bullet3/examples/SharedMemory/PhysicsClientC_API.cpp
erwincoumans 85ee4c2934 allow batch creation of objects through PyBullet.createMultiBody, see createMultiBodyBatch.py example.
expose minGraphicsUpdateTimeMs through PyBullet.connect(p.GUI, options="minGraphicsUpdateTimeMs=32000"), by default OpenGL rendering runs at 4000microseconds intervals.
allow a maximum of 128k objects
fix meshScale for PyBullet.createCollisionShape for custom mesh
expose Pybullet.setPhysicsEngineParameter(minimumSolverIslandSize=...), larger minimum batches group solver constraints together in the same island, to reduce calling overhead (even if they are not related)
2019-02-12 10:36:01 -08:00

5570 lines
218 KiB
C++

#include "PhysicsClientC_API.h"
#include "PhysicsClientSharedMemory.h"
#include "Bullet3Common/b3Scalar.h"
#include "Bullet3Common/b3Vector3.h"
#include "Bullet3Common/b3Matrix3x3.h"
#include "Bullet3Common/b3Transform.h"
#include "Bullet3Common/b3TransformUtil.h"
#include <string.h>
#include "SharedMemoryCommands.h"
B3_SHARED_API b3SharedMemoryCommandHandle b3LoadSdfCommandInit(b3PhysicsClientHandle physClient, const char* sdfFileName)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
return b3LoadSdfCommandInit2((b3SharedMemoryCommandHandle)command, sdfFileName);
}
B3_SHARED_API b3SharedMemoryCommandHandle b3LoadSdfCommandInit2(b3SharedMemoryCommandHandle commandHandle, const char* sdfFileName)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
command->m_type = CMD_LOAD_SDF;
int len = strlen(sdfFileName);
if (len < MAX_SDF_FILENAME_LENGTH)
{
strcpy(command->m_sdfArguments.m_sdfFileName, sdfFileName);
}
else
{
command->m_sdfArguments.m_sdfFileName[0] = 0;
}
command->m_updateFlags = SDF_ARGS_FILE_NAME;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3SaveWorldCommandInit(b3PhysicsClientHandle physClient, const char* sdfFileName)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_SAVE_WORLD;
int len = strlen(sdfFileName);
if (len < MAX_SDF_FILENAME_LENGTH)
{
strcpy(command->m_sdfArguments.m_sdfFileName, sdfFileName);
}
else
{
command->m_sdfArguments.m_sdfFileName[0] = 0;
}
command->m_updateFlags = SDF_ARGS_FILE_NAME;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3LoadBulletCommandInit(b3PhysicsClientHandle physClient, const char* fileName)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
if (cl->canSubmitCommand())
{
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_LOAD_BULLET;
int len = strlen(fileName);
if (len < MAX_URDF_FILENAME_LENGTH)
{
strcpy(command->m_fileArguments.m_fileName, fileName);
}
else
{
command->m_fileArguments.m_fileName[0] = 0;
}
command->m_updateFlags = 0;
return (b3SharedMemoryCommandHandle)command;
}
return 0;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3LoadStateCommandInit(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
if (cl->canSubmitCommand())
{
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_RESTORE_STATE;
command->m_updateFlags = 0;
command->m_loadStateArguments.m_fileName[0] = 0;
command->m_loadStateArguments.m_stateId = -1;
return (b3SharedMemoryCommandHandle)command;
}
return 0;
}
B3_SHARED_API int b3LoadStateSetStateId(b3SharedMemoryCommandHandle commandHandle, int stateId)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_RESTORE_STATE);
if (command->m_type == CMD_RESTORE_STATE)
{
command->m_loadStateArguments.m_stateId = stateId;
command->m_updateFlags |= CMD_LOAD_STATE_HAS_STATEID;
}
return 0;
}
B3_SHARED_API int b3LoadStateSetFileName(b3SharedMemoryCommandHandle commandHandle, const char* fileName)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_RESTORE_STATE);
if (command->m_type == CMD_RESTORE_STATE)
{
int len = strlen(fileName);
if (len < MAX_URDF_FILENAME_LENGTH)
{
strcpy(command->m_loadStateArguments.m_fileName, fileName);
}
else
{
command->m_loadStateArguments.m_fileName[0] = 0;
}
command->m_updateFlags |= CMD_LOAD_STATE_HAS_FILENAME;
}
return 0;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3SaveStateCommandInit(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
if (cl->canSubmitCommand())
{
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_SAVE_STATE;
command->m_updateFlags = 0;
return (b3SharedMemoryCommandHandle)command;
}
return 0;
}
B3_SHARED_API int b3GetStatusGetStateId(b3SharedMemoryStatusHandle statusHandle)
{
int stateId = -1;
const SharedMemoryStatus* status = (const SharedMemoryStatus*)statusHandle;
b3Assert(status);
b3Assert(status->m_type == CMD_SAVE_STATE_COMPLETED);
if (status && status->m_type == CMD_SAVE_STATE_COMPLETED)
{
stateId = status->m_saveStateResultArgs.m_stateId;
}
return stateId;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3SaveBulletCommandInit(b3PhysicsClientHandle physClient, const char* fileName)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
if (cl->canSubmitCommand())
{
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_SAVE_BULLET;
int len = strlen(fileName);
if (len < MAX_URDF_FILENAME_LENGTH)
{
strcpy(command->m_fileArguments.m_fileName, fileName);
}
else
{
command->m_fileArguments.m_fileName[0] = 0;
}
command->m_updateFlags = 0;
return (b3SharedMemoryCommandHandle)command;
}
return 0;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3LoadMJCFCommandInit(b3PhysicsClientHandle physClient, const char* fileName)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
if (cl->canSubmitCommand())
{
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
return b3LoadMJCFCommandInit2((b3SharedMemoryCommandHandle)command, fileName);
}
return 0;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3LoadMJCFCommandInit2(b3SharedMemoryCommandHandle commandHandle, const char* fileName)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
command->m_type = CMD_LOAD_MJCF;
int len = strlen(fileName);
if (len < MAX_URDF_FILENAME_LENGTH)
{
strcpy(command->m_mjcfArguments.m_mjcfFileName, fileName);
}
else
{
command->m_mjcfArguments.m_mjcfFileName[0] = 0;
}
command->m_updateFlags = 0;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API void b3LoadMJCFCommandSetFlags(b3SharedMemoryCommandHandle commandHandle, int flags)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_LOAD_MJCF);
if (command->m_type == CMD_LOAD_MJCF)
{
command->m_mjcfArguments.m_flags = flags;
command->m_updateFlags |= URDF_ARGS_HAS_CUSTOM_URDF_FLAGS;
}
}
B3_SHARED_API b3SharedMemoryCommandHandle b3LoadSoftBodyCommandInit(b3PhysicsClientHandle physClient, const char* fileName)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
if (cl->canSubmitCommand())
{
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_LOAD_SOFT_BODY;
int len = strlen(fileName);
if (len < MAX_FILENAME_LENGTH)
{
strcpy(command->m_loadSoftBodyArguments.m_fileName, fileName);
}
else
{
command->m_loadSoftBodyArguments.m_fileName[0] = 0;
}
command->m_updateFlags = LOAD_SOFT_BODY_FILE_NAME;
return (b3SharedMemoryCommandHandle)command;
}
return 0;
}
B3_SHARED_API int b3LoadSoftBodySetScale(b3SharedMemoryCommandHandle commandHandle, double scale)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_LOAD_SOFT_BODY);
command->m_loadSoftBodyArguments.m_scale = scale;
command->m_updateFlags |= LOAD_SOFT_BODY_UPDATE_SCALE;
return 0;
}
B3_SHARED_API int b3LoadSoftBodySetMass(b3SharedMemoryCommandHandle commandHandle, double mass)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_LOAD_SOFT_BODY);
command->m_loadSoftBodyArguments.m_mass = mass;
command->m_updateFlags |= LOAD_SOFT_BODY_UPDATE_MASS;
return 0;
}
B3_SHARED_API int b3LoadSoftBodySetCollisionMargin(b3SharedMemoryCommandHandle commandHandle, double collisionMargin)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_LOAD_SOFT_BODY);
command->m_loadSoftBodyArguments.m_collisionMargin = collisionMargin;
command->m_updateFlags |= LOAD_SOFT_BODY_UPDATE_COLLISION_MARGIN;
return 0;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3LoadUrdfCommandInit(b3PhysicsClientHandle physClient, const char* urdfFileName)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
if (cl->canSubmitCommand())
{
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_LOAD_URDF;
int len = strlen(urdfFileName);
if (len < MAX_URDF_FILENAME_LENGTH)
{
strcpy(command->m_urdfArguments.m_urdfFileName, urdfFileName);
}
else
{
command->m_urdfArguments.m_urdfFileName[0] = 0;
}
command->m_updateFlags = URDF_ARGS_FILE_NAME;
return (b3SharedMemoryCommandHandle)command;
}
return 0;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3LoadUrdfCommandInit2(b3SharedMemoryCommandHandle commandHandle, const char* urdfFileName)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
command->m_type = CMD_LOAD_URDF;
int len = strlen(urdfFileName);
if (len < MAX_URDF_FILENAME_LENGTH)
{
strcpy(command->m_urdfArguments.m_urdfFileName, urdfFileName);
}
else
{
command->m_urdfArguments.m_urdfFileName[0] = 0;
}
command->m_updateFlags = URDF_ARGS_FILE_NAME;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API int b3LoadUrdfCommandSetUseMultiBody(b3SharedMemoryCommandHandle commandHandle, int useMultiBody)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_LOAD_URDF);
command->m_updateFlags |= URDF_ARGS_USE_MULTIBODY;
command->m_urdfArguments.m_useMultiBody = useMultiBody;
return 0;
}
B3_SHARED_API int b3LoadUrdfCommandSetGlobalScaling(b3SharedMemoryCommandHandle commandHandle, double globalScaling)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_LOAD_URDF);
command->m_updateFlags |= URDF_ARGS_USE_GLOBAL_SCALING;
command->m_urdfArguments.m_globalScaling = globalScaling;
return 0;
}
B3_SHARED_API int b3LoadSdfCommandSetUseMultiBody(b3SharedMemoryCommandHandle commandHandle, int useMultiBody)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_LOAD_SDF);
command->m_updateFlags |= URDF_ARGS_USE_MULTIBODY;
command->m_sdfArguments.m_useMultiBody = useMultiBody;
return 0;
}
B3_SHARED_API int b3LoadSdfCommandSetUseGlobalScaling(b3SharedMemoryCommandHandle commandHandle, double globalScaling)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_LOAD_SDF);
command->m_updateFlags |= URDF_ARGS_USE_GLOBAL_SCALING;
command->m_sdfArguments.m_globalScaling = globalScaling;
return 0;
}
B3_SHARED_API int b3LoadUrdfCommandSetUseFixedBase(b3SharedMemoryCommandHandle commandHandle, int useFixedBase)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_LOAD_URDF);
if (command && (command->m_type == CMD_LOAD_URDF))
{
command->m_updateFlags |= URDF_ARGS_USE_FIXED_BASE;
command->m_urdfArguments.m_useFixedBase = useFixedBase;
return 0;
}
return -1;
}
B3_SHARED_API int b3LoadUrdfCommandSetFlags(b3SharedMemoryCommandHandle commandHandle, int flags)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_LOAD_URDF);
if (command && (command->m_type == CMD_LOAD_URDF))
{
command->m_updateFlags |= URDF_ARGS_HAS_CUSTOM_URDF_FLAGS;
command->m_urdfArguments.m_urdfFlags = flags;
}
return 0;
}
B3_SHARED_API int b3LoadUrdfCommandSetStartPosition(b3SharedMemoryCommandHandle commandHandle, double startPosX, double startPosY, double startPosZ)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
if (command)
{
b3Assert(command->m_type == CMD_LOAD_URDF);
if (command->m_type == CMD_LOAD_URDF)
{
command->m_urdfArguments.m_initialPosition[0] = startPosX;
command->m_urdfArguments.m_initialPosition[1] = startPosY;
command->m_urdfArguments.m_initialPosition[2] = startPosZ;
command->m_updateFlags |= URDF_ARGS_INITIAL_POSITION;
}
return 0;
}
return -1;
}
B3_SHARED_API int b3LoadUrdfCommandSetStartOrientation(b3SharedMemoryCommandHandle commandHandle, double startOrnX, double startOrnY, double startOrnZ, double startOrnW)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
if (command)
{
b3Assert(command->m_type == CMD_LOAD_URDF);
if (command->m_type == CMD_LOAD_URDF)
{
command->m_urdfArguments.m_initialOrientation[0] = startOrnX;
command->m_urdfArguments.m_initialOrientation[1] = startOrnY;
command->m_urdfArguments.m_initialOrientation[2] = startOrnZ;
command->m_urdfArguments.m_initialOrientation[3] = startOrnW;
command->m_updateFlags |= URDF_ARGS_INITIAL_ORIENTATION;
}
return 0;
}
return -1;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3InitRequestPhysicsParamCommand(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_REQUEST_PHYSICS_SIMULATION_PARAMETERS;
command->m_updateFlags = 0;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API int b3GetStatusPhysicsSimulationParameters(b3SharedMemoryStatusHandle statusHandle, struct b3PhysicsSimulationParameters* params)
{
const SharedMemoryStatus* status = (const SharedMemoryStatus*)statusHandle;
b3Assert(status);
b3Assert(status->m_type == CMD_REQUEST_PHYSICS_SIMULATION_PARAMETERS_COMPLETED);
if (status && status->m_type == CMD_REQUEST_PHYSICS_SIMULATION_PARAMETERS_COMPLETED)
{
*params = status->m_simulationParameterResultArgs;
return 1;
}
return 0;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3InitPhysicsParamCommand(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
return b3InitPhysicsParamCommand2((b3SharedMemoryCommandHandle)command);
}
B3_SHARED_API b3SharedMemoryCommandHandle b3InitPhysicsParamCommand2(b3SharedMemoryCommandHandle commandHandle)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
command->m_type = CMD_SEND_PHYSICS_SIMULATION_PARAMETERS;
command->m_updateFlags = 0;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API int b3PhysicsParamSetGravity(b3SharedMemoryCommandHandle commandHandle, double gravx, double gravy, double gravz)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS);
command->m_physSimParamArgs.m_gravityAcceleration[0] = gravx;
command->m_physSimParamArgs.m_gravityAcceleration[1] = gravy;
command->m_physSimParamArgs.m_gravityAcceleration[2] = gravz;
command->m_updateFlags |= SIM_PARAM_UPDATE_GRAVITY;
return 0;
}
B3_SHARED_API int b3PhysicsParamSetRealTimeSimulation(b3SharedMemoryCommandHandle commandHandle, int enableRealTimeSimulation)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS);
command->m_physSimParamArgs.m_useRealTimeSimulation = (enableRealTimeSimulation != 0);
command->m_updateFlags |= SIM_PARAM_UPDATE_REAL_TIME_SIMULATION;
return 0;
}
B3_SHARED_API int b3PhysicsParamSetInternalSimFlags(b3SharedMemoryCommandHandle commandHandle, int flags)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS);
command->m_physSimParamArgs.m_internalSimFlags = flags;
command->m_updateFlags |= SIM_PARAM_UPDATE_INTERNAL_SIMULATION_FLAGS;
return 0;
}
B3_SHARED_API int b3PhysicsParamSetUseSplitImpulse(b3SharedMemoryCommandHandle commandHandle, int useSplitImpulse)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS);
command->m_physSimParamArgs.m_useSplitImpulse = useSplitImpulse;
command->m_updateFlags |= SIM_PARAM_UPDATE_USE_SPLIT_IMPULSE;
return 0;
}
B3_SHARED_API int b3PhysicsParamSetSplitImpulsePenetrationThreshold(b3SharedMemoryCommandHandle commandHandle, double splitImpulsePenetrationThreshold)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS);
command->m_physSimParamArgs.m_splitImpulsePenetrationThreshold = splitImpulsePenetrationThreshold;
command->m_updateFlags |= SIM_PARAM_UPDATE_SPLIT_IMPULSE_PENETRATION_THRESHOLD;
return 0;
}
B3_SHARED_API int b3PhysicsParamSetContactBreakingThreshold(b3SharedMemoryCommandHandle commandHandle, double contactBreakingThreshold)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS);
command->m_physSimParamArgs.m_contactBreakingThreshold = contactBreakingThreshold;
command->m_updateFlags |= SIM_PARAM_UPDATE_CONTACT_BREAKING_THRESHOLD;
return 0;
}
B3_SHARED_API int b3PhysicsParamSetMaxNumCommandsPer1ms(b3SharedMemoryCommandHandle commandHandle, int maxNumCmdPer1ms)
{
//obsolete command
return 0;
}
B3_SHARED_API int b3PhysicsParamSetEnableFileCaching(b3SharedMemoryCommandHandle commandHandle, int enableFileCaching)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS);
command->m_physSimParamArgs.m_enableFileCaching = enableFileCaching;
command->m_updateFlags |= SIM_PARAM_ENABLE_FILE_CACHING;
return 0;
}
B3_SHARED_API int b3PhysicsParamSetRestitutionVelocityThreshold(b3SharedMemoryCommandHandle commandHandle, double restitutionVelocityThreshold)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS);
command->m_physSimParamArgs.m_restitutionVelocityThreshold = restitutionVelocityThreshold;
command->m_updateFlags |= SIM_PARAM_UPDATE_RESTITUTION_VELOCITY_THRESHOLD;
return 0;
}
B3_SHARED_API int b3PhysicsParamSetEnableConeFriction(b3SharedMemoryCommandHandle commandHandle, int enableConeFriction)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS);
command->m_physSimParamArgs.m_enableConeFriction = enableConeFriction;
command->m_updateFlags |= SIM_PARAM_ENABLE_CONE_FRICTION;
return 0;
}
B3_SHARED_API int b3PhysicsParameterSetDeterministicOverlappingPairs(b3SharedMemoryCommandHandle commandHandle, int deterministicOverlappingPairs)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS);
command->m_physSimParamArgs.m_deterministicOverlappingPairs = deterministicOverlappingPairs;
command->m_updateFlags |= SIM_PARAM_UPDATE_DETERMINISTIC_OVERLAPPING_PAIRS;
return 0;
}
B3_SHARED_API int b3PhysicsParameterSetAllowedCcdPenetration(b3SharedMemoryCommandHandle commandHandle, double allowedCcdPenetration)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS);
command->m_physSimParamArgs.m_allowedCcdPenetration = allowedCcdPenetration;
command->m_updateFlags |= SIM_PARAM_UPDATE_CCD_ALLOWED_PENETRATION;
return 0;
}
B3_SHARED_API int b3PhysicsParameterSetJointFeedbackMode(b3SharedMemoryCommandHandle commandHandle, int jointFeedbackMode)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS);
command->m_physSimParamArgs.m_jointFeedbackMode = jointFeedbackMode;
command->m_updateFlags |= SIM_PARAM_UPDATE_JOINT_FEEDBACK_MODE;
return 0;
}
B3_SHARED_API int b3PhysicsParamSetNumSolverIterations(b3SharedMemoryCommandHandle commandHandle, int numSolverIterations)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS);
command->m_physSimParamArgs.m_numSolverIterations = numSolverIterations;
command->m_updateFlags |= SIM_PARAM_UPDATE_NUM_SOLVER_ITERATIONS;
return 0;
}
B3_SHARED_API int b3PhysicsParamSetSolverResidualThreshold(b3SharedMemoryCommandHandle commandHandle, double solverResidualThreshold)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS);
command->m_physSimParamArgs.m_solverResidualThreshold = solverResidualThreshold;
command->m_updateFlags |= SIM_PARAM_UPDATE_SOLVER_RESIDULAL_THRESHOLD;
return 0;
}
B3_SHARED_API int b3PhysicsParamSetContactSlop(b3SharedMemoryCommandHandle commandHandle, double contactSlop)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS);
command->m_physSimParamArgs.m_contactSlop = contactSlop;
command->m_updateFlags |= SIM_PARAM_UPDATE_CONTACT_SLOP;
return 0;
}
B3_SHARED_API int b3PhysicsParameterSetEnableSAT(b3SharedMemoryCommandHandle commandHandle, int enableSAT)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS);
command->m_physSimParamArgs.m_enableSAT = enableSAT;
command->m_updateFlags |= SIM_PARAM_ENABLE_SAT;
return 0;
}
B3_SHARED_API int b3PhysicsParameterSetConstraintSolverType(b3SharedMemoryCommandHandle commandHandle, int constraintSolverType)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS);
command->m_physSimParamArgs.m_constraintSolverType = constraintSolverType;
command->m_updateFlags |= SIM_PARAM_CONSTRAINT_SOLVER_TYPE;
return 0;
}
B3_SHARED_API int b3PhysicsParameterSetMinimumSolverIslandSize(b3SharedMemoryCommandHandle commandHandle, int minimumSolverIslandSize)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS);
command->m_physSimParamArgs.m_minimumSolverIslandSize = minimumSolverIslandSize;
command->m_updateFlags |= SIM_PARAM_CONSTRAINT_MIN_SOLVER_ISLAND_SIZE;
return 0;
}
B3_SHARED_API int b3PhysicsParamSetCollisionFilterMode(b3SharedMemoryCommandHandle commandHandle, int filterMode)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS);
command->m_physSimParamArgs.m_collisionFilterMode = filterMode;
command->m_updateFlags |= SIM_PARAM_UPDATE_COLLISION_FILTER_MODE;
return 0;
}
B3_SHARED_API int b3PhysicsParamSetTimeStep(b3SharedMemoryCommandHandle commandHandle, double timeStep)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS);
command->m_updateFlags |= SIM_PARAM_UPDATE_DELTA_TIME;
command->m_physSimParamArgs.m_deltaTime = timeStep;
return 0;
}
B3_SHARED_API int b3PhysicsParamSetNumSubSteps(b3SharedMemoryCommandHandle commandHandle, int numSubSteps)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS);
command->m_updateFlags |= SIM_PARAM_UPDATE_NUM_SIMULATION_SUB_STEPS;
command->m_physSimParamArgs.m_numSimulationSubSteps = numSubSteps;
return 0;
}
B3_SHARED_API int b3PhysicsParamSetDefaultContactERP(b3SharedMemoryCommandHandle commandHandle, double defaultContactERP)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS);
command->m_updateFlags |= SIM_PARAM_UPDATE_DEFAULT_CONTACT_ERP;
command->m_physSimParamArgs.m_defaultContactERP = defaultContactERP;
return 0;
}
B3_SHARED_API int b3PhysicsParamSetDefaultNonContactERP(b3SharedMemoryCommandHandle commandHandle, double defaultNonContactERP)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS);
command->m_updateFlags |= SIM_PARAM_UPDATE_DEFAULT_NON_CONTACT_ERP;
command->m_physSimParamArgs.m_defaultNonContactERP = defaultNonContactERP;
return 0;
}
B3_SHARED_API int b3PhysicsParamSetDefaultFrictionERP(b3SharedMemoryCommandHandle commandHandle, double frictionERP)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS);
command->m_updateFlags |= SIM_PARAM_UPDATE_DEFAULT_FRICTION_ERP;
command->m_physSimParamArgs.m_frictionERP = frictionERP;
return 0;
}
B3_SHARED_API int b3PhysicsParamSetDefaultGlobalCFM(b3SharedMemoryCommandHandle commandHandle, double defaultGlobalCFM)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS);
command->m_updateFlags |= SIM_PARAM_UPDATE_DEFAULT_GLOBAL_CFM;
command->m_physSimParamArgs.m_defaultGlobalCFM = defaultGlobalCFM;
return 0;
}
B3_SHARED_API int b3PhysicsParamSetDefaultFrictionCFM(b3SharedMemoryCommandHandle commandHandle, double frictionCFM)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_SEND_PHYSICS_SIMULATION_PARAMETERS);
command->m_updateFlags |= SIM_PARAM_UPDATE_DEFAULT_FRICTION_CFM;
command->m_physSimParamArgs.m_frictionCFM = frictionCFM;
return 0;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3InitStepSimulationCommand(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
return b3InitStepSimulationCommand2((b3SharedMemoryCommandHandle)command);
}
B3_SHARED_API b3SharedMemoryCommandHandle b3InitStepSimulationCommand2(b3SharedMemoryCommandHandle commandHandle)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
command->m_type = CMD_STEP_FORWARD_SIMULATION;
command->m_updateFlags = 0;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3InitResetSimulationCommand(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
return b3InitResetSimulationCommand2((b3SharedMemoryCommandHandle)command);
}
B3_SHARED_API b3SharedMemoryCommandHandle b3InitResetSimulationCommand2(b3SharedMemoryCommandHandle commandHandle)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
command->m_type = CMD_RESET_SIMULATION;
command->m_updateFlags = 0;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3JointControlCommandInit(b3PhysicsClientHandle physClient, int controlMode)
{
return b3JointControlCommandInit2(physClient, 0, controlMode);
}
B3_SHARED_API b3SharedMemoryCommandHandle b3JointControlCommandInit2(b3PhysicsClientHandle physClient, int bodyUniqueId, int controlMode)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
return b3JointControlCommandInit2Internal((b3SharedMemoryCommandHandle)command, bodyUniqueId, controlMode);
}
B3_SHARED_API b3SharedMemoryCommandHandle b3JointControlCommandInit2Internal(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int controlMode)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
command->m_type = CMD_SEND_DESIRED_STATE;
command->m_sendDesiredStateCommandArgument.m_controlMode = controlMode;
command->m_sendDesiredStateCommandArgument.m_bodyUniqueId = bodyUniqueId;
command->m_updateFlags = 0;
for (int i = 0; i < MAX_DEGREE_OF_FREEDOM; i++)
{
command->m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[i] = 0;
}
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API int b3JointControlSetDesiredPosition(b3SharedMemoryCommandHandle commandHandle, int qIndex, double value)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
if ((qIndex >= 0) && (qIndex < MAX_DEGREE_OF_FREEDOM))
{
command->m_sendDesiredStateCommandArgument.m_desiredStateQ[qIndex] = value;
command->m_updateFlags |= SIM_DESIRED_STATE_HAS_Q;
command->m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[qIndex] |= SIM_DESIRED_STATE_HAS_Q;
}
return 0;
}
B3_SHARED_API int b3JointControlSetDesiredPositionMultiDof(b3SharedMemoryCommandHandle commandHandle, int qIndex, const double* position, int dofCount)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
if ((qIndex >= 0) && ((qIndex + dofCount) < MAX_DEGREE_OF_FREEDOM) && dofCount > 0 && dofCount <= 4)
{
for (int dof = 0; dof < dofCount; dof++)
{
command->m_sendDesiredStateCommandArgument.m_desiredStateQ[qIndex + dof] = position[dof];
command->m_updateFlags |= SIM_DESIRED_STATE_HAS_Q;
command->m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[qIndex + dof] |= SIM_DESIRED_STATE_HAS_Q;
}
}
return 0;
}
B3_SHARED_API int b3JointControlSetKp(b3SharedMemoryCommandHandle commandHandle, int dofIndex, double value)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
if ((dofIndex >= 0) && (dofIndex < MAX_DEGREE_OF_FREEDOM))
{
command->m_sendDesiredStateCommandArgument.m_Kp[dofIndex] = value;
command->m_updateFlags |= SIM_DESIRED_STATE_HAS_KP;
command->m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[dofIndex] |= SIM_DESIRED_STATE_HAS_KP;
}
return 0;
}
B3_SHARED_API int b3JointControlSetKd(b3SharedMemoryCommandHandle commandHandle, int dofIndex, double value)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
if ((dofIndex >= 0) && (dofIndex < MAX_DEGREE_OF_FREEDOM))
{
command->m_sendDesiredStateCommandArgument.m_Kd[dofIndex] = value;
command->m_updateFlags |= SIM_DESIRED_STATE_HAS_KD;
command->m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[dofIndex] |= SIM_DESIRED_STATE_HAS_KD;
}
return 0;
}
B3_SHARED_API int b3JointControlSetMaximumVelocity(b3SharedMemoryCommandHandle commandHandle, int dofIndex, double maximumVelocity)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
if ((dofIndex >= 0) && (dofIndex < MAX_DEGREE_OF_FREEDOM))
{
command->m_sendDesiredStateCommandArgument.m_rhsClamp[dofIndex] = maximumVelocity;
command->m_updateFlags |= SIM_DESIRED_STATE_HAS_RHS_CLAMP;
command->m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[dofIndex] |= SIM_DESIRED_STATE_HAS_RHS_CLAMP;
}
return 0;
}
B3_SHARED_API int b3JointControlSetDesiredVelocity(b3SharedMemoryCommandHandle commandHandle, int dofIndex, double value)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
if ((dofIndex >= 0) && (dofIndex < MAX_DEGREE_OF_FREEDOM))
{
command->m_sendDesiredStateCommandArgument.m_desiredStateQdot[dofIndex] = value;
command->m_updateFlags |= SIM_DESIRED_STATE_HAS_QDOT;
command->m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[dofIndex] |= SIM_DESIRED_STATE_HAS_QDOT;
}
return 0;
}
B3_SHARED_API int b3JointControlSetDesiredVelocityMultiDof(b3SharedMemoryCommandHandle commandHandle, int dofIndex, const double* velocity, int dofCount)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
if ((dofIndex >= 0) && ((dofIndex+ dofCount) < MAX_DEGREE_OF_FREEDOM) && dofCount>=0 && dofCount<=4)
{
for (int dof = 0; dof < dofCount; dof++)
{
command->m_sendDesiredStateCommandArgument.m_desiredStateQdot[dofIndex+dof] = velocity[dof];
command->m_updateFlags |= SIM_DESIRED_STATE_HAS_QDOT;
command->m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[dofIndex+dof] |= SIM_DESIRED_STATE_HAS_QDOT;
}
}
return 0;
}
B3_SHARED_API int b3JointControlSetDesiredForceTorqueMultiDof(b3SharedMemoryCommandHandle commandHandle, int dofIndex, double* forces, int dofCount)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
if ((dofIndex >= 0) && (dofIndex < MAX_DEGREE_OF_FREEDOM ) && dofCount >= 0 && dofCount <= 4)
{
for (int dof = 0; dof < dofCount; dof++)
{
command->m_sendDesiredStateCommandArgument.m_desiredStateForceTorque[dofIndex+dof] = forces[dof];
command->m_updateFlags |= SIM_DESIRED_STATE_HAS_MAX_FORCE;
command->m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[dofIndex + dof] |= SIM_DESIRED_STATE_HAS_MAX_FORCE;
}
}
return 0;
}
B3_SHARED_API int b3JointControlSetMaximumForce(b3SharedMemoryCommandHandle commandHandle, int dofIndex, double value)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
if ((dofIndex >= 0) && (dofIndex < MAX_DEGREE_OF_FREEDOM))
{
command->m_sendDesiredStateCommandArgument.m_desiredStateForceTorque[dofIndex] = value;
command->m_updateFlags |= SIM_DESIRED_STATE_HAS_MAX_FORCE;
command->m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[dofIndex] |= SIM_DESIRED_STATE_HAS_MAX_FORCE;
}
return 0;
}
B3_SHARED_API int b3JointControlSetDesiredForceTorque(b3SharedMemoryCommandHandle commandHandle, int dofIndex, double value)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
if ((dofIndex >= 0) && (dofIndex < MAX_DEGREE_OF_FREEDOM))
{
command->m_sendDesiredStateCommandArgument.m_desiredStateForceTorque[dofIndex] = value;
command->m_updateFlags |= SIM_DESIRED_STATE_HAS_MAX_FORCE;
command->m_sendDesiredStateCommandArgument.m_hasDesiredStateFlags[dofIndex] |= SIM_DESIRED_STATE_HAS_MAX_FORCE;
}
return 0;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3RequestActualStateCommandInit(b3PhysicsClientHandle physClient, int bodyUniqueId)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
return b3RequestActualStateCommandInit2((b3SharedMemoryCommandHandle)command, bodyUniqueId);
}
B3_SHARED_API b3SharedMemoryCommandHandle b3RequestActualStateCommandInit2(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
command->m_type = CMD_REQUEST_ACTUAL_STATE;
command->m_updateFlags = 0;
command->m_requestActualStateInformationCommandArgument.m_bodyUniqueId = bodyUniqueId;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API int b3RequestActualStateCommandComputeLinkVelocity(b3SharedMemoryCommandHandle commandHandle, int computeLinkVelocity)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
btAssert(command->m_type == CMD_REQUEST_ACTUAL_STATE);
if (computeLinkVelocity && command->m_type == CMD_REQUEST_ACTUAL_STATE)
{
command->m_updateFlags |= ACTUAL_STATE_COMPUTE_LINKVELOCITY;
}
return 0;
}
B3_SHARED_API int b3RequestActualStateCommandComputeForwardKinematics(b3SharedMemoryCommandHandle commandHandle, int computeForwardKinematics)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
btAssert(command->m_type == CMD_REQUEST_ACTUAL_STATE);
if (computeForwardKinematics && command->m_type == CMD_REQUEST_ACTUAL_STATE)
{
command->m_updateFlags |= ACTUAL_STATE_COMPUTE_FORWARD_KINEMATICS;
}
return 0;
}
B3_SHARED_API int b3GetJointState(b3PhysicsClientHandle physClient, b3SharedMemoryStatusHandle statusHandle, int jointIndex, b3JointSensorState* state)
{
const SharedMemoryStatus* status = (const SharedMemoryStatus*)statusHandle;
b3Assert(status);
int bodyIndex = status->m_sendActualStateArgs.m_bodyUniqueId;
b3Assert(bodyIndex >= 0);
if (bodyIndex >= 0)
{
b3JointInfo info;
bool result = b3GetJointInfo(physClient, bodyIndex, jointIndex, &info) != 0;
if (result)
{
if ((info.m_qIndex >= 0) && (info.m_uIndex >= 0) && (info.m_qIndex < MAX_DEGREE_OF_FREEDOM) && (info.m_uIndex < MAX_DEGREE_OF_FREEDOM))
{
state->m_jointPosition = status->m_sendActualStateArgs.m_actualStateQ[info.m_qIndex];
state->m_jointVelocity = status->m_sendActualStateArgs.m_actualStateQdot[info.m_uIndex];
}
else
{
state->m_jointPosition = 0;
state->m_jointVelocity = 0;
}
for (int ii(0); ii < 6; ++ii)
{
state->m_jointForceTorque[ii] = status->m_sendActualStateArgs.m_jointReactionForces[6 * jointIndex + ii];
}
state->m_jointMotorTorque = status->m_sendActualStateArgs.m_jointMotorForce[jointIndex];
return 1;
}
}
return 0;
}
B3_SHARED_API int b3GetJointStateMultiDof(b3PhysicsClientHandle physClient, b3SharedMemoryStatusHandle statusHandle, int jointIndex, b3JointSensorState2* state)
{
const SharedMemoryStatus* status = (const SharedMemoryStatus*)statusHandle;
b3Assert(status);
int bodyIndex = status->m_sendActualStateArgs.m_bodyUniqueId;
b3Assert(bodyIndex >= 0);
if (bodyIndex >= 0)
{
state->m_qDofSize = 0;
state->m_uDofSize = 0;
b3JointInfo info;
bool result = b3GetJointInfo(physClient, bodyIndex, jointIndex, &info) != 0;
if (result)
{
if ((info.m_qIndex >= 0) && (info.m_uIndex >= 0) && (info.m_qIndex < MAX_DEGREE_OF_FREEDOM) && (info.m_uIndex < MAX_DEGREE_OF_FREEDOM))
{
state->m_qDofSize = info.m_qSize;
state->m_uDofSize = info.m_uSize;
for (int i = 0; i < state->m_qDofSize; i++)
{
state->m_jointPosition[i] = status->m_sendActualStateArgs.m_actualStateQ[info.m_qIndex + i];
}
for (int i = 0; i < state->m_uDofSize; i++)
{
state->m_jointVelocity[i] = status->m_sendActualStateArgs.m_actualStateQdot[info.m_uIndex+i];
}
}
else
{
state->m_jointPosition[0] = 0;
state->m_jointVelocity[0] = 0;
}
for (int ii(0); ii < 6; ++ii)
{
state->m_jointReactionForceTorque[ii] = status->m_sendActualStateArgs.m_jointReactionForces[6 * jointIndex + ii];
}
state->m_jointMotorTorque = status->m_sendActualStateArgs.m_jointMotorForce[jointIndex];
return 1;
}
}
return 0;
}
B3_SHARED_API int b3GetLinkState(b3PhysicsClientHandle physClient, b3SharedMemoryStatusHandle statusHandle, int linkIndex, b3LinkState* state)
{
const SharedMemoryStatus* status = (const SharedMemoryStatus*)statusHandle;
b3Assert(status);
int bodyIndex = status->m_sendActualStateArgs.m_bodyUniqueId;
b3Assert(bodyIndex >= 0);
b3Assert(linkIndex >= 0);
int numLinks = status->m_sendActualStateArgs.m_numLinks;
b3Assert(linkIndex < numLinks);
if ((bodyIndex >= 0) && (linkIndex >= 0) && linkIndex < numLinks)
{
b3Transform wlf, com, inertial;
for (int i = 0; i < 3; ++i)
{
state->m_worldPosition[i] = status->m_sendActualStateArgs.m_linkState[7 * linkIndex + i];
state->m_localInertialPosition[i] = status->m_sendActualStateArgs.m_linkLocalInertialFrames[7 * linkIndex + i];
state->m_worldLinearVelocity[i] = status->m_sendActualStateArgs.m_linkWorldVelocities[6 * linkIndex + i];
state->m_worldAngularVelocity[i] = status->m_sendActualStateArgs.m_linkWorldVelocities[6 * linkIndex + i + 3];
}
for (int i = 0; i < 4; ++i)
{
state->m_worldOrientation[i] = status->m_sendActualStateArgs.m_linkState[7 * linkIndex + 3 + i];
state->m_localInertialOrientation[i] = status->m_sendActualStateArgs.m_linkLocalInertialFrames[7 * linkIndex + 3 + i];
}
com.setOrigin(b3MakeVector3(state->m_worldPosition[0], state->m_worldPosition[1], state->m_worldPosition[2]));
com.setRotation(b3Quaternion(state->m_worldOrientation[0], state->m_worldOrientation[1], state->m_worldOrientation[2], state->m_worldOrientation[3]));
inertial.setOrigin(b3MakeVector3(state->m_localInertialPosition[0], state->m_localInertialPosition[1], state->m_localInertialPosition[2]));
inertial.setRotation(b3Quaternion(state->m_localInertialOrientation[0], state->m_localInertialOrientation[1], state->m_localInertialOrientation[2], state->m_localInertialOrientation[3]));
wlf = com * inertial.inverse();
for (int i = 0; i < 3; ++i)
{
state->m_worldLinkFramePosition[i] = wlf.getOrigin()[i];
}
b3Quaternion wlfOrn = wlf.getRotation();
for (int i = 0; i < 4; ++i)
{
state->m_worldLinkFrameOrientation[i] = wlfOrn[i];
}
return 1;
}
return 0;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3CreateCollisionShapeCommandInit(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
if (cl)
{
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_CREATE_COLLISION_SHAPE;
command->m_updateFlags = 0;
command->m_createUserShapeArgs.m_numUserShapes = 0;
return (b3SharedMemoryCommandHandle)command;
}
return 0;
}
B3_SHARED_API int b3CreateCollisionShapeAddSphere(b3SharedMemoryCommandHandle commandHandle, double radius)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert((command->m_type == CMD_CREATE_COLLISION_SHAPE) || (command->m_type == CMD_CREATE_VISUAL_SHAPE));
if ((command->m_type == CMD_CREATE_COLLISION_SHAPE) || (command->m_type == CMD_CREATE_VISUAL_SHAPE))
{
int shapeIndex = command->m_createUserShapeArgs.m_numUserShapes;
if (shapeIndex < MAX_COMPOUND_COLLISION_SHAPES)
{
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_type = GEOM_SPHERE;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_collisionFlags = 0;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_visualFlags = 0;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_hasChildTransform = 0;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_sphereRadius = radius;
command->m_createUserShapeArgs.m_numUserShapes++;
return shapeIndex;
}
}
return -1;
}
B3_SHARED_API int b3CreateVisualShapeAddSphere(b3SharedMemoryCommandHandle commandHandle, double radius)
{
return b3CreateCollisionShapeAddSphere(commandHandle, radius);
}
B3_SHARED_API int b3CreateCollisionShapeAddBox(b3SharedMemoryCommandHandle commandHandle, const double halfExtents[3])
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert((command->m_type == CMD_CREATE_COLLISION_SHAPE) || (command->m_type == CMD_CREATE_VISUAL_SHAPE));
if ((command->m_type == CMD_CREATE_COLLISION_SHAPE) || (command->m_type == CMD_CREATE_VISUAL_SHAPE))
{
int shapeIndex = command->m_createUserShapeArgs.m_numUserShapes;
if (shapeIndex < MAX_COMPOUND_COLLISION_SHAPES)
{
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_type = GEOM_BOX;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_collisionFlags = 0;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_visualFlags = 0;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_hasChildTransform = 0;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_boxHalfExtents[0] = halfExtents[0];
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_boxHalfExtents[1] = halfExtents[1];
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_boxHalfExtents[2] = halfExtents[2];
command->m_createUserShapeArgs.m_numUserShapes++;
return shapeIndex;
}
}
return -1;
}
B3_SHARED_API int b3CreateVisualShapeAddBox(b3SharedMemoryCommandHandle commandHandle, const double halfExtents[/*3*/])
{
return b3CreateCollisionShapeAddBox(commandHandle, halfExtents);
}
B3_SHARED_API int b3CreateCollisionShapeAddCapsule(b3SharedMemoryCommandHandle commandHandle, double radius, double height)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert((command->m_type == CMD_CREATE_COLLISION_SHAPE) || (command->m_type == CMD_CREATE_VISUAL_SHAPE));
if ((command->m_type == CMD_CREATE_COLLISION_SHAPE) || (command->m_type == CMD_CREATE_VISUAL_SHAPE))
{
int shapeIndex = command->m_createUserShapeArgs.m_numUserShapes;
if (shapeIndex < MAX_COMPOUND_COLLISION_SHAPES)
{
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_type = GEOM_CAPSULE;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_collisionFlags = 0;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_visualFlags = 0;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_hasChildTransform = 0;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_capsuleRadius = radius;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_capsuleHeight = height;
command->m_createUserShapeArgs.m_numUserShapes++;
return shapeIndex;
}
}
return -1;
}
B3_SHARED_API int b3CreateVisualShapeAddCapsule(b3SharedMemoryCommandHandle commandHandle, double radius, double height)
{
return b3CreateCollisionShapeAddCapsule(commandHandle, radius, height);
}
B3_SHARED_API int b3CreateCollisionShapeAddCylinder(b3SharedMemoryCommandHandle commandHandle, double radius, double height)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert((command->m_type == CMD_CREATE_COLLISION_SHAPE) || (command->m_type == CMD_CREATE_VISUAL_SHAPE));
if ((command->m_type == CMD_CREATE_COLLISION_SHAPE) || (command->m_type == CMD_CREATE_VISUAL_SHAPE))
{
int shapeIndex = command->m_createUserShapeArgs.m_numUserShapes;
if (shapeIndex < MAX_COMPOUND_COLLISION_SHAPES)
{
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_type = GEOM_CYLINDER;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_collisionFlags = 0;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_visualFlags = 0;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_hasChildTransform = 0;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_capsuleRadius = radius;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_capsuleHeight = height;
command->m_createUserShapeArgs.m_numUserShapes++;
return shapeIndex;
}
}
return -1;
}
B3_SHARED_API int b3CreateVisualShapeAddCylinder(b3SharedMemoryCommandHandle commandHandle, double radius, double height)
{
return b3CreateCollisionShapeAddCylinder(commandHandle, radius, height);
}
B3_SHARED_API int b3CreateCollisionShapeAddPlane(b3SharedMemoryCommandHandle commandHandle, const double planeNormal[3], double planeConstant)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert((command->m_type == CMD_CREATE_COLLISION_SHAPE) || (command->m_type == CMD_CREATE_VISUAL_SHAPE));
if ((command->m_type == CMD_CREATE_COLLISION_SHAPE) || (command->m_type == CMD_CREATE_VISUAL_SHAPE))
{
int shapeIndex = command->m_createUserShapeArgs.m_numUserShapes;
if (shapeIndex < MAX_COMPOUND_COLLISION_SHAPES)
{
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_type = GEOM_PLANE;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_collisionFlags = 0;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_visualFlags = 0;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_hasChildTransform = 0;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_planeNormal[0] = planeNormal[0];
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_planeNormal[1] = planeNormal[1];
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_planeNormal[2] = planeNormal[2];
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_planeConstant = planeConstant;
command->m_createUserShapeArgs.m_numUserShapes++;
return shapeIndex;
}
}
return -1;
}
B3_SHARED_API int b3CreateVisualShapeAddPlane(b3SharedMemoryCommandHandle commandHandle, const double planeNormal[/*3*/], double planeConstant)
{
return b3CreateCollisionShapeAddPlane(commandHandle, planeNormal, planeConstant);
}
B3_SHARED_API int b3CreateCollisionShapeAddMesh(b3SharedMemoryCommandHandle commandHandle, const char* fileName, const double meshScale[3])
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert((command->m_type == CMD_CREATE_COLLISION_SHAPE) || (command->m_type == CMD_CREATE_VISUAL_SHAPE));
if ((command->m_type == CMD_CREATE_COLLISION_SHAPE) || (command->m_type == CMD_CREATE_VISUAL_SHAPE))
{
int shapeIndex = command->m_createUserShapeArgs.m_numUserShapes;
if (shapeIndex < MAX_COMPOUND_COLLISION_SHAPES && strlen(fileName) < VISUAL_SHAPE_MAX_PATH_LEN)
{
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_type = GEOM_MESH;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_collisionFlags = 0;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_visualFlags = 0;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_hasChildTransform = 0;
strcpy(command->m_createUserShapeArgs.m_shapes[shapeIndex].m_meshFileName, fileName);
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_meshScale[0] = meshScale[0];
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_meshScale[1] = meshScale[1];
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_meshScale[2] = meshScale[2];
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_meshFileType = 0;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_numVertices = 0;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_numIndices = 0;
command->m_createUserShapeArgs.m_numUserShapes++;
return shapeIndex;
}
}
return -1;
}
B3_SHARED_API int b3CreateCollisionShapeAddConvexMesh(b3PhysicsClientHandle physClient, b3SharedMemoryCommandHandle commandHandle, const double meshScale[/*3*/], const double* vertices, int numVertices)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert((command->m_type == CMD_CREATE_COLLISION_SHAPE) || (command->m_type == CMD_CREATE_VISUAL_SHAPE));
if ((command->m_type == CMD_CREATE_COLLISION_SHAPE) || (command->m_type == CMD_CREATE_VISUAL_SHAPE))
{
int shapeIndex = command->m_createUserShapeArgs.m_numUserShapes;
if (shapeIndex < MAX_COMPOUND_COLLISION_SHAPES && numVertices >= 0)
{
int i=0;
if (numVertices>B3_MAX_NUM_VERTICES)
numVertices=B3_MAX_NUM_VERTICES;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_type = GEOM_MESH;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_collisionFlags = 0;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_visualFlags = 0;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_hasChildTransform = 0;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_meshScale[0] = meshScale[0];
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_meshScale[1] = meshScale[1];
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_meshScale[2] = meshScale[2];
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_meshFileType = 0;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_meshFileName[0]=0;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_numVertices = numVertices;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_numIndices = 0;
cl->uploadBulletFileToSharedMemory((const char*)vertices, numVertices * sizeof(double)*3);
command->m_createUserShapeArgs.m_numUserShapes++;
return shapeIndex;
}
}
return -1;
}
B3_SHARED_API int b3CreateCollisionShapeAddConcaveMesh(b3PhysicsClientHandle physClient, b3SharedMemoryCommandHandle commandHandle, const double meshScale[/*3*/], const double* vertices, int numVertices, const int* indices, int numIndices)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert((command->m_type == CMD_CREATE_COLLISION_SHAPE) || (command->m_type == CMD_CREATE_VISUAL_SHAPE));
if ((command->m_type == CMD_CREATE_COLLISION_SHAPE) || (command->m_type == CMD_CREATE_VISUAL_SHAPE))
{
int shapeIndex = command->m_createUserShapeArgs.m_numUserShapes;
if (shapeIndex < MAX_COMPOUND_COLLISION_SHAPES && numVertices >= 0 && numIndices >=0)
{
int i=0;
if (numVertices>B3_MAX_NUM_VERTICES)
numVertices=B3_MAX_NUM_VERTICES;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_type = GEOM_MESH;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_collisionFlags = GEOM_FORCE_CONCAVE_TRIMESH;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_visualFlags = 0;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_hasChildTransform = 0;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_meshScale[0] = meshScale[0];
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_meshScale[1] = meshScale[1];
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_meshScale[2] = meshScale[2];
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_meshFileType = 0;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_meshFileName[0]=0;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_numVertices = numVertices;
int totalUploadSizeInBytes = numVertices * sizeof(double) *3 + numIndices * sizeof(int);
char* data = new char[totalUploadSizeInBytes];
double* vertexUpload = (double*)data;
int* indexUpload = (int*)(data + numVertices*sizeof(double)*3);
for (i=0;i<numVertices;i++)
{
vertexUpload[i*3+0]=vertices[i*3+0];
vertexUpload[i*3+1]=vertices[i*3+1];
vertexUpload[i*3+2]=vertices[i*3+2];
}
if (numIndices>B3_MAX_NUM_INDICES)
numIndices = B3_MAX_NUM_INDICES;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_numIndices = numIndices;
for (i=0;i<numIndices;i++)
{
indexUpload[i]=indices[i];
}
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_numNormals = 0;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_numUVs = 0;
command->m_createUserShapeArgs.m_numUserShapes++;
cl->uploadBulletFileToSharedMemory(data, totalUploadSizeInBytes);
delete [] data;
return shapeIndex;
}
}
return -1;
}
B3_SHARED_API int b3CreateVisualShapeAddMesh2(b3PhysicsClientHandle physClient, b3SharedMemoryCommandHandle commandHandle, const double meshScale[/*3*/], const double* vertices, int numVertices, const int* indices, int numIndices, const double* normals, int numNormals, const double* uvs, int numUVs)
{
if (numUVs == 0 && numNormals == 0)
{
return b3CreateCollisionShapeAddConcaveMesh(physClient, commandHandle, meshScale, vertices, numVertices, indices, numIndices);
}
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert((command->m_type == CMD_CREATE_COLLISION_SHAPE) || (command->m_type == CMD_CREATE_VISUAL_SHAPE));
if ((command->m_type == CMD_CREATE_COLLISION_SHAPE) || (command->m_type == CMD_CREATE_VISUAL_SHAPE))
{
int shapeIndex = command->m_createUserShapeArgs.m_numUserShapes;
if (shapeIndex < MAX_COMPOUND_COLLISION_SHAPES && numVertices >= 0 && numIndices >= 0)
{
int i = 0;
if (numVertices>B3_MAX_NUM_VERTICES)
numVertices = B3_MAX_NUM_VERTICES;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_type = GEOM_MESH;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_collisionFlags = GEOM_FORCE_CONCAVE_TRIMESH;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_visualFlags = 0;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_hasChildTransform = 0;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_meshScale[0] = meshScale[0];
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_meshScale[1] = meshScale[1];
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_meshScale[2] = meshScale[2];
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_meshFileType = 0;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_meshFileName[0] = 0;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_numVertices = numVertices;
int totalUploadSizeInBytes = numVertices * sizeof(double) * 3 + numIndices * sizeof(int) + numNormals*sizeof(double)*3+numUVs*sizeof(double)*2;
char* data = new char[totalUploadSizeInBytes];
double* vertexUpload = (double*)data;
int* indexUpload = (int*)(data + numVertices * sizeof(double) * 3);
double* normalUpload = (double*)(data + numVertices * sizeof(double) * 3 + numIndices * sizeof(int));
double* uvUpload = (double*)(data + numVertices * sizeof(double) * 3 + numIndices * sizeof(int)+ numNormals * sizeof(double) * 3);
for (i = 0; i<numVertices; i++)
{
vertexUpload[i * 3 + 0] = vertices[i * 3 + 0];
vertexUpload[i * 3 + 1] = vertices[i * 3 + 1];
vertexUpload[i * 3 + 2] = vertices[i * 3 + 2];
}
if (numIndices>B3_MAX_NUM_INDICES)
numIndices = B3_MAX_NUM_INDICES;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_numIndices = numIndices;
for (i = 0; i<numIndices; i++)
{
indexUpload[i] = indices[i];
}
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_numNormals = numNormals;
for (i = 0; i < numNormals; i++)
{
normalUpload[i * 3 + 0] = normals[i * 3 + 0];
normalUpload[i * 3 + 1] = normals[i * 3 + 1];
normalUpload[i * 3 + 2] = normals[i * 3 + 2];
}
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_numUVs = numUVs;
for (i = 0; i < numUVs; i++)
{
uvUpload[i * 2 + 0] = uvs[i * 2 + 0];
uvUpload[i * 2 + 1] = uvs[i * 2 + 1];
}
command->m_createUserShapeArgs.m_numUserShapes++;
cl->uploadBulletFileToSharedMemory(data, totalUploadSizeInBytes);
delete[] data;
return shapeIndex;
}
}
return -1;
}
B3_SHARED_API int b3CreateVisualShapeAddMesh(b3SharedMemoryCommandHandle commandHandle, const char* fileName, const double meshScale[/*3*/])
{
return b3CreateCollisionShapeAddMesh(commandHandle, fileName, meshScale);
}
B3_SHARED_API void b3CreateCollisionSetFlag(b3SharedMemoryCommandHandle commandHandle, int shapeIndex, int flags)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert((command->m_type == CMD_CREATE_COLLISION_SHAPE) || (command->m_type == CMD_CREATE_VISUAL_SHAPE));
if ((command->m_type == CMD_CREATE_COLLISION_SHAPE) || (command->m_type == CMD_CREATE_VISUAL_SHAPE))
{
if (shapeIndex < command->m_createUserShapeArgs.m_numUserShapes)
{
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_collisionFlags |= flags;
}
}
}
B3_SHARED_API void b3CreateVisualSetFlag(b3SharedMemoryCommandHandle commandHandle, int shapeIndex, int flags)
{
b3CreateCollisionSetFlag(commandHandle, shapeIndex, flags);
}
B3_SHARED_API void b3CreateCollisionShapeSetChildTransform(b3SharedMemoryCommandHandle commandHandle, int shapeIndex, const double childPosition[3], const double childOrientation[4])
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert((command->m_type == CMD_CREATE_COLLISION_SHAPE) || (command->m_type == CMD_CREATE_VISUAL_SHAPE));
if ((command->m_type == CMD_CREATE_COLLISION_SHAPE) || (command->m_type == CMD_CREATE_VISUAL_SHAPE))
{
if (shapeIndex < command->m_createUserShapeArgs.m_numUserShapes)
{
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_hasChildTransform = 1;
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_childPosition[0] = childPosition[0];
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_childPosition[1] = childPosition[1];
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_childPosition[2] = childPosition[2];
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_childOrientation[0] = childOrientation[0];
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_childOrientation[1] = childOrientation[1];
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_childOrientation[2] = childOrientation[2];
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_childOrientation[3] = childOrientation[3];
}
}
}
B3_SHARED_API void b3CreateVisualShapeSetChildTransform(b3SharedMemoryCommandHandle commandHandle, int shapeIndex, const double childPosition[/*3*/], const double childOrientation[/*4*/])
{
b3CreateCollisionShapeSetChildTransform(commandHandle, shapeIndex, childPosition, childOrientation);
}
B3_SHARED_API void b3CreateVisualShapeSetRGBAColor(b3SharedMemoryCommandHandle commandHandle, int shapeIndex, const double rgbaColor[/*4*/])
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert((command->m_type == CMD_CREATE_COLLISION_SHAPE) || (command->m_type == CMD_CREATE_VISUAL_SHAPE));
if ((command->m_type == CMD_CREATE_COLLISION_SHAPE) || (command->m_type == CMD_CREATE_VISUAL_SHAPE))
{
if (shapeIndex < command->m_createUserShapeArgs.m_numUserShapes)
{
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_rgbaColor[0] = rgbaColor[0];
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_rgbaColor[1] = rgbaColor[1];
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_rgbaColor[2] = rgbaColor[2];
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_rgbaColor[3] = rgbaColor[3];
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_visualFlags |= GEOM_VISUAL_HAS_RGBA_COLOR;
}
}
}
B3_SHARED_API void b3CreateVisualShapeSetSpecularColor(b3SharedMemoryCommandHandle commandHandle, int shapeIndex, const double specularColor[/*3*/])
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert((command->m_type == CMD_CREATE_COLLISION_SHAPE) || (command->m_type == CMD_CREATE_VISUAL_SHAPE));
if ((command->m_type == CMD_CREATE_COLLISION_SHAPE) || (command->m_type == CMD_CREATE_VISUAL_SHAPE))
{
if (shapeIndex < command->m_createUserShapeArgs.m_numUserShapes)
{
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_specularColor[0] = specularColor[0];
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_specularColor[1] = specularColor[1];
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_specularColor[2] = specularColor[2];
command->m_createUserShapeArgs.m_shapes[shapeIndex].m_visualFlags |= GEOM_VISUAL_HAS_SPECULAR_COLOR;
}
}
}
B3_SHARED_API int b3GetStatusCollisionShapeUniqueId(b3SharedMemoryStatusHandle statusHandle)
{
const SharedMemoryStatus* status = (const SharedMemoryStatus*)statusHandle;
b3Assert(status);
b3Assert(status->m_type == CMD_CREATE_COLLISION_SHAPE_COMPLETED);
if (status && status->m_type == CMD_CREATE_COLLISION_SHAPE_COMPLETED)
{
return status->m_createUserShapeResultArgs.m_userShapeUniqueId;
}
return -1;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3CreateVisualShapeCommandInit(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
if (cl)
{
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_CREATE_VISUAL_SHAPE;
command->m_updateFlags = 0;
command->m_createUserShapeArgs.m_numUserShapes = 0;
return (b3SharedMemoryCommandHandle)command;
}
return 0;
}
B3_SHARED_API int b3GetStatusVisualShapeUniqueId(b3SharedMemoryStatusHandle statusHandle)
{
const SharedMemoryStatus* status = (const SharedMemoryStatus*)statusHandle;
b3Assert(status);
b3Assert(status->m_type == CMD_CREATE_VISUAL_SHAPE_COMPLETED);
if (status && status->m_type == CMD_CREATE_VISUAL_SHAPE_COMPLETED)
{
return status->m_createUserShapeResultArgs.m_userShapeUniqueId;
}
return -1;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3CreateMultiBodyCommandInit(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
if (cl)
{
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_CREATE_MULTI_BODY;
command->m_updateFlags = 0;
command->m_createMultiBodyArgs.m_bodyName[0] = 0;
command->m_createMultiBodyArgs.m_baseLinkIndex = -1;
command->m_createMultiBodyArgs.m_numLinks = 0;
command->m_createMultiBodyArgs.m_numBatchObjects = 0;
return (b3SharedMemoryCommandHandle)command;
}
return 0;
}
//batch creation is an performance feature to create a large number of multi bodies in one command
B3_SHARED_API int b3CreateMultiBodySetBatchPositions(b3PhysicsClientHandle physClient, b3SharedMemoryCommandHandle commandHandle, double* batchPositions, int numBatchObjects)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_CREATE_MULTI_BODY);
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
if (cl && command->m_type == CMD_CREATE_MULTI_BODY)
{
command->m_createMultiBodyArgs.m_numBatchObjects = numBatchObjects;
cl->uploadBulletFileToSharedMemory((const char*)batchPositions, sizeof(double) * 3 * numBatchObjects);
}
return 0;
}
B3_SHARED_API int b3CreateMultiBodyBase(b3SharedMemoryCommandHandle commandHandle, double mass, int collisionShapeUnique, int visualShapeUniqueId, const double basePosition[3], const double baseOrientation[4], const double baseInertialFramePosition[3], const double baseInertialFrameOrientation[4])
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_CREATE_MULTI_BODY);
if (command->m_type == CMD_CREATE_MULTI_BODY)
{
int numLinks = command->m_createMultiBodyArgs.m_numLinks;
if (numLinks < MAX_CREATE_MULTI_BODY_LINKS)
{
int baseLinkIndex = numLinks;
command->m_updateFlags |= MULTI_BODY_HAS_BASE;
command->m_createMultiBodyArgs.m_baseLinkIndex = baseLinkIndex;
command->m_createMultiBodyArgs.m_linkPositions[baseLinkIndex * 3 + 0] = basePosition[0];
command->m_createMultiBodyArgs.m_linkPositions[baseLinkIndex * 3 + 1] = basePosition[1];
command->m_createMultiBodyArgs.m_linkPositions[baseLinkIndex * 3 + 2] = basePosition[2];
command->m_createMultiBodyArgs.m_linkOrientations[baseLinkIndex * 4 + 0] = baseOrientation[0];
command->m_createMultiBodyArgs.m_linkOrientations[baseLinkIndex * 4 + 1] = baseOrientation[1];
command->m_createMultiBodyArgs.m_linkOrientations[baseLinkIndex * 4 + 2] = baseOrientation[2];
command->m_createMultiBodyArgs.m_linkOrientations[baseLinkIndex * 4 + 3] = baseOrientation[3];
command->m_createMultiBodyArgs.m_linkInertias[baseLinkIndex * 3 + 0] = 0; //unused, is computed automatically. Will add a method to explicitly set it (with a flag), similar to loadURDF etc.
command->m_createMultiBodyArgs.m_linkInertias[baseLinkIndex * 3 + 1] = 0;
command->m_createMultiBodyArgs.m_linkInertias[baseLinkIndex * 3 + 2] = 0;
command->m_createMultiBodyArgs.m_linkInertialFramePositions[baseLinkIndex * 3 + 0] = baseInertialFramePosition[0];
command->m_createMultiBodyArgs.m_linkInertialFramePositions[baseLinkIndex * 3 + 1] = baseInertialFramePosition[1];
command->m_createMultiBodyArgs.m_linkInertialFramePositions[baseLinkIndex * 3 + 2] = baseInertialFramePosition[2];
command->m_createMultiBodyArgs.m_linkInertialFrameOrientations[baseLinkIndex * 4 + 0] = baseInertialFrameOrientation[0];
command->m_createMultiBodyArgs.m_linkInertialFrameOrientations[baseLinkIndex * 4 + 1] = baseInertialFrameOrientation[1];
command->m_createMultiBodyArgs.m_linkInertialFrameOrientations[baseLinkIndex * 4 + 2] = baseInertialFrameOrientation[2];
command->m_createMultiBodyArgs.m_linkInertialFrameOrientations[baseLinkIndex * 4 + 3] = baseInertialFrameOrientation[3];
command->m_createMultiBodyArgs.m_linkCollisionShapeUniqueIds[baseLinkIndex] = collisionShapeUnique;
command->m_createMultiBodyArgs.m_linkVisualShapeUniqueIds[baseLinkIndex] = visualShapeUniqueId;
command->m_createMultiBodyArgs.m_linkMasses[baseLinkIndex] = mass;
command->m_createMultiBodyArgs.m_linkParentIndices[baseLinkIndex] = -2; //no parent
command->m_createMultiBodyArgs.m_linkJointAxis[baseLinkIndex + 0] = 0;
command->m_createMultiBodyArgs.m_linkJointAxis[baseLinkIndex + 1] = 0;
command->m_createMultiBodyArgs.m_linkJointAxis[baseLinkIndex + 2] = 0;
command->m_createMultiBodyArgs.m_linkJointTypes[baseLinkIndex] = -1;
command->m_createMultiBodyArgs.m_numLinks++;
}
return numLinks;
}
return -2;
}
B3_SHARED_API int b3CreateMultiBodyLink(b3SharedMemoryCommandHandle commandHandle, double linkMass, double linkCollisionShapeIndex,
double linkVisualShapeIndex,
const double linkPosition[3],
const double linkOrientation[4],
const double linkInertialFramePosition[3],
const double linkInertialFrameOrientation[4],
int linkParentIndex,
int linkJointType,
const double linkJointAxis[3])
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_CREATE_MULTI_BODY);
if (command->m_type == CMD_CREATE_MULTI_BODY)
{
int numLinks = command->m_createMultiBodyArgs.m_numLinks;
if (numLinks < MAX_CREATE_MULTI_BODY_LINKS)
{
int linkIndex = numLinks;
command->m_updateFlags |= MULTI_BODY_HAS_BASE;
command->m_createMultiBodyArgs.m_linkPositions[linkIndex * 3 + 0] = linkPosition[0];
command->m_createMultiBodyArgs.m_linkPositions[linkIndex * 3 + 1] = linkPosition[1];
command->m_createMultiBodyArgs.m_linkPositions[linkIndex * 3 + 2] = linkPosition[2];
command->m_createMultiBodyArgs.m_linkOrientations[linkIndex * 4 + 0] = linkOrientation[0];
command->m_createMultiBodyArgs.m_linkOrientations[linkIndex * 4 + 1] = linkOrientation[1];
command->m_createMultiBodyArgs.m_linkOrientations[linkIndex * 4 + 2] = linkOrientation[2];
command->m_createMultiBodyArgs.m_linkOrientations[linkIndex * 4 + 3] = linkOrientation[3];
command->m_createMultiBodyArgs.m_linkInertias[linkIndex * 3 + 0] = linkMass;
command->m_createMultiBodyArgs.m_linkInertias[linkIndex * 3 + 1] = linkMass;
command->m_createMultiBodyArgs.m_linkInertias[linkIndex * 3 + 2] = linkMass;
command->m_createMultiBodyArgs.m_linkInertialFramePositions[linkIndex * 3 + 0] = linkInertialFramePosition[0];
command->m_createMultiBodyArgs.m_linkInertialFramePositions[linkIndex * 3 + 1] = linkInertialFramePosition[1];
command->m_createMultiBodyArgs.m_linkInertialFramePositions[linkIndex * 3 + 2] = linkInertialFramePosition[2];
command->m_createMultiBodyArgs.m_linkInertialFrameOrientations[linkIndex * 4 + 0] = linkInertialFrameOrientation[0];
command->m_createMultiBodyArgs.m_linkInertialFrameOrientations[linkIndex * 4 + 1] = linkInertialFrameOrientation[1];
command->m_createMultiBodyArgs.m_linkInertialFrameOrientations[linkIndex * 4 + 2] = linkInertialFrameOrientation[2];
command->m_createMultiBodyArgs.m_linkInertialFrameOrientations[linkIndex * 4 + 3] = linkInertialFrameOrientation[3];
command->m_createMultiBodyArgs.m_linkCollisionShapeUniqueIds[linkIndex] = linkCollisionShapeIndex;
command->m_createMultiBodyArgs.m_linkVisualShapeUniqueIds[linkIndex] = linkVisualShapeIndex;
command->m_createMultiBodyArgs.m_linkParentIndices[linkIndex] = linkParentIndex;
command->m_createMultiBodyArgs.m_linkJointTypes[linkIndex] = linkJointType;
command->m_createMultiBodyArgs.m_linkJointAxis[3 * linkIndex + 0] = linkJointAxis[0];
command->m_createMultiBodyArgs.m_linkJointAxis[3 * linkIndex + 1] = linkJointAxis[1];
command->m_createMultiBodyArgs.m_linkJointAxis[3 * linkIndex + 2] = linkJointAxis[2];
command->m_createMultiBodyArgs.m_linkMasses[linkIndex] = linkMass;
command->m_createMultiBodyArgs.m_numLinks++;
return numLinks;
}
}
return -1;
}
//useMaximalCoordinates are disabled by default, enabling them is experimental and not fully supported yet
B3_SHARED_API void b3CreateMultiBodyUseMaximalCoordinates(b3SharedMemoryCommandHandle commandHandle)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_CREATE_MULTI_BODY);
if (command->m_type == CMD_CREATE_MULTI_BODY)
{
command->m_updateFlags |= MULT_BODY_USE_MAXIMAL_COORDINATES;
}
}
B3_SHARED_API void b3CreateMultiBodySetFlags(b3SharedMemoryCommandHandle commandHandle, int flags)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_CREATE_MULTI_BODY);
if (command->m_type == CMD_CREATE_MULTI_BODY)
{
command->m_updateFlags |= MULT_BODY_HAS_FLAGS;
command->m_createMultiBodyArgs.m_flags = flags;
}
}
B3_SHARED_API int b3GetStatusMultiBodyUniqueId(b3SharedMemoryStatusHandle statusHandle)
{
const SharedMemoryStatus* status = (const SharedMemoryStatus*)statusHandle;
b3Assert(status);
b3Assert(status->m_type == CMD_CREATE_MULTI_BODY_COMPLETED);
if (status && status->m_type == CMD_CREATE_MULTI_BODY_COMPLETED)
{
return status->m_createMultiBodyResultArgs.m_bodyUniqueId;
}
return -1;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3CreateBoxShapeCommandInit(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_CREATE_BOX_COLLISION_SHAPE;
command->m_updateFlags = 0;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API int b3CreateBoxCommandSetStartPosition(b3SharedMemoryCommandHandle commandHandle, double startPosX, double startPosY, double startPosZ)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_CREATE_BOX_COLLISION_SHAPE);
command->m_updateFlags |= BOX_SHAPE_HAS_INITIAL_POSITION;
command->m_createBoxShapeArguments.m_initialPosition[0] = startPosX;
command->m_createBoxShapeArguments.m_initialPosition[1] = startPosY;
command->m_createBoxShapeArguments.m_initialPosition[2] = startPosZ;
return 0;
}
B3_SHARED_API int b3CreateBoxCommandSetHalfExtents(b3SharedMemoryCommandHandle commandHandle, double halfExtentsX, double halfExtentsY, double halfExtentsZ)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_CREATE_BOX_COLLISION_SHAPE);
command->m_updateFlags |= BOX_SHAPE_HAS_HALF_EXTENTS;
command->m_createBoxShapeArguments.m_halfExtentsX = halfExtentsX;
command->m_createBoxShapeArguments.m_halfExtentsY = halfExtentsY;
command->m_createBoxShapeArguments.m_halfExtentsZ = halfExtentsZ;
return 0;
}
B3_SHARED_API int b3CreateBoxCommandSetMass(b3SharedMemoryCommandHandle commandHandle, double mass)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_CREATE_BOX_COLLISION_SHAPE);
command->m_updateFlags |= BOX_SHAPE_HAS_MASS;
command->m_createBoxShapeArguments.m_mass = mass;
return 0;
}
B3_SHARED_API int b3CreateBoxCommandSetCollisionShapeType(b3SharedMemoryCommandHandle commandHandle, int collisionShapeType)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_CREATE_BOX_COLLISION_SHAPE);
command->m_updateFlags |= BOX_SHAPE_HAS_COLLISION_SHAPE_TYPE;
command->m_createBoxShapeArguments.m_collisionShapeType = collisionShapeType;
return 0;
}
B3_SHARED_API int b3CreateBoxCommandSetColorRGBA(b3SharedMemoryCommandHandle commandHandle, double red, double green, double blue, double alpha)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_CREATE_BOX_COLLISION_SHAPE);
command->m_updateFlags |= BOX_SHAPE_HAS_COLOR;
command->m_createBoxShapeArguments.m_colorRGBA[0] = red;
command->m_createBoxShapeArguments.m_colorRGBA[1] = green;
command->m_createBoxShapeArguments.m_colorRGBA[2] = blue;
command->m_createBoxShapeArguments.m_colorRGBA[3] = alpha;
return 0;
}
B3_SHARED_API int b3CreateBoxCommandSetStartOrientation(b3SharedMemoryCommandHandle commandHandle, double startOrnX, double startOrnY, double startOrnZ, double startOrnW)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_CREATE_BOX_COLLISION_SHAPE);
command->m_updateFlags |= BOX_SHAPE_HAS_INITIAL_ORIENTATION;
command->m_createBoxShapeArguments.m_initialOrientation[0] = startOrnX;
command->m_createBoxShapeArguments.m_initialOrientation[1] = startOrnY;
command->m_createBoxShapeArguments.m_initialOrientation[2] = startOrnZ;
command->m_createBoxShapeArguments.m_initialOrientation[3] = startOrnW;
return 0;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3CreatePoseCommandInit(b3PhysicsClientHandle physClient, int bodyUniqueId)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
return b3CreatePoseCommandInit2((b3SharedMemoryCommandHandle)command, bodyUniqueId);
}
B3_SHARED_API b3SharedMemoryCommandHandle b3CreatePoseCommandInit2(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
command->m_type = CMD_INIT_POSE;
command->m_updateFlags = 0;
command->m_initPoseArgs.m_bodyUniqueId = bodyUniqueId;
//a bit slow, initialing the full range to zero...
for (int i = 0; i < MAX_DEGREE_OF_FREEDOM; i++)
{
command->m_initPoseArgs.m_hasInitialStateQ[i] = 0;
command->m_initPoseArgs.m_hasInitialStateQdot[i] = 0;
}
return commandHandle;
}
B3_SHARED_API int b3CreatePoseCommandSetBasePosition(b3SharedMemoryCommandHandle commandHandle, double startPosX, double startPosY, double startPosZ)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_INIT_POSE);
command->m_updateFlags |= INIT_POSE_HAS_INITIAL_POSITION;
command->m_initPoseArgs.m_initialStateQ[0] = startPosX;
command->m_initPoseArgs.m_initialStateQ[1] = startPosY;
command->m_initPoseArgs.m_initialStateQ[2] = startPosZ;
command->m_initPoseArgs.m_hasInitialStateQ[0] = 1;
command->m_initPoseArgs.m_hasInitialStateQ[1] = 1;
command->m_initPoseArgs.m_hasInitialStateQ[2] = 1;
return 0;
}
B3_SHARED_API int b3CreatePoseCommandSetBaseOrientation(b3SharedMemoryCommandHandle commandHandle, double startOrnX, double startOrnY, double startOrnZ, double startOrnW)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_INIT_POSE);
command->m_updateFlags |= INIT_POSE_HAS_INITIAL_ORIENTATION;
command->m_initPoseArgs.m_initialStateQ[3] = startOrnX;
command->m_initPoseArgs.m_initialStateQ[4] = startOrnY;
command->m_initPoseArgs.m_initialStateQ[5] = startOrnZ;
command->m_initPoseArgs.m_initialStateQ[6] = startOrnW;
command->m_initPoseArgs.m_hasInitialStateQ[3] = 1;
command->m_initPoseArgs.m_hasInitialStateQ[4] = 1;
command->m_initPoseArgs.m_hasInitialStateQ[5] = 1;
command->m_initPoseArgs.m_hasInitialStateQ[6] = 1;
return 0;
}
B3_SHARED_API int b3CreatePoseCommandSetBaseLinearVelocity(b3SharedMemoryCommandHandle commandHandle, const double linVel[3])
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_INIT_POSE);
command->m_updateFlags |= INIT_POSE_HAS_BASE_LINEAR_VELOCITY;
command->m_initPoseArgs.m_hasInitialStateQdot[0] = 1;
command->m_initPoseArgs.m_hasInitialStateQdot[1] = 1;
command->m_initPoseArgs.m_hasInitialStateQdot[2] = 1;
command->m_initPoseArgs.m_initialStateQdot[0] = linVel[0];
command->m_initPoseArgs.m_initialStateQdot[1] = linVel[1];
command->m_initPoseArgs.m_initialStateQdot[2] = linVel[2];
return 0;
}
B3_SHARED_API int b3CreatePoseCommandSetBaseAngularVelocity(b3SharedMemoryCommandHandle commandHandle, const double angVel[3])
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_INIT_POSE);
command->m_updateFlags |= INIT_POSE_HAS_BASE_ANGULAR_VELOCITY;
command->m_initPoseArgs.m_hasInitialStateQdot[3] = 1;
command->m_initPoseArgs.m_hasInitialStateQdot[4] = 1;
command->m_initPoseArgs.m_hasInitialStateQdot[5] = 1;
command->m_initPoseArgs.m_initialStateQdot[3] = angVel[0];
command->m_initPoseArgs.m_initialStateQdot[4] = angVel[1];
command->m_initPoseArgs.m_initialStateQdot[5] = angVel[2];
return 0;
}
B3_SHARED_API int b3CreatePoseCommandSetJointPositions(b3SharedMemoryCommandHandle commandHandle, int numJointPositions, const double* jointPositions)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_INIT_POSE);
command->m_updateFlags |= INIT_POSE_HAS_JOINT_STATE;
for (int i = 0; i < numJointPositions; i++)
{
if ((i + 7) < MAX_DEGREE_OF_FREEDOM)
{
command->m_initPoseArgs.m_initialStateQ[i + 7] = jointPositions[i];
command->m_initPoseArgs.m_hasInitialStateQ[i + 7] = 1;
}
}
return 0;
}
B3_SHARED_API int b3CreatePoseCommandSetQ(b3SharedMemoryCommandHandle commandHandle, int numJointPositions, const double* q, const int* hasQ)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_INIT_POSE);
command->m_updateFlags |= INIT_POSE_HAS_JOINT_STATE;
for (int i = 0; i < numJointPositions; i++)
{
if ((i) < MAX_DEGREE_OF_FREEDOM)
{
command->m_initPoseArgs.m_initialStateQ[i] = q[i];
command->m_initPoseArgs.m_hasInitialStateQ[i] = hasQ[i];
}
}
return 0;
}
B3_SHARED_API int b3CreatePoseCommandSetJointPosition(b3PhysicsClientHandle physClient, b3SharedMemoryCommandHandle commandHandle, int jointIndex, double jointPosition)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_INIT_POSE);
command->m_updateFlags |= INIT_POSE_HAS_JOINT_STATE;
b3JointInfo info;
b3GetJointInfo(physClient, command->m_initPoseArgs.m_bodyUniqueId, jointIndex, &info);
//btAssert((info.m_flags & JOINT_HAS_MOTORIZED_POWER) && info.m_qIndex >=0);
if ((info.m_flags & JOINT_HAS_MOTORIZED_POWER) && info.m_qIndex >= 0)
{
command->m_initPoseArgs.m_initialStateQ[info.m_qIndex] = jointPosition;
command->m_initPoseArgs.m_hasInitialStateQ[info.m_qIndex] = 1;
}
return 0;
}
B3_SHARED_API int b3CreatePoseCommandSetJointPositionMultiDof(b3PhysicsClientHandle physClient, b3SharedMemoryCommandHandle commandHandle, int jointIndex, const double* jointPosition, int posSize)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_INIT_POSE);
command->m_updateFlags |= INIT_POSE_HAS_JOINT_STATE;
b3JointInfo info;
b3GetJointInfo(physClient, command->m_initPoseArgs.m_bodyUniqueId, jointIndex, &info);
//if ((info.m_flags & JOINT_HAS_MOTORIZED_POWER) && info.m_qIndex >= 0)
if (info.m_qIndex >= 0)
{
if (posSize == info.m_qSize)
{
for (int i = 0; i < posSize; i++)
{
command->m_initPoseArgs.m_initialStateQ[info.m_qIndex + i] = jointPosition[i];
command->m_initPoseArgs.m_hasInitialStateQ[info.m_qIndex + i] = 1;
}
}
}
return 0;
}
B3_SHARED_API int b3CreatePoseCommandSetJointVelocity(b3PhysicsClientHandle physClient, b3SharedMemoryCommandHandle commandHandle, int jointIndex, double jointVelocity)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_INIT_POSE);
command->m_updateFlags |= INIT_POSE_HAS_JOINT_VELOCITY;
b3JointInfo info;
b3GetJointInfo(physClient, command->m_initPoseArgs.m_bodyUniqueId, jointIndex, &info);
//btAssert((info.m_flags & JOINT_HAS_MOTORIZED_POWER) && info.m_uIndex >=0);
if ((info.m_flags & JOINT_HAS_MOTORIZED_POWER) && (info.m_uIndex >= 0) && (info.m_uIndex < MAX_DEGREE_OF_FREEDOM))
{
command->m_initPoseArgs.m_initialStateQdot[info.m_uIndex] = jointVelocity;
command->m_initPoseArgs.m_hasInitialStateQdot[info.m_uIndex] = 1;
}
return 0;
}
B3_SHARED_API int b3CreatePoseCommandSetJointVelocityMultiDof(b3PhysicsClientHandle physClient, b3SharedMemoryCommandHandle commandHandle, int jointIndex, const double* jointVelocity, int velSize)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_INIT_POSE);
command->m_updateFlags |= INIT_POSE_HAS_JOINT_VELOCITY;
b3JointInfo info;
b3GetJointInfo(physClient, command->m_initPoseArgs.m_bodyUniqueId, jointIndex, &info);
//if ((info.m_flags & JOINT_HAS_MOTORIZED_POWER) && (info.m_uIndex >= 0) && (info.m_uIndex < MAX_DEGREE_OF_FREEDOM))
if ((info.m_uIndex >= 0) && (info.m_uIndex < MAX_DEGREE_OF_FREEDOM))
{
if (velSize == info.m_uSize)
{
for (int i = 0; i < velSize; i++)
{
command->m_initPoseArgs.m_initialStateQdot[info.m_uIndex + i] = jointVelocity[i];
command->m_initPoseArgs.m_hasInitialStateQdot[info.m_uIndex + i] = 1;
}
}
}
return 0;
}
B3_SHARED_API int b3CreatePoseCommandSetJointVelocities(b3PhysicsClientHandle physClient, b3SharedMemoryCommandHandle commandHandle, int numJointVelocities, const double* jointVelocities)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_INIT_POSE);
command->m_updateFlags |= INIT_POSE_HAS_JOINT_VELOCITY;
for (int i = 0; i < numJointVelocities; i++)
{
if ((i + 6) < MAX_DEGREE_OF_FREEDOM)
{
command->m_initPoseArgs.m_initialStateQdot[i + 6] = jointVelocities[i];
command->m_initPoseArgs.m_hasInitialStateQdot[i + 6] = 1;
}
}
return 0;
}
B3_SHARED_API int b3CreatePoseCommandSetQdots(b3SharedMemoryCommandHandle commandHandle, int numJointVelocities, const double* qDots, const int* hasQdots)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_INIT_POSE);
command->m_updateFlags |= INIT_POSE_HAS_JOINT_VELOCITY;
for (int i = 0; i < numJointVelocities; i++)
{
if (i < MAX_DEGREE_OF_FREEDOM)
{
command->m_initPoseArgs.m_initialStateQdot[i] = qDots[i];
command->m_initPoseArgs.m_hasInitialStateQdot[i] = hasQdots[i];
}
}
return 0;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3CreateSensorCommandInit(b3PhysicsClientHandle physClient, int bodyUniqueId)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_CREATE_SENSOR;
command->m_updateFlags = 0;
command->m_createSensorArguments.m_numJointSensorChanges = 0;
command->m_createSensorArguments.m_bodyUniqueId = bodyUniqueId;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API int b3CreateSensorEnable6DofJointForceTorqueSensor(b3SharedMemoryCommandHandle commandHandle, int jointIndex, int enable)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_CREATE_SENSOR);
int curIndex = command->m_createSensorArguments.m_numJointSensorChanges;
command->m_createSensorArguments.m_sensorType[curIndex] = SENSOR_FORCE_TORQUE;
command->m_createSensorArguments.m_jointIndex[curIndex] = jointIndex;
command->m_createSensorArguments.m_enableJointForceSensor[curIndex] = enable;
command->m_createSensorArguments.m_numJointSensorChanges++;
return 0;
}
B3_SHARED_API int b3CreateSensorEnableIMUForLink(b3SharedMemoryCommandHandle commandHandle, int linkIndex, int enable)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_CREATE_SENSOR);
int curIndex = command->m_createSensorArguments.m_numJointSensorChanges;
command->m_createSensorArguments.m_sensorType[curIndex] = SENSOR_IMU;
command->m_createSensorArguments.m_linkIndex[curIndex] = linkIndex;
command->m_createSensorArguments.m_enableSensor[curIndex] = enable;
command->m_createSensorArguments.m_numJointSensorChanges++;
return 0;
}
B3_SHARED_API void b3DisconnectSharedMemory(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
if (cl)
{
cl->disconnectSharedMemory();
}
delete cl;
}
B3_SHARED_API b3SharedMemoryStatusHandle b3ProcessServerStatus(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
if (cl && cl->isConnected())
{
const SharedMemoryStatus* stat = cl->processServerStatus();
return (b3SharedMemoryStatusHandle)stat;
}
return 0;
}
B3_SHARED_API int b3GetStatusType(b3SharedMemoryStatusHandle statusHandle)
{
const SharedMemoryStatus* status = (const SharedMemoryStatus*)statusHandle;
//b3Assert(status);
if (status)
{
return status->m_type;
}
return CMD_INVALID_STATUS;
}
B3_SHARED_API int b3GetStatusBodyIndices(b3SharedMemoryStatusHandle statusHandle, int* bodyIndicesOut, int bodyIndicesCapacity)
{
int numBodies = 0;
const SharedMemoryStatus* status = (const SharedMemoryStatus*)statusHandle;
b3Assert(status);
if (status)
{
switch (status->m_type)
{
case CMD_MJCF_LOADING_COMPLETED:
case CMD_BULLET_LOADING_COMPLETED:
case CMD_SDF_LOADING_COMPLETED:
{
int i, maxBodies;
numBodies = status->m_sdfLoadedArgs.m_numBodies;
maxBodies = btMin(bodyIndicesCapacity, numBodies);
for (i = 0; i < maxBodies; i++)
{
bodyIndicesOut[i] = status->m_sdfLoadedArgs.m_bodyUniqueIds[i];
}
break;
}
}
}
return numBodies;
}
B3_SHARED_API int b3GetStatusBodyIndex(b3SharedMemoryStatusHandle statusHandle)
{
const SharedMemoryStatus* status = (const SharedMemoryStatus*)statusHandle;
b3Assert(status);
int bodyId = -1;
if (status)
{
switch (status->m_type)
{
case CMD_URDF_LOADING_COMPLETED:
{
bodyId = status->m_dataStreamArguments.m_bodyUniqueId;
break;
}
case CMD_RIGID_BODY_CREATION_COMPLETED:
{
bodyId = status->m_rigidBodyCreateArgs.m_bodyUniqueId;
break;
}
case CMD_CREATE_MULTI_BODY_COMPLETED:
{
bodyId = status->m_dataStreamArguments.m_bodyUniqueId;
break;
}
case CMD_LOAD_SOFT_BODY_COMPLETED:
{
bodyId = status->m_loadSoftBodyResultArguments.m_objectUniqueId;
break;
}
default:
{
b3Assert(0);
}
};
}
return bodyId;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3RequestCollisionInfoCommandInit(b3PhysicsClientHandle physClient, int bodyUniqueId)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_REQUEST_COLLISION_INFO;
command->m_updateFlags = 0;
command->m_requestCollisionInfoArgs.m_bodyUniqueId = bodyUniqueId;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API int b3GetStatusAABB(b3SharedMemoryStatusHandle statusHandle, int linkIndex, double aabbMin[3], double aabbMax[3])
{
const SharedMemoryStatus* status = (const SharedMemoryStatus*)statusHandle;
btAssert(status);
if (status == 0)
return 0;
const b3SendCollisionInfoArgs& args = status->m_sendCollisionInfoArgs;
btAssert(status->m_type == CMD_REQUEST_COLLISION_INFO_COMPLETED);
if (status->m_type != CMD_REQUEST_COLLISION_INFO_COMPLETED)
return 0;
if (linkIndex == -1)
{
aabbMin[0] = args.m_rootWorldAABBMin[0];
aabbMin[1] = args.m_rootWorldAABBMin[1];
aabbMin[2] = args.m_rootWorldAABBMin[2];
aabbMax[0] = args.m_rootWorldAABBMax[0];
aabbMax[1] = args.m_rootWorldAABBMax[1];
aabbMax[2] = args.m_rootWorldAABBMax[2];
return 1;
}
if (linkIndex >= 0 && linkIndex < args.m_numLinks)
{
aabbMin[0] = args.m_linkWorldAABBsMin[linkIndex * 3 + 0];
aabbMin[1] = args.m_linkWorldAABBsMin[linkIndex * 3 + 1];
aabbMin[2] = args.m_linkWorldAABBsMin[linkIndex * 3 + 2];
aabbMax[0] = args.m_linkWorldAABBsMax[linkIndex * 3 + 0];
aabbMax[1] = args.m_linkWorldAABBsMax[linkIndex * 3 + 1];
aabbMax[2] = args.m_linkWorldAABBsMax[linkIndex * 3 + 2];
return 1;
}
return 0;
}
B3_SHARED_API int b3GetStatusActualState2(b3SharedMemoryStatusHandle statusHandle,
int* bodyUniqueId,
int* numLinks,
int* numDegreeOfFreedomQ,
int* numDegreeOfFreedomU,
const double* rootLocalInertialFrame[],
const double* actualStateQ[],
const double* actualStateQdot[],
const double* jointReactionForces[],
const double* linkLocalInertialFrames[],
const double* jointMotorForces[],
const double* linkStates[],
const double* linkWorldVelocities[])
{
const SharedMemoryStatus* status = (const SharedMemoryStatus*)statusHandle;
btAssert(status);
if (status == 0)
return 0;
b3GetStatusActualState(statusHandle, bodyUniqueId, numDegreeOfFreedomQ, numDegreeOfFreedomU,
rootLocalInertialFrame, actualStateQ, actualStateQdot, jointReactionForces);
const SendActualStateArgs& args = status->m_sendActualStateArgs;
if (numLinks)
{
*numLinks = args.m_numLinks;
}
if (linkLocalInertialFrames)
{
*linkLocalInertialFrames = args.m_linkLocalInertialFrames;
}
if (jointMotorForces)
{
*jointMotorForces = args.m_jointMotorForce;
}
if (linkStates)
{
*linkStates = args.m_linkState;
}
if (linkWorldVelocities)
{
*linkWorldVelocities = args.m_linkWorldVelocities;
}
return 1;
}
B3_SHARED_API int b3GetStatusActualState(b3SharedMemoryStatusHandle statusHandle,
int* bodyUniqueId,
int* numDegreeOfFreedomQ,
int* numDegreeOfFreedomU,
const double* rootLocalInertialFrame[],
const double* actualStateQ[],
const double* actualStateQdot[],
const double* jointReactionForces[])
{
const SharedMemoryStatus* status = (const SharedMemoryStatus*)statusHandle;
btAssert(status);
if (status == 0)
return 0;
const SendActualStateArgs& args = status->m_sendActualStateArgs;
btAssert(status->m_type == CMD_ACTUAL_STATE_UPDATE_COMPLETED);
if (status->m_type != CMD_ACTUAL_STATE_UPDATE_COMPLETED)
return false;
if (bodyUniqueId)
{
*bodyUniqueId = args.m_bodyUniqueId;
}
if (numDegreeOfFreedomQ)
{
*numDegreeOfFreedomQ = args.m_numDegreeOfFreedomQ;
}
if (numDegreeOfFreedomU)
{
*numDegreeOfFreedomU = args.m_numDegreeOfFreedomU;
}
if (rootLocalInertialFrame)
{
*rootLocalInertialFrame = args.m_rootLocalInertialFrame;
}
if (actualStateQ)
{
*actualStateQ = args.m_actualStateQ;
}
if (actualStateQdot)
{
*actualStateQdot = args.m_actualStateQdot;
}
if (jointReactionForces)
{
*jointReactionForces = args.m_jointReactionForces;
}
return true;
}
B3_SHARED_API int b3CanSubmitCommand(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
if (cl)
{
return (int)cl->canSubmitCommand();
}
return false;
}
B3_SHARED_API int b3SubmitClientCommand(b3PhysicsClientHandle physClient, const b3SharedMemoryCommandHandle commandHandle)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(command);
b3Assert(cl);
if (command && cl)
{
return (int)cl->submitClientCommand(*command);
}
return -1;
}
#include "../Utils/b3Clock.h"
B3_SHARED_API b3SharedMemoryStatusHandle b3SubmitClientCommandAndWaitStatus(b3PhysicsClientHandle physClient, const b3SharedMemoryCommandHandle commandHandle)
{
B3_PROFILE("b3SubmitClientCommandAndWaitStatus");
b3Clock clock;
double startTime = clock.getTimeInSeconds();
b3SharedMemoryStatusHandle statusHandle = 0;
b3Assert(commandHandle);
b3Assert(physClient);
if (physClient && commandHandle)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
double timeOutInSeconds = cl->getTimeOut();
{
B3_PROFILE("b3SubmitClientCommand");
b3SubmitClientCommand(physClient, commandHandle);
}
{
B3_PROFILE("b3ProcessServerStatus");
while (cl->isConnected() && (statusHandle == 0) && (clock.getTimeInSeconds() - startTime < timeOutInSeconds))
{
clock.usleep(0);
statusHandle = b3ProcessServerStatus(physClient);
}
}
return (b3SharedMemoryStatusHandle)statusHandle;
}
return 0;
}
///return the total number of bodies in the simulation
B3_SHARED_API int b3GetNumBodies(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
return cl->getNumBodies();
}
B3_SHARED_API int b3GetNumUserConstraints(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
return cl->getNumUserConstraints();
}
B3_SHARED_API int b3GetUserConstraintInfo(b3PhysicsClientHandle physClient, int constraintUniqueId, struct b3UserConstraint* info)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3UserConstraint constraintInfo1;
b3Assert(physClient);
b3Assert(info);
b3Assert(constraintUniqueId >= 0);
if (info == 0)
return 0;
if (cl->getUserConstraintInfo(constraintUniqueId, constraintInfo1))
{
*info = constraintInfo1;
return 1;
}
return 0;
}
/// return the user constraint id, given the index in range [0 , b3GetNumUserConstraints() )
B3_SHARED_API int b3GetUserConstraintId(b3PhysicsClientHandle physClient, int serialIndex)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
return cl->getUserConstraintId(serialIndex);
}
/// return the body unique id, given the index in range [0 , b3GetNumBodies() )
B3_SHARED_API int b3GetBodyUniqueId(b3PhysicsClientHandle physClient, int serialIndex)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
return cl->getBodyUniqueId(serialIndex);
}
///given a body unique id, return the body information. See b3BodyInfo in SharedMemoryPublic.h
B3_SHARED_API int b3GetBodyInfo(b3PhysicsClientHandle physClient, int bodyUniqueId, struct b3BodyInfo* info)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
return cl->getBodyInfo(bodyUniqueId, *info);
}
B3_SHARED_API int b3GetNumJoints(b3PhysicsClientHandle physClient, int bodyUniqueId)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
return cl->getNumJoints(bodyUniqueId);
}
B3_SHARED_API int b3ComputeDofCount(b3PhysicsClientHandle physClient, int bodyUniqueId)
{
int nj = b3GetNumJoints(physClient, bodyUniqueId);
int j = 0;
int dofCountOrg = 0;
for (j = 0; j < nj; j++)
{
struct b3JointInfo info;
b3GetJointInfo(physClient, bodyUniqueId, j, &info);
switch (info.m_jointType)
{
case eRevoluteType:
{
dofCountOrg += 1;
break;
}
case ePrismaticType:
{
dofCountOrg += 1;
break;
}
case eSphericalType:
{
return -1;
}
case ePlanarType:
{
return -2;
}
default:
{
//fixed joint has 0-dof and at the moment, we don't deal with planar, spherical etc
}
}
}
return dofCountOrg;
}
B3_SHARED_API int b3GetJointInfo(b3PhysicsClientHandle physClient, int bodyUniqueId, int jointIndex, struct b3JointInfo* info)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
return cl->getJointInfo(bodyUniqueId, jointIndex, *info);
}
B3_SHARED_API b3SharedMemoryCommandHandle b3CreateCustomCommand(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_CUSTOM_COMMAND;
command->m_updateFlags = 0;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API void b3CustomCommandLoadPlugin(b3SharedMemoryCommandHandle commandHandle, const char* pluginPath)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_CUSTOM_COMMAND);
if (command->m_type == CMD_CUSTOM_COMMAND)
{
command->m_updateFlags |= CMD_CUSTOM_COMMAND_LOAD_PLUGIN;
command->m_customCommandArgs.m_pluginPath[0] = 0;
int len = strlen(pluginPath);
if (len < MAX_FILENAME_LENGTH)
{
strcpy(command->m_customCommandArgs.m_pluginPath, pluginPath);
}
}
}
B3_SHARED_API void b3CustomCommandLoadPluginSetPostFix(b3SharedMemoryCommandHandle commandHandle, const char* postFix)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_CUSTOM_COMMAND);
if (command->m_type == CMD_CUSTOM_COMMAND)
{
command->m_updateFlags |= CMD_CUSTOM_COMMAND_LOAD_PLUGIN_POSTFIX;
command->m_customCommandArgs.m_postFix[0] = 0;
int len = strlen(postFix);
if (len < MAX_FILENAME_LENGTH)
{
strcpy(command->m_customCommandArgs.m_postFix, postFix);
}
}
}
B3_SHARED_API int b3GetStatusPluginCommandResult(b3SharedMemoryStatusHandle statusHandle)
{
int statusUniqueId = -1;
const SharedMemoryStatus* status = (const SharedMemoryStatus*)statusHandle;
b3Assert(status);
if (status == 0)
return statusUniqueId;
b3Assert(status->m_type == CMD_CUSTOM_COMMAND_COMPLETED);
if (status->m_type == CMD_CUSTOM_COMMAND_COMPLETED)
{
statusUniqueId = status->m_customCommandResultArgs.m_executeCommandResult;
}
return statusUniqueId;
}
B3_SHARED_API int b3GetStatusPluginUniqueId(b3SharedMemoryStatusHandle statusHandle)
{
int statusUniqueId = -1;
const SharedMemoryStatus* status = (const SharedMemoryStatus*)statusHandle;
b3Assert(status);
if (status)
{
b3Assert(status->m_type == CMD_CUSTOM_COMMAND_COMPLETED);
if (status->m_type == CMD_CUSTOM_COMMAND_COMPLETED)
{
statusUniqueId = status->m_customCommandResultArgs.m_pluginUniqueId;
}
}
return statusUniqueId;
}
B3_SHARED_API void b3CustomCommandUnloadPlugin(b3SharedMemoryCommandHandle commandHandle, int pluginUniqueId)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_CUSTOM_COMMAND);
if (command->m_type == CMD_CUSTOM_COMMAND)
{
command->m_updateFlags |= CMD_CUSTOM_COMMAND_UNLOAD_PLUGIN;
command->m_customCommandArgs.m_pluginUniqueId = pluginUniqueId;
}
}
B3_SHARED_API void b3CustomCommandExecutePluginCommand(b3SharedMemoryCommandHandle commandHandle, int pluginUniqueId, const char* textArguments)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_CUSTOM_COMMAND);
if (command->m_type == CMD_CUSTOM_COMMAND)
{
command->m_updateFlags |= CMD_CUSTOM_COMMAND_EXECUTE_PLUGIN_COMMAND;
command->m_customCommandArgs.m_pluginUniqueId = pluginUniqueId;
command->m_customCommandArgs.m_arguments.m_numInts = 0;
command->m_customCommandArgs.m_arguments.m_numFloats = 0;
command->m_customCommandArgs.m_arguments.m_text[0] = 0;
int len = textArguments ? strlen(textArguments) : 0;
if (len && len < MAX_FILENAME_LENGTH)
{
strcpy(command->m_customCommandArgs.m_arguments.m_text, textArguments);
}
}
}
B3_SHARED_API void b3CustomCommandExecuteAddIntArgument(b3SharedMemoryCommandHandle commandHandle, int intVal)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_CUSTOM_COMMAND);
b3Assert(command->m_updateFlags & CMD_CUSTOM_COMMAND_EXECUTE_PLUGIN_COMMAND);
if (command->m_type == CMD_CUSTOM_COMMAND && (command->m_updateFlags & CMD_CUSTOM_COMMAND_EXECUTE_PLUGIN_COMMAND))
{
int numInts = command->m_customCommandArgs.m_arguments.m_numInts;
if (numInts < B3_MAX_PLUGIN_ARG_SIZE)
{
command->m_customCommandArgs.m_arguments.m_ints[numInts] = intVal;
command->m_customCommandArgs.m_arguments.m_numInts++;
}
}
}
B3_SHARED_API void b3CustomCommandExecuteAddFloatArgument(b3SharedMemoryCommandHandle commandHandle, float floatVal)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_CUSTOM_COMMAND);
b3Assert(command->m_updateFlags & CMD_CUSTOM_COMMAND_EXECUTE_PLUGIN_COMMAND);
if (command->m_type == CMD_CUSTOM_COMMAND && (command->m_updateFlags & CMD_CUSTOM_COMMAND_EXECUTE_PLUGIN_COMMAND))
{
int numFloats = command->m_customCommandArgs.m_arguments.m_numFloats;
if (numFloats < B3_MAX_PLUGIN_ARG_SIZE)
{
command->m_customCommandArgs.m_arguments.m_floats[numFloats] = floatVal;
command->m_customCommandArgs.m_arguments.m_numFloats++;
}
}
}
B3_SHARED_API b3SharedMemoryCommandHandle b3GetDynamicsInfoCommandInit(b3PhysicsClientHandle physClient, int bodyUniqueId, int linkIndex)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
return b3GetDynamicsInfoCommandInit2((b3SharedMemoryCommandHandle)command, bodyUniqueId, linkIndex);
}
B3_SHARED_API b3SharedMemoryCommandHandle b3GetDynamicsInfoCommandInit2(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkIndex)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
command->m_type = CMD_GET_DYNAMICS_INFO;
command->m_getDynamicsInfoArgs.m_bodyUniqueId = bodyUniqueId;
command->m_getDynamicsInfoArgs.m_linkIndex = linkIndex;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API int b3GetDynamicsInfo(b3SharedMemoryStatusHandle statusHandle, struct b3DynamicsInfo* info)
{
const SharedMemoryStatus* status = (const SharedMemoryStatus*)statusHandle;
const b3DynamicsInfo& dynamicsInfo = status->m_dynamicsInfo;
btAssert(status->m_type == CMD_GET_DYNAMICS_INFO_COMPLETED);
if (status->m_type != CMD_GET_DYNAMICS_INFO_COMPLETED)
return false;
if (info)
{
*info = dynamicsInfo;
return true;
}
return false;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3InitChangeDynamicsInfo(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
return b3InitChangeDynamicsInfo2((b3SharedMemoryCommandHandle)command);
}
B3_SHARED_API b3SharedMemoryCommandHandle b3InitChangeDynamicsInfo2(b3SharedMemoryCommandHandle commandHandle)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
command->m_type = CMD_CHANGE_DYNAMICS_INFO;
command->m_changeDynamicsInfoArgs.m_bodyUniqueId = -1;
command->m_changeDynamicsInfoArgs.m_linkIndex = -2;
command->m_updateFlags = 0;
return commandHandle;
}
B3_SHARED_API int b3ChangeDynamicsInfoSetMass(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkIndex, double mass)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_CHANGE_DYNAMICS_INFO);
b3Assert(mass >= 0);
command->m_changeDynamicsInfoArgs.m_bodyUniqueId = bodyUniqueId;
command->m_changeDynamicsInfoArgs.m_linkIndex = linkIndex;
command->m_changeDynamicsInfoArgs.m_mass = mass;
command->m_updateFlags |= CHANGE_DYNAMICS_INFO_SET_MASS;
return 0;
}
B3_SHARED_API int b3ChangeDynamicsInfoSetLocalInertiaDiagonal(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkIndex, const double localInertiaDiagonal[])
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_CHANGE_DYNAMICS_INFO);
command->m_changeDynamicsInfoArgs.m_bodyUniqueId = bodyUniqueId;
command->m_changeDynamicsInfoArgs.m_linkIndex = linkIndex;
command->m_changeDynamicsInfoArgs.m_localInertiaDiagonal[0] = localInertiaDiagonal[0];
command->m_changeDynamicsInfoArgs.m_localInertiaDiagonal[1] = localInertiaDiagonal[1];
command->m_changeDynamicsInfoArgs.m_localInertiaDiagonal[2] = localInertiaDiagonal[2];
command->m_updateFlags |= CHANGE_DYNAMICS_INFO_SET_LOCAL_INERTIA_DIAGONAL;
return 0;
}
B3_SHARED_API int b3ChangeDynamicsInfoSetLateralFriction(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkIndex, double lateralFriction)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_CHANGE_DYNAMICS_INFO);
command->m_changeDynamicsInfoArgs.m_bodyUniqueId = bodyUniqueId;
command->m_changeDynamicsInfoArgs.m_linkIndex = linkIndex;
command->m_changeDynamicsInfoArgs.m_lateralFriction = lateralFriction;
command->m_updateFlags |= CHANGE_DYNAMICS_INFO_SET_LATERAL_FRICTION;
return 0;
}
B3_SHARED_API int b3ChangeDynamicsInfoSetSpinningFriction(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkIndex, double friction)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_CHANGE_DYNAMICS_INFO);
command->m_changeDynamicsInfoArgs.m_bodyUniqueId = bodyUniqueId;
command->m_changeDynamicsInfoArgs.m_linkIndex = linkIndex;
command->m_changeDynamicsInfoArgs.m_spinningFriction = friction;
command->m_updateFlags |= CHANGE_DYNAMICS_INFO_SET_SPINNING_FRICTION;
return 0;
}
B3_SHARED_API int b3ChangeDynamicsInfoSetRollingFriction(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkIndex, double friction)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_CHANGE_DYNAMICS_INFO);
command->m_changeDynamicsInfoArgs.m_bodyUniqueId = bodyUniqueId;
command->m_changeDynamicsInfoArgs.m_linkIndex = linkIndex;
command->m_changeDynamicsInfoArgs.m_rollingFriction = friction;
command->m_updateFlags |= CHANGE_DYNAMICS_INFO_SET_ROLLING_FRICTION;
return 0;
}
B3_SHARED_API int b3ChangeDynamicsInfoSetRestitution(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkIndex, double restitution)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_CHANGE_DYNAMICS_INFO);
command->m_changeDynamicsInfoArgs.m_bodyUniqueId = bodyUniqueId;
command->m_changeDynamicsInfoArgs.m_linkIndex = linkIndex;
command->m_changeDynamicsInfoArgs.m_restitution = restitution;
command->m_updateFlags |= CHANGE_DYNAMICS_INFO_SET_RESTITUTION;
return 0;
}
B3_SHARED_API int b3ChangeDynamicsInfoSetLinearDamping(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, double linearDamping)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_CHANGE_DYNAMICS_INFO);
command->m_changeDynamicsInfoArgs.m_bodyUniqueId = bodyUniqueId;
command->m_changeDynamicsInfoArgs.m_linearDamping = linearDamping;
command->m_updateFlags |= CHANGE_DYNAMICS_INFO_SET_LINEAR_DAMPING;
return 0;
}
B3_SHARED_API int b3ChangeDynamicsInfoSetAngularDamping(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, double angularDamping)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_CHANGE_DYNAMICS_INFO);
command->m_changeDynamicsInfoArgs.m_bodyUniqueId = bodyUniqueId;
command->m_changeDynamicsInfoArgs.m_angularDamping = angularDamping;
command->m_updateFlags |= CHANGE_DYNAMICS_INFO_SET_ANGULAR_DAMPING;
return 0;
}
B3_SHARED_API int b3ChangeDynamicsInfoSetJointDamping(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkIndex, double jointDamping)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_CHANGE_DYNAMICS_INFO);
command->m_changeDynamicsInfoArgs.m_bodyUniqueId = bodyUniqueId;
command->m_changeDynamicsInfoArgs.m_linkIndex = linkIndex;
command->m_changeDynamicsInfoArgs.m_jointDamping = jointDamping;
command->m_updateFlags |= CHANGE_DYNAMICS_INFO_SET_JOINT_DAMPING;
return 0;
}
B3_SHARED_API int b3ChangeDynamicsInfoSetContactStiffnessAndDamping(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkIndex, double contactStiffness, double contactDamping)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_CHANGE_DYNAMICS_INFO);
command->m_changeDynamicsInfoArgs.m_bodyUniqueId = bodyUniqueId;
command->m_changeDynamicsInfoArgs.m_linkIndex = linkIndex;
command->m_changeDynamicsInfoArgs.m_contactStiffness = contactStiffness;
command->m_changeDynamicsInfoArgs.m_contactDamping = contactDamping;
command->m_updateFlags |= CHANGE_DYNAMICS_INFO_SET_CONTACT_STIFFNESS_AND_DAMPING;
return 0;
}
B3_SHARED_API int b3ChangeDynamicsInfoSetFrictionAnchor(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkIndex, int frictionAnchor)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_CHANGE_DYNAMICS_INFO);
command->m_changeDynamicsInfoArgs.m_bodyUniqueId = bodyUniqueId;
command->m_changeDynamicsInfoArgs.m_linkIndex = linkIndex;
command->m_changeDynamicsInfoArgs.m_frictionAnchor = frictionAnchor;
command->m_updateFlags |= CHANGE_DYNAMICS_INFO_SET_FRICTION_ANCHOR;
return 0;
}
B3_SHARED_API int b3ChangeDynamicsInfoSetCcdSweptSphereRadius(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkIndex, double ccdSweptSphereRadius)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_CHANGE_DYNAMICS_INFO);
command->m_changeDynamicsInfoArgs.m_bodyUniqueId = bodyUniqueId;
command->m_changeDynamicsInfoArgs.m_linkIndex = linkIndex;
command->m_changeDynamicsInfoArgs.m_ccdSweptSphereRadius = ccdSweptSphereRadius;
command->m_updateFlags |= CHANGE_DYNAMICS_INFO_SET_CCD_SWEPT_SPHERE_RADIUS;
return 0;
}
B3_SHARED_API int b3ChangeDynamicsInfoSetContactProcessingThreshold(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkIndex, double contactProcessingThreshold)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_CHANGE_DYNAMICS_INFO);
command->m_changeDynamicsInfoArgs.m_bodyUniqueId = bodyUniqueId;
command->m_changeDynamicsInfoArgs.m_linkIndex = linkIndex;
command->m_changeDynamicsInfoArgs.m_contactProcessingThreshold = contactProcessingThreshold;
command->m_updateFlags |= CHANGE_DYNAMICS_INFO_SET_CONTACT_PROCESSING_THRESHOLD;
return 0;
}
B3_SHARED_API int b3ChangeDynamicsInfoSetActivationState(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int activationState)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command->m_type == CMD_CHANGE_DYNAMICS_INFO);
command->m_changeDynamicsInfoArgs.m_bodyUniqueId = bodyUniqueId;
command->m_changeDynamicsInfoArgs.m_linkIndex = -1;
command->m_changeDynamicsInfoArgs.m_activationState = activationState;
command->m_updateFlags |= CHANGE_DYNAMICS_INFO_SET_ACTIVATION_STATE;
return 0;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3InitCreateUserConstraintCommand(b3PhysicsClientHandle physClient, int parentBodyUniqueId, int parentJointIndex, int childBodyUniqueId, int childJointIndex, struct b3JointInfo* info)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
return b3InitCreateUserConstraintCommand2((b3SharedMemoryCommandHandle)command, parentBodyUniqueId, parentJointIndex, childBodyUniqueId, childJointIndex, info);
}
B3_SHARED_API b3SharedMemoryCommandHandle b3InitCreateUserConstraintCommand2(b3SharedMemoryCommandHandle commandHandle, int parentBodyUniqueId, int parentJointIndex, int childBodyUniqueId, int childJointIndex, struct b3JointInfo* info)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
command->m_type = CMD_USER_CONSTRAINT;
command->m_updateFlags = USER_CONSTRAINT_ADD_CONSTRAINT;
command->m_userConstraintArguments.m_parentBodyIndex = parentBodyUniqueId;
command->m_userConstraintArguments.m_parentJointIndex = parentJointIndex;
command->m_userConstraintArguments.m_childBodyIndex = childBodyUniqueId;
command->m_userConstraintArguments.m_childJointIndex = childJointIndex;
for (int i = 0; i < 7; ++i)
{
command->m_userConstraintArguments.m_parentFrame[i] = info->m_parentFrame[i];
command->m_userConstraintArguments.m_childFrame[i] = info->m_childFrame[i];
}
for (int i = 0; i < 3; ++i)
{
command->m_userConstraintArguments.m_jointAxis[i] = info->m_jointAxis[i];
}
command->m_userConstraintArguments.m_jointType = info->m_jointType;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3InitChangeUserConstraintCommand(b3PhysicsClientHandle physClient, int userConstraintUniqueId)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_USER_CONSTRAINT;
command->m_updateFlags = USER_CONSTRAINT_CHANGE_CONSTRAINT;
command->m_userConstraintArguments.m_userConstraintUniqueId = userConstraintUniqueId;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API int b3InitChangeUserConstraintSetPivotInB(b3SharedMemoryCommandHandle commandHandle, const double jointChildPivot[])
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_USER_CONSTRAINT);
b3Assert(command->m_updateFlags & USER_CONSTRAINT_CHANGE_CONSTRAINT);
command->m_updateFlags |= USER_CONSTRAINT_CHANGE_PIVOT_IN_B;
command->m_userConstraintArguments.m_childFrame[0] = jointChildPivot[0];
command->m_userConstraintArguments.m_childFrame[1] = jointChildPivot[1];
command->m_userConstraintArguments.m_childFrame[2] = jointChildPivot[2];
return 0;
}
B3_SHARED_API int b3InitChangeUserConstraintSetFrameInB(b3SharedMemoryCommandHandle commandHandle, const double jointChildFrameOrn[])
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_USER_CONSTRAINT);
b3Assert(command->m_updateFlags & USER_CONSTRAINT_CHANGE_CONSTRAINT);
command->m_updateFlags |= USER_CONSTRAINT_CHANGE_FRAME_ORN_IN_B;
command->m_userConstraintArguments.m_childFrame[3] = jointChildFrameOrn[0];
command->m_userConstraintArguments.m_childFrame[4] = jointChildFrameOrn[1];
command->m_userConstraintArguments.m_childFrame[5] = jointChildFrameOrn[2];
command->m_userConstraintArguments.m_childFrame[6] = jointChildFrameOrn[3];
return 0;
}
B3_SHARED_API int b3InitChangeUserConstraintSetMaxForce(b3SharedMemoryCommandHandle commandHandle, double maxAppliedForce)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_USER_CONSTRAINT);
b3Assert(command->m_updateFlags & USER_CONSTRAINT_CHANGE_CONSTRAINT);
command->m_updateFlags |= USER_CONSTRAINT_CHANGE_MAX_FORCE;
command->m_userConstraintArguments.m_maxAppliedForce = maxAppliedForce;
return 0;
}
B3_SHARED_API int b3InitChangeUserConstraintSetGearRatio(b3SharedMemoryCommandHandle commandHandle, double gearRatio)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_USER_CONSTRAINT);
b3Assert(command->m_updateFlags & USER_CONSTRAINT_CHANGE_CONSTRAINT);
command->m_updateFlags |= USER_CONSTRAINT_CHANGE_GEAR_RATIO;
command->m_userConstraintArguments.m_gearRatio = gearRatio;
return 0;
}
B3_SHARED_API int b3InitChangeUserConstraintSetGearAuxLink(b3SharedMemoryCommandHandle commandHandle, int gearAuxLink)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_USER_CONSTRAINT);
b3Assert(command->m_updateFlags & USER_CONSTRAINT_CHANGE_CONSTRAINT);
command->m_updateFlags |= USER_CONSTRAINT_CHANGE_GEAR_AUX_LINK;
command->m_userConstraintArguments.m_gearAuxLink = gearAuxLink;
return 0;
}
B3_SHARED_API int b3InitChangeUserConstraintSetRelativePositionTarget(b3SharedMemoryCommandHandle commandHandle, double relativePositionTarget)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_USER_CONSTRAINT);
b3Assert(command->m_updateFlags & USER_CONSTRAINT_CHANGE_CONSTRAINT);
command->m_updateFlags |= USER_CONSTRAINT_CHANGE_RELATIVE_POSITION_TARGET;
command->m_userConstraintArguments.m_relativePositionTarget = relativePositionTarget;
return 0;
}
B3_SHARED_API int b3InitChangeUserConstraintSetERP(b3SharedMemoryCommandHandle commandHandle, double erp)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_USER_CONSTRAINT);
b3Assert(command->m_updateFlags & USER_CONSTRAINT_CHANGE_CONSTRAINT);
command->m_updateFlags |= USER_CONSTRAINT_CHANGE_ERP;
command->m_userConstraintArguments.m_erp = erp;
return 0;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3InitGetUserConstraintStateCommand(b3PhysicsClientHandle physClient, int constraintUniqueId)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_USER_CONSTRAINT;
command->m_updateFlags = USER_CONSTRAINT_REQUEST_STATE;
command->m_userConstraintArguments.m_userConstraintUniqueId = constraintUniqueId;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API int b3GetStatusUserConstraintState(b3SharedMemoryStatusHandle statusHandle, struct b3UserConstraintState* constraintState)
{
const SharedMemoryStatus* status = (const SharedMemoryStatus*)statusHandle;
if (status)
{
btAssert(status->m_type == CMD_USER_CONSTRAINT_REQUEST_STATE_COMPLETED);
if (status && status->m_type == CMD_USER_CONSTRAINT_REQUEST_STATE_COMPLETED)
{
int i = 0;
constraintState->m_numDofs = status->m_userConstraintStateResultArgs.m_numDofs;
for (i = 0; i < constraintState->m_numDofs; i++)
{
constraintState->m_appliedConstraintForces[i] = status->m_userConstraintStateResultArgs.m_appliedConstraintForces[i];
}
for (; i < 6; i++)
{
constraintState->m_appliedConstraintForces[i] = 0;
}
return 1;
}
}
return 0;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3InitRemoveUserConstraintCommand(b3PhysicsClientHandle physClient, int userConstraintUniqueId)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_USER_CONSTRAINT;
command->m_updateFlags = USER_CONSTRAINT_REMOVE_CONSTRAINT;
command->m_userConstraintArguments.m_userConstraintUniqueId = userConstraintUniqueId;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3InitRemoveBodyCommand(b3PhysicsClientHandle physClient, int bodyUniqueId)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_REMOVE_BODY;
command->m_updateFlags = BODY_DELETE_FLAG;
command->m_removeObjectArgs.m_numBodies = 1;
command->m_removeObjectArgs.m_bodyUniqueIds[0] = bodyUniqueId;
command->m_removeObjectArgs.m_numUserCollisionShapes = 0;
command->m_removeObjectArgs.m_numUserConstraints = 0;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3InitRemoveCollisionShapeCommand(b3PhysicsClientHandle physClient, int collisionShapeId)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_REMOVE_BODY;
command->m_updateFlags = 0;
command->m_removeObjectArgs.m_numBodies = 0;
command->m_removeObjectArgs.m_numUserConstraints = 0;
command->m_removeObjectArgs.m_numUserCollisionShapes = 1;
command->m_removeObjectArgs.m_userCollisionShapes[0] = collisionShapeId;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API int b3GetStatusUserConstraintUniqueId(b3SharedMemoryStatusHandle statusHandle)
{
const SharedMemoryStatus* status = (const SharedMemoryStatus*)statusHandle;
b3Assert(status);
if (status)
{
b3Assert(status->m_type == CMD_USER_CONSTRAINT_COMPLETED);
if (status && status->m_type == CMD_USER_CONSTRAINT_COMPLETED)
{
return status->m_userConstraintResultArgs.m_userConstraintUniqueId;
}
}
return -1;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3PickBody(b3PhysicsClientHandle physClient, double rayFromWorldX,
double rayFromWorldY, double rayFromWorldZ,
double rayToWorldX, double rayToWorldY, double rayToWorldZ)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_PICK_BODY;
command->m_pickBodyArguments.m_rayFromWorld[0] = rayFromWorldX;
command->m_pickBodyArguments.m_rayFromWorld[1] = rayFromWorldY;
command->m_pickBodyArguments.m_rayFromWorld[2] = rayFromWorldZ;
command->m_pickBodyArguments.m_rayToWorld[0] = rayToWorldX;
command->m_pickBodyArguments.m_rayToWorld[1] = rayToWorldY;
command->m_pickBodyArguments.m_rayToWorld[2] = rayToWorldZ;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3MovePickedBody(b3PhysicsClientHandle physClient, double rayFromWorldX,
double rayFromWorldY, double rayFromWorldZ,
double rayToWorldX, double rayToWorldY,
double rayToWorldZ)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_MOVE_PICKED_BODY;
command->m_pickBodyArguments.m_rayFromWorld[0] = rayFromWorldX;
command->m_pickBodyArguments.m_rayFromWorld[1] = rayFromWorldY;
command->m_pickBodyArguments.m_rayFromWorld[2] = rayFromWorldZ;
command->m_pickBodyArguments.m_rayToWorld[0] = rayToWorldX;
command->m_pickBodyArguments.m_rayToWorld[1] = rayToWorldY;
command->m_pickBodyArguments.m_rayToWorld[2] = rayToWorldZ;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3RemovePickingConstraint(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_REMOVE_PICKING_CONSTRAINT_BODY;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3CreateRaycastCommandInit(b3PhysicsClientHandle physClient, double rayFromWorldX,
double rayFromWorldY, double rayFromWorldZ,
double rayToWorldX, double rayToWorldY, double rayToWorldZ)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_REQUEST_RAY_CAST_INTERSECTIONS;
command->m_requestRaycastIntersections.m_numCommandRays = 1;
command->m_requestRaycastIntersections.m_numStreamingRays = 0;
command->m_requestRaycastIntersections.m_numThreads = 1;
command->m_requestRaycastIntersections.m_numCommandRays = 1;
command->m_requestRaycastIntersections.m_fromToRays[0].m_rayFromPosition[0] = rayFromWorldX;
command->m_requestRaycastIntersections.m_fromToRays[0].m_rayFromPosition[1] = rayFromWorldY;
command->m_requestRaycastIntersections.m_fromToRays[0].m_rayFromPosition[2] = rayFromWorldZ;
command->m_requestRaycastIntersections.m_fromToRays[0].m_rayToPosition[0] = rayToWorldX;
command->m_requestRaycastIntersections.m_fromToRays[0].m_rayToPosition[1] = rayToWorldY;
command->m_requestRaycastIntersections.m_fromToRays[0].m_rayToPosition[2] = rayToWorldZ;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3CreateRaycastBatchCommandInit(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_REQUEST_RAY_CAST_INTERSECTIONS;
command->m_updateFlags = 0;
command->m_requestRaycastIntersections.m_numCommandRays = 0;
command->m_requestRaycastIntersections.m_numStreamingRays = 0;
command->m_requestRaycastIntersections.m_numThreads = 1;
command->m_requestRaycastIntersections.m_parentObjectUniqueId = -1;
command->m_requestRaycastIntersections.m_parentLinkIndex=-1;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API void b3RaycastBatchSetNumThreads(b3SharedMemoryCommandHandle commandHandle, int numThreads)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_REQUEST_RAY_CAST_INTERSECTIONS);
command->m_requestRaycastIntersections.m_numThreads = numThreads;
}
B3_SHARED_API void b3RaycastBatchAddRay(b3SharedMemoryCommandHandle commandHandle, const double rayFromWorld[3], const double rayToWorld[3])
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_REQUEST_RAY_CAST_INTERSECTIONS);
if (command->m_type == CMD_REQUEST_RAY_CAST_INTERSECTIONS)
{
int numRays = command->m_requestRaycastIntersections.m_numCommandRays;
if (numRays < MAX_RAY_INTERSECTION_BATCH_SIZE)
{
command->m_requestRaycastIntersections.m_fromToRays[numRays].m_rayFromPosition[0] = rayFromWorld[0];
command->m_requestRaycastIntersections.m_fromToRays[numRays].m_rayFromPosition[1] = rayFromWorld[1];
command->m_requestRaycastIntersections.m_fromToRays[numRays].m_rayFromPosition[2] = rayFromWorld[2];
command->m_requestRaycastIntersections.m_fromToRays[numRays].m_rayToPosition[0] = rayToWorld[0];
command->m_requestRaycastIntersections.m_fromToRays[numRays].m_rayToPosition[1] = rayToWorld[1];
command->m_requestRaycastIntersections.m_fromToRays[numRays].m_rayToPosition[2] = rayToWorld[2];
command->m_requestRaycastIntersections.m_numCommandRays++;
}
}
}
B3_SHARED_API void b3RaycastBatchAddRays(b3PhysicsClientHandle physClient, b3SharedMemoryCommandHandle commandHandle, const double* rayFromWorldArray, const double* rayToWorldArray, int numRays)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_REQUEST_RAY_CAST_INTERSECTIONS);
b3Assert(numRays < MAX_RAY_INTERSECTION_BATCH_SIZE_STREAMING);
if (command->m_type == CMD_REQUEST_RAY_CAST_INTERSECTIONS)
{
cl->uploadRaysToSharedMemory(*command, rayFromWorldArray, rayToWorldArray, numRays);
}
}
B3_SHARED_API void b3RaycastBatchSetParentObject(b3SharedMemoryCommandHandle commandHandle, int parentObjectUniqueId, int parentLinkIndex)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_REQUEST_RAY_CAST_INTERSECTIONS);
command->m_requestRaycastIntersections.m_parentObjectUniqueId = parentObjectUniqueId;
command->m_requestRaycastIntersections.m_parentLinkIndex = parentLinkIndex;
}
B3_SHARED_API void b3GetRaycastInformation(b3PhysicsClientHandle physClient, struct b3RaycastInformation* raycastInfo)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
if (cl)
{
cl->getCachedRaycastHits(raycastInfo);
}
}
///If you re-connected to an existing server, or server changed otherwise, sync the body info
B3_SHARED_API b3SharedMemoryCommandHandle b3InitSyncBodyInfoCommand(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_SYNC_BODY_INFO;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3InitSyncUserDataCommand(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_SYNC_USER_DATA;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3InitAddUserDataCommand(b3PhysicsClientHandle physClient, int bodyUniqueId, int linkIndex, int visualShapeIndex, const char* key, UserDataValueType valueType, int valueLength, const void* valueData)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(strlen(key) < MAX_USER_DATA_KEY_LENGTH);
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_ADD_USER_DATA;
command->m_addUserDataRequestArgs.m_bodyUniqueId = bodyUniqueId;
command->m_addUserDataRequestArgs.m_linkIndex = linkIndex;
command->m_addUserDataRequestArgs.m_visualShapeIndex = visualShapeIndex;
command->m_addUserDataRequestArgs.m_valueType = valueType;
command->m_addUserDataRequestArgs.m_valueLength = valueLength;
strcpy(command->m_addUserDataRequestArgs.m_key, key);
cl->uploadBulletFileToSharedMemory((const char*)valueData, valueLength);
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3InitRemoveUserDataCommand(b3PhysicsClientHandle physClient, int userDataId)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_REMOVE_USER_DATA;
command->m_removeUserDataRequestArgs.m_userDataId = userDataId;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API int b3GetUserData(b3PhysicsClientHandle physClient, int userDataId, struct b3UserDataValue* valueOut)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
if (cl)
{
return cl->getCachedUserData(userDataId, *valueOut);
}
return false;
}
B3_SHARED_API int b3GetUserDataId(b3PhysicsClientHandle physClient, int bodyUniqueId, int linkIndex, int visualShapeIndex, const char* key)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
if (cl)
{
return cl->getCachedUserDataId(bodyUniqueId, linkIndex, visualShapeIndex, key);
}
return -1;
}
B3_SHARED_API int b3GetUserDataIdFromStatus(b3SharedMemoryStatusHandle statusHandle)
{
const SharedMemoryStatus* status = (const SharedMemoryStatus*)statusHandle;
if (status)
{
btAssert(status->m_type == CMD_ADD_USER_DATA_COMPLETED);
return status->m_userDataResponseArgs.m_userDataId;
}
return -1;
}
B3_SHARED_API int b3GetNumUserData(b3PhysicsClientHandle physClient, int bodyUniqueId)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
if (cl)
{
return cl->getNumUserData(bodyUniqueId);
}
return 0;
}
B3_SHARED_API void b3GetUserDataInfo(b3PhysicsClientHandle physClient, int bodyUniqueId, int userDataIndex, const char** keyOut, int* userDataIdOut, int* linkIndexOut, int* visualShapeIndexOut)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
if (cl)
{
cl->getUserDataInfo(bodyUniqueId, userDataIndex, keyOut, userDataIdOut, linkIndexOut, visualShapeIndexOut);
}
}
B3_SHARED_API b3SharedMemoryCommandHandle b3InitRequestDebugLinesCommand(b3PhysicsClientHandle physClient, int debugMode)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_REQUEST_DEBUG_LINES;
command->m_requestDebugLinesArguments.m_debugMode = debugMode;
command->m_requestDebugLinesArguments.m_startingLineIndex = 0;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API void b3GetDebugLines(b3PhysicsClientHandle physClient, struct b3DebugLines* lines)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(lines);
if (lines)
{
lines->m_numDebugLines = cl->getNumDebugLines();
lines->m_linesFrom = cl->getDebugLinesFrom();
lines->m_linesTo = cl->getDebugLinesTo();
lines->m_linesColor = cl->getDebugLinesColor();
}
}
/// Add/remove user-specific debug lines and debug text messages
B3_SHARED_API b3SharedMemoryCommandHandle b3InitUserDebugDrawAddLine3D(b3PhysicsClientHandle physClient, const double fromXYZ[3], const double toXYZ[3], const double colorRGB[3], const double lineWidth, const double lifeTime)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_USER_DEBUG_DRAW;
command->m_updateFlags = USER_DEBUG_HAS_LINE; //USER_DEBUG_HAS_TEXT
command->m_userDebugDrawArgs.m_debugLineFromXYZ[0] = fromXYZ[0];
command->m_userDebugDrawArgs.m_debugLineFromXYZ[1] = fromXYZ[1];
command->m_userDebugDrawArgs.m_debugLineFromXYZ[2] = fromXYZ[2];
command->m_userDebugDrawArgs.m_debugLineToXYZ[0] = toXYZ[0];
command->m_userDebugDrawArgs.m_debugLineToXYZ[1] = toXYZ[1];
command->m_userDebugDrawArgs.m_debugLineToXYZ[2] = toXYZ[2];
command->m_userDebugDrawArgs.m_debugLineColorRGB[0] = colorRGB[0];
command->m_userDebugDrawArgs.m_debugLineColorRGB[1] = colorRGB[1];
command->m_userDebugDrawArgs.m_debugLineColorRGB[2] = colorRGB[2];
command->m_userDebugDrawArgs.m_lineWidth = lineWidth;
command->m_userDebugDrawArgs.m_lifeTime = lifeTime;
command->m_userDebugDrawArgs.m_parentObjectUniqueId = -1;
command->m_userDebugDrawArgs.m_parentLinkIndex = -1;
command->m_userDebugDrawArgs.m_optionFlags = 0;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3InitUserDebugDrawAddText3D(b3PhysicsClientHandle physClient, const char* txt, const double positionXYZ[3], const double colorRGB[3], double textSize, double lifeTime)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_USER_DEBUG_DRAW;
command->m_updateFlags = USER_DEBUG_HAS_TEXT;
int len = strlen(txt);
if (len < MAX_FILENAME_LENGTH)
{
strcpy(command->m_userDebugDrawArgs.m_text, txt);
}
else
{
command->m_userDebugDrawArgs.m_text[0] = 0;
}
command->m_userDebugDrawArgs.m_textPositionXYZ[0] = positionXYZ[0];
command->m_userDebugDrawArgs.m_textPositionXYZ[1] = positionXYZ[1];
command->m_userDebugDrawArgs.m_textPositionXYZ[2] = positionXYZ[2];
command->m_userDebugDrawArgs.m_textColorRGB[0] = colorRGB[0];
command->m_userDebugDrawArgs.m_textColorRGB[1] = colorRGB[1];
command->m_userDebugDrawArgs.m_textColorRGB[2] = colorRGB[2];
command->m_userDebugDrawArgs.m_textSize = textSize;
command->m_userDebugDrawArgs.m_lifeTime = lifeTime;
command->m_userDebugDrawArgs.m_parentObjectUniqueId = -1;
command->m_userDebugDrawArgs.m_parentLinkIndex = -1;
command->m_userDebugDrawArgs.m_optionFlags = 0;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API void b3UserDebugTextSetOptionFlags(b3SharedMemoryCommandHandle commandHandle, int optionFlags)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_USER_DEBUG_DRAW);
b3Assert(command->m_updateFlags & USER_DEBUG_HAS_TEXT);
command->m_userDebugDrawArgs.m_optionFlags = optionFlags;
command->m_updateFlags |= USER_DEBUG_HAS_OPTION_FLAGS;
}
B3_SHARED_API void b3UserDebugTextSetOrientation(b3SharedMemoryCommandHandle commandHandle, const double orientation[4])
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_USER_DEBUG_DRAW);
b3Assert(command->m_updateFlags & USER_DEBUG_HAS_TEXT);
command->m_userDebugDrawArgs.m_textOrientation[0] = orientation[0];
command->m_userDebugDrawArgs.m_textOrientation[1] = orientation[1];
command->m_userDebugDrawArgs.m_textOrientation[2] = orientation[2];
command->m_userDebugDrawArgs.m_textOrientation[3] = orientation[3];
command->m_updateFlags |= USER_DEBUG_HAS_TEXT_ORIENTATION;
}
B3_SHARED_API void b3UserDebugItemSetReplaceItemUniqueId(b3SharedMemoryCommandHandle commandHandle, int replaceItemUniqueId)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_USER_DEBUG_DRAW);
command->m_userDebugDrawArgs.m_replaceItemUniqueId = replaceItemUniqueId;
command->m_updateFlags |= USER_DEBUG_HAS_REPLACE_ITEM_UNIQUE_ID;
}
B3_SHARED_API void b3UserDebugItemSetParentObject(b3SharedMemoryCommandHandle commandHandle, int objectUniqueId, int linkIndex)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_USER_DEBUG_DRAW);
command->m_updateFlags |= USER_DEBUG_HAS_PARENT_OBJECT;
command->m_userDebugDrawArgs.m_parentObjectUniqueId = objectUniqueId;
command->m_userDebugDrawArgs.m_parentLinkIndex = linkIndex;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3InitUserDebugAddParameter(b3PhysicsClientHandle physClient, const char* txt, double rangeMin, double rangeMax, double startValue)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_USER_DEBUG_DRAW;
command->m_updateFlags = USER_DEBUG_ADD_PARAMETER;
int len = strlen(txt);
if (len < MAX_FILENAME_LENGTH)
{
strcpy(command->m_userDebugDrawArgs.m_text, txt);
}
else
{
command->m_userDebugDrawArgs.m_text[0] = 0;
}
command->m_userDebugDrawArgs.m_rangeMin = rangeMin;
command->m_userDebugDrawArgs.m_rangeMax = rangeMax;
command->m_userDebugDrawArgs.m_startValue = startValue;
command->m_userDebugDrawArgs.m_parentObjectUniqueId = -1;
command->m_userDebugDrawArgs.m_optionFlags = 0;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3InitUserDebugReadParameter(b3PhysicsClientHandle physClient, int debugItemUniqueId)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_USER_DEBUG_DRAW;
command->m_updateFlags = USER_DEBUG_READ_PARAMETER;
command->m_userDebugDrawArgs.m_itemUniqueId = debugItemUniqueId;
command->m_userDebugDrawArgs.m_parentObjectUniqueId = -1;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API int b3GetStatusDebugParameterValue(b3SharedMemoryStatusHandle statusHandle, double* paramValue)
{
const SharedMemoryStatus* status = (const SharedMemoryStatus*)statusHandle;
if (status)
{
btAssert(status->m_type == CMD_USER_DEBUG_DRAW_PARAMETER_COMPLETED);
if (paramValue && (status->m_type == CMD_USER_DEBUG_DRAW_PARAMETER_COMPLETED))
{
*paramValue = status->m_userDebugDrawArgs.m_parameterValue;
return 1;
}
}
return 0;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3InitUserDebugDrawRemove(b3PhysicsClientHandle physClient, int debugItemUniqueId)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_USER_DEBUG_DRAW;
command->m_updateFlags = USER_DEBUG_REMOVE_ONE_ITEM;
command->m_userDebugDrawArgs.m_itemUniqueId = debugItemUniqueId;
command->m_userDebugDrawArgs.m_parentObjectUniqueId = -1;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3InitUserDebugDrawRemoveAll(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_USER_DEBUG_DRAW;
command->m_updateFlags = USER_DEBUG_REMOVE_ALL;
command->m_userDebugDrawArgs.m_parentObjectUniqueId = -1;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API int b3GetDebugItemUniqueId(b3SharedMemoryStatusHandle statusHandle)
{
const SharedMemoryStatus* status = (const SharedMemoryStatus*)statusHandle;
btAssert(status->m_type == CMD_USER_DEBUG_DRAW_COMPLETED);
if (status->m_type != CMD_USER_DEBUG_DRAW_COMPLETED)
return -1;
return status->m_userDebugDrawArgs.m_debugItemUniqueId;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3InitDebugDrawingCommand(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_USER_DEBUG_DRAW;
command->m_updateFlags = 0;
command->m_userDebugDrawArgs.m_parentObjectUniqueId = -1;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API void b3SetDebugObjectColor(b3SharedMemoryCommandHandle commandHandle, int objectUniqueId, int linkIndex, const double objectColorRGB[3])
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_USER_DEBUG_DRAW);
command->m_updateFlags |= USER_DEBUG_SET_CUSTOM_OBJECT_COLOR;
command->m_userDebugDrawArgs.m_objectUniqueId = objectUniqueId;
command->m_userDebugDrawArgs.m_linkIndex = linkIndex;
command->m_userDebugDrawArgs.m_objectDebugColorRGB[0] = objectColorRGB[0];
command->m_userDebugDrawArgs.m_objectDebugColorRGB[1] = objectColorRGB[1];
command->m_userDebugDrawArgs.m_objectDebugColorRGB[2] = objectColorRGB[2];
}
B3_SHARED_API void b3RemoveDebugObjectColor(b3SharedMemoryCommandHandle commandHandle, int objectUniqueId, int linkIndex)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_USER_DEBUG_DRAW);
command->m_updateFlags |= USER_DEBUG_REMOVE_CUSTOM_OBJECT_COLOR;
command->m_userDebugDrawArgs.m_objectUniqueId = objectUniqueId;
command->m_userDebugDrawArgs.m_linkIndex = linkIndex;
}
///request an image from a simulated camera, using a software renderer.
B3_SHARED_API b3SharedMemoryCommandHandle b3InitRequestCameraImage(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
return b3InitRequestCameraImage2((b3SharedMemoryCommandHandle)command);
}
B3_SHARED_API b3SharedMemoryCommandHandle b3InitRequestCameraImage2(b3SharedMemoryCommandHandle commandHandle)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
command->m_type = CMD_REQUEST_CAMERA_IMAGE_DATA;
command->m_requestPixelDataArguments.m_startPixelIndex = 0;
command->m_updateFlags = 0; //REQUEST_PIXEL_ARGS_USE_HARDWARE_OPENGL;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API void b3RequestCameraImageSelectRenderer(b3SharedMemoryCommandHandle commandHandle, int renderer)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_REQUEST_CAMERA_IMAGE_DATA);
b3Assert(renderer > (1 << 15));
if (renderer > (1 << 15))
{
command->m_updateFlags |= renderer;
}
}
B3_SHARED_API void b3RequestCameraImageSetFlags(b3SharedMemoryCommandHandle commandHandle, int flags)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_REQUEST_CAMERA_IMAGE_DATA);
if (command->m_type == CMD_REQUEST_CAMERA_IMAGE_DATA)
{
command->m_requestPixelDataArguments.m_flags = flags;
command->m_updateFlags |= REQUEST_PIXEL_ARGS_HAS_FLAGS;
}
}
B3_SHARED_API void b3RequestCameraImageSetCameraMatrices(b3SharedMemoryCommandHandle commandHandle, float viewMatrix[16], float projectionMatrix[16])
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_REQUEST_CAMERA_IMAGE_DATA);
for (int i = 0; i < 16; i++)
{
command->m_requestPixelDataArguments.m_projectionMatrix[i] = projectionMatrix[i];
command->m_requestPixelDataArguments.m_viewMatrix[i] = viewMatrix[i];
}
command->m_updateFlags |= REQUEST_PIXEL_ARGS_HAS_CAMERA_MATRICES;
}
B3_SHARED_API void b3RequestCameraImageSetLightDirection(b3SharedMemoryCommandHandle commandHandle, const float lightDirection[3])
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_REQUEST_CAMERA_IMAGE_DATA);
for (int i = 0; i < 3; i++)
{
command->m_requestPixelDataArguments.m_lightDirection[i] = lightDirection[i];
}
command->m_updateFlags |= REQUEST_PIXEL_ARGS_SET_LIGHT_DIRECTION;
}
B3_SHARED_API void b3RequestCameraImageSetLightColor(b3SharedMemoryCommandHandle commandHandle, const float lightColor[3])
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_REQUEST_CAMERA_IMAGE_DATA);
for (int i = 0; i < 3; i++)
{
command->m_requestPixelDataArguments.m_lightColor[i] = lightColor[i];
}
command->m_updateFlags |= REQUEST_PIXEL_ARGS_SET_LIGHT_COLOR;
}
B3_SHARED_API void b3RequestCameraImageSetLightDistance(b3SharedMemoryCommandHandle commandHandle, float lightDistance)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_REQUEST_CAMERA_IMAGE_DATA);
command->m_requestPixelDataArguments.m_lightDistance = lightDistance;
command->m_updateFlags |= REQUEST_PIXEL_ARGS_SET_LIGHT_DISTANCE;
}
B3_SHARED_API void b3RequestCameraImageSetLightAmbientCoeff(b3SharedMemoryCommandHandle commandHandle, float lightAmbientCoeff)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_REQUEST_CAMERA_IMAGE_DATA);
command->m_requestPixelDataArguments.m_lightAmbientCoeff = lightAmbientCoeff;
command->m_updateFlags |= REQUEST_PIXEL_ARGS_SET_AMBIENT_COEFF;
}
B3_SHARED_API void b3RequestCameraImageSetLightDiffuseCoeff(b3SharedMemoryCommandHandle commandHandle, float lightDiffuseCoeff)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_REQUEST_CAMERA_IMAGE_DATA);
command->m_requestPixelDataArguments.m_lightDiffuseCoeff = lightDiffuseCoeff;
command->m_updateFlags |= REQUEST_PIXEL_ARGS_SET_DIFFUSE_COEFF;
}
B3_SHARED_API void b3RequestCameraImageSetLightSpecularCoeff(b3SharedMemoryCommandHandle commandHandle, float lightSpecularCoeff)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_REQUEST_CAMERA_IMAGE_DATA);
command->m_requestPixelDataArguments.m_lightSpecularCoeff = lightSpecularCoeff;
command->m_updateFlags |= REQUEST_PIXEL_ARGS_SET_SPECULAR_COEFF;
}
B3_SHARED_API void b3RequestCameraImageSetShadow(b3SharedMemoryCommandHandle commandHandle, int hasShadow)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_REQUEST_CAMERA_IMAGE_DATA);
command->m_requestPixelDataArguments.m_hasShadow = hasShadow;
command->m_updateFlags |= REQUEST_PIXEL_ARGS_SET_SHADOW;
}
B3_SHARED_API void b3RequestCameraImageSetProjectiveTextureMatrices(b3SharedMemoryCommandHandle commandHandle, float viewMatrix[16], float projectionMatrix[16])
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_REQUEST_CAMERA_IMAGE_DATA);
for (int i = 0; i < 16; i++)
{
command->m_requestPixelDataArguments.m_projectiveTextureProjectionMatrix[i] = projectionMatrix[i];
command->m_requestPixelDataArguments.m_projectiveTextureViewMatrix[i] = viewMatrix[i];
}
command->m_updateFlags |= REQUEST_PIXEL_ARGS_HAS_PROJECTIVE_TEXTURE_MATRICES;
}
B3_SHARED_API void b3ComputePositionFromViewMatrix(const float viewMatrix[16], float cameraPosition[3], float cameraTargetPosition[3], float cameraUp[3])
{
b3Matrix3x3 r(viewMatrix[0], viewMatrix[4], viewMatrix[8], viewMatrix[1], viewMatrix[5], viewMatrix[9], viewMatrix[2], viewMatrix[6], viewMatrix[10]);
b3Vector3 p = b3MakeVector3(viewMatrix[12], viewMatrix[13], viewMatrix[14]);
b3Transform t(r, p);
b3Transform tinv = t.inverse();
b3Matrix3x3 basis = tinv.getBasis();
b3Vector3 origin = tinv.getOrigin();
b3Vector3 s = b3MakeVector3(basis[0][0], basis[1][0], basis[2][0]);
b3Vector3 u = b3MakeVector3(basis[0][1], basis[1][1], basis[2][1]);
b3Vector3 f = b3MakeVector3(-basis[0][2], -basis[1][2], -basis[2][2]);
b3Vector3 eye = origin;
cameraPosition[0] = eye[0];
cameraPosition[1] = eye[1];
cameraPosition[2] = eye[2];
b3Vector3 center = f + eye;
cameraTargetPosition[0] = center[0];
cameraTargetPosition[1] = center[1];
cameraTargetPosition[2] = center[2];
cameraUp[0] = u[0];
cameraUp[1] = u[1];
cameraUp[2] = u[2];
}
B3_SHARED_API void b3ComputeViewMatrixFromPositions(const float cameraPosition[3], const float cameraTargetPosition[3], const float cameraUp[3], float viewMatrix[16])
{
b3Vector3 eye = b3MakeVector3(cameraPosition[0], cameraPosition[1], cameraPosition[2]);
b3Vector3 center = b3MakeVector3(cameraTargetPosition[0], cameraTargetPosition[1], cameraTargetPosition[2]);
b3Vector3 up = b3MakeVector3(cameraUp[0], cameraUp[1], cameraUp[2]);
b3Vector3 f = (center - eye).normalized();
b3Vector3 u = up.normalized();
b3Vector3 s = (f.cross(u)).normalized();
u = s.cross(f);
viewMatrix[0 * 4 + 0] = s.x;
viewMatrix[1 * 4 + 0] = s.y;
viewMatrix[2 * 4 + 0] = s.z;
viewMatrix[0 * 4 + 1] = u.x;
viewMatrix[1 * 4 + 1] = u.y;
viewMatrix[2 * 4 + 1] = u.z;
viewMatrix[0 * 4 + 2] = -f.x;
viewMatrix[1 * 4 + 2] = -f.y;
viewMatrix[2 * 4 + 2] = -f.z;
viewMatrix[0 * 4 + 3] = 0.f;
viewMatrix[1 * 4 + 3] = 0.f;
viewMatrix[2 * 4 + 3] = 0.f;
viewMatrix[3 * 4 + 0] = -s.dot(eye);
viewMatrix[3 * 4 + 1] = -u.dot(eye);
viewMatrix[3 * 4 + 2] = f.dot(eye);
viewMatrix[3 * 4 + 3] = 1.f;
}
B3_SHARED_API void b3ComputeViewMatrixFromYawPitchRoll(const float cameraTargetPosition[3], float distance, float yaw, float pitch, float roll, int upAxis, float viewMatrix[16])
{
b3Vector3 camUpVector;
b3Vector3 camForward;
b3Vector3 camPos;
b3Vector3 camTargetPos = b3MakeVector3(cameraTargetPosition[0], cameraTargetPosition[1], cameraTargetPosition[2]);
b3Vector3 eyePos = b3MakeVector3(0, 0, 0);
b3Scalar yawRad = yaw * b3Scalar(0.01745329251994329547); // rads per deg
b3Scalar pitchRad = pitch * b3Scalar(0.01745329251994329547); // rads per deg
b3Scalar rollRad = 0.0;
b3Quaternion eyeRot;
int forwardAxis(-1);
switch (upAxis)
{
case 1:
forwardAxis = 2;
camUpVector = b3MakeVector3(0, 1, 0);
eyeRot.setEulerZYX(rollRad, yawRad, -pitchRad);
break;
case 2:
forwardAxis = 1;
camUpVector = b3MakeVector3(0, 0, 1);
eyeRot.setEulerZYX(yawRad, rollRad, pitchRad);
break;
default:
return;
};
eyePos[forwardAxis] = -distance;
camForward = b3MakeVector3(eyePos[0], eyePos[1], eyePos[2]);
if (camForward.length2() < B3_EPSILON)
{
camForward.setValue(1.f, 0.f, 0.f);
}
else
{
camForward.normalize();
}
eyePos = b3Matrix3x3(eyeRot) * eyePos;
camUpVector = b3Matrix3x3(eyeRot) * camUpVector;
camPos = eyePos;
camPos += camTargetPos;
float camPosf[4] = {camPos[0], camPos[1], camPos[2], 0};
float camPosTargetf[4] = {camTargetPos[0], camTargetPos[1], camTargetPos[2], 0};
float camUpf[4] = {camUpVector[0], camUpVector[1], camUpVector[2], 0};
b3ComputeViewMatrixFromPositions(camPosf, camPosTargetf, camUpf, viewMatrix);
}
B3_SHARED_API void b3ComputeProjectionMatrix(float left, float right, float bottom, float top, float nearVal, float farVal, float projectionMatrix[16])
{
projectionMatrix[0 * 4 + 0] = (float(2) * nearVal) / (right - left);
projectionMatrix[0 * 4 + 1] = float(0);
projectionMatrix[0 * 4 + 2] = float(0);
projectionMatrix[0 * 4 + 3] = float(0);
projectionMatrix[1 * 4 + 0] = float(0);
projectionMatrix[1 * 4 + 1] = (float(2) * nearVal) / (top - bottom);
projectionMatrix[1 * 4 + 2] = float(0);
projectionMatrix[1 * 4 + 3] = float(0);
projectionMatrix[2 * 4 + 0] = (right + left) / (right - left);
projectionMatrix[2 * 4 + 1] = (top + bottom) / (top - bottom);
projectionMatrix[2 * 4 + 2] = -(farVal + nearVal) / (farVal - nearVal);
projectionMatrix[2 * 4 + 3] = float(-1);
projectionMatrix[3 * 4 + 0] = float(0);
projectionMatrix[3 * 4 + 1] = float(0);
projectionMatrix[3 * 4 + 2] = -(float(2) * farVal * nearVal) / (farVal - nearVal);
projectionMatrix[3 * 4 + 3] = float(0);
}
B3_SHARED_API void b3ComputeProjectionMatrixFOV(float fov, float aspect, float nearVal, float farVal, float projectionMatrix[16])
{
float yScale = 1.0 / tan((3.141592538 / 180.0) * fov / 2);
float xScale = yScale / aspect;
projectionMatrix[0 * 4 + 0] = xScale;
projectionMatrix[0 * 4 + 1] = float(0);
projectionMatrix[0 * 4 + 2] = float(0);
projectionMatrix[0 * 4 + 3] = float(0);
projectionMatrix[1 * 4 + 0] = float(0);
projectionMatrix[1 * 4 + 1] = yScale;
projectionMatrix[1 * 4 + 2] = float(0);
projectionMatrix[1 * 4 + 3] = float(0);
projectionMatrix[2 * 4 + 0] = 0;
projectionMatrix[2 * 4 + 1] = 0;
projectionMatrix[2 * 4 + 2] = (nearVal + farVal) / (nearVal - farVal);
projectionMatrix[2 * 4 + 3] = float(-1);
projectionMatrix[3 * 4 + 0] = float(0);
projectionMatrix[3 * 4 + 1] = float(0);
projectionMatrix[3 * 4 + 2] = (float(2) * farVal * nearVal) / (nearVal - farVal);
projectionMatrix[3 * 4 + 3] = float(0);
}
B3_SHARED_API void b3RequestCameraImageSetViewMatrix2(b3SharedMemoryCommandHandle commandHandle, const float cameraTargetPosition[3], float distance, float yaw, float pitch, float roll, int upAxis)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_REQUEST_CAMERA_IMAGE_DATA);
b3ComputeViewMatrixFromYawPitchRoll(cameraTargetPosition, distance, yaw, pitch, roll, upAxis, command->m_requestPixelDataArguments.m_viewMatrix);
command->m_updateFlags |= REQUEST_PIXEL_ARGS_HAS_CAMERA_MATRICES;
}
B3_SHARED_API void b3RequestCameraImageSetViewMatrix(b3SharedMemoryCommandHandle commandHandle, const float cameraPosition[3], const float cameraTargetPosition[3], const float cameraUp[3])
{
float viewMatrix[16];
b3ComputeViewMatrixFromPositions(cameraPosition, cameraTargetPosition, cameraUp, viewMatrix);
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_REQUEST_CAMERA_IMAGE_DATA);
b3ComputeViewMatrixFromPositions(cameraPosition, cameraTargetPosition, cameraUp, command->m_requestPixelDataArguments.m_viewMatrix);
command->m_updateFlags |= REQUEST_PIXEL_ARGS_HAS_CAMERA_MATRICES;
}
B3_SHARED_API void b3RequestCameraImageSetProjectionMatrix(b3SharedMemoryCommandHandle commandHandle, float left, float right, float bottom, float top, float nearVal, float farVal)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_REQUEST_CAMERA_IMAGE_DATA);
b3ComputeProjectionMatrix(left, right, bottom, top, nearVal, farVal, command->m_requestPixelDataArguments.m_projectionMatrix);
command->m_updateFlags |= REQUEST_PIXEL_ARGS_HAS_CAMERA_MATRICES;
}
B3_SHARED_API void b3RequestCameraImageSetFOVProjectionMatrix(b3SharedMemoryCommandHandle commandHandle, float fov, float aspect, float nearVal, float farVal)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_REQUEST_CAMERA_IMAGE_DATA);
b3ComputeProjectionMatrixFOV(fov, aspect, nearVal, farVal, command->m_requestPixelDataArguments.m_projectionMatrix);
command->m_updateFlags |= REQUEST_PIXEL_ARGS_HAS_CAMERA_MATRICES;
}
B3_SHARED_API void b3RequestCameraImageSetPixelResolution(b3SharedMemoryCommandHandle commandHandle, int width, int height)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_REQUEST_CAMERA_IMAGE_DATA);
command->m_requestPixelDataArguments.m_pixelWidth = width;
command->m_requestPixelDataArguments.m_pixelHeight = height;
command->m_updateFlags |= REQUEST_PIXEL_ARGS_SET_PIXEL_WIDTH_HEIGHT;
}
B3_SHARED_API void b3GetCameraImageData(b3PhysicsClientHandle physClient, struct b3CameraImageData* imageData)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
if (cl)
{
cl->getCachedCameraImage(imageData);
}
}
///request an contact point information
B3_SHARED_API b3SharedMemoryCommandHandle b3InitRequestContactPointInformation(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_REQUEST_CONTACT_POINT_INFORMATION;
command->m_requestContactPointArguments.m_startingContactPointIndex = 0;
command->m_requestContactPointArguments.m_objectAIndexFilter = -1;
command->m_requestContactPointArguments.m_objectBIndexFilter = -1;
command->m_requestContactPointArguments.m_linkIndexAIndexFilter = -2;
command->m_requestContactPointArguments.m_linkIndexBIndexFilter = -2;
command->m_updateFlags = 0;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API void b3SetContactFilterBodyA(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueIdA)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_REQUEST_CONTACT_POINT_INFORMATION);
command->m_requestContactPointArguments.m_objectAIndexFilter = bodyUniqueIdA;
}
B3_SHARED_API void b3SetContactFilterLinkA(b3SharedMemoryCommandHandle commandHandle, int linkIndexA)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_REQUEST_CONTACT_POINT_INFORMATION);
command->m_updateFlags |= CMD_REQUEST_CONTACT_POINT_HAS_LINK_INDEX_A_FILTER;
command->m_requestContactPointArguments.m_linkIndexAIndexFilter = linkIndexA;
}
B3_SHARED_API void b3SetContactFilterLinkB(b3SharedMemoryCommandHandle commandHandle, int linkIndexB)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_REQUEST_CONTACT_POINT_INFORMATION);
command->m_updateFlags |= CMD_REQUEST_CONTACT_POINT_HAS_LINK_INDEX_B_FILTER;
command->m_requestContactPointArguments.m_linkIndexBIndexFilter = linkIndexB;
}
B3_SHARED_API void b3SetClosestDistanceFilterLinkA(b3SharedMemoryCommandHandle commandHandle, int linkIndexA)
{
b3SetContactFilterLinkA(commandHandle, linkIndexA);
}
B3_SHARED_API void b3SetClosestDistanceFilterLinkB(b3SharedMemoryCommandHandle commandHandle, int linkIndexB)
{
b3SetContactFilterLinkB(commandHandle, linkIndexB);
}
B3_SHARED_API void b3SetContactFilterBodyB(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueIdB)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_REQUEST_CONTACT_POINT_INFORMATION);
command->m_requestContactPointArguments.m_objectBIndexFilter = bodyUniqueIdB;
}
///compute the closest points between two bodies
B3_SHARED_API b3SharedMemoryCommandHandle b3InitClosestDistanceQuery(b3PhysicsClientHandle physClient)
{
b3SharedMemoryCommandHandle commandHandle = b3InitRequestContactPointInformation(physClient);
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_REQUEST_CONTACT_POINT_INFORMATION);
command->m_updateFlags = CMD_REQUEST_CONTACT_POINT_HAS_QUERY_MODE;
command->m_requestContactPointArguments.m_mode = CONTACT_QUERY_MODE_COMPUTE_CLOSEST_POINTS;
return commandHandle;
}
B3_SHARED_API void b3SetClosestDistanceFilterBodyA(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueIdA)
{
b3SetContactFilterBodyA(commandHandle, bodyUniqueIdA);
}
B3_SHARED_API void b3SetClosestDistanceFilterBodyB(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueIdB)
{
b3SetContactFilterBodyB(commandHandle, bodyUniqueIdB);
}
B3_SHARED_API void b3SetClosestDistanceThreshold(b3SharedMemoryCommandHandle commandHandle, double distance)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_REQUEST_CONTACT_POINT_INFORMATION);
command->m_updateFlags |= CMD_REQUEST_CONTACT_POINT_HAS_CLOSEST_DISTANCE_THRESHOLD;
command->m_requestContactPointArguments.m_closestDistanceThreshold = distance;
}
B3_SHARED_API void b3SetClosestDistanceFilterCollisionShapeA(b3SharedMemoryCommandHandle commandHandle, int collisionShapeA)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_REQUEST_CONTACT_POINT_INFORMATION);
command->m_updateFlags |= CMD_REQUEST_CONTACT_POINT_HAS_COLLISION_SHAPE_A;
command->m_requestContactPointArguments.m_collisionShapeA = collisionShapeA;
}
B3_SHARED_API void b3SetClosestDistanceFilterCollisionShapeB(b3SharedMemoryCommandHandle commandHandle, int collisionShapeB)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_REQUEST_CONTACT_POINT_INFORMATION);
command->m_updateFlags |= CMD_REQUEST_CONTACT_POINT_HAS_COLLISION_SHAPE_B;
command->m_requestContactPointArguments.m_collisionShapeB = collisionShapeB;
}
B3_SHARED_API void b3SetClosestDistanceFilterCollisionShapePositionA(b3SharedMemoryCommandHandle commandHandle, const double collisionShapePositionA[/*3*/])
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_REQUEST_CONTACT_POINT_INFORMATION);
command->m_updateFlags |= CMD_REQUEST_CONTACT_POINT_HAS_COLLISION_SHAPE_POSITION_A;
command->m_requestContactPointArguments.m_collisionShapePositionA[0] = collisionShapePositionA[0];
command->m_requestContactPointArguments.m_collisionShapePositionA[1] = collisionShapePositionA[1];
command->m_requestContactPointArguments.m_collisionShapePositionA[2] = collisionShapePositionA[2];
}
B3_SHARED_API void b3SetClosestDistanceFilterCollisionShapePositionB(b3SharedMemoryCommandHandle commandHandle, const double collisionShapePositionB[/*3*/])
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_REQUEST_CONTACT_POINT_INFORMATION);
command->m_updateFlags |= CMD_REQUEST_CONTACT_POINT_HAS_COLLISION_SHAPE_POSITION_B;
command->m_requestContactPointArguments.m_collisionShapePositionB[0] = collisionShapePositionB[0];
command->m_requestContactPointArguments.m_collisionShapePositionB[1] = collisionShapePositionB[1];
command->m_requestContactPointArguments.m_collisionShapePositionB[2] = collisionShapePositionB[2];
}
B3_SHARED_API void b3SetClosestDistanceFilterCollisionShapeOrientationA(b3SharedMemoryCommandHandle commandHandle, const double collisionShapeOrientationA[/*4*/])
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_REQUEST_CONTACT_POINT_INFORMATION);
command->m_updateFlags |= CMD_REQUEST_CONTACT_POINT_HAS_COLLISION_SHAPE_ORIENTATION_A;
command->m_requestContactPointArguments.m_collisionShapeOrientationA[0] = collisionShapeOrientationA[0];
command->m_requestContactPointArguments.m_collisionShapeOrientationA[1] = collisionShapeOrientationA[1];
command->m_requestContactPointArguments.m_collisionShapeOrientationA[2] = collisionShapeOrientationA[2];
command->m_requestContactPointArguments.m_collisionShapeOrientationA[3] = collisionShapeOrientationA[3];
}
B3_SHARED_API void b3SetClosestDistanceFilterCollisionShapeOrientationB(b3SharedMemoryCommandHandle commandHandle, const double collisionShapeOrientationB[/*4*/])
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_REQUEST_CONTACT_POINT_INFORMATION);
command->m_updateFlags |= CMD_REQUEST_CONTACT_POINT_HAS_COLLISION_SHAPE_ORIENTATION_B;
command->m_requestContactPointArguments.m_collisionShapeOrientationB[0] = collisionShapeOrientationB[0];
command->m_requestContactPointArguments.m_collisionShapeOrientationB[1] = collisionShapeOrientationB[1];
command->m_requestContactPointArguments.m_collisionShapeOrientationB[2] = collisionShapeOrientationB[2];
command->m_requestContactPointArguments.m_collisionShapeOrientationB[3] = collisionShapeOrientationB[3];
}
///get all the bodies that touch a given axis aligned bounding box specified in world space (min and max coordinates)
B3_SHARED_API b3SharedMemoryCommandHandle b3InitAABBOverlapQuery(b3PhysicsClientHandle physClient, const double aabbMin[3], const double aabbMax[3])
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_REQUEST_AABB_OVERLAP;
command->m_updateFlags = 0;
command->m_requestOverlappingObjectsArgs.m_startingOverlappingObjectIndex = 0;
command->m_requestOverlappingObjectsArgs.m_aabbQueryMin[0] = aabbMin[0];
command->m_requestOverlappingObjectsArgs.m_aabbQueryMin[1] = aabbMin[1];
command->m_requestOverlappingObjectsArgs.m_aabbQueryMin[2] = aabbMin[2];
command->m_requestOverlappingObjectsArgs.m_aabbQueryMax[0] = aabbMax[0];
command->m_requestOverlappingObjectsArgs.m_aabbQueryMax[1] = aabbMax[1];
command->m_requestOverlappingObjectsArgs.m_aabbQueryMax[2] = aabbMax[2];
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API void b3GetAABBOverlapResults(b3PhysicsClientHandle physClient, struct b3AABBOverlapData* data)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
if (cl)
{
cl->getCachedOverlappingObjects(data);
}
}
B3_SHARED_API void b3GetContactPointInformation(b3PhysicsClientHandle physClient, struct b3ContactInformation* contactPointData)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
if (cl)
{
cl->getCachedContactPointInformation(contactPointData);
}
}
B3_SHARED_API void b3GetClosestPointInformation(b3PhysicsClientHandle physClient, struct b3ContactInformation* contactPointInfo)
{
b3GetContactPointInformation(physClient, contactPointInfo);
}
B3_SHARED_API b3SharedMemoryCommandHandle b3InitRequestCollisionShapeInformation(b3PhysicsClientHandle physClient, int bodyUniqueId, int linkIndex)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_REQUEST_COLLISION_SHAPE_INFO;
command->m_requestCollisionShapeDataArguments.m_bodyUniqueId = bodyUniqueId;
command->m_requestCollisionShapeDataArguments.m_linkIndex = linkIndex;
command->m_updateFlags = 0;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API void b3GetCollisionShapeInformation(b3PhysicsClientHandle physClient, struct b3CollisionShapeInformation* collisionShapeInfo)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
if (cl)
{
cl->getCachedCollisionShapeInformation(collisionShapeInfo);
}
}
//request visual shape information
B3_SHARED_API b3SharedMemoryCommandHandle b3InitRequestVisualShapeInformation(b3PhysicsClientHandle physClient, int bodyUniqueIdA)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_REQUEST_VISUAL_SHAPE_INFO;
command->m_requestVisualShapeDataArguments.m_bodyUniqueId = bodyUniqueIdA;
command->m_requestVisualShapeDataArguments.m_startingVisualShapeIndex = 0;
command->m_updateFlags = 0;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API void b3GetVisualShapeInformation(b3PhysicsClientHandle physClient, struct b3VisualShapeInformation* visualShapeInfo)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
if (cl)
{
cl->getCachedVisualShapeInformation(visualShapeInfo);
}
}
B3_SHARED_API b3SharedMemoryCommandHandle b3CreateChangeTextureCommandInit(b3PhysicsClientHandle physClient, int textureUniqueId, int width, int height, const char* rgbPixels)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_CHANGE_TEXTURE;
command->m_changeTextureArgs.m_textureUniqueId = textureUniqueId;
command->m_changeTextureArgs.m_width = width;
command->m_changeTextureArgs.m_height = height;
int numPixels = width * height;
cl->uploadBulletFileToSharedMemory(rgbPixels, numPixels * 3);
command->m_updateFlags = 0;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3InitLoadTexture(b3PhysicsClientHandle physClient, const char* filename)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_LOAD_TEXTURE;
int len = strlen(filename);
if (len < MAX_FILENAME_LENGTH)
{
strcpy(command->m_loadTextureArguments.m_textureFileName, filename);
}
else
{
command->m_loadTextureArguments.m_textureFileName[0] = 0;
}
command->m_updateFlags = 0;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API int b3GetStatusTextureUniqueId(b3SharedMemoryStatusHandle statusHandle)
{
int uid = -1;
const SharedMemoryStatus* status = (const SharedMemoryStatus*)statusHandle;
if (status)
{
btAssert(status->m_type == CMD_LOAD_TEXTURE_COMPLETED);
if (status->m_type == CMD_LOAD_TEXTURE_COMPLETED)
{
uid = status->m_loadTextureResultArguments.m_textureUniqueId;
}
}
return uid;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3InitUpdateVisualShape(b3PhysicsClientHandle physClient, int bodyUniqueId, int jointIndex, int shapeIndex, int textureUniqueId)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_UPDATE_VISUAL_SHAPE;
command->m_updateVisualShapeDataArguments.m_bodyUniqueId = bodyUniqueId;
command->m_updateVisualShapeDataArguments.m_jointIndex = jointIndex;
command->m_updateVisualShapeDataArguments.m_shapeIndex = shapeIndex;
command->m_updateVisualShapeDataArguments.m_textureUniqueId = textureUniqueId;
command->m_updateFlags = 0;
if (textureUniqueId >= 0)
{
command->m_updateFlags |= CMD_UPDATE_VISUAL_SHAPE_TEXTURE;
}
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3InitUpdateVisualShape2(b3PhysicsClientHandle physClient, int bodyUniqueId, int jointIndex, int shapeIndex)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_UPDATE_VISUAL_SHAPE;
command->m_updateVisualShapeDataArguments.m_bodyUniqueId = bodyUniqueId;
command->m_updateVisualShapeDataArguments.m_jointIndex = jointIndex;
command->m_updateVisualShapeDataArguments.m_shapeIndex = shapeIndex;
command->m_updateVisualShapeDataArguments.m_textureUniqueId = -2;
command->m_updateFlags = 0;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API void b3UpdateVisualShapeTexture(b3SharedMemoryCommandHandle commandHandle, int textureUniqueId)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_UPDATE_VISUAL_SHAPE);
if (command->m_type == CMD_UPDATE_VISUAL_SHAPE)
{
if (textureUniqueId >= -1)
{
command->m_updateFlags |= CMD_UPDATE_VISUAL_SHAPE_TEXTURE;
command->m_updateVisualShapeDataArguments.m_textureUniqueId = textureUniqueId;
}
}
}
B3_SHARED_API void b3UpdateVisualShapeRGBAColor(b3SharedMemoryCommandHandle commandHandle, const double rgbaColor[4])
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_UPDATE_VISUAL_SHAPE);
if (command->m_type == CMD_UPDATE_VISUAL_SHAPE)
{
command->m_updateVisualShapeDataArguments.m_rgbaColor[0] = rgbaColor[0];
command->m_updateVisualShapeDataArguments.m_rgbaColor[1] = rgbaColor[1];
command->m_updateVisualShapeDataArguments.m_rgbaColor[2] = rgbaColor[2];
command->m_updateVisualShapeDataArguments.m_rgbaColor[3] = rgbaColor[3];
command->m_updateFlags |= CMD_UPDATE_VISUAL_SHAPE_RGBA_COLOR;
}
}
B3_SHARED_API void b3UpdateVisualShapeSpecularColor(b3SharedMemoryCommandHandle commandHandle, const double specularColor[3])
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_UPDATE_VISUAL_SHAPE);
if (command->m_type == CMD_UPDATE_VISUAL_SHAPE)
{
command->m_updateVisualShapeDataArguments.m_specularColor[0] = specularColor[0];
command->m_updateVisualShapeDataArguments.m_specularColor[1] = specularColor[1];
command->m_updateVisualShapeDataArguments.m_specularColor[2] = specularColor[2];
command->m_updateFlags |= CMD_UPDATE_VISUAL_SHAPE_SPECULAR_COLOR;
}
}
B3_SHARED_API b3SharedMemoryCommandHandle b3ApplyExternalForceCommandInit(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_APPLY_EXTERNAL_FORCE;
command->m_updateFlags = 0;
command->m_externalForceArguments.m_numForcesAndTorques = 0;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API void b3ApplyExternalForce(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkId, const double force[3], const double position[3], int flag)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_APPLY_EXTERNAL_FORCE);
int index = command->m_externalForceArguments.m_numForcesAndTorques;
command->m_externalForceArguments.m_bodyUniqueIds[index] = bodyUniqueId;
command->m_externalForceArguments.m_linkIds[index] = linkId;
command->m_externalForceArguments.m_forceFlags[index] = EF_FORCE + flag;
for (int i = 0; i < 3; ++i)
{
command->m_externalForceArguments.m_forcesAndTorques[index + i] = force[i];
command->m_externalForceArguments.m_positions[index + i] = position[i];
}
command->m_externalForceArguments.m_numForcesAndTorques++;
}
B3_SHARED_API void b3ApplyExternalTorque(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueId, int linkId, const double torque[3], int flag)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_APPLY_EXTERNAL_FORCE);
int index = command->m_externalForceArguments.m_numForcesAndTorques;
command->m_externalForceArguments.m_bodyUniqueIds[index] = bodyUniqueId;
command->m_externalForceArguments.m_linkIds[index] = linkId;
command->m_externalForceArguments.m_forceFlags[index] = EF_TORQUE + flag;
for (int i = 0; i < 3; ++i)
{
command->m_externalForceArguments.m_forcesAndTorques[index + i] = torque[i];
}
command->m_externalForceArguments.m_numForcesAndTorques++;
}
///compute the forces to achieve an acceleration, given a state q and qdot using inverse dynamics
B3_SHARED_API b3SharedMemoryCommandHandle b3CalculateInverseDynamicsCommandInit(b3PhysicsClientHandle physClient, int bodyUniqueId,
const double* jointPositionsQ, const double* jointVelocitiesQdot, const double* jointAccelerations)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_CALCULATE_INVERSE_DYNAMICS;
command->m_updateFlags = 0;
command->m_calculateInverseDynamicsArguments.m_bodyUniqueId = bodyUniqueId;
command->m_calculateInverseDynamicsArguments.m_flags = 0;
int dofCount = b3ComputeDofCount(physClient, bodyUniqueId);
for (int i = 0; i < dofCount; i++)
{
command->m_calculateInverseDynamicsArguments.m_jointPositionsQ[i] = jointPositionsQ[i];
command->m_calculateInverseDynamicsArguments.m_jointVelocitiesQdot[i] = jointVelocitiesQdot[i];
command->m_calculateInverseDynamicsArguments.m_jointAccelerations[i] = jointAccelerations[i];
}
command->m_calculateInverseDynamicsArguments.m_dofCountQ = dofCount;
command->m_calculateInverseDynamicsArguments.m_dofCountQdot = dofCount;
return (b3SharedMemoryCommandHandle)command;
}
///compute the forces to achieve an acceleration, given a state q and qdot using inverse dynamics
B3_SHARED_API b3SharedMemoryCommandHandle b3CalculateInverseDynamicsCommandInit2(b3PhysicsClientHandle physClient, int bodyUniqueId,
const double* jointPositionsQ, int dofCountQ, const double* jointVelocitiesQdot, const double* jointAccelerations, int dofCountQdot)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_CALCULATE_INVERSE_DYNAMICS;
command->m_updateFlags = 0;
command->m_calculateInverseDynamicsArguments.m_bodyUniqueId = bodyUniqueId;
command->m_calculateInverseDynamicsArguments.m_flags = 0;
command->m_calculateInverseDynamicsArguments.m_dofCountQ = dofCountQ;
for (int i = 0; i < dofCountQ; i++)
{
command->m_calculateInverseDynamicsArguments.m_jointPositionsQ[i] = jointPositionsQ[i];
}
command->m_calculateInverseDynamicsArguments.m_dofCountQdot = dofCountQdot;
for (int i=0;i<dofCountQdot;i++)
{
command->m_calculateInverseDynamicsArguments.m_jointVelocitiesQdot[i] = jointVelocitiesQdot[i];
command->m_calculateInverseDynamicsArguments.m_jointAccelerations[i] = jointAccelerations[i];
}
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API void b3CalculateInverseDynamicsSetFlags(b3SharedMemoryCommandHandle commandHandle, int flags)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
command->m_calculateInverseDynamicsArguments.m_flags = flags;
}
B3_SHARED_API int b3GetStatusInverseDynamicsJointForces(b3SharedMemoryStatusHandle statusHandle,
int* bodyUniqueId,
int* dofCount,
double* jointForces)
{
const SharedMemoryStatus* status = (const SharedMemoryStatus*)statusHandle;
if (status == 0)
return false;
btAssert(status->m_type == CMD_CALCULATED_INVERSE_DYNAMICS_COMPLETED);
if (status->m_type != CMD_CALCULATED_INVERSE_DYNAMICS_COMPLETED)
return false;
if (dofCount)
{
*dofCount = status->m_inverseDynamicsResultArgs.m_dofCount;
}
if (bodyUniqueId)
{
*bodyUniqueId = status->m_inverseDynamicsResultArgs.m_bodyUniqueId;
}
if (jointForces)
{
for (int i = 0; i < status->m_inverseDynamicsResultArgs.m_dofCount; i++)
{
jointForces[i] = status->m_inverseDynamicsResultArgs.m_jointForces[i];
}
}
return true;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3CalculateJacobianCommandInit(b3PhysicsClientHandle physClient, int bodyUniqueId, int linkIndex, const double* localPosition, const double* jointPositionsQ, const double* jointVelocitiesQdot, const double* jointAccelerations)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_CALCULATE_JACOBIAN;
command->m_updateFlags = 0;
command->m_calculateJacobianArguments.m_bodyUniqueId = bodyUniqueId;
command->m_calculateJacobianArguments.m_linkIndex = linkIndex;
command->m_calculateJacobianArguments.m_localPosition[0] = localPosition[0];
command->m_calculateJacobianArguments.m_localPosition[1] = localPosition[1];
command->m_calculateJacobianArguments.m_localPosition[2] = localPosition[2];
int numJoints = cl->getNumJoints(bodyUniqueId);
for (int i = 0; i < numJoints; i++)
{
command->m_calculateJacobianArguments.m_jointPositionsQ[i] = jointPositionsQ[i];
command->m_calculateJacobianArguments.m_jointVelocitiesQdot[i] = jointVelocitiesQdot[i];
command->m_calculateJacobianArguments.m_jointAccelerations[i] = jointAccelerations[i];
}
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API int b3GetStatusJacobian(b3SharedMemoryStatusHandle statusHandle, int* dofCount, double* linearJacobian, double* angularJacobian)
{
const SharedMemoryStatus* status = (const SharedMemoryStatus*)statusHandle;
if (status == 0)
return false;
btAssert(status->m_type == CMD_CALCULATED_JACOBIAN_COMPLETED);
if (status->m_type != CMD_CALCULATED_JACOBIAN_COMPLETED)
return false;
if (dofCount)
{
*dofCount = status->m_jacobianResultArgs.m_dofCount;
}
if (linearJacobian)
{
for (int i = 0; i < status->m_jacobianResultArgs.m_dofCount * 3; i++)
{
linearJacobian[i] = status->m_jacobianResultArgs.m_linearJacobian[i];
}
}
if (angularJacobian)
{
for (int i = 0; i < status->m_jacobianResultArgs.m_dofCount * 3; i++)
{
angularJacobian[i] = status->m_jacobianResultArgs.m_angularJacobian[i];
}
}
return true;
}
B3_SHARED_API void b3CalculateMassMatrixSetFlags(b3SharedMemoryCommandHandle commandHandle, int flags)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*) commandHandle;
command->m_calculateMassMatrixArguments.m_flags = flags;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3CalculateMassMatrixCommandInit(b3PhysicsClientHandle physClient, int bodyUniqueId, const double* jointPositionsQ, int dofCountQ)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_CALCULATE_MASS_MATRIX;
command->m_updateFlags = 0;
for (int i = 0; i < dofCountQ; i++)
{
command->m_calculateMassMatrixArguments.m_jointPositionsQ[i] = jointPositionsQ[i];
}
command->m_calculateMassMatrixArguments.m_bodyUniqueId = bodyUniqueId;
command->m_calculateMassMatrixArguments.m_dofCountQ = dofCountQ;
command->m_calculateMassMatrixArguments.m_flags = 0;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API int b3GetStatusMassMatrix(b3PhysicsClientHandle physClient, b3SharedMemoryStatusHandle statusHandle, int* dofCount, double* massMatrix)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
const SharedMemoryStatus* status = (const SharedMemoryStatus*)statusHandle;
if (status == 0)
return false;
btAssert(status->m_type == CMD_CALCULATED_MASS_MATRIX_COMPLETED);
if (status->m_type != CMD_CALCULATED_MASS_MATRIX_COMPLETED)
return false;
if (dofCount)
{
*dofCount = status->m_massMatrixResultArgs.m_dofCount;
}
if (massMatrix)
{
cl->getCachedMassMatrix(status->m_massMatrixResultArgs.m_dofCount, massMatrix);
}
return true;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3CollisionFilterCommandInit(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_COLLISION_FILTER;
command->m_collisionFilterArgs.m_bodyUniqueIdA = -1;
command->m_collisionFilterArgs.m_bodyUniqueIdB = -1;
command->m_collisionFilterArgs.m_linkIndexA = -2;
command->m_collisionFilterArgs.m_linkIndexB = -2;
command->m_collisionFilterArgs.m_enableCollision = 0;
command->m_updateFlags = 0;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API void b3SetCollisionFilterPair(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueIdA,
int bodyUniqueIdB, int linkIndexA, int linkIndexB, int enableCollision)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_COLLISION_FILTER);
command->m_updateFlags = B3_COLLISION_FILTER_PAIR;
command->m_collisionFilterArgs.m_bodyUniqueIdA = bodyUniqueIdA;
command->m_collisionFilterArgs.m_bodyUniqueIdB = bodyUniqueIdB;
command->m_collisionFilterArgs.m_linkIndexA = linkIndexA;
command->m_collisionFilterArgs.m_linkIndexB = linkIndexB;
command->m_collisionFilterArgs.m_enableCollision = enableCollision;
}
B3_SHARED_API void b3SetCollisionFilterGroupMask(b3SharedMemoryCommandHandle commandHandle, int bodyUniqueIdA,
int linkIndexA, int collisionFilterGroup, int collisionFilterMask)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_COLLISION_FILTER);
command->m_updateFlags = B3_COLLISION_FILTER_GROUP_MASK;
command->m_collisionFilterArgs.m_bodyUniqueIdA = bodyUniqueIdA;
command->m_collisionFilterArgs.m_linkIndexA = linkIndexA;
command->m_collisionFilterArgs.m_collisionFilterGroup = collisionFilterGroup;
command->m_collisionFilterArgs.m_collisionFilterMask = collisionFilterMask;
}
///compute the joint positions to move the end effector to a desired target using inverse kinematics
B3_SHARED_API b3SharedMemoryCommandHandle b3CalculateInverseKinematicsCommandInit(b3PhysicsClientHandle physClient, int bodyUniqueId)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_CALCULATE_INVERSE_KINEMATICS;
command->m_updateFlags = 0;
command->m_calculateInverseKinematicsArguments.m_bodyUniqueId = bodyUniqueId;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API void b3CalculateInverseKinematicsAddTargetPurePosition(b3SharedMemoryCommandHandle commandHandle, int endEffectorLinkIndex, const double targetPosition[3])
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_CALCULATE_INVERSE_KINEMATICS);
command->m_updateFlags |= IK_HAS_TARGET_POSITION;
command->m_calculateInverseKinematicsArguments.m_endEffectorLinkIndex = endEffectorLinkIndex;
command->m_calculateInverseKinematicsArguments.m_targetPosition[0] = targetPosition[0];
command->m_calculateInverseKinematicsArguments.m_targetPosition[1] = targetPosition[1];
command->m_calculateInverseKinematicsArguments.m_targetPosition[2] = targetPosition[2];
command->m_calculateInverseKinematicsArguments.m_targetOrientation[0] = 0;
command->m_calculateInverseKinematicsArguments.m_targetOrientation[1] = 0;
command->m_calculateInverseKinematicsArguments.m_targetOrientation[2] = 0;
command->m_calculateInverseKinematicsArguments.m_targetOrientation[3] = 1;
}
B3_SHARED_API void b3CalculateInverseKinematicsAddTargetPositionWithOrientation(b3SharedMemoryCommandHandle commandHandle, int endEffectorLinkIndex, const double targetPosition[3], const double targetOrientation[4])
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_CALCULATE_INVERSE_KINEMATICS);
command->m_updateFlags |= IK_HAS_TARGET_POSITION + IK_HAS_TARGET_ORIENTATION;
command->m_calculateInverseKinematicsArguments.m_endEffectorLinkIndex = endEffectorLinkIndex;
command->m_calculateInverseKinematicsArguments.m_targetPosition[0] = targetPosition[0];
command->m_calculateInverseKinematicsArguments.m_targetPosition[1] = targetPosition[1];
command->m_calculateInverseKinematicsArguments.m_targetPosition[2] = targetPosition[2];
command->m_calculateInverseKinematicsArguments.m_targetOrientation[0] = targetOrientation[0];
command->m_calculateInverseKinematicsArguments.m_targetOrientation[1] = targetOrientation[1];
command->m_calculateInverseKinematicsArguments.m_targetOrientation[2] = targetOrientation[2];
command->m_calculateInverseKinematicsArguments.m_targetOrientation[3] = targetOrientation[3];
}
B3_SHARED_API void b3CalculateInverseKinematicsPosWithNullSpaceVel(b3SharedMemoryCommandHandle commandHandle, int numDof, int endEffectorLinkIndex, const double targetPosition[3], const double* lowerLimit, const double* upperLimit, const double* jointRange, const double* restPose)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_CALCULATE_INVERSE_KINEMATICS);
command->m_updateFlags |= IK_HAS_TARGET_POSITION + IK_HAS_NULL_SPACE_VELOCITY;
command->m_calculateInverseKinematicsArguments.m_endEffectorLinkIndex = endEffectorLinkIndex;
command->m_calculateInverseKinematicsArguments.m_targetPosition[0] = targetPosition[0];
command->m_calculateInverseKinematicsArguments.m_targetPosition[1] = targetPosition[1];
command->m_calculateInverseKinematicsArguments.m_targetPosition[2] = targetPosition[2];
for (int i = 0; i < numDof; ++i)
{
command->m_calculateInverseKinematicsArguments.m_lowerLimit[i] = lowerLimit[i];
command->m_calculateInverseKinematicsArguments.m_upperLimit[i] = upperLimit[i];
command->m_calculateInverseKinematicsArguments.m_jointRange[i] = jointRange[i];
command->m_calculateInverseKinematicsArguments.m_restPose[i] = restPose[i];
}
}
B3_SHARED_API void b3CalculateInverseKinematicsPosOrnWithNullSpaceVel(b3SharedMemoryCommandHandle commandHandle, int numDof, int endEffectorLinkIndex, const double targetPosition[3], const double targetOrientation[4], const double* lowerLimit, const double* upperLimit, const double* jointRange, const double* restPose)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_CALCULATE_INVERSE_KINEMATICS);
command->m_updateFlags |= IK_HAS_TARGET_POSITION + IK_HAS_TARGET_ORIENTATION + IK_HAS_NULL_SPACE_VELOCITY;
command->m_calculateInverseKinematicsArguments.m_endEffectorLinkIndex = endEffectorLinkIndex;
command->m_calculateInverseKinematicsArguments.m_targetPosition[0] = targetPosition[0];
command->m_calculateInverseKinematicsArguments.m_targetPosition[1] = targetPosition[1];
command->m_calculateInverseKinematicsArguments.m_targetPosition[2] = targetPosition[2];
command->m_calculateInverseKinematicsArguments.m_targetOrientation[0] = targetOrientation[0];
command->m_calculateInverseKinematicsArguments.m_targetOrientation[1] = targetOrientation[1];
command->m_calculateInverseKinematicsArguments.m_targetOrientation[2] = targetOrientation[2];
command->m_calculateInverseKinematicsArguments.m_targetOrientation[3] = targetOrientation[3];
for (int i = 0; i < numDof; ++i)
{
command->m_calculateInverseKinematicsArguments.m_lowerLimit[i] = lowerLimit[i];
command->m_calculateInverseKinematicsArguments.m_upperLimit[i] = upperLimit[i];
command->m_calculateInverseKinematicsArguments.m_jointRange[i] = jointRange[i];
command->m_calculateInverseKinematicsArguments.m_restPose[i] = restPose[i];
}
}
B3_SHARED_API void b3CalculateInverseKinematicsSetCurrentPositions(b3SharedMemoryCommandHandle commandHandle, int numDof, const double* currentJointPositions)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_CALCULATE_INVERSE_KINEMATICS);
command->m_updateFlags |= IK_HAS_CURRENT_JOINT_POSITIONS;
for (int i = 0; i < numDof; ++i)
{
command->m_calculateInverseKinematicsArguments.m_currentPositions[i] = currentJointPositions[i];
}
}
B3_SHARED_API void b3CalculateInverseKinematicsSetMaxNumIterations(b3SharedMemoryCommandHandle commandHandle, int maxNumIterations)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_CALCULATE_INVERSE_KINEMATICS);
command->m_updateFlags |= IK_HAS_MAX_ITERATIONS;
command->m_calculateInverseKinematicsArguments.m_maxNumIterations = maxNumIterations;
}
B3_SHARED_API void b3CalculateInverseKinematicsSetResidualThreshold(b3SharedMemoryCommandHandle commandHandle, double residualThreshold)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_CALCULATE_INVERSE_KINEMATICS);
command->m_updateFlags |= IK_HAS_RESIDUAL_THRESHOLD;
command->m_calculateInverseKinematicsArguments.m_residualThreshold = residualThreshold;
}
B3_SHARED_API void b3CalculateInverseKinematicsSetJointDamping(b3SharedMemoryCommandHandle commandHandle, int numDof, const double* jointDampingCoeff)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_CALCULATE_INVERSE_KINEMATICS);
command->m_updateFlags |= IK_HAS_JOINT_DAMPING;
for (int i = 0; i < numDof; ++i)
{
command->m_calculateInverseKinematicsArguments.m_jointDamping[i] = jointDampingCoeff[i];
}
}
B3_SHARED_API void b3CalculateInverseKinematicsSelectSolver(b3SharedMemoryCommandHandle commandHandle, int solver)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_CALCULATE_INVERSE_KINEMATICS);
command->m_updateFlags |= solver;
}
B3_SHARED_API int b3GetStatusInverseKinematicsJointPositions(b3SharedMemoryStatusHandle statusHandle,
int* bodyUniqueId,
int* dofCount,
double* jointPositions)
{
const SharedMemoryStatus* status = (const SharedMemoryStatus*)statusHandle;
btAssert(status);
if (status == 0)
return 0;
btAssert(status->m_type == CMD_CALCULATE_INVERSE_KINEMATICS_COMPLETED);
if (status->m_type != CMD_CALCULATE_INVERSE_KINEMATICS_COMPLETED)
return 0;
if (dofCount)
{
*dofCount = status->m_inverseKinematicsResultArgs.m_dofCount;
}
if (bodyUniqueId)
{
*bodyUniqueId = status->m_inverseKinematicsResultArgs.m_bodyUniqueId;
}
if (jointPositions)
{
for (int i = 0; i < status->m_inverseKinematicsResultArgs.m_dofCount; i++)
{
jointPositions[i] = status->m_inverseKinematicsResultArgs.m_jointPositions[i];
}
}
return 1;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3RequestVREventsCommandInit(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_REQUEST_VR_EVENTS_DATA;
command->m_updateFlags = VR_DEVICE_CONTROLLER;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API void b3VREventsSetDeviceTypeFilter(b3SharedMemoryCommandHandle commandHandle, int deviceTypeFilter)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
if (command->m_type == CMD_REQUEST_VR_EVENTS_DATA)
{
command->m_updateFlags = deviceTypeFilter;
}
}
B3_SHARED_API void b3GetVREventsData(b3PhysicsClientHandle physClient, struct b3VREventsData* vrEventsData)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
if (cl)
{
cl->getCachedVREvents(vrEventsData);
}
}
B3_SHARED_API b3SharedMemoryCommandHandle b3SetVRCameraStateCommandInit(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_SET_VR_CAMERA_STATE;
command->m_updateFlags = 0;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API int b3SetVRCameraRootPosition(b3SharedMemoryCommandHandle commandHandle, const double rootPos[3])
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_SET_VR_CAMERA_STATE);
command->m_updateFlags |= VR_CAMERA_ROOT_POSITION;
command->m_vrCameraStateArguments.m_rootPosition[0] = rootPos[0];
command->m_vrCameraStateArguments.m_rootPosition[1] = rootPos[1];
command->m_vrCameraStateArguments.m_rootPosition[2] = rootPos[2];
return 0;
}
B3_SHARED_API int b3SetVRCameraRootOrientation(b3SharedMemoryCommandHandle commandHandle, const double rootOrn[4])
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_SET_VR_CAMERA_STATE);
command->m_updateFlags |= VR_CAMERA_ROOT_ORIENTATION;
command->m_vrCameraStateArguments.m_rootOrientation[0] = rootOrn[0];
command->m_vrCameraStateArguments.m_rootOrientation[1] = rootOrn[1];
command->m_vrCameraStateArguments.m_rootOrientation[2] = rootOrn[2];
command->m_vrCameraStateArguments.m_rootOrientation[3] = rootOrn[3];
return 0;
}
B3_SHARED_API int b3SetVRCameraTrackingObject(b3SharedMemoryCommandHandle commandHandle, int objectUniqueId)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_SET_VR_CAMERA_STATE);
command->m_updateFlags |= VR_CAMERA_ROOT_TRACKING_OBJECT;
command->m_vrCameraStateArguments.m_trackingObjectUniqueId = objectUniqueId;
return 0;
}
B3_SHARED_API int b3SetVRCameraTrackingObjectFlag(b3SharedMemoryCommandHandle commandHandle, int flag)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_SET_VR_CAMERA_STATE);
command->m_updateFlags |= VR_CAMERA_FLAG;
command->m_vrCameraStateArguments.m_trackingObjectFlag = flag;
return 0;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3RequestKeyboardEventsCommandInit(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
return b3RequestKeyboardEventsCommandInit2((b3SharedMemoryCommandHandle)command);
}
B3_SHARED_API b3SharedMemoryCommandHandle b3RequestKeyboardEventsCommandInit2(b3SharedMemoryCommandHandle commandHandle)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
command->m_type = CMD_REQUEST_KEYBOARD_EVENTS_DATA;
command->m_updateFlags = 0;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API void b3GetKeyboardEventsData(b3PhysicsClientHandle physClient, struct b3KeyboardEventsData* keyboardEventsData)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
if (cl)
{
cl->getCachedKeyboardEvents(keyboardEventsData);
}
}
B3_SHARED_API b3SharedMemoryCommandHandle b3RequestMouseEventsCommandInit(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_REQUEST_MOUSE_EVENTS_DATA;
command->m_updateFlags = 0;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API void b3GetMouseEventsData(b3PhysicsClientHandle physClient, struct b3MouseEventsData* mouseEventsData)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
if (cl)
{
cl->getCachedMouseEvents(mouseEventsData);
}
}
B3_SHARED_API b3SharedMemoryCommandHandle b3ProfileTimingCommandInit(b3PhysicsClientHandle physClient, const char* name)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
int len = strlen(name);
if (len >= 0 && len < (MAX_FILENAME_LENGTH + 1))
{
command->m_type = CMD_PROFILE_TIMING;
strcpy(command->m_profile.m_name, name);
command->m_profile.m_name[len] = 0;
}
else
{
const char* invalid = "InvalidProfileTimingName";
int len = strlen(invalid);
strcpy(command->m_profile.m_name, invalid);
command->m_profile.m_name[len] = 0;
}
command->m_profile.m_durationInMicroSeconds = 0;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API void b3PushProfileTiming(b3PhysicsClientHandle physClient, const char* timingName)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
cl->pushProfileTiming(timingName);
}
B3_SHARED_API void b3PopProfileTiming(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
cl->popProfileTiming();
}
B3_SHARED_API void b3SetProfileTimingDuractionInMicroSeconds(b3SharedMemoryCommandHandle commandHandle, int duration)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_PROFILE_TIMING);
if (command->m_type == CMD_PROFILE_TIMING)
{
command->m_profile.m_durationInMicroSeconds = duration;
}
}
B3_SHARED_API b3SharedMemoryCommandHandle b3StateLoggingCommandInit(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_STATE_LOGGING;
command->m_updateFlags = 0;
command->m_stateLoggingArguments.m_numBodyUniqueIds = 0;
command->m_stateLoggingArguments.m_deviceFilterType = VR_DEVICE_CONTROLLER;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API int b3StateLoggingStart(b3SharedMemoryCommandHandle commandHandle, int loggingType, const char* fileName)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_STATE_LOGGING);
if (command->m_type == CMD_STATE_LOGGING)
{
command->m_updateFlags |= STATE_LOGGING_START_LOG;
int len = strlen(fileName);
if (len < MAX_FILENAME_LENGTH)
{
strcpy(command->m_stateLoggingArguments.m_fileName, fileName);
}
else
{
command->m_stateLoggingArguments.m_fileName[0] = 0;
}
command->m_stateLoggingArguments.m_logType = loggingType;
}
return 0;
}
B3_SHARED_API int b3GetStatusLoggingUniqueId(b3SharedMemoryStatusHandle statusHandle)
{
const SharedMemoryStatus* status = (const SharedMemoryStatus*)statusHandle;
b3Assert(status);
b3Assert(status->m_type == CMD_STATE_LOGGING_START_COMPLETED);
if (status && status->m_type == CMD_STATE_LOGGING_START_COMPLETED)
{
return status->m_stateLoggingResultArgs.m_loggingUniqueId;
}
return -1;
}
B3_SHARED_API int b3StateLoggingAddLoggingObjectUniqueId(b3SharedMemoryCommandHandle commandHandle, int objectUniqueId)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_STATE_LOGGING);
if (command->m_type == CMD_STATE_LOGGING)
{
command->m_updateFlags |= STATE_LOGGING_FILTER_OBJECT_UNIQUE_ID;
if (command->m_stateLoggingArguments.m_numBodyUniqueIds < MAX_SDF_BODIES)
{
command->m_stateLoggingArguments.m_bodyUniqueIds[command->m_stateLoggingArguments.m_numBodyUniqueIds++] = objectUniqueId;
}
}
return 0;
}
B3_SHARED_API int b3StateLoggingSetLinkIndexA(b3SharedMemoryCommandHandle commandHandle, int linkIndexA)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type = CMD_STATE_LOGGING);
if (command->m_type == CMD_STATE_LOGGING)
{
command->m_updateFlags |= STATE_LOGGING_FILTER_LINK_INDEX_A;
command->m_stateLoggingArguments.m_linkIndexA = linkIndexA;
}
return 0;
}
B3_SHARED_API int b3StateLoggingSetLinkIndexB(b3SharedMemoryCommandHandle commandHandle, int linkIndexB)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type = CMD_STATE_LOGGING);
if (command->m_type == CMD_STATE_LOGGING)
{
command->m_updateFlags |= STATE_LOGGING_FILTER_LINK_INDEX_B;
command->m_stateLoggingArguments.m_linkIndexB = linkIndexB;
}
return 0;
}
B3_SHARED_API int b3StateLoggingSetBodyAUniqueId(b3SharedMemoryCommandHandle commandHandle, int bodyAUniqueId)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type = CMD_STATE_LOGGING);
if (command->m_type == CMD_STATE_LOGGING)
{
command->m_updateFlags |= STATE_LOGGING_FILTER_BODY_UNIQUE_ID_A;
command->m_stateLoggingArguments.m_bodyUniqueIdA = bodyAUniqueId;
}
return 0;
}
B3_SHARED_API int b3StateLoggingSetBodyBUniqueId(b3SharedMemoryCommandHandle commandHandle, int bodyBUniqueId)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type = CMD_STATE_LOGGING);
if (command->m_type == CMD_STATE_LOGGING)
{
command->m_updateFlags |= STATE_LOGGING_FILTER_BODY_UNIQUE_ID_B;
command->m_stateLoggingArguments.m_bodyUniqueIdB = bodyBUniqueId;
}
return 0;
}
B3_SHARED_API int b3StateLoggingSetMaxLogDof(b3SharedMemoryCommandHandle commandHandle, int maxLogDof)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_STATE_LOGGING);
if (command->m_type == CMD_STATE_LOGGING)
{
command->m_updateFlags |= STATE_LOGGING_MAX_LOG_DOF;
command->m_stateLoggingArguments.m_maxLogDof = maxLogDof;
}
return 0;
}
B3_SHARED_API int b3StateLoggingSetLogFlags(b3SharedMemoryCommandHandle commandHandle, int logFlags)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_STATE_LOGGING);
if (command->m_type == CMD_STATE_LOGGING)
{
command->m_updateFlags |= STATE_LOGGING_LOG_FLAGS;
command->m_stateLoggingArguments.m_logFlags = logFlags;
}
return 0;
}
B3_SHARED_API int b3StateLoggingSetDeviceTypeFilter(b3SharedMemoryCommandHandle commandHandle, int deviceTypeFilter)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_STATE_LOGGING);
if (command->m_type == CMD_STATE_LOGGING)
{
command->m_updateFlags |= STATE_LOGGING_FILTER_DEVICE_TYPE;
command->m_stateLoggingArguments.m_deviceFilterType = deviceTypeFilter;
}
return 0;
}
B3_SHARED_API int b3StateLoggingStop(b3SharedMemoryCommandHandle commandHandle, int loggingUid)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_STATE_LOGGING);
if (command->m_type == CMD_STATE_LOGGING)
{
command->m_updateFlags |= STATE_LOGGING_STOP_LOG;
command->m_stateLoggingArguments.m_loggingUniqueId = loggingUid;
}
return 0;
}
///configure the 3D OpenGL debug visualizer (enable/disable GUI widgets, shadows, position camera etc)
B3_SHARED_API b3SharedMemoryCommandHandle b3InitConfigureOpenGLVisualizer(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
//b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
return b3InitConfigureOpenGLVisualizer2((b3SharedMemoryCommandHandle)command);
}
B3_SHARED_API b3SharedMemoryCommandHandle b3InitConfigureOpenGLVisualizer2(b3SharedMemoryCommandHandle commandHandle)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
command->m_type = CMD_CONFIGURE_OPENGL_VISUALIZER;
command->m_updateFlags = 0;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API void b3ConfigureOpenGLVisualizerSetVisualizationFlags(b3SharedMemoryCommandHandle commandHandle, int flag, int enabled)
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_CONFIGURE_OPENGL_VISUALIZER);
if (command->m_type == CMD_CONFIGURE_OPENGL_VISUALIZER)
{
command->m_updateFlags |= COV_SET_FLAGS;
command->m_configureOpenGLVisualizerArguments.m_setFlag = flag;
command->m_configureOpenGLVisualizerArguments.m_setEnabled = enabled;
}
}
B3_SHARED_API void b3ConfigureOpenGLVisualizerSetViewMatrix(b3SharedMemoryCommandHandle commandHandle, float cameraDistance, float cameraPitch, float cameraYaw, const float cameraTargetPosition[3])
{
struct SharedMemoryCommand* command = (struct SharedMemoryCommand*)commandHandle;
b3Assert(command);
b3Assert(command->m_type == CMD_CONFIGURE_OPENGL_VISUALIZER);
if (command->m_type == CMD_CONFIGURE_OPENGL_VISUALIZER)
{
command->m_updateFlags |= COV_SET_CAMERA_VIEW_MATRIX;
command->m_configureOpenGLVisualizerArguments.m_cameraDistance = cameraDistance;
command->m_configureOpenGLVisualizerArguments.m_cameraPitch = cameraPitch;
command->m_configureOpenGLVisualizerArguments.m_cameraYaw = cameraYaw;
command->m_configureOpenGLVisualizerArguments.m_cameraTargetPosition[0] = cameraTargetPosition[0];
command->m_configureOpenGLVisualizerArguments.m_cameraTargetPosition[1] = cameraTargetPosition[1];
command->m_configureOpenGLVisualizerArguments.m_cameraTargetPosition[2] = cameraTargetPosition[2];
}
}
B3_SHARED_API b3SharedMemoryCommandHandle b3InitRequestOpenGLVisualizerCameraCommand(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_REQUEST_OPENGL_VISUALIZER_CAMERA;
command->m_updateFlags = 0;
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API int b3GetStatusOpenGLVisualizerCamera(b3SharedMemoryStatusHandle statusHandle, b3OpenGLVisualizerCameraInfo* camera)
{
const SharedMemoryStatus* status = (const SharedMemoryStatus*)statusHandle;
//b3Assert(status);
if (status && status->m_type == CMD_REQUEST_OPENGL_VISUALIZER_CAMERA_COMPLETED)
{
*camera = status->m_visualizerCameraResultArgs;
return 1;
}
return 0;
}
B3_SHARED_API void b3SetTimeOut(b3PhysicsClientHandle physClient, double timeOutInSeconds)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
if (cl)
{
cl->setTimeOut(timeOutInSeconds);
}
}
B3_SHARED_API double b3GetTimeOut(b3PhysicsClientHandle physClient)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
if (cl)
{
return cl->getTimeOut();
}
return -1;
}
B3_SHARED_API b3SharedMemoryCommandHandle b3SetAdditionalSearchPath(b3PhysicsClientHandle physClient, const char* path)
{
PhysicsClient* cl = (PhysicsClient*)physClient;
b3Assert(cl);
b3Assert(cl->canSubmitCommand());
struct SharedMemoryCommand* command = cl->getAvailableSharedMemoryCommand();
b3Assert(command);
command->m_type = CMD_SET_ADDITIONAL_SEARCH_PATH;
command->m_updateFlags = 0;
int len = strlen(path);
if (len < MAX_FILENAME_LENGTH)
{
strcpy(command->m_searchPathArgs.m_path, path);
}
return (b3SharedMemoryCommandHandle)command;
}
B3_SHARED_API void b3MultiplyTransforms(const double posA[3], const double ornA[4], const double posB[3], const double ornB[4], double outPos[3], double outOrn[4])
{
b3Transform trA;
b3Transform trB;
trA.setOrigin(b3MakeVector3(posA[0], posA[1], posA[2]));
trA.setRotation(b3Quaternion(ornA[0], ornA[1], ornA[2], ornA[3]));
trB.setOrigin(b3MakeVector3(posB[0], posB[1], posB[2]));
trB.setRotation(b3Quaternion(ornB[0], ornB[1], ornB[2], ornB[3]));
b3Transform res = trA * trB;
outPos[0] = res.getOrigin()[0];
outPos[1] = res.getOrigin()[1];
outPos[2] = res.getOrigin()[2];
b3Quaternion orn = res.getRotation();
outOrn[0] = orn[0];
outOrn[1] = orn[1];
outOrn[2] = orn[2];
outOrn[3] = orn[3];
}
B3_SHARED_API void b3InvertTransform(const double pos[3], const double orn[4], double outPos[3], double outOrn[4])
{
b3Transform tr;
tr.setOrigin(b3MakeVector3(pos[0], pos[1], pos[2]));
tr.setRotation(b3Quaternion(orn[0], orn[1], orn[2], orn[3]));
b3Transform trInv = tr.inverse();
outPos[0] = trInv.getOrigin()[0];
outPos[1] = trInv.getOrigin()[1];
outPos[2] = trInv.getOrigin()[2];
b3Quaternion invOrn = trInv.getRotation();
outOrn[0] = invOrn[0];
outOrn[1] = invOrn[1];
outOrn[2] = invOrn[2];
outOrn[3] = invOrn[3];
}
B3_SHARED_API void b3QuaternionSlerp(const double startQuat[/*4*/], const double endQuat[/*4*/], double interpolationFraction, double outOrn[/*4*/])
{
b3Quaternion start(startQuat[0], startQuat[1], startQuat[2], startQuat[3]);
b3Quaternion end(endQuat[0], endQuat[1], endQuat[2], endQuat[3]);
b3Quaternion result = start.slerp(end, interpolationFraction);
outOrn[0] = result[0];
outOrn[1] = result[1];
outOrn[2] = result[2];
outOrn[3] = result[3];
}
B3_SHARED_API void b3RotateVector(const double quat[/*4*/], const double vec[/*3*/], double vecOut[/*3*/])
{
b3Quaternion q(quat[0], quat[1], quat[2], quat[3]);
b3Vector3 v = b3MakeVector3(vec[0], vec[1], vec[2]);
b3Vector3 vout = b3QuatRotate(q, v);
vecOut[0] = vout[0];
vecOut[1] = vout[1];
vecOut[2] = vout[2];
}
B3_SHARED_API void b3CalculateVelocityQuaternion(const double startQuat[/*4*/], const double endQuat[/*4*/], double deltaTime, double angVelOut[/*3*/])
{
b3Quaternion start(startQuat[0], startQuat[1], startQuat[2], startQuat[3]);
b3Quaternion end(endQuat[0], endQuat[1], endQuat[2], endQuat[3]);
b3Vector3 pos=b3MakeVector3(0, 0, 0);
b3Vector3 linVel, angVel;
b3TransformUtil::calculateVelocityQuaternion(pos, pos, start, end, deltaTime, linVel, angVel);
angVelOut[0] = angVel[0];
angVelOut[1] = angVel[1];
angVelOut[2] = angVel[2];
}
B3_SHARED_API void b3GetQuaternionFromAxisAngle(const double axis[/*3*/], double angle, double outQuat[/*4*/])
{
b3Quaternion quat(b3MakeVector3(axis[0], axis[1], axis[2]), angle);
outQuat[0] = quat[0];
outQuat[1] = quat[1];
outQuat[2] = quat[2];
outQuat[3] = quat[3];
}
B3_SHARED_API void b3GetAxisAngleFromQuaternion(const double quat[/*4*/], double axis[/*3*/], double* angle)
{
b3Quaternion q(quat[0], quat[1], quat[2], quat[3]);
b3Vector3 ax = q.getAxis();
axis[0] = ax[0];
axis[1] = ax[1];
axis[2] = ax[2];
*angle = q.getAngle();
}
B3_SHARED_API void b3GetQuaternionDifference(const double startQuat[/*4*/], const double endQuat[/*4*/], double outOrn[/*4*/])
{
b3Quaternion orn0(startQuat[0], startQuat[1], startQuat[2], startQuat[3]);
b3Quaternion orn1a(endQuat[0], endQuat[1], endQuat[2], endQuat[3]);
b3Quaternion orn1 = orn0.nearest(orn1a);
b3Quaternion dorn = orn1 * orn0.inverse();
outOrn[0] = dorn[0];
outOrn[1] = dorn[1];
outOrn[2] = dorn[2];
outOrn[3] = dorn[3];
}
b3Scalar b3GetMatrixElem(const b3Matrix3x3& mat, int index)
{
int i = index % 3;
int j = index / 3;
return mat[i][j];
}
static bool MyMatrixToEulerXYZ(const b3Matrix3x3& mat, b3Vector3& xyz)
{
// rot = cy*cz -cy*sz sy
// cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
// -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
b3Scalar fi = b3GetMatrixElem(mat, 2);
if (fi < b3Scalar(1.0f))
{
if (fi > b3Scalar(-1.0f))
{
xyz[0] = b3Atan2(-b3GetMatrixElem(mat, 5), b3GetMatrixElem(mat, 8));
xyz[1] = b3Asin(b3GetMatrixElem(mat, 2));
xyz[2] = b3Atan2(-b3GetMatrixElem(mat, 1), b3GetMatrixElem(mat, 0));
return true;
}
else
{
// WARNING. Not unique. XA - ZA = -atan2(r10,r11)
xyz[0] = -b3Atan2(b3GetMatrixElem(mat, 3), b3GetMatrixElem(mat, 4));
xyz[1] = -B3_HALF_PI;
xyz[2] = b3Scalar(0.0);
return false;
}
}
else
{
// WARNING. Not unique. XAngle + ZAngle = atan2(r10,r11)
xyz[0] = b3Atan2(b3GetMatrixElem(mat, 3), b3GetMatrixElem(mat, 4));
xyz[1] = B3_HALF_PI;
xyz[2] = 0.0;
}
return false;
}
B3_SHARED_API void b3GetAxisDifferenceQuaternion(const double startQuat[/*4*/], const double endQuat[/*4*/], double axisOut[/*3*/])
{
b3Quaternion currentQuat(startQuat[0], startQuat[1], startQuat[2], startQuat[3]);
b3Quaternion desiredQuat(endQuat[0], endQuat[1], endQuat[2], endQuat[3]);
b3Quaternion relRot = currentQuat.inverse() * desiredQuat;
b3Vector3 angleDiff;
MyMatrixToEulerXYZ(b3Matrix3x3(relRot), angleDiff);
axisOut[0] = angleDiff[0];
axisOut[1] = angleDiff[1];
axisOut[2] = angleDiff[2];
}