bullet3/examples/ExampleBrowser/OpenGLGuiHelper.cpp
2019-11-12 20:36:20 -08:00

1516 lines
49 KiB
C++

#include "OpenGLGuiHelper.h"
#include "btBulletDynamicsCommon.h"
#include "BulletCollision/CollisionShapes/btHeightfieldTerrainShape.h"
#include "../CommonInterfaces/CommonGraphicsAppInterface.h"
#include "../CommonInterfaces/CommonRenderInterface.h"
#include "Bullet3Common/b3Scalar.h"
#include "CollisionShape2TriangleMesh.h"
#include "BulletSoftBody/btSoftBodyHelpers.h"
#include "../OpenGLWindow/ShapeData.h"
#include "../OpenGLWindow/SimpleCamera.h"
#define BT_LINE_BATCH_SIZE 512
struct MyDebugVec3
{
MyDebugVec3(const btVector3& org)
: x(org.x()),
y(org.y()),
z(org.z())
{
}
float x;
float y;
float z;
};
ATTRIBUTE_ALIGNED16(class)
MyDebugDrawer : public btIDebugDraw
{
CommonGraphicsApp* m_glApp;
int m_debugMode;
btAlignedObjectArray<MyDebugVec3> m_linePoints;
btAlignedObjectArray<unsigned int> m_lineIndices;
btVector3 m_currentLineColor;
DefaultColors m_ourColors;
public:
BT_DECLARE_ALIGNED_ALLOCATOR();
MyDebugDrawer(CommonGraphicsApp * app)
: m_glApp(app), m_debugMode(btIDebugDraw::DBG_DrawWireframe | btIDebugDraw::DBG_DrawAabb), m_currentLineColor(-1, -1, -1)
{
}
virtual ~MyDebugDrawer()
{
}
virtual DefaultColors getDefaultColors() const
{
return m_ourColors;
}
///the default implementation for setDefaultColors has no effect. A derived class can implement it and store the colors.
virtual void setDefaultColors(const DefaultColors& colors)
{
m_ourColors = colors;
}
virtual void drawLine(const btVector3& from1, const btVector3& to1, const btVector3& color1)
{
//float from[4] = {from1[0],from1[1],from1[2],from1[3]};
//float to[4] = {to1[0],to1[1],to1[2],to1[3]};
//float color[4] = {color1[0],color1[1],color1[2],color1[3]};
//m_glApp->m_instancingRenderer->drawLine(from,to,color);
if (m_currentLineColor != color1 || m_linePoints.size() >= BT_LINE_BATCH_SIZE)
{
flushLines();
m_currentLineColor = color1;
}
MyDebugVec3 from(from1);
MyDebugVec3 to(to1);
m_linePoints.push_back(from);
m_linePoints.push_back(to);
m_lineIndices.push_back(m_lineIndices.size());
m_lineIndices.push_back(m_lineIndices.size());
}
virtual void drawContactPoint(const btVector3& PointOnB, const btVector3& normalOnB, btScalar distance, int lifeTime, const btVector3& color)
{
drawLine(PointOnB, PointOnB + normalOnB * distance, color);
btVector3 ncolor(0, 0, 0);
drawLine(PointOnB, PointOnB + normalOnB * 0.01, ncolor);
}
virtual void reportErrorWarning(const char* warningString)
{
}
virtual void draw3dText(const btVector3& location, const char* textString)
{
}
virtual void setDebugMode(int debugMode)
{
m_debugMode = debugMode;
}
virtual int getDebugMode() const
{
return m_debugMode;
}
virtual void flushLines()
{
int sz = m_linePoints.size();
if (sz)
{
float debugColor[4];
debugColor[0] = m_currentLineColor.x();
debugColor[1] = m_currentLineColor.y();
debugColor[2] = m_currentLineColor.z();
debugColor[3] = 1.f;
m_glApp->m_renderer->drawLines(&m_linePoints[0].x, debugColor,
m_linePoints.size(), sizeof(MyDebugVec3),
&m_lineIndices[0],
m_lineIndices.size(),
1);
m_linePoints.clear();
m_lineIndices.clear();
}
}
};
static btVector4 sColors[4] =
{
btVector4(60. / 256., 186. / 256., 84. / 256., 1),
btVector4(244. / 256., 194. / 256., 13. / 256., 1),
btVector4(219. / 256., 50. / 256., 54. / 256., 1),
btVector4(72. / 256., 133. / 256., 237. / 256., 1),
//btVector4(1,1,0,1),
};
struct MyHashShape
{
int m_shapeKey;
int m_shapeType;
btVector3 m_sphere0Pos;
btVector3 m_sphere1Pos;
btVector3 m_halfExtents;
btScalar m_radius0;
btScalar m_radius1;
btTransform m_childTransform;
int m_deformFunc;
int m_upAxis;
btScalar m_halfHeight;
MyHashShape()
: m_shapeKey(0),
m_shapeType(0),
m_sphere0Pos(btVector3(0, 0, 0)),
m_sphere1Pos(btVector3(0, 0, 0)),
m_halfExtents(btVector3(0, 0, 0)),
m_radius0(0),
m_radius1(0),
m_deformFunc(0),
m_upAxis(-1),
m_halfHeight(0)
{
m_childTransform.setIdentity();
}
bool equals(const MyHashShape& other) const
{
bool sameShapeType = m_shapeType == other.m_shapeType;
bool sameSphere0 = m_sphere0Pos == other.m_sphere0Pos;
bool sameSphere1 = m_sphere1Pos == other.m_sphere1Pos;
bool sameHalfExtents = m_halfExtents == other.m_halfExtents;
bool sameRadius0 = m_radius0 == other.m_radius0;
bool sameRadius1 = m_radius1 == other.m_radius1;
bool sameTransform = m_childTransform == other.m_childTransform;
bool sameUpAxis = m_upAxis == other.m_upAxis;
bool sameHalfHeight = m_halfHeight == other.m_halfHeight;
return sameShapeType && sameSphere0 && sameSphere1 && sameHalfExtents && sameRadius0 && sameRadius1 && sameTransform && sameUpAxis && sameHalfHeight;
}
//to our success
SIMD_FORCE_INLINE unsigned int getHash() const
{
unsigned int key = m_shapeKey;
// Thomas Wang's hash
key += ~(key << 15);
key ^= (key >> 10);
key += (key << 3);
key ^= (key >> 6);
key += ~(key << 11);
key ^= (key >> 16);
return key;
}
};
struct OpenGLGuiHelperInternalData
{
struct CommonGraphicsApp* m_glApp;
class MyDebugDrawer* m_debugDraw;
bool m_vrMode;
int m_vrSkipShadowPass;
btAlignedObjectArray<unsigned char> m_rgbaPixelBuffer1;
btAlignedObjectArray<float> m_depthBuffer1;
btAlignedObjectArray<int> m_segmentationMaskBuffer;
btHashMap<MyHashShape, int> m_hashShapes;
VisualizerFlagCallback m_visualizerFlagCallback;
int m_checkedTexture;
int m_checkedTextureGrey;
OpenGLGuiHelperInternalData()
: m_vrMode(false),
m_vrSkipShadowPass(0),
m_visualizerFlagCallback(0),
m_checkedTexture(-1),
m_checkedTextureGrey(-1)
{
}
};
void OpenGLGuiHelper::setVRMode(bool vrMode)
{
m_data->m_vrMode = vrMode;
m_data->m_vrSkipShadowPass = 0;
}
OpenGLGuiHelper::OpenGLGuiHelper(CommonGraphicsApp* glApp, bool useOpenGL2)
{
m_data = new OpenGLGuiHelperInternalData;
m_data->m_glApp = glApp;
m_data->m_debugDraw = 0;
}
OpenGLGuiHelper::~OpenGLGuiHelper()
{
delete m_data->m_debugDraw;
delete m_data;
}
struct CommonRenderInterface* OpenGLGuiHelper::getRenderInterface()
{
return m_data->m_glApp->m_renderer;
}
const struct CommonRenderInterface* OpenGLGuiHelper::getRenderInterface() const
{
return m_data->m_glApp->m_renderer;
}
void OpenGLGuiHelper::createRigidBodyGraphicsObject(btRigidBody* body, const btVector3& color)
{
createCollisionObjectGraphicsObject(body, color);
}
class MyTriangleCollector2 : public btTriangleCallback
{
public:
btAlignedObjectArray<GLInstanceVertex>* m_pVerticesOut;
btAlignedObjectArray<int>* m_pIndicesOut;
btVector3 m_aabbMin, m_aabbMax;
btScalar m_textureScaling;
MyTriangleCollector2(const btVector3& aabbMin, const btVector3& aabbMax)
:m_aabbMin(aabbMin), m_aabbMax(aabbMax), m_textureScaling(1)
{
m_pVerticesOut = 0;
m_pIndicesOut = 0;
}
virtual void processTriangle(btVector3* tris, int partId, int triangleIndex)
{
for (int k = 0; k < 3; k++)
{
GLInstanceVertex v;
v.xyzw[3] = 0;
btVector3 normal = (tris[0] - tris[1]).cross(tris[0] - tris[2]);
normal.safeNormalize();
for (int l = 0; l < 3; l++)
{
v.xyzw[l] = tris[k][l];
v.normal[l] = normal[l];
}
btVector3 extents = m_aabbMax - m_aabbMin;
v.uv[0] = (1.-((v.xyzw[0] - m_aabbMin[0]) / (m_aabbMax[0] - m_aabbMin[0])))*m_textureScaling;
v.uv[1] = (1.-(v.xyzw[1] - m_aabbMin[1]) / (m_aabbMax[1] - m_aabbMin[1]))*m_textureScaling;
m_pIndicesOut->push_back(m_pVerticesOut->size());
m_pVerticesOut->push_back(v);
}
}
};
void OpenGLGuiHelper::createCollisionObjectGraphicsObject(btCollisionObject* body, const btVector3& color)
{
if (body->getUserIndex() < 0)
{
btCollisionShape* shape = body->getCollisionShape();
btTransform startTransform = body->getWorldTransform();
int graphicsShapeId = shape->getUserIndex();
if (graphicsShapeId >= 0)
{
// btAssert(graphicsShapeId >= 0);
//the graphics shape is already scaled
btVector3 localScaling(1, 1, 1);
int graphicsInstanceId = m_data->m_glApp->m_renderer->registerGraphicsInstance(graphicsShapeId, startTransform.getOrigin(), startTransform.getRotation(), color, localScaling);
body->setUserIndex(graphicsInstanceId);
}
}
}
int OpenGLGuiHelper::registerTexture(const unsigned char* texels, int width, int height)
{
int textureId = m_data->m_glApp->m_renderer->registerTexture(texels, width, height);
return textureId;
}
void OpenGLGuiHelper::removeTexture(int textureUid)
{
m_data->m_glApp->m_renderer->removeTexture(textureUid);
}
void OpenGLGuiHelper::changeTexture(int textureUniqueId, const unsigned char* rgbTexels, int width, int height)
{
bool flipPixelsY = true;
m_data->m_glApp->m_renderer->updateTexture(textureUniqueId, rgbTexels, flipPixelsY);
}
int OpenGLGuiHelper::registerGraphicsShape(const float* vertices, int numvertices, const int* indices, int numIndices, int primitiveType, int textureId)
{
if (textureId == -2)
{
if (m_data->m_checkedTextureGrey < 0)
{
m_data->m_checkedTextureGrey = createCheckeredTexture(192, 192, 192);
}
textureId = m_data->m_checkedTextureGrey;
}
int shapeId = m_data->m_glApp->m_renderer->registerShape(vertices, numvertices, indices, numIndices, primitiveType, textureId);
return shapeId;
}
int OpenGLGuiHelper::registerGraphicsInstance(int shapeIndex, const float* position, const float* quaternion, const float* color, const float* scaling)
{
return m_data->m_glApp->m_renderer->registerGraphicsInstance(shapeIndex, position, quaternion, color, scaling);
}
void OpenGLGuiHelper::removeAllGraphicsInstances()
{
m_data->m_hashShapes.clear();
m_data->m_glApp->m_renderer->removeAllInstances();
}
void OpenGLGuiHelper::removeGraphicsInstance(int graphicsUid)
{
if (graphicsUid >= 0)
{
m_data->m_glApp->m_renderer->removeGraphicsInstance(graphicsUid);
};
}
int OpenGLGuiHelper::getShapeIndexFromInstance(int instanceUid)
{
return m_data->m_glApp->m_renderer->getShapeIndexFromInstance(instanceUid);
}
void OpenGLGuiHelper::replaceTexture(int shapeIndex, int textureUid)
{
if (shapeIndex >= 0)
{
m_data->m_glApp->m_renderer->replaceTexture(shapeIndex, textureUid);
};
}
void OpenGLGuiHelper::changeInstanceFlags(int instanceUid, int flags)
{
if (instanceUid >= 0)
{
//careful, flags/instanceUid is swapped
m_data->m_glApp->m_renderer->writeSingleInstanceFlagsToCPU( flags, instanceUid);
}
}
void OpenGLGuiHelper::changeRGBAColor(int instanceUid, const double rgbaColor[4])
{
if (instanceUid >= 0)
{
m_data->m_glApp->m_renderer->writeSingleInstanceColorToCPU(rgbaColor, instanceUid);
};
}
void OpenGLGuiHelper::changeSpecularColor(int instanceUid, const double specularColor[3])
{
if (instanceUid >= 0)
{
m_data->m_glApp->m_renderer->writeSingleInstanceSpecularColorToCPU(specularColor, instanceUid);
};
}
int OpenGLGuiHelper::createCheckeredTexture(int red, int green, int blue)
{
int texWidth = 1024;
int texHeight = 1024;
btAlignedObjectArray<unsigned char> texels;
texels.resize(texWidth * texHeight * 3);
for (int i = 0; i < texWidth * texHeight * 3; i++)
texels[i] = 255;
for (int i = 0; i < texWidth; i++)
{
for (int j = 0; j < texHeight; j++)
{
int a = i < texWidth / 2 ? 1 : 0;
int b = j < texWidth / 2 ? 1 : 0;
if (a == b)
{
texels[(i + j * texWidth) * 3 + 0] = red;
texels[(i + j * texWidth) * 3 + 1] = green;
texels[(i + j * texWidth) * 3 + 2] = blue;
// texels[(i+j*texWidth)*4+3] = 255;
}
/*else
{
texels[i*3+0+j*texWidth] = 255;
texels[i*3+1+j*texWidth] = 255;
texels[i*3+2+j*texWidth] = 255;
}
*/
}
}
int texId = registerTexture(&texels[0], texWidth, texHeight);
return texId;
}
void OpenGLGuiHelper::createCollisionShapeGraphicsObject(btCollisionShape* collisionShape)
{
//already has a graphics object?
if (collisionShape->getUserIndex() >= 0)
return;
if (m_data->m_checkedTexture < 0)
{
m_data->m_checkedTexture = createCheckeredTexture(173, 199, 255);
}
if (m_data->m_checkedTextureGrey < 0)
{
m_data->m_checkedTextureGrey = createCheckeredTexture(192, 192, 192);
}
btAlignedObjectArray<GLInstanceVertex> gfxVertices;
btAlignedObjectArray<int> indices;
int strideInBytes = 9 * sizeof(float);
if (collisionShape->getShapeType() == BOX_SHAPE_PROXYTYPE)
{
btBoxShape* boxShape = (btBoxShape*)collisionShape;
btAlignedObjectArray<float> transformedVertices;
btVector3 halfExtents = boxShape->getHalfExtentsWithMargin();
MyHashShape shape;
shape.m_shapeType = boxShape->getShapeType();
shape.m_halfExtents = halfExtents;
shape.m_deformFunc = 0; ////no deform
int graphicsShapeIndex = -1;
int* graphicsShapeIndexPtr = m_data->m_hashShapes[shape];
if (graphicsShapeIndexPtr)
{
graphicsShapeIndex = *graphicsShapeIndexPtr;
}
else
{
int numVertices = sizeof(cube_vertices_textured) / strideInBytes;
transformedVertices.resize(numVertices * 9);
for (int i = 0; i < numVertices; i++)
{
btVector3 vert;
vert.setValue(cube_vertices_textured[i * 9 + 0],
cube_vertices_textured[i * 9 + 1],
cube_vertices_textured[i * 9 + 2]);
btVector3 trVer = halfExtents * vert;
transformedVertices[i * 9 + 0] = trVer[0];
transformedVertices[i * 9 + 1] = trVer[1];
transformedVertices[i * 9 + 2] = trVer[2];
transformedVertices[i * 9 + 3] = cube_vertices_textured[i * 9 + 3];
transformedVertices[i * 9 + 4] = cube_vertices_textured[i * 9 + 4];
transformedVertices[i * 9 + 5] = cube_vertices_textured[i * 9 + 5];
transformedVertices[i * 9 + 6] = cube_vertices_textured[i * 9 + 6];
transformedVertices[i * 9 + 7] = cube_vertices_textured[i * 9 + 7];
transformedVertices[i * 9 + 8] = cube_vertices_textured[i * 9 + 8];
}
int numIndices = sizeof(cube_indices) / sizeof(int);
graphicsShapeIndex = registerGraphicsShape(&transformedVertices[0], numVertices, cube_indices, numIndices, B3_GL_TRIANGLES, m_data->m_checkedTextureGrey);
m_data->m_hashShapes.insert(shape, graphicsShapeIndex);
}
collisionShape->setUserIndex(graphicsShapeIndex);
return;
}
if (collisionShape->getShapeType() == TERRAIN_SHAPE_PROXYTYPE)
{
const btHeightfieldTerrainShape* heightField = static_cast<const btHeightfieldTerrainShape*>(collisionShape);
btVector3 aabbMin, aabbMax;
btTransform tr;
tr.setIdentity();
heightField->getAabb(tr, aabbMin, aabbMax);
MyTriangleCollector2 col(aabbMin, aabbMax);
if (heightField->getUserValue3())
{
col.m_textureScaling = heightField->getUserValue3();
}
col.m_pVerticesOut = &gfxVertices;
col.m_pIndicesOut = &indices;
for (int k = 0; k < 3; k++)
{
aabbMin[k] = -BT_LARGE_FLOAT;
aabbMax[k] = BT_LARGE_FLOAT;
}
heightField->processAllTriangles(&col, aabbMin, aabbMax);
if (gfxVertices.size() && indices.size())
{
int userImage = heightField->getUserIndex2();
if (userImage == -1)
{
userImage = m_data->m_checkedTexture;
}
int shapeId = m_data->m_glApp->m_renderer->registerShape(&gfxVertices[0].xyzw[0], gfxVertices.size(), &indices[0], indices.size(),1, userImage);
collisionShape->setUserIndex(shapeId);
}
return;
}
if (collisionShape->getShapeType() == SOFTBODY_SHAPE_PROXYTYPE)
{
computeSoftBodyVertices(collisionShape, gfxVertices, indices);
if (gfxVertices.size() && indices.size())
{
int shapeId = registerGraphicsShape(&gfxVertices[0].xyzw[0], gfxVertices.size(), &indices[0], indices.size(), B3_GL_TRIANGLES,
m_data->m_checkedTexture);
b3Assert(shapeId >= 0);
collisionShape->setUserIndex(shapeId);
}
}
if (collisionShape->getShapeType() == MULTI_SPHERE_SHAPE_PROXYTYPE)
{
btMultiSphereShape* ms = (btMultiSphereShape*)collisionShape;
if (ms->getSphereCount() == 2)
{
btAlignedObjectArray<float> transformedVertices;
int numVertices = sizeof(textured_detailed_sphere_vertices) / strideInBytes;
transformedVertices.resize(numVertices * 9);
btVector3 sphere0Pos = ms->getSpherePosition(0);
btVector3 sphere1Pos = ms->getSpherePosition(1);
btVector3 fromTo = sphere1Pos - sphere0Pos;
MyHashShape shape;
shape.m_sphere0Pos = sphere0Pos;
shape.m_sphere1Pos = sphere1Pos;
shape.m_radius0 = 2. * ms->getSphereRadius(0);
shape.m_radius1 = 2. * ms->getSphereRadius(1);
shape.m_deformFunc = 1; //vert.dot(fromTo)
int graphicsShapeIndex = -1;
int* graphicsShapeIndexPtr = m_data->m_hashShapes[shape];
if (graphicsShapeIndexPtr)
{
//cache hit
graphicsShapeIndex = *graphicsShapeIndexPtr;
}
else
{
//cache miss
for (int i = 0; i < numVertices; i++)
{
btVector3 vert;
vert.setValue(textured_detailed_sphere_vertices[i * 9 + 0],
textured_detailed_sphere_vertices[i * 9 + 1],
textured_detailed_sphere_vertices[i * 9 + 2]);
btVector3 trVer(0, 0, 0);
if (vert.dot(fromTo) > 0)
{
btScalar radiusScale = 2. * ms->getSphereRadius(1);
trVer = radiusScale * vert;
trVer += sphere1Pos;
}
else
{
btScalar radiusScale = 2. * ms->getSphereRadius(0);
trVer = radiusScale * vert;
trVer += sphere0Pos;
}
transformedVertices[i * 9 + 0] = trVer[0];
transformedVertices[i * 9 + 1] = trVer[1];
transformedVertices[i * 9 + 2] = trVer[2];
transformedVertices[i * 9 + 3] = textured_detailed_sphere_vertices[i * 9 + 3];
transformedVertices[i * 9 + 4] = textured_detailed_sphere_vertices[i * 9 + 4];
transformedVertices[i * 9 + 5] = textured_detailed_sphere_vertices[i * 9 + 5];
transformedVertices[i * 9 + 6] = textured_detailed_sphere_vertices[i * 9 + 6];
transformedVertices[i * 9 + 7] = textured_detailed_sphere_vertices[i * 9 + 7];
transformedVertices[i * 9 + 8] = textured_detailed_sphere_vertices[i * 9 + 8];
}
int numIndices = sizeof(textured_detailed_sphere_indices) / sizeof(int);
graphicsShapeIndex = registerGraphicsShape(&transformedVertices[0], numVertices, textured_detailed_sphere_indices, numIndices, B3_GL_TRIANGLES, m_data->m_checkedTextureGrey);
m_data->m_hashShapes.insert(shape, graphicsShapeIndex);
}
collisionShape->setUserIndex(graphicsShapeIndex);
return;
}
}
if (collisionShape->getShapeType() == SPHERE_SHAPE_PROXYTYPE)
{
btSphereShape* sphereShape = (btSphereShape*)collisionShape;
btScalar radius = sphereShape->getRadius();
btScalar sphereSize = 2. * radius;
btVector3 radiusScale(sphereSize, sphereSize, sphereSize);
btAlignedObjectArray<float> transformedVertices;
MyHashShape shape;
shape.m_radius0 = sphereSize;
shape.m_deformFunc = 0; ////no deform
int graphicsShapeIndex = -1;
int* graphicsShapeIndexPtr = m_data->m_hashShapes[shape];
if (graphicsShapeIndexPtr)
{
graphicsShapeIndex = *graphicsShapeIndexPtr;
}
else
{
int numVertices = sizeof(textured_detailed_sphere_vertices) / strideInBytes;
transformedVertices.resize(numVertices * 9);
for (int i = 0; i < numVertices; i++)
{
btVector3 vert;
vert.setValue(textured_detailed_sphere_vertices[i * 9 + 0],
textured_detailed_sphere_vertices[i * 9 + 1],
textured_detailed_sphere_vertices[i * 9 + 2]);
btVector3 trVer = radiusScale * vert;
transformedVertices[i * 9 + 0] = trVer[0];
transformedVertices[i * 9 + 1] = trVer[1];
transformedVertices[i * 9 + 2] = trVer[2];
transformedVertices[i * 9 + 3] = textured_detailed_sphere_vertices[i * 9 + 3];
transformedVertices[i * 9 + 4] = textured_detailed_sphere_vertices[i * 9 + 4];
transformedVertices[i * 9 + 5] = textured_detailed_sphere_vertices[i * 9 + 5];
transformedVertices[i * 9 + 6] = textured_detailed_sphere_vertices[i * 9 + 6];
transformedVertices[i * 9 + 7] = textured_detailed_sphere_vertices[i * 9 + 7];
transformedVertices[i * 9 + 8] = textured_detailed_sphere_vertices[i * 9 + 8];
}
int numIndices = sizeof(textured_detailed_sphere_indices) / sizeof(int);
graphicsShapeIndex = registerGraphicsShape(&transformedVertices[0], numVertices, textured_detailed_sphere_indices, numIndices, B3_GL_TRIANGLES, m_data->m_checkedTextureGrey);
m_data->m_hashShapes.insert(shape, graphicsShapeIndex);
}
collisionShape->setUserIndex(graphicsShapeIndex);
return;
}
if (collisionShape->getShapeType() == COMPOUND_SHAPE_PROXYTYPE)
{
btCompoundShape* compound = (btCompoundShape*)collisionShape;
if (compound->getNumChildShapes() == 1)
{
if (compound->getChildShape(0)->getShapeType() == SPHERE_SHAPE_PROXYTYPE)
{
btSphereShape* sphereShape = (btSphereShape*)compound->getChildShape(0);
btScalar radius = sphereShape->getRadius();
btScalar sphereSize = 2. * radius;
btVector3 radiusScale(sphereSize, sphereSize, sphereSize);
MyHashShape shape;
shape.m_radius0 = sphereSize;
shape.m_deformFunc = 0; //no deform
shape.m_childTransform = compound->getChildTransform(0);
int graphicsShapeIndex = -1;
int* graphicsShapeIndexPtr = m_data->m_hashShapes[shape];
if (graphicsShapeIndexPtr)
{
graphicsShapeIndex = *graphicsShapeIndexPtr;
}
else
{
btAlignedObjectArray<float> transformedVertices;
int numVertices = sizeof(textured_detailed_sphere_vertices) / strideInBytes;
transformedVertices.resize(numVertices * 9);
for (int i = 0; i < numVertices; i++)
{
btVector3 vert;
vert.setValue(textured_detailed_sphere_vertices[i * 9 + 0],
textured_detailed_sphere_vertices[i * 9 + 1],
textured_detailed_sphere_vertices[i * 9 + 2]);
btVector3 trVer = compound->getChildTransform(0) * (radiusScale * vert);
transformedVertices[i * 9 + 0] = trVer[0];
transformedVertices[i * 9 + 1] = trVer[1];
transformedVertices[i * 9 + 2] = trVer[2];
transformedVertices[i * 9 + 3] = textured_detailed_sphere_vertices[i * 9 + 3];
transformedVertices[i * 9 + 4] = textured_detailed_sphere_vertices[i * 9 + 4];
transformedVertices[i * 9 + 5] = textured_detailed_sphere_vertices[i * 9 + 5];
transformedVertices[i * 9 + 6] = textured_detailed_sphere_vertices[i * 9 + 6];
transformedVertices[i * 9 + 7] = textured_detailed_sphere_vertices[i * 9 + 7];
transformedVertices[i * 9 + 8] = textured_detailed_sphere_vertices[i * 9 + 8];
}
int numIndices = sizeof(textured_detailed_sphere_indices) / sizeof(int);
graphicsShapeIndex = registerGraphicsShape(&transformedVertices[0], numVertices, textured_detailed_sphere_indices, numIndices, B3_GL_TRIANGLES, m_data->m_checkedTextureGrey);
m_data->m_hashShapes.insert(shape, graphicsShapeIndex);
}
collisionShape->setUserIndex(graphicsShapeIndex);
return;
}
if (compound->getChildShape(0)->getShapeType() == CAPSULE_SHAPE_PROXYTYPE)
{
btCapsuleShape* sphereShape = (btCapsuleShape*)compound->getChildShape(0);
int up = sphereShape->getUpAxis();
btScalar halfHeight = sphereShape->getHalfHeight();
btScalar radius = sphereShape->getRadius();
btScalar sphereSize = 2. * radius;
btVector3 radiusScale = btVector3(sphereSize, sphereSize, sphereSize);
MyHashShape shape;
shape.m_radius0 = sphereSize;
shape.m_deformFunc = 2; //no deform
shape.m_childTransform = compound->getChildTransform(0);
shape.m_upAxis = up;
int graphicsShapeIndex = -1;
int* graphicsShapeIndexPtr = m_data->m_hashShapes[shape];
if (graphicsShapeIndexPtr)
{
graphicsShapeIndex = *graphicsShapeIndexPtr;
}
else
{
btAlignedObjectArray<float> transformedVertices;
int numVertices = sizeof(textured_detailed_sphere_vertices) / strideInBytes;
transformedVertices.resize(numVertices * 9);
for (int i = 0; i < numVertices; i++)
{
btVector3 vert;
vert.setValue(textured_detailed_sphere_vertices[i * 9 + 0],
textured_detailed_sphere_vertices[i * 9 + 1],
textured_detailed_sphere_vertices[i * 9 + 2]);
btVector3 trVer = (radiusScale * vert);
if (trVer[up] > 0)
trVer[up] += halfHeight;
else
trVer[up] -= halfHeight;
trVer = compound->getChildTransform(0) * trVer;
transformedVertices[i * 9 + 0] = trVer[0];
transformedVertices[i * 9 + 1] = trVer[1];
transformedVertices[i * 9 + 2] = trVer[2];
transformedVertices[i * 9 + 3] = textured_detailed_sphere_vertices[i * 9 + 3];
transformedVertices[i * 9 + 4] = textured_detailed_sphere_vertices[i * 9 + 4];
transformedVertices[i * 9 + 5] = textured_detailed_sphere_vertices[i * 9 + 5];
transformedVertices[i * 9 + 6] = textured_detailed_sphere_vertices[i * 9 + 6];
transformedVertices[i * 9 + 7] = textured_detailed_sphere_vertices[i * 9 + 7];
transformedVertices[i * 9 + 8] = textured_detailed_sphere_vertices[i * 9 + 8];
}
int numIndices = sizeof(textured_detailed_sphere_indices) / sizeof(int);
graphicsShapeIndex = registerGraphicsShape(&transformedVertices[0], numVertices, textured_detailed_sphere_indices, numIndices, B3_GL_TRIANGLES, m_data->m_checkedTextureGrey);
m_data->m_hashShapes.insert(shape, graphicsShapeIndex);
}
collisionShape->setUserIndex(graphicsShapeIndex);
return;
}
if (compound->getChildShape(0)->getShapeType() == MULTI_SPHERE_SHAPE_PROXYTYPE)
{
btMultiSphereShape* ms = (btMultiSphereShape*)compound->getChildShape(0);
if (ms->getSphereCount() == 2)
{
btAlignedObjectArray<float> transformedVertices;
int numVertices = sizeof(textured_detailed_sphere_vertices) / strideInBytes;
transformedVertices.resize(numVertices * 9);
btVector3 sphere0Pos = ms->getSpherePosition(0);
btVector3 sphere1Pos = ms->getSpherePosition(1);
btVector3 fromTo = sphere1Pos - sphere0Pos;
btScalar radiusScale1 = 2.0 * ms->getSphereRadius(1);
btScalar radiusScale0 = 2.0 * ms->getSphereRadius(0);
MyHashShape shape;
shape.m_radius0 = radiusScale0;
shape.m_radius1 = radiusScale1;
shape.m_deformFunc = 4;
shape.m_sphere0Pos = sphere0Pos;
shape.m_sphere1Pos = sphere1Pos;
shape.m_childTransform = compound->getChildTransform(0);
int graphicsShapeIndex = -1;
int* graphicsShapeIndexPtr = m_data->m_hashShapes[shape];
if (graphicsShapeIndexPtr)
{
graphicsShapeIndex = *graphicsShapeIndexPtr;
}
else
{
for (int i = 0; i < numVertices; i++)
{
btVector3 vert;
vert.setValue(textured_detailed_sphere_vertices[i * 9 + 0],
textured_detailed_sphere_vertices[i * 9 + 1],
textured_detailed_sphere_vertices[i * 9 + 2]);
btVector3 trVer(0, 0, 0);
if (vert.dot(fromTo) > 0)
{
trVer = vert * radiusScale1;
trVer += sphere1Pos;
trVer = compound->getChildTransform(0) * trVer;
}
else
{
trVer = vert * radiusScale0;
trVer += sphere0Pos;
trVer = compound->getChildTransform(0) * trVer;
}
transformedVertices[i * 9 + 0] = trVer[0];
transformedVertices[i * 9 + 1] = trVer[1];
transformedVertices[i * 9 + 2] = trVer[2];
transformedVertices[i * 9 + 3] = textured_detailed_sphere_vertices[i * 9 + 3];
transformedVertices[i * 9 + 4] = textured_detailed_sphere_vertices[i * 9 + 4];
transformedVertices[i * 9 + 5] = textured_detailed_sphere_vertices[i * 9 + 5];
transformedVertices[i * 9 + 6] = textured_detailed_sphere_vertices[i * 9 + 6];
transformedVertices[i * 9 + 7] = textured_detailed_sphere_vertices[i * 9 + 7];
transformedVertices[i * 9 + 8] = textured_detailed_sphere_vertices[i * 9 + 8];
}
int numIndices = sizeof(textured_detailed_sphere_indices) / sizeof(int);
graphicsShapeIndex = registerGraphicsShape(&transformedVertices[0], numVertices, textured_detailed_sphere_indices, numIndices, B3_GL_TRIANGLES, m_data->m_checkedTextureGrey);
m_data->m_hashShapes.insert(shape, graphicsShapeIndex);
}
collisionShape->setUserIndex(graphicsShapeIndex);
return;
}
}
}
}
if (collisionShape->getShapeType() == CAPSULE_SHAPE_PROXYTYPE)
{
btCapsuleShape* sphereShape = (btCapsuleShape*)collisionShape; //Y up
int up = sphereShape->getUpAxis();
btScalar halfHeight = sphereShape->getHalfHeight();
btScalar radius = sphereShape->getRadius();
btScalar sphereSize = 2. * radius;
btVector3 radiusScale(sphereSize, sphereSize, sphereSize);
MyHashShape shape;
shape.m_radius0 = sphereSize;
shape.m_deformFunc = 3;
shape.m_upAxis = up;
shape.m_halfHeight = halfHeight;
int graphicsShapeIndex = -1;
int* graphicsShapeIndexPtr = m_data->m_hashShapes[shape];
if (graphicsShapeIndexPtr)
{
graphicsShapeIndex = *graphicsShapeIndexPtr;
}
else
{
btAlignedObjectArray<float> transformedVertices;
int numVertices = sizeof(textured_detailed_sphere_vertices) / strideInBytes;
transformedVertices.resize(numVertices * 9);
for (int i = 0; i < numVertices; i++)
{
btVector3 vert;
vert.setValue(textured_detailed_sphere_vertices[i * 9 + 0],
textured_detailed_sphere_vertices[i * 9 + 1],
textured_detailed_sphere_vertices[i * 9 + 2]);
btVector3 trVer = radiusScale * vert;
if (trVer[up] > 0)
trVer[up] += halfHeight;
else
trVer[up] -= halfHeight;
transformedVertices[i * 9 + 0] = trVer[0];
transformedVertices[i * 9 + 1] = trVer[1];
transformedVertices[i * 9 + 2] = trVer[2];
transformedVertices[i * 9 + 3] = textured_detailed_sphere_vertices[i * 9 + 3];
transformedVertices[i * 9 + 4] = textured_detailed_sphere_vertices[i * 9 + 4];
transformedVertices[i * 9 + 5] = textured_detailed_sphere_vertices[i * 9 + 5];
transformedVertices[i * 9 + 6] = textured_detailed_sphere_vertices[i * 9 + 6];
transformedVertices[i * 9 + 7] = textured_detailed_sphere_vertices[i * 9 + 7];
transformedVertices[i * 9 + 8] = textured_detailed_sphere_vertices[i * 9 + 8];
}
int numIndices = sizeof(textured_detailed_sphere_indices) / sizeof(int);
graphicsShapeIndex = registerGraphicsShape(&transformedVertices[0], numVertices, textured_detailed_sphere_indices, numIndices, B3_GL_TRIANGLES, m_data->m_checkedTextureGrey);
m_data->m_hashShapes.insert(shape, graphicsShapeIndex);
}
collisionShape->setUserIndex(graphicsShapeIndex);
return;
}
if (collisionShape->getShapeType() == STATIC_PLANE_PROXYTYPE)
{
const btStaticPlaneShape* staticPlaneShape = static_cast<const btStaticPlaneShape*>(collisionShape);
btScalar planeConst = staticPlaneShape->getPlaneConstant();
const btVector3& planeNormal = staticPlaneShape->getPlaneNormal();
btVector3 planeOrigin = planeNormal * planeConst;
btVector3 vec0, vec1;
btPlaneSpace1(planeNormal, vec0, vec1);
btScalar vecLen = 128;
btVector3 verts[4];
verts[0] = planeOrigin + vec0 * vecLen + vec1 * vecLen;
verts[1] = planeOrigin - vec0 * vecLen + vec1 * vecLen;
verts[2] = planeOrigin - vec0 * vecLen - vec1 * vecLen;
verts[3] = planeOrigin + vec0 * vecLen - vec1 * vecLen;
int startIndex = 0;
indices.push_back(startIndex + 0);
indices.push_back(startIndex + 1);
indices.push_back(startIndex + 2);
indices.push_back(startIndex + 0);
indices.push_back(startIndex + 2);
indices.push_back(startIndex + 3);
btTransform parentTransform;
parentTransform.setIdentity();
btVector3 triNormal = parentTransform.getBasis() * planeNormal;
gfxVertices.resize(4);
for (int i = 0; i < 4; i++)
{
btVector3 vtxPos;
btVector3 pos = parentTransform * verts[i];
gfxVertices[i].xyzw[0] = pos[0];
gfxVertices[i].xyzw[1] = pos[1];
gfxVertices[i].xyzw[2] = pos[2];
gfxVertices[i].xyzw[3] = 1;
gfxVertices[i].normal[0] = triNormal[0];
gfxVertices[i].normal[1] = triNormal[1];
gfxVertices[i].normal[2] = triNormal[2];
}
//verts[0] = planeOrigin + vec0*vecLen + vec1*vecLen;
//verts[1] = planeOrigin - vec0*vecLen + vec1*vecLen;
//verts[2] = planeOrigin - vec0*vecLen - vec1*vecLen;
//verts[3] = planeOrigin + vec0*vecLen - vec1*vecLen;
gfxVertices[0].uv[0] = vecLen / 2;
gfxVertices[0].uv[1] = vecLen / 2;
gfxVertices[1].uv[0] = -vecLen / 2;
gfxVertices[1].uv[1] = vecLen / 2;
gfxVertices[2].uv[0] = -vecLen / 2;
gfxVertices[2].uv[1] = -vecLen / 2;
gfxVertices[3].uv[0] = vecLen / 2;
gfxVertices[3].uv[1] = -vecLen / 2;
int shapeId = registerGraphicsShape(&gfxVertices[0].xyzw[0], gfxVertices.size(), &indices[0], indices.size(), B3_GL_TRIANGLES, m_data->m_checkedTexture);
collisionShape->setUserIndex(shapeId);
return;
}
btTransform startTrans;
startTrans.setIdentity();
//todo: create some textured objects for popular objects, like plane, cube, sphere, capsule
{
btAlignedObjectArray<btVector3> vertexPositions;
btAlignedObjectArray<btVector3> vertexNormals;
CollisionShape2TriangleMesh(collisionShape, startTrans, vertexPositions, vertexNormals, indices);
gfxVertices.resize(vertexPositions.size());
for (int i = 0; i < vertexPositions.size(); i++)
{
for (int j = 0; j < 4; j++)
{
gfxVertices[i].xyzw[j] = vertexPositions[i][j];
}
for (int j = 0; j < 3; j++)
{
gfxVertices[i].normal[j] = vertexNormals[i][j];
}
for (int j = 0; j < 2; j++)
{
gfxVertices[i].uv[j] = 0.5; //we don't have UV info...
}
}
}
if (gfxVertices.size() && indices.size())
{
int shapeId = registerGraphicsShape(&gfxVertices[0].xyzw[0], gfxVertices.size(), &indices[0], indices.size(), B3_GL_TRIANGLES, -1);
collisionShape->setUserIndex(shapeId);
}
}
void OpenGLGuiHelper::syncPhysicsToGraphics(const btDiscreteDynamicsWorld* rbWorld)
{
//in VR mode, we skip the synchronization for the second eye
if (m_data->m_vrMode && m_data->m_vrSkipShadowPass == 1)
return;
int numCollisionObjects = rbWorld->getNumCollisionObjects();
{
B3_PROFILE("write all InstanceTransformToCPU");
for (int i = 0; i < numCollisionObjects; i++)
{
//B3_PROFILE("writeSingleInstanceTransformToCPU");
btCollisionObject* colObj = rbWorld->getCollisionObjectArray()[i];
btCollisionShape* collisionShape = colObj->getCollisionShape();
if (collisionShape->getShapeType() == SOFTBODY_SHAPE_PROXYTYPE && collisionShape->getUserIndex() >= 0)
{
btAlignedObjectArray<GLInstanceVertex> gfxVertices;
btAlignedObjectArray<int> indices;
computeSoftBodyVertices(collisionShape, gfxVertices, indices);
m_data->m_glApp->m_renderer->updateShape(collisionShape->getUserIndex(), &gfxVertices[0].xyzw[0]);
continue;
}
btVector3 pos = colObj->getWorldTransform().getOrigin();
btQuaternion orn = colObj->getWorldTransform().getRotation();
int index = colObj->getUserIndex();
if (index >= 0)
{
m_data->m_glApp->m_renderer->writeSingleInstanceTransformToCPU(pos, orn, index);
}
}
}
{
B3_PROFILE("writeTransforms");
m_data->m_glApp->m_renderer->writeTransforms();
}
}
void OpenGLGuiHelper::render(const btDiscreteDynamicsWorld* rbWorld)
{
if (m_data->m_vrMode)
{
//in VR, we skip the shadow generation for the second eye
if (m_data->m_vrSkipShadowPass >= 1)
{
m_data->m_glApp->m_renderer->renderSceneInternal(B3_USE_SHADOWMAP_RENDERMODE);
m_data->m_vrSkipShadowPass = 0;
}
else
{
m_data->m_glApp->m_renderer->renderScene();
m_data->m_vrSkipShadowPass++;
}
}
else
{
m_data->m_glApp->m_renderer->renderScene();
}
}
void OpenGLGuiHelper::createPhysicsDebugDrawer(btDiscreteDynamicsWorld* rbWorld)
{
btAssert(rbWorld);
if (m_data->m_debugDraw)
{
delete m_data->m_debugDraw;
m_data->m_debugDraw = 0;
}
m_data->m_debugDraw = new MyDebugDrawer(m_data->m_glApp);
rbWorld->setDebugDrawer(m_data->m_debugDraw);
m_data->m_debugDraw->setDebugMode(
btIDebugDraw::DBG_DrawWireframe + btIDebugDraw::DBG_DrawAabb
//btIDebugDraw::DBG_DrawContactPoints
);
}
struct Common2dCanvasInterface* OpenGLGuiHelper::get2dCanvasInterface()
{
return m_data->m_glApp->m_2dCanvasInterface;
}
CommonParameterInterface* OpenGLGuiHelper::getParameterInterface()
{
return m_data->m_glApp->m_parameterInterface;
}
void OpenGLGuiHelper::setUpAxis(int axis)
{
m_data->m_glApp->setUpAxis(axis);
}
void OpenGLGuiHelper::setVisualizerFlagCallback(VisualizerFlagCallback callback)
{
m_data->m_visualizerFlagCallback = callback;
}
void OpenGLGuiHelper::setVisualizerFlag(int flag, int enable)
{
if (getRenderInterface() && flag == 16) //COV_ENABLE_PLANAR_REFLECTION
{
getRenderInterface()->setPlaneReflectionShapeIndex(enable);
}
if (m_data->m_visualizerFlagCallback)
(m_data->m_visualizerFlagCallback)(flag, enable != 0);
}
void OpenGLGuiHelper::resetCamera(float camDist, float yaw, float pitch, float camPosX, float camPosY, float camPosZ)
{
if (getRenderInterface() && getRenderInterface()->getActiveCamera())
{
getRenderInterface()->getActiveCamera()->setCameraDistance(camDist);
getRenderInterface()->getActiveCamera()->setCameraPitch(pitch);
getRenderInterface()->getActiveCamera()->setCameraYaw(yaw);
getRenderInterface()->getActiveCamera()->setCameraTargetPosition(camPosX, camPosY, camPosZ);
}
}
bool OpenGLGuiHelper::getCameraInfo(int* width, int* height, float viewMatrix[16], float projectionMatrix[16], float camUp[3], float camForward[3], float hor[3], float vert[3], float* yaw, float* pitch, float* camDist, float cameraTarget[3]) const
{
if (getRenderInterface() && getRenderInterface()->getActiveCamera())
{
*width = m_data->m_glApp->m_window->getWidth();
*height = m_data->m_glApp->m_window->getHeight();
getRenderInterface()->getActiveCamera()->getCameraViewMatrix(viewMatrix);
getRenderInterface()->getActiveCamera()->getCameraProjectionMatrix(projectionMatrix);
getRenderInterface()->getActiveCamera()->getCameraUpVector(camUp);
getRenderInterface()->getActiveCamera()->getCameraForwardVector(camForward);
float top = 1.f;
float bottom = -1.f;
float tanFov = (top - bottom) * 0.5f / 1;
float fov = btScalar(2.0) * btAtan(tanFov);
btVector3 camPos, camTarget;
getRenderInterface()->getActiveCamera()->getCameraPosition(camPos);
getRenderInterface()->getActiveCamera()->getCameraTargetPosition(camTarget);
btVector3 rayFrom = camPos;
btVector3 rayForward = (camTarget - camPos);
rayForward.normalize();
float farPlane = 10000.f;
rayForward *= farPlane;
btVector3 rightOffset;
btVector3 cameraUp = btVector3(camUp[0], camUp[1], camUp[2]);
btVector3 vertical = cameraUp;
btVector3 hori;
hori = rayForward.cross(vertical);
hori.normalize();
vertical = hori.cross(rayForward);
vertical.normalize();
float tanfov = tanf(0.5f * fov);
hori *= 2.f * farPlane * tanfov;
vertical *= 2.f * farPlane * tanfov;
btScalar aspect = float(*width) / float(*height);
hori *= aspect;
//compute 'hor' and 'vert' vectors, useful to generate raytracer rays
hor[0] = hori[0];
hor[1] = hori[1];
hor[2] = hori[2];
vert[0] = vertical[0];
vert[1] = vertical[1];
vert[2] = vertical[2];
*yaw = getRenderInterface()->getActiveCamera()->getCameraYaw();
*pitch = getRenderInterface()->getActiveCamera()->getCameraPitch();
*camDist = getRenderInterface()->getActiveCamera()->getCameraDistance();
cameraTarget[0] = camTarget[0];
cameraTarget[1] = camTarget[1];
cameraTarget[2] = camTarget[2];
return true;
}
return false;
}
void OpenGLGuiHelper::setProjectiveTextureMatrices(const float viewMatrix[16], const float projectionMatrix[16])
{
m_data->m_glApp->m_renderer->setProjectiveTextureMatrices(viewMatrix, projectionMatrix);
}
void OpenGLGuiHelper::setProjectiveTexture(bool useProjectiveTexture)
{
m_data->m_glApp->m_renderer->setProjectiveTexture(useProjectiveTexture);
}
void OpenGLGuiHelper::copyCameraImageData(const float viewMatrix[16], const float projectionMatrix[16],
unsigned char* pixelsRGBA, int rgbaBufferSizeInPixels,
float* depthBuffer, int depthBufferSizeInPixels,
int* segmentationMaskBuffer, int segmentationMaskBufferSizeInPixels,
int startPixelIndex, int destinationWidth,
int destinationHeight, int* numPixelsCopied)
{
int sourceWidth = btMin(destinationWidth, (int)(m_data->m_glApp->m_window->getWidth() * m_data->m_glApp->m_window->getRetinaScale()));
int sourceHeight = btMin(destinationHeight, (int)(m_data->m_glApp->m_window->getHeight() * m_data->m_glApp->m_window->getRetinaScale()));
m_data->m_glApp->setViewport(sourceWidth, sourceHeight);
if (numPixelsCopied)
*numPixelsCopied = 0;
int numTotalPixels = destinationWidth * destinationHeight;
int numRemainingPixels = numTotalPixels - startPixelIndex;
int numBytesPerPixel = 4; //RGBA
int numRequestedPixels = btMin(rgbaBufferSizeInPixels, numRemainingPixels);
if (numRequestedPixels)
{
if (startPixelIndex == 0)
{
CommonCameraInterface* oldCam = getRenderInterface()->getActiveCamera();
SimpleCamera tempCam;
getRenderInterface()->setActiveCamera(&tempCam);
getRenderInterface()->getActiveCamera()->setVRCamera(viewMatrix, projectionMatrix);
{
BT_PROFILE("renderScene");
getRenderInterface()->renderScene();
}
{
BT_PROFILE("copy pixels");
btAlignedObjectArray<unsigned char> sourceRgbaPixelBuffer;
btAlignedObjectArray<float> sourceDepthBuffer;
//copy the image into our local cache
sourceRgbaPixelBuffer.resize(sourceWidth * sourceHeight * numBytesPerPixel);
sourceDepthBuffer.resize(sourceWidth * sourceHeight);
{
BT_PROFILE("getScreenPixels");
m_data->m_glApp->getScreenPixels(&(sourceRgbaPixelBuffer[0]), sourceRgbaPixelBuffer.size(), &sourceDepthBuffer[0], sizeof(float) * sourceDepthBuffer.size());
}
m_data->m_rgbaPixelBuffer1.resize(destinationWidth * destinationHeight * numBytesPerPixel);
m_data->m_depthBuffer1.resize(destinationWidth * destinationHeight);
//rescale and flip
{
BT_PROFILE("resize and flip");
for (int j = 0; j < destinationHeight; j++)
{
for (int i = 0; i < destinationWidth; i++)
{
int xIndex = int(float(i) * (float(sourceWidth) / float(destinationWidth)));
int yIndex = int(float(destinationHeight - 1 - j) * (float(sourceHeight) / float(destinationHeight)));
btClamp(xIndex, 0, sourceWidth);
btClamp(yIndex, 0, sourceHeight);
int bytesPerPixel = 4; //RGBA
int sourcePixelIndex = (xIndex + yIndex * sourceWidth) * bytesPerPixel;
int sourceDepthIndex = xIndex + yIndex * sourceWidth;
#define COPY4PIXELS 1
#ifdef COPY4PIXELS
int* dst = (int*)&m_data->m_rgbaPixelBuffer1[(i + j * destinationWidth) * 4 + 0];
int* src = (int*)&sourceRgbaPixelBuffer[sourcePixelIndex + 0];
*dst = *src;
#else
m_data->m_rgbaPixelBuffer1[(i + j * destinationWidth) * 4 + 0] = sourceRgbaPixelBuffer[sourcePixelIndex + 0];
m_data->m_rgbaPixelBuffer1[(i + j * destinationWidth) * 4 + 1] = sourceRgbaPixelBuffer[sourcePixelIndex + 1];
m_data->m_rgbaPixelBuffer1[(i + j * destinationWidth) * 4 + 2] = sourceRgbaPixelBuffer[sourcePixelIndex + 2];
m_data->m_rgbaPixelBuffer1[(i + j * destinationWidth) * 4 + 3] = 255;
#endif
if (depthBuffer)
{
m_data->m_depthBuffer1[i + j * destinationWidth] = sourceDepthBuffer[sourceDepthIndex];
}
}
}
}
}
//segmentation mask
if (segmentationMaskBuffer)
{
{
m_data->m_glApp->m_window->startRendering();
m_data->m_glApp->setViewport(sourceWidth, sourceHeight);
BT_PROFILE("renderScene");
getRenderInterface()->renderSceneInternal(B3_SEGMENTATION_MASK_RENDERMODE);
}
{
BT_PROFILE("copy pixels");
btAlignedObjectArray<unsigned char> sourceRgbaPixelBuffer;
btAlignedObjectArray<float> sourceDepthBuffer;
//copy the image into our local cache
sourceRgbaPixelBuffer.resize(sourceWidth * sourceHeight * numBytesPerPixel);
sourceDepthBuffer.resize(sourceWidth * sourceHeight);
{
BT_PROFILE("getScreenPixelsSegmentationMask");
m_data->m_glApp->getScreenPixels(&(sourceRgbaPixelBuffer[0]), sourceRgbaPixelBuffer.size(), &sourceDepthBuffer[0], sizeof(float) * sourceDepthBuffer.size());
}
m_data->m_segmentationMaskBuffer.resize(destinationWidth * destinationHeight, -1);
//rescale and flip
{
BT_PROFILE("resize and flip segmentation mask");
for (int j = 0; j < destinationHeight; j++)
{
for (int i = 0; i < destinationWidth; i++)
{
int xIndex = int(float(i) * (float(sourceWidth) / float(destinationWidth)));
int yIndex = int(float(destinationHeight - 1 - j) * (float(sourceHeight) / float(destinationHeight)));
btClamp(xIndex, 0, sourceWidth);
btClamp(yIndex, 0, sourceHeight);
int bytesPerPixel = 4; //RGBA
int sourcePixelIndex = (xIndex + yIndex * sourceWidth) * bytesPerPixel;
int sourceDepthIndex = xIndex + yIndex * sourceWidth;
if (segmentationMaskBuffer)
{
float depth = sourceDepthBuffer[sourceDepthIndex];
if (depth < 1)
{
int segMask = sourceRgbaPixelBuffer[sourcePixelIndex + 0] + 256 * (sourceRgbaPixelBuffer[sourcePixelIndex + 1]) + 256 * 256 * (sourceRgbaPixelBuffer[sourcePixelIndex + 2]);
m_data->m_segmentationMaskBuffer[i + j * destinationWidth] = segMask;
}
else
{
m_data->m_segmentationMaskBuffer[i + j * destinationWidth] = -1;
}
}
}
}
}
}
}
getRenderInterface()->setActiveCamera(oldCam);
if (1)
{
getRenderInterface()->getActiveCamera()->disableVRCamera();
DrawGridData dg;
dg.upAxis = m_data->m_glApp->getUpAxis();
getRenderInterface()->updateCamera(dg.upAxis);
m_data->m_glApp->m_window->startRendering();
}
}
if (pixelsRGBA)
{
BT_PROFILE("copy rgba pixels");
for (int i = 0; i < numRequestedPixels * numBytesPerPixel; i++)
{
pixelsRGBA[i] = m_data->m_rgbaPixelBuffer1[i + startPixelIndex * numBytesPerPixel];
}
}
if (depthBuffer)
{
BT_PROFILE("copy depth buffer pixels");
for (int i = 0; i < numRequestedPixels; i++)
{
depthBuffer[i] = m_data->m_depthBuffer1[i + startPixelIndex];
}
}
if (segmentationMaskBuffer)
{
BT_PROFILE("copy segmentation mask pixels");
for (int i = 0; i < numRequestedPixels; i++)
{
segmentationMaskBuffer[i] = m_data->m_segmentationMaskBuffer[i + startPixelIndex];
}
}
if (numPixelsCopied)
*numPixelsCopied = numRequestedPixels;
}
m_data->m_glApp->setViewport(-1, -1);
}
struct MyConvertPointerSizeT
{
union {
const void* m_ptr;
size_t m_int;
};
};
bool shapePointerCompareFunc(const btCollisionObject* colA, const btCollisionObject* colB)
{
MyConvertPointerSizeT a, b;
a.m_ptr = colA->getCollisionShape();
b.m_ptr = colB->getCollisionShape();
return (a.m_int < b.m_int);
}
void OpenGLGuiHelper::autogenerateGraphicsObjects(btDiscreteDynamicsWorld* rbWorld)
{
//sort the collision objects based on collision shape, the gfx library requires instances that re-use a shape to be added after eachother
btAlignedObjectArray<btCollisionObject*> sortedObjects;
sortedObjects.reserve(rbWorld->getNumCollisionObjects());
for (int i = 0; i < rbWorld->getNumCollisionObjects(); i++)
{
btCollisionObject* colObj = rbWorld->getCollisionObjectArray()[i];
sortedObjects.push_back(colObj);
}
sortedObjects.quickSort(shapePointerCompareFunc);
for (int i = 0; i < sortedObjects.size(); i++)
{
btCollisionObject* colObj = sortedObjects[i];
//btRigidBody* body = btRigidBody::upcast(colObj);
//does this also work for btMultiBody/btMultiBodyLinkCollider?
btSoftBody* sb = btSoftBody::upcast(colObj);
if (sb)
{
colObj->getCollisionShape()->setUserPointer(sb);
}
createCollisionShapeGraphicsObject(colObj->getCollisionShape());
int colorIndex = colObj->getBroadphaseHandle()->getUid() & 3;
btVector4 color;
color = sColors[colorIndex];
if (colObj->getCollisionShape()->getShapeType() == STATIC_PLANE_PROXYTYPE)
{
color.setValue(1, 1, 1, 1);
}
createCollisionObjectGraphicsObject(colObj, color);
if (sb)
{
int graphicsInstanceId = colObj->getUserIndex();
changeInstanceFlags(graphicsInstanceId, B3_INSTANCE_DOUBLE_SIDED);
}
}
}
void OpenGLGuiHelper::drawText3D(const char* txt, float position[3], float orientation[4], float color[4], float size, int optionFlags)
{
B3_PROFILE("OpenGLGuiHelper::drawText3D");
btAssert(m_data->m_glApp);
m_data->m_glApp->drawText3D(txt, position, orientation, color, size, optionFlags);
}
void OpenGLGuiHelper::drawText3D(const char* txt, float posX, float posY, float posZ, float size)
{
B3_PROFILE("OpenGLGuiHelper::drawText3D");
btAssert(m_data->m_glApp);
m_data->m_glApp->drawText3D(txt, posX, posY, posZ, size);
}
struct CommonGraphicsApp* OpenGLGuiHelper::getAppInterface()
{
return m_data->m_glApp;
}
void OpenGLGuiHelper::dumpFramesToVideo(const char* mp4FileName)
{
if (m_data->m_glApp)
{
m_data->m_glApp->dumpFramesToVideo(mp4FileName);
}
}
void OpenGLGuiHelper::computeSoftBodyVertices(btCollisionShape* collisionShape,
btAlignedObjectArray<GLInstanceVertex>& gfxVertices,
btAlignedObjectArray<int>& indices)
{
if (collisionShape->getUserPointer() == 0)
return;
b3Assert(collisionShape->getUserPointer());
btSoftBody* psb = (btSoftBody*)collisionShape->getUserPointer();
gfxVertices.resize(psb->m_faces.size() * 3);
for (int i = 0; i < psb->m_faces.size(); i++) // Foreach face
{
for (int k = 0; k < 3; k++) // Foreach vertex on a face
{
int currentIndex = i * 3 + k;
for (int j = 0; j < 3; j++)
{
gfxVertices[currentIndex].xyzw[j] = psb->m_faces[i].m_n[k]->m_x[j];
}
for (int j = 0; j < 3; j++)
{
gfxVertices[currentIndex].normal[j] = psb->m_faces[i].m_n[k]->m_n[j];
}
for (int j = 0; j < 2; j++)
{
gfxVertices[currentIndex].uv[j] = 0.5; //we don't have UV info...
}
indices.push_back(currentIndex);
}
}
}
void OpenGLGuiHelper::updateShape(int shapeIndex, float* vertices)
{
m_data->m_glApp->m_renderer->updateShape(shapeIndex, vertices);
}