bullet3/examples/pybullet/gym/pybullet_envs/deep_mimic/testrl.py
2020-03-01 21:27:30 -08:00

111 lines
3.0 KiB
Python

import time
import os
import inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(os.path.dirname(currentdir))
os.sys.path.insert(0, parentdir)
print("parentdir=", parentdir)
import json
from pybullet_envs.deep_mimic.learning.rl_world import RLWorld
from pybullet_envs.deep_mimic.learning.ppo_agent import PPOAgent
import pybullet_data
from pybullet_utils.arg_parser import ArgParser
from pybullet_utils.logger import Logger
from pybullet_envs.deep_mimic.env.pybullet_deep_mimic_env import PyBulletDeepMimicEnv
import sys
import random
update_timestep = 1. / 240.
animating = True
step = False
total_reward = 0
steps = 0
def update_world(world, time_elapsed):
timeStep = update_timestep
world.update(timeStep)
reward = world.env.calc_reward(agent_id=0)
global total_reward
total_reward += reward
global steps
steps+=1
#print("reward=",reward)
#print("steps=",steps)
end_episode = world.env.is_episode_end()
if (end_episode or steps>= 1000):
print("total_reward=",total_reward)
total_reward=0
steps = 0
world.end_episode()
world.reset()
return
def build_arg_parser(args):
arg_parser = ArgParser()
arg_parser.load_args(args)
arg_file = arg_parser.parse_string('arg_file', '')
if arg_file == '':
arg_file = "run_humanoid3d_backflip_args.txt"
if (arg_file != ''):
path = pybullet_data.getDataPath() + "/args/" + arg_file
succ = arg_parser.load_file(path)
Logger.print2(arg_file)
assert succ, Logger.print2('Failed to load args from: ' + arg_file)
return arg_parser
args = sys.argv[1:]
def build_world(args, enable_draw):
arg_parser = build_arg_parser(args)
print("enable_draw=", enable_draw)
env = PyBulletDeepMimicEnv(arg_parser, enable_draw)
world = RLWorld(env, arg_parser)
#world.env.set_playback_speed(playback_speed)
motion_file = arg_parser.parse_string("motion_file")
print("motion_file=", motion_file)
bodies = arg_parser.parse_ints("fall_contact_bodies")
print("bodies=", bodies)
int_output_path = arg_parser.parse_string("int_output_path")
print("int_output_path=", int_output_path)
agent_files = pybullet_data.getDataPath() + "/" + arg_parser.parse_string("agent_files")
AGENT_TYPE_KEY = "AgentType"
print("agent_file=", agent_files)
with open(agent_files) as data_file:
json_data = json.load(data_file)
print("json_data=", json_data)
assert AGENT_TYPE_KEY in json_data
agent_type = json_data[AGENT_TYPE_KEY]
print("agent_type=", agent_type)
agent = PPOAgent(world, id, json_data)
agent.set_enable_training(False)
world.reset()
return world
if __name__ == '__main__':
world = build_world(args, True)
while (world.env._pybullet_client.isConnected()):
timeStep = update_timestep
time.sleep(timeStep)
keys = world.env.getKeyboardEvents()
if world.env.isKeyTriggered(keys, ' '):
animating = not animating
if world.env.isKeyTriggered(keys, 'i'):
step = True
if (animating or step):
update_world(world, timeStep)
step = False