_NO_ERROR);
glFinish();
#if 1
//do some stuff using the OpenCL buffer
bool useCpu = false;
if (useCpu)
{
float* posBuffer = (float*)hostPtr;
for (int i=0;i<numParticles;i++)
{
posBuffer[i*4+1] += 0.1;
}
}
else
{
cl_int ciErrNum;
if (!m_data->m_clPositionBuffer)
{
m_data->m_clPositionBuffer = clCreateBuffer(m_clData->m_clContext, CL_MEM_READ_WRITE,
posArraySize, 0, &ciErrNum);
clFinish(m_clData->m_clQueue);
oclCHECKERROR(ciErrNum, CL_SUCCESS);
ciErrNum = clEnqueueWriteBuffer ( m_clData->m_clQueue,m_data->m_clPositionBuffer,
blocking,0,posArraySize,hostPtr,0,0,0
);
clFinish(m_clData->m_clQueue);
}
if (0)
{
btBufferInfoCL bInfo[] = {
btBufferInfoCL( m_data->m_velocitiesGPU->getBufferCL(), true ),
btBufferInfoCL( m_data->m_clPositionBuffer)
};
btLauncherCL launcher(m_clData->m_clQueue, m_data->m_updatePositionsKernel );
launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(btBufferInfoCL) );
launcher.setConst( numParticles);
launcher.launch1D( numParticles);
clFinish(m_clData->m_clQueue);
}
if (1)
{
btBufferInfoCL bInfo[] = {
btBufferInfoCL( m_data->m_clPositionBuffer),
btBufferInfoCL( m_data->m_velocitiesGPU->getBufferCL() ),
btBufferInfoCL( m_data->m_simParamGPU->getBufferCL(),true)
};
btLauncherCL launcher(m_clData->m_clQueue, m_data->m_updatePositionsKernel2 );
launcher.setConst( numParticles);
launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(btBufferInfoCL) );
float timeStep = 1.f/60.f;
launcher.setConst( timeStep);
launcher.launch1D( numParticles);
clFinish(m_clData->m_clQueue);
}
{
btBufferInfoCL bInfo[] = {
btBufferInfoCL( m_data->m_clPositionBuffer),
btBufferInfoCL( m_data->m_broadphaseGPU->getAabbBuffer()),
};
btLauncherCL launcher(m_clData->m_clQueue, m_data->m_updateAabbsKernel );
launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(btBufferInfoCL) );
launcher.setConst( m_data->m_simParamCPU[0].m_particleRad);
launcher.setConst( numParticles);
launcher.launch1D( numParticles);
clFinish(m_clData->m_clQueue);
}
//broadphase
int numPairsGPU=0;
cl_mem pairsGPU = 0;
{
m_data->m_broadphaseGPU->calculateOverlappingPairs();
pairsGPU = m_data->m_broadphaseGPU->getOverlappingPairBuffer();
numPairsGPU = m_data->m_broadphaseGPU->getNumOverlap();
}
if (numPairsGPU)
{
btBufferInfoCL bInfo[] = {
btBufferInfoCL( m_data->m_clPositionBuffer),
btBufferInfoCL( m_data->m_velocitiesGPU->getBufferCL() ),
btBufferInfoCL( m_data->m_broadphaseGPU->getOverlappingPairBuffer(),true),
};
btLauncherCL launcher(m_clData->m_clQueue, m_data->m_collideParticlesKernel);
launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(btBufferInfoCL) );
launcher.setConst( numPairsGPU);
launcher.launch1D( numPairsGPU);
clFinish(m_clData->m_clQueue);
//__kernel void collideParticlesKernel( __global float4* pPos, __global float4* pVel, __global int2* pairs, const int numPairs)
}
if (1)
{
ciErrNum = clEnqueueReadBuffer ( m_clData->m_clQueue,
m_data->m_clPositionBuffer,
blocking,
0,
posArraySize,
hostPtr,0,0,0);
//clReleaseMemObject(clBuffer);
clFinish(m_clData->m_clQueue);
}
}
#endif
glUnmapBuffer( GL_ARRAY_BUFFER);
glFlush();
/*
int numParticles = NUM_PARTICLES_X*NUM_PARTICLES_Y*NUM_PARTICLES_Z;
for (int objectIndex=0;objectIndex<numParticles;objectIndex++)
{
float pos[4]={0,0,0,0};
float orn[4]={0,0,0,1};
// m_instancingRenderer->writeSingleInstanceTransformToGPU(pos,orn,i);
{
glBindBuffer(GL_ARRAY_BUFFER, m_instancingRenderer->getInternalData()->m_vbo);
glFlush();
char* orgBase = (char*)glMapBuffer( GL_ARRAY_BUFFER,GL_READ_WRITE);
//btGraphicsInstance* gfxObj = m_graphicsInstances[k];
int totalNumInstances= numParticles;
int POSITION_BUFFER_SIZE = (totalNumInstances*sizeof(float)*4);
char* base = orgBase;
int capInBytes = m_instancingRenderer->getMaxShapeCapacity();
float* positions = (float*)(base+capInBytes);
float* orientations = (float*)(base+capInBytes+ POSITION_BUFFER_SIZE);
positions[objectIndex*4+1] += 0.1f;
glUnmapBuffer( GL_ARRAY_BUFFER);
glFlush();
}
}
*/
}
// m_data->m_positionOffsetInBytes = demo.m_maxShapeBufferCapacity/4;