mirror of
https://github.com/bulletphysics/bullet3
synced 2025-01-08 08:30:16 +00:00
d31c248751
bump up to PyBullet 2.6.9
763 lines
19 KiB
C++
763 lines
19 KiB
C++
#include "MathUtil.h"
|
|
#include <time.h>
|
|
#define _USE_MATH_DEFINES
|
|
#include <math.h>
|
|
|
|
|
|
int cMathUtil::Clamp(int val, int min, int max)
|
|
{
|
|
return std::max(min, std::min(val, max));
|
|
}
|
|
|
|
void cMathUtil::Clamp(const Eigen::VectorXd& min, const Eigen::VectorXd& max, Eigen::VectorXd& out_vec)
|
|
{
|
|
out_vec = out_vec.cwiseMin(max).cwiseMax(min);
|
|
}
|
|
|
|
double cMathUtil::Clamp(double val, double min, double max)
|
|
{
|
|
return std::max(min, std::min(val, max));
|
|
}
|
|
|
|
double cMathUtil::Saturate(double val)
|
|
{
|
|
return Clamp(val, 0.0, 1.0);
|
|
}
|
|
|
|
double cMathUtil::Lerp(double t, double val0, double val1)
|
|
{
|
|
return (1 - t) * val0 + t * val1;
|
|
}
|
|
|
|
double cMathUtil::NormalizeAngle(double theta)
|
|
{
|
|
// normalizes theta to be between [-pi, pi]
|
|
double norm_theta = fmod(theta, 2 * M_PI);
|
|
if (norm_theta > M_PI)
|
|
{
|
|
norm_theta = -2 * M_PI + norm_theta;
|
|
}
|
|
else if (norm_theta < -M_PI)
|
|
{
|
|
norm_theta = 2 * M_PI + norm_theta;
|
|
}
|
|
return norm_theta;
|
|
}
|
|
|
|
|
|
double cMathUtil::SmoothStep(double t)
|
|
{
|
|
double val = t * t * t * (t * (t * 6 - 15) + 10);
|
|
return val;
|
|
}
|
|
|
|
|
|
tMatrix cMathUtil::TranslateMat(const tVector& trans)
|
|
{
|
|
tMatrix mat = tMatrix::Identity();
|
|
mat(0, 3) = trans[0];
|
|
mat(1, 3) = trans[1];
|
|
mat(2, 3) = trans[2];
|
|
return mat;
|
|
}
|
|
|
|
tMatrix cMathUtil::ScaleMat(double scale)
|
|
{
|
|
return ScaleMat(tVector::Ones() * scale);
|
|
}
|
|
|
|
tMatrix cMathUtil::ScaleMat(const tVector& scale)
|
|
{
|
|
tMatrix mat = tMatrix::Identity();
|
|
mat(0, 0) = scale[0];
|
|
mat(1, 1) = scale[1];
|
|
mat(2, 2) = scale[2];
|
|
return mat;
|
|
}
|
|
|
|
tMatrix cMathUtil::RotateMat(const tVector& euler)
|
|
{
|
|
double x = euler[0];
|
|
double y = euler[1];
|
|
double z = euler[2];
|
|
|
|
double x_s = std::sin(x);
|
|
double x_c = std::cos(x);
|
|
double y_s = std::sin(y);
|
|
double y_c = std::cos(y);
|
|
double z_s = std::sin(z);
|
|
double z_c = std::cos(z);
|
|
|
|
tMatrix mat = tMatrix::Identity();
|
|
mat(0, 0) = y_c * z_c;
|
|
mat(1, 0) = y_c * z_s;
|
|
mat(2, 0) = -y_s;
|
|
|
|
mat(0, 1) = x_s * y_s * z_c - x_c * z_s;
|
|
mat(1, 1) = x_s * y_s * z_s + x_c * z_c;
|
|
mat(2, 1) = x_s * y_c;
|
|
|
|
mat(0, 2) = x_c * y_s * z_c + x_s * z_s;
|
|
mat(1, 2) = x_c * y_s * z_s - x_s * z_c;
|
|
mat(2, 2) = x_c * y_c;
|
|
|
|
return mat;
|
|
}
|
|
|
|
tMatrix cMathUtil::RotateMat(const tVector& axis, double theta)
|
|
{
|
|
assert(std::abs(axis.squaredNorm() - 1) < 0.0001);
|
|
|
|
double c = std::cos(theta);
|
|
double s = std::sin(theta);
|
|
double x = axis[0];
|
|
double y = axis[1];
|
|
double z = axis[2];
|
|
|
|
tMatrix mat;
|
|
mat << c + x * x * (1 - c), x * y * (1 - c) - z * s, x * z * (1 - c) + y * s, 0,
|
|
y * x * (1 - c) + z * s, c + y * y * (1 - c), y * z * (1 - c) - x * s, 0,
|
|
z * x * (1 - c) - y * s, z * y * (1 - c) + x * s, c + z * z * (1 - c), 0,
|
|
0, 0, 0, 1;
|
|
|
|
return mat;
|
|
}
|
|
|
|
tMatrix cMathUtil::RotateMat(const tQuaternion& q)
|
|
{
|
|
tMatrix mat = tMatrix::Identity();
|
|
|
|
double sqw = q.w() * q.w();
|
|
double sqx = q.x()* q.x();
|
|
double sqy = q.y() * q.y();
|
|
double sqz = q.z() * q.z();
|
|
double invs = 1 / (sqx + sqy + sqz + sqw);
|
|
|
|
mat(0, 0) = (sqx - sqy - sqz + sqw) * invs;
|
|
mat(1, 1) = (-sqx + sqy - sqz + sqw) * invs;
|
|
mat(2, 2) = (-sqx - sqy + sqz + sqw) * invs;
|
|
|
|
double tmp1 = q.x()*q.y();
|
|
double tmp2 = q.z()*q.w();
|
|
mat(1, 0) = 2.0 * (tmp1 + tmp2) * invs;
|
|
mat(0, 1) = 2.0 * (tmp1 - tmp2) * invs;
|
|
|
|
tmp1 = q.x()*q.z();
|
|
tmp2 = q.y()*q.w();
|
|
mat(2, 0) = 2.0 * (tmp1 - tmp2) * invs;
|
|
mat(0, 2) = 2.0 * (tmp1 + tmp2) * invs;
|
|
|
|
tmp1 = q.y()*q.z();
|
|
tmp2 = q.x()*q.w();
|
|
mat(2, 1) = 2.0 * (tmp1 + tmp2) * invs;
|
|
mat(1, 2) = 2.0 * (tmp1 - tmp2) * invs;
|
|
|
|
return mat;
|
|
}
|
|
|
|
tMatrix cMathUtil::CrossMat(const tVector& a)
|
|
{
|
|
tMatrix m;
|
|
m << 0, -a[2], a[1], 0,
|
|
a[2], 0, -a[0], 0,
|
|
-a[1], a[0], 0, 0,
|
|
0, 0, 0, 1;
|
|
return m;
|
|
}
|
|
|
|
tMatrix cMathUtil::InvRigidMat(const tMatrix& mat)
|
|
{
|
|
tMatrix inv_mat = tMatrix::Zero();
|
|
inv_mat.block(0, 0, 3, 3) = mat.block(0, 0, 3, 3).transpose();
|
|
inv_mat.col(3) = -inv_mat * mat.col(3);
|
|
inv_mat(3, 3) = 1;
|
|
return inv_mat;
|
|
}
|
|
|
|
tVector cMathUtil::GetRigidTrans(const tMatrix& mat)
|
|
{
|
|
return tVector(mat(0, 3), mat(1, 3), mat(2, 3), 0);
|
|
}
|
|
|
|
tVector cMathUtil::InvEuler(const tVector& euler)
|
|
{
|
|
tMatrix inv_mat = cMathUtil::RotateMat(tVector(1, 0, 0, 0), -euler[0])
|
|
* cMathUtil::RotateMat(tVector(0, 1, 0, 0), -euler[1])
|
|
* cMathUtil::RotateMat(tVector(0, 0, 1, 0), -euler[2]);
|
|
tVector inv_euler = cMathUtil::RotMatToEuler(inv_mat);
|
|
return inv_euler;
|
|
}
|
|
|
|
void cMathUtil::RotMatToAxisAngle(const tMatrix& mat, tVector& out_axis, double& out_theta)
|
|
{
|
|
double c = (mat(0, 0) + mat(1, 1) + mat(2, 2) - 1) * 0.5;
|
|
c = cMathUtil::Clamp(c, -1.0, 1.0);
|
|
|
|
out_theta = std::acos(c);
|
|
if (std::abs(out_theta) < 0.00001)
|
|
{
|
|
out_axis = tVector(0, 0, 1, 0);
|
|
}
|
|
else
|
|
{
|
|
double m21 = mat(2, 1) - mat(1, 2);
|
|
double m02 = mat(0, 2) - mat(2, 0);
|
|
double m10 = mat(1, 0) - mat(0, 1);
|
|
double denom = std::sqrt(m21 * m21 + m02 * m02 + m10 * m10);
|
|
out_axis[0] = m21 / denom;
|
|
out_axis[1] = m02 / denom;
|
|
out_axis[2] = m10 / denom;
|
|
out_axis[3] = 0;
|
|
}
|
|
}
|
|
|
|
tVector cMathUtil::RotMatToEuler(const tMatrix& mat)
|
|
{
|
|
tVector euler;
|
|
euler[0] = std::atan2(mat(2, 1), mat(2, 2));
|
|
euler[1] = std::atan2(-mat(2, 0), std::sqrt(mat(2, 1) * mat(2, 1) + mat(2, 2) * mat(2, 2)));
|
|
euler[2] = std::atan2(mat(1, 0), mat(0, 0));
|
|
euler[3] = 0;
|
|
return euler;
|
|
}
|
|
|
|
tQuaternion cMathUtil::RotMatToQuaternion(const tMatrix& mat)
|
|
{
|
|
double tr = mat(0, 0) + mat(1, 1) + mat(2, 2);
|
|
tQuaternion q;
|
|
|
|
if (tr > 0) {
|
|
double S = sqrt(tr + 1.0) * 2; // S=4*qw
|
|
q.w() = 0.25 * S;
|
|
q.x() = (mat(2, 1) - mat(1, 2)) / S;
|
|
q.y() = (mat(0, 2) - mat(2, 0)) / S;
|
|
q.z() = (mat(1, 0) - mat(0, 1)) / S;
|
|
}
|
|
else if ((mat(0, 0) > mat(1, 1) && (mat(0, 0) > mat(2, 2)))) {
|
|
double S = sqrt(1.0 + mat(0, 0) - mat(1, 1) - mat(2, 2)) * 2; // S=4*qx
|
|
q.w() = (mat(2, 1) - mat(1, 2)) / S;
|
|
q.x() = 0.25 * S;
|
|
q.y() = (mat(0, 1) + mat(1, 0)) / S;
|
|
q.z() = (mat(0, 2) + mat(2, 0)) / S;
|
|
}
|
|
else if (mat(1, 1) > mat(2, 2)) {
|
|
double S = sqrt(1.0 + mat(1, 1) - mat(0, 0) - mat(2, 2)) * 2; // S=4*qy
|
|
q.w() = (mat(0, 2) - mat(2, 0)) / S;
|
|
q.x() = (mat(0, 1) + mat(1, 0)) / S;
|
|
q.y() = 0.25 * S;
|
|
q.z() = (mat(1, 2) + mat(2, 1)) / S;
|
|
}
|
|
else {
|
|
double S = sqrt(1.0 + mat(2, 2) - mat(0, 0) - mat(1, 1)) * 2; // S=4*qz
|
|
q.w() = (mat(1, 0) - mat(0, 1)) / S;
|
|
q.x() = (mat(0, 2) + mat(2, 0)) / S;
|
|
q.y() = (mat(1, 2) + mat(2, 1)) / S;
|
|
q.z() = 0.25 * S;
|
|
}
|
|
|
|
return q;
|
|
}
|
|
|
|
void cMathUtil::EulerToAxisAngle(const tVector& euler, tVector& out_axis, double& out_theta)
|
|
{
|
|
double x = euler[0];
|
|
double y = euler[1];
|
|
double z = euler[2];
|
|
|
|
double x_s = std::sin(x);
|
|
double x_c = std::cos(x);
|
|
double y_s = std::sin(y);
|
|
double y_c = std::cos(y);
|
|
double z_s = std::sin(z);
|
|
double z_c = std::cos(z);
|
|
|
|
double c = (y_c * z_c + x_s * y_s * z_s + x_c * z_c + x_c * y_c - 1) * 0.5;
|
|
c = Clamp(c, -1.0, 1.0);
|
|
|
|
out_theta = std::acos(c);
|
|
if (std::abs(out_theta) < 0.00001)
|
|
{
|
|
out_axis = tVector(0, 0, 1, 0);
|
|
}
|
|
else
|
|
{
|
|
double m21 = x_s * y_c - x_c * y_s * z_s + x_s * z_c;
|
|
double m02 = x_c * y_s * z_c + x_s * z_s + y_s;
|
|
double m10 = y_c * z_s - x_s * y_s * z_c + x_c * z_s;
|
|
double denom = std::sqrt(m21 * m21 + m02 * m02 + m10 * m10);
|
|
out_axis[0] = m21 / denom;
|
|
out_axis[1] = m02 / denom;
|
|
out_axis[2] = m10 / denom;
|
|
out_axis[3] = 0;
|
|
}
|
|
}
|
|
|
|
|
|
tMatrix cMathUtil::DirToRotMat(const tVector& dir, const tVector& up)
|
|
{
|
|
tVector x = up.cross3(dir);
|
|
double x_norm = x.norm();
|
|
if (x_norm == 0)
|
|
{
|
|
x_norm = 1;
|
|
x = (dir.dot(up) >= 0) ? tVector(1, 0, 0, 0) : tVector(-1, 0, 0, 0);
|
|
}
|
|
x /= x_norm;
|
|
|
|
tVector y = dir.cross3(x).normalized();
|
|
tVector z = dir;
|
|
|
|
tMatrix mat = tMatrix::Identity();
|
|
mat.block(0, 0, 3, 1) = x.segment(0, 3);
|
|
mat.block(0, 1, 3, 1) = y.segment(0, 3);
|
|
mat.block(0, 2, 3, 1) = z.segment(0, 3);
|
|
|
|
return mat;
|
|
}
|
|
|
|
void cMathUtil::DeltaRot(const tVector& axis0, double theta0, const tVector& axis1, double theta1,
|
|
tVector& out_axis, double& out_theta)
|
|
{
|
|
tMatrix R0 = RotateMat(axis0, theta0);
|
|
tMatrix R1 = RotateMat(axis1, theta1);
|
|
tMatrix M = DeltaRot(R0, R1);
|
|
RotMatToAxisAngle(M, out_axis, out_theta);
|
|
}
|
|
|
|
tMatrix cMathUtil::DeltaRot(const tMatrix& R0, const tMatrix& R1)
|
|
{
|
|
return R1 * R0.transpose();
|
|
}
|
|
|
|
tQuaternion cMathUtil::EulerToQuaternion(const tVector& euler)
|
|
{
|
|
tVector axis;
|
|
double theta;
|
|
EulerToAxisAngle(euler, axis, theta);
|
|
return AxisAngleToQuaternion(axis, theta);
|
|
}
|
|
|
|
|
|
tQuaternion cMathUtil::AxisAngleToQuaternion(const tVector& axis, double theta)
|
|
{
|
|
// axis must be normalized
|
|
double c = std::cos(theta / 2);
|
|
double s = std::sin(theta / 2);
|
|
tQuaternion q;
|
|
q.w() = c;
|
|
q.x() = s * axis[0];
|
|
q.y() = s * axis[1];
|
|
q.z() = s * axis[2];
|
|
return q;
|
|
}
|
|
|
|
void cMathUtil::QuaternionToAxisAngle(const tQuaternion& q, tVector& out_axis, double& out_theta)
|
|
{
|
|
out_theta = 0;
|
|
out_axis = tVector(0, 0, 1, 0);
|
|
|
|
tQuaternion q1 = q;
|
|
if (q1.w() > 1)
|
|
{
|
|
q1.normalize();
|
|
}
|
|
|
|
double sin_theta = std::sqrt(1 - q1.w() * q1.w());
|
|
if (sin_theta > 0.000001)
|
|
{
|
|
out_theta = 2 * std::acos(q1.w());
|
|
out_theta = cMathUtil::NormalizeAngle(out_theta);
|
|
out_axis = tVector(q1.x(), q1.y(), q1.z(), 0) / sin_theta;
|
|
}
|
|
}
|
|
|
|
tMatrix cMathUtil::BuildQuaternionDiffMat(const tQuaternion& q)
|
|
{
|
|
tMatrix mat;
|
|
mat << -0.5 * q.x(), -0.5 * q.y(), -0.5 * q.z(), 0,
|
|
0.5 * q.w(), -0.5 * q.z(), 0.5 * q.y(), 0,
|
|
0.5 * q.z(), 0.5 * q.w(), -0.5 * q.x(), 0,
|
|
-0.5 * q.y(), 0.5 * q.x(), 0.5 * q.w(), 0;
|
|
return mat;
|
|
}
|
|
|
|
tVector cMathUtil::CalcQuaternionVel(const tQuaternion& q0, const tQuaternion& q1, double dt)
|
|
{
|
|
tQuaternion q_diff = cMathUtil::QuatDiff(q0, q1);
|
|
tVector axis;
|
|
double theta;
|
|
QuaternionToAxisAngle(q_diff, axis, theta);
|
|
return (theta / dt) * axis;
|
|
}
|
|
|
|
tVector cMathUtil::CalcQuaternionVelRel(const tQuaternion& q0, const tQuaternion& q1, double dt)
|
|
{
|
|
// calculate relative rotational velocity in the coordinate frame of q0
|
|
tQuaternion q_diff = q0.conjugate() * q1;
|
|
tVector axis;
|
|
double theta;
|
|
QuaternionToAxisAngle(q_diff, axis, theta);
|
|
return (theta / dt) * axis;
|
|
}
|
|
|
|
tQuaternion cMathUtil::VecToQuat(const tVector& v)
|
|
{
|
|
return tQuaternion(v[0], v[1], v[2], v[3]);
|
|
}
|
|
|
|
tVector cMathUtil::QuatToVec(const tQuaternion& q)
|
|
{
|
|
return tVector(q.w(), q.x(), q.y(), q.z());
|
|
}
|
|
|
|
tQuaternion cMathUtil::QuatDiff(const tQuaternion& q0, const tQuaternion& q1)
|
|
{
|
|
return q1 * q0.conjugate();
|
|
}
|
|
|
|
double cMathUtil::QuatDiffTheta(const tQuaternion& q0, const tQuaternion& q1)
|
|
{
|
|
tQuaternion dq = QuatDiff(q0, q1);
|
|
return QuatTheta(dq);
|
|
}
|
|
|
|
double cMathUtil::QuatTheta(const tQuaternion& dq)
|
|
{
|
|
double theta = 0;
|
|
tQuaternion q1 = dq;
|
|
if (q1.w() > 1)
|
|
{
|
|
q1.normalize();
|
|
}
|
|
|
|
double sin_theta = std::sqrt(1 - q1.w() * q1.w());
|
|
if (sin_theta > 0.0001)
|
|
{
|
|
theta = 2 * std::acos(q1.w());
|
|
theta = cMathUtil::NormalizeAngle(theta);
|
|
}
|
|
return theta;
|
|
}
|
|
|
|
tQuaternion cMathUtil::VecDiffQuat(const tVector& v0, const tVector& v1)
|
|
{
|
|
return tQuaternion::FromTwoVectors(v0.segment(0, 3), v1.segment(0, 3));
|
|
}
|
|
|
|
tVector cMathUtil::QuatRotVec(const tQuaternion& q, const tVector& dir)
|
|
{
|
|
tVector rot_dir = tVector::Zero();
|
|
rot_dir.segment(0, 3) = q * dir.segment(0, 3);
|
|
return rot_dir;
|
|
}
|
|
|
|
tQuaternion cMathUtil::MirrorQuaternion(const tQuaternion& q, eAxis axis)
|
|
{
|
|
tQuaternion mirror_q;
|
|
mirror_q.w() = q.w();
|
|
mirror_q.x() = (axis == eAxisX) ? q.x() : -q.x();
|
|
mirror_q.y() = (axis == eAxisY) ? q.y() : -q.y();
|
|
mirror_q.z() = (axis == eAxisZ) ? q.z() : -q.z();
|
|
return mirror_q;
|
|
}
|
|
|
|
double cMathUtil::Sign(double val)
|
|
{
|
|
return SignAux<double>(val);
|
|
}
|
|
|
|
int cMathUtil::Sign(int val)
|
|
{
|
|
return SignAux<int>(val);
|
|
}
|
|
|
|
double cMathUtil::AddAverage(double avg0, int count0, double avg1, int count1)
|
|
{
|
|
double total = count0 + count1;
|
|
return (count0 / total) * avg0 + (count1 / total) * avg1;
|
|
}
|
|
|
|
tVector cMathUtil::AddAverage(const tVector& avg0, int count0, const tVector& avg1, int count1)
|
|
{
|
|
double total = count0 + count1;
|
|
return (count0 / total) * avg0 + (count1 / total) * avg1 ;
|
|
}
|
|
|
|
void cMathUtil::AddAverage(const Eigen::VectorXd& avg0, int count0, const Eigen::VectorXd& avg1, int count1, Eigen::VectorXd& out_result)
|
|
{
|
|
double total = count0 + count1;
|
|
out_result = (count0 / total) * avg0 + (count1 / total) * avg1;
|
|
}
|
|
|
|
void cMathUtil::CalcSoftmax(const Eigen::VectorXd& vals, double temp, Eigen::VectorXd& out_prob)
|
|
{
|
|
assert(out_prob.size() == vals.size());
|
|
int num_vals = static_cast<int>(vals.size());
|
|
double sum = 0;
|
|
double max_val = vals.maxCoeff();
|
|
for (int i = 0; i < num_vals; ++i)
|
|
{
|
|
double val = vals[i];
|
|
val = std::exp((val - max_val) / temp);
|
|
out_prob[i] = val;
|
|
sum += val;
|
|
}
|
|
|
|
out_prob /= sum;
|
|
}
|
|
|
|
double cMathUtil::EvalGaussian(const Eigen::VectorXd& mean, const Eigen::VectorXd& covar, const Eigen::VectorXd& sample)
|
|
{
|
|
assert(mean.size() == covar.size());
|
|
assert(sample.size() == covar.size());
|
|
|
|
Eigen::VectorXd diff = sample - mean;
|
|
double exp_val = diff.dot(diff.cwiseQuotient(covar));
|
|
double likelihood = std::exp(-0.5 * exp_val);
|
|
|
|
double partition = CalcGaussianPartition(covar);
|
|
likelihood /= partition;
|
|
return likelihood;
|
|
}
|
|
|
|
double cMathUtil::EvalGaussian(double mean, double covar, double sample)
|
|
{
|
|
double diff = sample - mean;
|
|
double exp_val = diff * diff / covar;
|
|
double norm = 1 / std::sqrt(2 * M_PI * covar);
|
|
double likelihood = norm * std::exp(-0.5 * exp_val);
|
|
return likelihood;
|
|
}
|
|
|
|
double cMathUtil::CalcGaussianPartition(const Eigen::VectorXd& covar)
|
|
{
|
|
int data_size = static_cast<int>(covar.size());
|
|
double det = covar.prod();
|
|
double partition = std::sqrt(std::pow(2 * M_PI, data_size) * det);
|
|
return partition;
|
|
}
|
|
|
|
double cMathUtil::EvalGaussianLogp(const Eigen::VectorXd& mean, const Eigen::VectorXd& covar, const Eigen::VectorXd& sample)
|
|
{
|
|
int data_size = static_cast<int>(covar.size());
|
|
|
|
Eigen::VectorXd diff = sample - mean;
|
|
double logp = -0.5 * diff.dot(diff.cwiseQuotient(covar));
|
|
double det = covar.prod();
|
|
logp += -0.5 * (data_size * std::log(2 * M_PI) + std::log(det));
|
|
|
|
return logp;
|
|
}
|
|
|
|
double cMathUtil::EvalGaussianLogp(double mean, double covar, double sample)
|
|
{
|
|
double diff = sample - mean;
|
|
double logp = -0.5 * diff * diff / covar;
|
|
logp += -0.5 * (std::log(2 * M_PI) + std::log(covar));
|
|
return logp;
|
|
}
|
|
|
|
double cMathUtil::Sigmoid(double x)
|
|
{
|
|
return Sigmoid(x, 1, 0);
|
|
}
|
|
|
|
double cMathUtil::Sigmoid(double x, double gamma, double bias)
|
|
{
|
|
double exp = -gamma * (x + bias);
|
|
double val = 1 / (1 + std::exp(exp));
|
|
return val;
|
|
}
|
|
|
|
|
|
tVector cMathUtil::CalcBarycentric(const tVector& p, const tVector& a, const tVector& b, const tVector& c)
|
|
{
|
|
tVector v0 = b - a;
|
|
tVector v1 = c - a;
|
|
tVector v2 = p - a;
|
|
|
|
double d00 = v0.dot(v0);
|
|
double d01 = v0.dot(v1);
|
|
double d11 = v1.dot(v1);
|
|
double d20 = v2.dot(v0);
|
|
double d21 = v2.dot(v1);
|
|
double denom = d00 * d11 - d01 * d01;
|
|
double v = (d11 * d20 - d01 * d21) / denom;
|
|
double w = (d00 * d21 - d01 * d20) / denom;
|
|
double u = 1.0f - v - w;
|
|
|
|
return tVector(u, v, w, 0);
|
|
}
|
|
|
|
bool cMathUtil::ContainsAABB(const tVector& pt, const tVector& aabb_min, const tVector& aabb_max)
|
|
{
|
|
bool contains = pt[0] >= aabb_min[0] && pt[1] >= aabb_min[1] && pt[2] >= aabb_min[2]
|
|
&& pt[0] <= aabb_max[0] && pt[1] <= aabb_max[1] && pt[2] <= aabb_max[2];
|
|
return contains;
|
|
}
|
|
|
|
bool cMathUtil::ContainsAABB(const tVector& aabb_min0, const tVector& aabb_max0, const tVector& aabb_min1, const tVector& aabb_max1)
|
|
{
|
|
return ContainsAABB(aabb_min0, aabb_min1, aabb_max1) && ContainsAABB(aabb_max0, aabb_min1, aabb_max1);
|
|
}
|
|
|
|
bool cMathUtil::ContainsAABBXZ(const tVector& pt, const tVector& aabb_min, const tVector& aabb_max)
|
|
{
|
|
bool contains = pt[0] >= aabb_min[0] && pt[2] >= aabb_min[2]
|
|
&& pt[0] <= aabb_max[0] && pt[2] <= aabb_max[2];
|
|
return contains;
|
|
}
|
|
|
|
bool cMathUtil::ContainsAABBXZ(const tVector& aabb_min0, const tVector& aabb_max0, const tVector& aabb_min1, const tVector& aabb_max1)
|
|
{
|
|
return ContainsAABBXZ(aabb_min0, aabb_min1, aabb_max1) && ContainsAABBXZ(aabb_max0, aabb_min1, aabb_max1);
|
|
}
|
|
|
|
void cMathUtil::CalcAABBIntersection(const tVector& aabb_min0, const tVector& aabb_max0, const tVector& aabb_min1, const tVector& aabb_max1,
|
|
tVector& out_min, tVector& out_max)
|
|
{
|
|
out_min = aabb_min0.cwiseMax(aabb_min1);
|
|
out_max = aabb_max0.cwiseMin(aabb_max1);
|
|
if (out_min[0] > out_max[0])
|
|
{
|
|
out_min[0] = 0;
|
|
out_max[0] = 0;
|
|
}
|
|
if (out_min[1] > out_max[1])
|
|
{
|
|
out_min[1] = 0;
|
|
out_max[1] = 0;
|
|
}
|
|
if (out_min[2] > out_max[2])
|
|
{
|
|
out_min[2] = 0;
|
|
out_max[2] = 0;
|
|
}
|
|
}
|
|
|
|
void cMathUtil::CalcAABBUnion(const tVector& aabb_min0, const tVector& aabb_max0, const tVector& aabb_min1, const tVector& aabb_max1,
|
|
tVector& out_min, tVector& out_max)
|
|
{
|
|
out_min = aabb_min0.cwiseMin(aabb_min1);
|
|
out_max = aabb_max0.cwiseMax(aabb_max1);
|
|
}
|
|
|
|
bool cMathUtil::IntersectAABB(const tVector& aabb_min0, const tVector& aabb_max0, const tVector& aabb_min1, const tVector& aabb_max1)
|
|
{
|
|
tVector center0 = 0.5 * (aabb_max0 + aabb_min0);
|
|
tVector center1 = 0.5 * (aabb_max1 + aabb_min1);
|
|
tVector size0 = aabb_max0 - aabb_min0;
|
|
tVector size1 = aabb_max1 - aabb_min1;
|
|
tVector test_len = 0.5 * (size0 + size1);
|
|
tVector delta = center1 - center0;
|
|
bool overlap = (std::abs(delta[0]) <= test_len[0]) && (std::abs(delta[1]) <= test_len[1]) && (std::abs(delta[2]) <= test_len[2]);
|
|
return overlap;
|
|
}
|
|
|
|
bool cMathUtil::IntersectAABBXZ(const tVector& aabb_min0, const tVector& aabb_max0, const tVector& aabb_min1, const tVector& aabb_max1)
|
|
{
|
|
tVector center0 = 0.5 * (aabb_max0 + aabb_min0);
|
|
tVector center1 = 0.5 * (aabb_max1 + aabb_min1);
|
|
tVector size0 = aabb_max0 - aabb_min0;
|
|
tVector size1 = aabb_max1 - aabb_min1;
|
|
tVector test_len = 0.5 * (size0 + size1);
|
|
tVector delta = center1 - center0;
|
|
bool overlap = (std::abs(delta[0]) <= test_len[0]) && (std::abs(delta[2]) <= test_len[2]);
|
|
return overlap;
|
|
}
|
|
|
|
bool cMathUtil::CheckNextInterval(double delta, double curr_val, double int_size)
|
|
{
|
|
double pad = 0.001 * delta;
|
|
int curr_count = static_cast<int>(std::floor((curr_val + pad) / int_size));
|
|
int prev_count = static_cast<int>(std::floor((curr_val + pad - delta) / int_size));
|
|
bool new_action = (curr_count != prev_count);
|
|
return new_action;
|
|
}
|
|
|
|
|
|
|
|
void cMathUtil::QuatSwingTwistDecomposition(const tQuaternion& q, const tVector& dir, tQuaternion& out_swing, tQuaternion& out_twist)
|
|
{
|
|
assert(std::abs(dir.norm() - 1) < 0.000001);
|
|
assert(std::abs(q.norm() - 1) < 0.000001);
|
|
|
|
tVector q_axis = tVector(q.x(), q.y(), q.z(), 0);
|
|
double p = q_axis.dot(dir);
|
|
tVector twist_axis = p * dir;
|
|
out_twist = tQuaternion(q.w(), twist_axis[0], twist_axis[1], twist_axis[2]);
|
|
out_twist.normalize();
|
|
out_swing = q * out_twist.conjugate();
|
|
}
|
|
|
|
tQuaternion cMathUtil::ProjectQuat(const tQuaternion& q, const tVector& dir)
|
|
{
|
|
assert(std::abs(dir.norm() - 1) < 0.00001);
|
|
tVector ref_axis = tVector::Zero();
|
|
int min_idx = 0;
|
|
dir.cwiseAbs().minCoeff(&min_idx);
|
|
ref_axis[min_idx] = 1;
|
|
|
|
tVector rot_dir0 = dir.cross3(ref_axis);
|
|
tVector rot_dir1 = cMathUtil::QuatRotVec(q, rot_dir0);
|
|
rot_dir1 -= rot_dir1.dot(dir) * dir;
|
|
|
|
double dir1_norm = rot_dir1.norm();
|
|
tQuaternion p_rot = tQuaternion::Identity();
|
|
if (dir1_norm > 0.0001)
|
|
{
|
|
rot_dir1 /= dir1_norm;
|
|
p_rot = cMathUtil::VecDiffQuat(rot_dir0, rot_dir1);
|
|
}
|
|
return p_rot;
|
|
}
|
|
|
|
void cMathUtil::ButterworthFilter(double dt, double cutoff, Eigen::VectorXd& out_x)
|
|
{
|
|
double sampling_rate = 1 / dt;
|
|
int n = static_cast<int>(out_x.size());
|
|
|
|
double wc = std::tan(cutoff * M_PI / sampling_rate);
|
|
double k1 = std::sqrt(2.0) * wc;
|
|
double k2 = wc * wc;
|
|
double a = k2 / (1 + k1 + k2);
|
|
double b = 2 * a;
|
|
double c = a;
|
|
double k3 = b / k2;
|
|
double d = -2 * a + k3;
|
|
double e = 1 - (2 * a) - k3;
|
|
|
|
double xm2 = out_x[0];
|
|
double xm1 = out_x[0];
|
|
double ym2 = out_x[0];
|
|
double ym1 = out_x[0];
|
|
|
|
for (int s = 0; s < n; ++s)
|
|
{
|
|
double x = out_x[s];
|
|
double y = a * x + b * xm1 + c * xm2 + d * ym1 + e * ym2;
|
|
|
|
out_x[s] = y;
|
|
xm2 = xm1;
|
|
xm1 = x;
|
|
ym2 = ym1;
|
|
ym1 = y;
|
|
}
|
|
|
|
double yp2 = out_x[n - 1];
|
|
double yp1 = out_x[n - 1];
|
|
double zp2 = out_x[n - 1];
|
|
double zp1 = out_x[n - 1];
|
|
|
|
for (int t = n - 1; t >= 0; --t)
|
|
{
|
|
double y = out_x[t];
|
|
double z = a * y + b * yp1 + c * yp2 + d * zp1 + e * zp2;
|
|
|
|
out_x[t] = z;
|
|
yp2 = yp1;
|
|
yp1 = y;
|
|
zp2 = zp1;
|
|
zp1 = z;
|
|
}
|
|
} |