mirror of
https://github.com/bulletphysics/bullet3
synced 2024-12-15 14:10:11 +00:00
434 lines
12 KiB
C++
434 lines
12 KiB
C++
/*
|
|
Bullet Continuous Collision Detection and Physics Library Copyright (c) 2007 Erwin Coumans
|
|
Motor Demo
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
#include "btBulletDynamicsCommon.h"
|
|
|
|
#include "LinearMath/btIDebugDraw.h"
|
|
#include "MotorDemo.h"
|
|
|
|
#include <cmath>
|
|
|
|
#include "LinearMath/btAlignedObjectArray.h"
|
|
class btBroadphaseInterface;
|
|
class btCollisionShape;
|
|
class btOverlappingPairCache;
|
|
class btCollisionDispatcher;
|
|
class btConstraintSolver;
|
|
struct btCollisionAlgorithmCreateFunc;
|
|
class btDefaultCollisionConfiguration;
|
|
|
|
#include "../CommonInterfaces/CommonRigidBodyBase.h"
|
|
|
|
class MotorDemo : public CommonRigidBodyBase
|
|
{
|
|
float m_Time;
|
|
float m_fCyclePeriod; // in milliseconds
|
|
float m_fMuscleStrength;
|
|
|
|
btAlignedObjectArray<class TestRig*> m_rigs;
|
|
|
|
public:
|
|
MotorDemo(struct GUIHelperInterface* helper)
|
|
: CommonRigidBodyBase(helper)
|
|
{
|
|
}
|
|
|
|
void initPhysics();
|
|
|
|
void exitPhysics();
|
|
|
|
virtual ~MotorDemo()
|
|
{
|
|
}
|
|
|
|
void spawnTestRig(const btVector3& startOffset, bool bFixed);
|
|
|
|
// virtual void keyboardCallback(unsigned char key, int x, int y);
|
|
|
|
void setMotorTargets(btScalar deltaTime);
|
|
|
|
void resetCamera()
|
|
{
|
|
float dist = 11;
|
|
float pitch = -35;
|
|
float yaw = 52;
|
|
float targetPos[3] = {0, 0.46, 0};
|
|
m_guiHelper->resetCamera(dist, yaw, pitch, targetPos[0], targetPos[1], targetPos[2]);
|
|
}
|
|
};
|
|
|
|
#ifndef M_PI
|
|
#define M_PI 3.14159265358979323846
|
|
#endif
|
|
|
|
#ifndef M_PI_2
|
|
#define M_PI_2 1.57079632679489661923
|
|
#endif
|
|
|
|
#ifndef M_PI_4
|
|
#define M_PI_4 0.785398163397448309616
|
|
#endif
|
|
|
|
#ifndef M_PI_8
|
|
#define M_PI_8 0.5 * M_PI_4
|
|
#endif
|
|
|
|
// /LOCAL FUNCTIONS
|
|
|
|
#define NUM_LEGS 6
|
|
#define BODYPART_COUNT 2 * NUM_LEGS + 1
|
|
#define JOINT_COUNT BODYPART_COUNT - 1
|
|
|
|
class TestRig
|
|
{
|
|
btDynamicsWorld* m_ownerWorld;
|
|
btCollisionShape* m_shapes[BODYPART_COUNT];
|
|
btRigidBody* m_bodies[BODYPART_COUNT];
|
|
btTypedConstraint* m_joints[JOINT_COUNT];
|
|
|
|
btRigidBody* localCreateRigidBody(btScalar mass, const btTransform& startTransform, btCollisionShape* shape)
|
|
{
|
|
bool isDynamic = (mass != 0.f);
|
|
|
|
btVector3 localInertia(0, 0, 0);
|
|
if (isDynamic)
|
|
shape->calculateLocalInertia(mass, localInertia);
|
|
|
|
btDefaultMotionState* myMotionState = new btDefaultMotionState(startTransform);
|
|
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass, myMotionState, shape, localInertia);
|
|
btRigidBody* body = new btRigidBody(rbInfo);
|
|
|
|
m_ownerWorld->addRigidBody(body);
|
|
|
|
return body;
|
|
}
|
|
|
|
public:
|
|
TestRig(btDynamicsWorld* ownerWorld, const btVector3& positionOffset, bool bFixed)
|
|
: m_ownerWorld(ownerWorld)
|
|
{
|
|
btVector3 vUp(0, 1, 0);
|
|
|
|
//
|
|
// Setup geometry
|
|
//
|
|
float fBodySize = 0.25f;
|
|
float fLegLength = 0.45f;
|
|
float fForeLegLength = 0.75f;
|
|
m_shapes[0] = new btCapsuleShape(btScalar(fBodySize), btScalar(0.10));
|
|
int i;
|
|
for (i = 0; i < NUM_LEGS; i++)
|
|
{
|
|
m_shapes[1 + 2 * i] = new btCapsuleShape(btScalar(0.10), btScalar(fLegLength));
|
|
m_shapes[2 + 2 * i] = new btCapsuleShape(btScalar(0.08), btScalar(fForeLegLength));
|
|
}
|
|
|
|
//
|
|
// Setup rigid bodies
|
|
//
|
|
float fHeight = 0.5;
|
|
btTransform offset;
|
|
offset.setIdentity();
|
|
offset.setOrigin(positionOffset);
|
|
|
|
// root
|
|
btVector3 vRoot = btVector3(btScalar(0.), btScalar(fHeight), btScalar(0.));
|
|
btTransform transform;
|
|
transform.setIdentity();
|
|
transform.setOrigin(vRoot);
|
|
if (bFixed)
|
|
{
|
|
m_bodies[0] = localCreateRigidBody(btScalar(0.), offset * transform, m_shapes[0]);
|
|
}
|
|
else
|
|
{
|
|
m_bodies[0] = localCreateRigidBody(btScalar(1.), offset * transform, m_shapes[0]);
|
|
}
|
|
// legs
|
|
for (i = 0; i < NUM_LEGS; i++)
|
|
{
|
|
float fAngle = 2 * M_PI * i / NUM_LEGS;
|
|
float fSin = std::sin(fAngle);
|
|
float fCos = std::cos(fAngle);
|
|
|
|
transform.setIdentity();
|
|
btVector3 vBoneOrigin = btVector3(btScalar(fCos * (fBodySize + 0.5 * fLegLength)), btScalar(fHeight), btScalar(fSin * (fBodySize + 0.5 * fLegLength)));
|
|
transform.setOrigin(vBoneOrigin);
|
|
|
|
// thigh
|
|
btVector3 vToBone = (vBoneOrigin - vRoot).normalize();
|
|
btVector3 vAxis = vToBone.cross(vUp);
|
|
transform.setRotation(btQuaternion(vAxis, M_PI_2));
|
|
m_bodies[1 + 2 * i] = localCreateRigidBody(btScalar(1.), offset * transform, m_shapes[1 + 2 * i]);
|
|
|
|
// shin
|
|
transform.setIdentity();
|
|
transform.setOrigin(btVector3(btScalar(fCos * (fBodySize + fLegLength)), btScalar(fHeight - 0.5 * fForeLegLength), btScalar(fSin * (fBodySize + fLegLength))));
|
|
m_bodies[2 + 2 * i] = localCreateRigidBody(btScalar(1.), offset * transform, m_shapes[2 + 2 * i]);
|
|
}
|
|
|
|
// Setup some damping on the m_bodies
|
|
for (i = 0; i < BODYPART_COUNT; ++i)
|
|
{
|
|
m_bodies[i]->setDamping(0.05, 0.85);
|
|
m_bodies[i]->setDeactivationTime(0.8);
|
|
//m_bodies[i]->setSleepingThresholds(1.6, 2.5);
|
|
m_bodies[i]->setSleepingThresholds(0.5f, 0.5f);
|
|
}
|
|
|
|
//
|
|
// Setup the constraints
|
|
//
|
|
btHingeConstraint* hingeC;
|
|
//btConeTwistConstraint* coneC;
|
|
|
|
btTransform localA, localB, localC;
|
|
|
|
for (i = 0; i < NUM_LEGS; i++)
|
|
{
|
|
float fAngle = 2 * M_PI * i / NUM_LEGS;
|
|
float fSin = std::sin(fAngle);
|
|
float fCos = std::cos(fAngle);
|
|
|
|
// hip joints
|
|
localA.setIdentity();
|
|
localB.setIdentity();
|
|
localA.getBasis().setEulerZYX(0, -fAngle, 0);
|
|
localA.setOrigin(btVector3(btScalar(fCos * fBodySize), btScalar(0.), btScalar(fSin * fBodySize)));
|
|
localB = m_bodies[1 + 2 * i]->getWorldTransform().inverse() * m_bodies[0]->getWorldTransform() * localA;
|
|
hingeC = new btHingeConstraint(*m_bodies[0], *m_bodies[1 + 2 * i], localA, localB);
|
|
hingeC->setLimit(btScalar(-0.75 * M_PI_4), btScalar(M_PI_8));
|
|
//hingeC->setLimit(btScalar(-0.1), btScalar(0.1));
|
|
m_joints[2 * i] = hingeC;
|
|
m_ownerWorld->addConstraint(m_joints[2 * i], true);
|
|
|
|
// knee joints
|
|
localA.setIdentity();
|
|
localB.setIdentity();
|
|
localC.setIdentity();
|
|
localA.getBasis().setEulerZYX(0, -fAngle, 0);
|
|
localA.setOrigin(btVector3(btScalar(fCos * (fBodySize + fLegLength)), btScalar(0.), btScalar(fSin * (fBodySize + fLegLength))));
|
|
localB = m_bodies[1 + 2 * i]->getWorldTransform().inverse() * m_bodies[0]->getWorldTransform() * localA;
|
|
localC = m_bodies[2 + 2 * i]->getWorldTransform().inverse() * m_bodies[0]->getWorldTransform() * localA;
|
|
hingeC = new btHingeConstraint(*m_bodies[1 + 2 * i], *m_bodies[2 + 2 * i], localB, localC);
|
|
//hingeC->setLimit(btScalar(-0.01), btScalar(0.01));
|
|
hingeC->setLimit(btScalar(-M_PI_8), btScalar(0.2));
|
|
m_joints[1 + 2 * i] = hingeC;
|
|
m_ownerWorld->addConstraint(m_joints[1 + 2 * i], true);
|
|
}
|
|
}
|
|
|
|
virtual ~TestRig()
|
|
{
|
|
int i;
|
|
|
|
// Remove all constraints
|
|
for (i = 0; i < JOINT_COUNT; ++i)
|
|
{
|
|
m_ownerWorld->removeConstraint(m_joints[i]);
|
|
delete m_joints[i];
|
|
m_joints[i] = 0;
|
|
}
|
|
|
|
// Remove all bodies and shapes
|
|
for (i = 0; i < BODYPART_COUNT; ++i)
|
|
{
|
|
m_ownerWorld->removeRigidBody(m_bodies[i]);
|
|
|
|
delete m_bodies[i]->getMotionState();
|
|
|
|
delete m_bodies[i];
|
|
m_bodies[i] = 0;
|
|
delete m_shapes[i];
|
|
m_shapes[i] = 0;
|
|
}
|
|
}
|
|
|
|
btTypedConstraint** GetJoints() { return &m_joints[0]; }
|
|
};
|
|
|
|
void motorPreTickCallback(btDynamicsWorld* world, btScalar timeStep)
|
|
{
|
|
MotorDemo* motorDemo = (MotorDemo*)world->getWorldUserInfo();
|
|
|
|
motorDemo->setMotorTargets(timeStep);
|
|
}
|
|
|
|
void MotorDemo::initPhysics()
|
|
{
|
|
m_guiHelper->setUpAxis(1);
|
|
|
|
// Setup the basic world
|
|
|
|
m_Time = 0;
|
|
m_fCyclePeriod = 2000.f; // in milliseconds
|
|
|
|
// m_fMuscleStrength = 0.05f;
|
|
// new SIMD solver for joints clips accumulated impulse, so the new limits for the motor
|
|
// should be (numberOfsolverIterations * oldLimits)
|
|
// currently solver uses 10 iterations, so:
|
|
m_fMuscleStrength = 0.5f;
|
|
|
|
m_collisionConfiguration = new btDefaultCollisionConfiguration();
|
|
|
|
m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration);
|
|
|
|
btVector3 worldAabbMin(-10000, -10000, -10000);
|
|
btVector3 worldAabbMax(10000, 10000, 10000);
|
|
m_broadphase = new btAxisSweep3(worldAabbMin, worldAabbMax);
|
|
|
|
m_solver = new btSequentialImpulseConstraintSolver;
|
|
|
|
m_dynamicsWorld = new btDiscreteDynamicsWorld(m_dispatcher, m_broadphase, m_solver, m_collisionConfiguration);
|
|
|
|
m_dynamicsWorld->setInternalTickCallback(motorPreTickCallback, this, true);
|
|
m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
|
|
|
|
// Setup a big ground box
|
|
{
|
|
btCollisionShape* groundShape = new btBoxShape(btVector3(btScalar(200.), btScalar(10.), btScalar(200.)));
|
|
m_collisionShapes.push_back(groundShape);
|
|
btTransform groundTransform;
|
|
groundTransform.setIdentity();
|
|
groundTransform.setOrigin(btVector3(0, -10, 0));
|
|
createRigidBody(btScalar(0.), groundTransform, groundShape);
|
|
}
|
|
|
|
// Spawn one ragdoll
|
|
btVector3 startOffset(1, 0.5, 0);
|
|
spawnTestRig(startOffset, false);
|
|
startOffset.setValue(-2, 0.5, 0);
|
|
spawnTestRig(startOffset, true);
|
|
|
|
m_guiHelper->autogenerateGraphicsObjects(m_dynamicsWorld);
|
|
}
|
|
|
|
void MotorDemo::spawnTestRig(const btVector3& startOffset, bool bFixed)
|
|
{
|
|
TestRig* rig = new TestRig(m_dynamicsWorld, startOffset, bFixed);
|
|
m_rigs.push_back(rig);
|
|
}
|
|
|
|
void PreStep()
|
|
{
|
|
}
|
|
|
|
void MotorDemo::setMotorTargets(btScalar deltaTime)
|
|
{
|
|
float ms = deltaTime * 1000000.;
|
|
float minFPS = 1000000.f / 60.f;
|
|
if (ms > minFPS)
|
|
ms = minFPS;
|
|
|
|
m_Time += ms;
|
|
|
|
//
|
|
// set per-frame sinusoidal position targets using angular motor (hacky?)
|
|
//
|
|
for (int r = 0; r < m_rigs.size(); r++)
|
|
{
|
|
for (int i = 0; i < 2 * NUM_LEGS; i++)
|
|
{
|
|
btHingeConstraint* hingeC = static_cast<btHingeConstraint*>(m_rigs[r]->GetJoints()[i]);
|
|
btScalar fCurAngle = hingeC->getHingeAngle();
|
|
|
|
btScalar fTargetPercent = (int(m_Time / 1000) % int(m_fCyclePeriod)) / m_fCyclePeriod;
|
|
btScalar fTargetAngle = 0.5 * (1 + sin(2 * M_PI * fTargetPercent));
|
|
btScalar fTargetLimitAngle = hingeC->getLowerLimit() + fTargetAngle * (hingeC->getUpperLimit() - hingeC->getLowerLimit());
|
|
btScalar fAngleError = fTargetLimitAngle - fCurAngle;
|
|
btScalar fDesiredAngularVel = 1000000.f * fAngleError / ms;
|
|
hingeC->enableAngularMotor(true, fDesiredAngularVel, m_fMuscleStrength);
|
|
}
|
|
}
|
|
}
|
|
|
|
#if 0
|
|
void MotorDemo::keyboardCallback(unsigned char key, int x, int y)
|
|
{
|
|
switch (key)
|
|
{
|
|
case '+': case '=':
|
|
m_fCyclePeriod /= 1.1f;
|
|
if (m_fCyclePeriod < 1.f)
|
|
m_fCyclePeriod = 1.f;
|
|
break;
|
|
case '-': case '_':
|
|
m_fCyclePeriod *= 1.1f;
|
|
break;
|
|
case '[':
|
|
m_fMuscleStrength /= 1.1f;
|
|
break;
|
|
case ']':
|
|
m_fMuscleStrength *= 1.1f;
|
|
break;
|
|
default:
|
|
DemoApplication::keyboardCallback(key, x, y);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void MotorDemo::exitPhysics()
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < m_rigs.size(); i++)
|
|
{
|
|
TestRig* rig = m_rigs[i];
|
|
delete rig;
|
|
}
|
|
|
|
//cleanup in the reverse order of creation/initialization
|
|
|
|
//remove the rigidbodies from the dynamics world and delete them
|
|
|
|
for (i = m_dynamicsWorld->getNumCollisionObjects() - 1; i >= 0; i--)
|
|
{
|
|
btCollisionObject* obj = m_dynamicsWorld->getCollisionObjectArray()[i];
|
|
btRigidBody* body = btRigidBody::upcast(obj);
|
|
if (body && body->getMotionState())
|
|
{
|
|
delete body->getMotionState();
|
|
}
|
|
m_dynamicsWorld->removeCollisionObject(obj);
|
|
delete obj;
|
|
}
|
|
|
|
//delete collision shapes
|
|
for (int j = 0; j < m_collisionShapes.size(); j++)
|
|
{
|
|
btCollisionShape* shape = m_collisionShapes[j];
|
|
delete shape;
|
|
}
|
|
|
|
//delete dynamics world
|
|
delete m_dynamicsWorld;
|
|
|
|
//delete solver
|
|
delete m_solver;
|
|
|
|
//delete broadphase
|
|
delete m_broadphase;
|
|
|
|
//delete dispatcher
|
|
delete m_dispatcher;
|
|
|
|
delete m_collisionConfiguration;
|
|
}
|
|
|
|
class CommonExampleInterface* MotorControlCreateFunc(struct CommonExampleOptions& options)
|
|
{
|
|
return new MotorDemo(options.m_guiHelper);
|
|
}
|