bullet3/examples/Importers/ImportURDFDemo/UrdfParser.cpp

2021 lines
52 KiB
C++

#include "UrdfParser.h"
#include "../../ThirdPartyLibs/tinyxml2/tinyxml2.h"
#include "urdfStringSplit.h"
#include "urdfLexicalCast.h"
#include "UrdfFindMeshFile.h"
using namespace tinyxml2;
UrdfParser::UrdfParser(CommonFileIOInterface* fileIO)
: m_parseSDF(false),
m_activeSdfModel(-1),
m_urdfScaling(1),
m_fileIO(fileIO)
{
m_urdf2Model.m_sourceFile = "IN_MEMORY_STRING"; // if loadUrdf() called later, source file name will be replaced with real
}
UrdfParser::~UrdfParser()
{
for (int i = 0; i < m_tmpModels.size(); i++)
{
delete m_tmpModels[i];
}
}
static bool parseVector4(btVector4& vec4, const std::string& vector_str)
{
vec4.setZero();
btArray<std::string> pieces;
btArray<double> rgba;
btAlignedObjectArray<std::string> strArray;
urdfIsAnyOf(" ", strArray);
urdfStringSplit(pieces, vector_str, strArray);
for (int i = 0; i < pieces.size(); ++i)
{
if (!pieces[i].empty())
{
rgba.push_back(urdfLexicalCast<double>(pieces[i].c_str()));
}
}
if (rgba.size() != 4)
{
return false;
}
vec4.setValue(rgba[0], rgba[1], rgba[2], rgba[3]);
return true;
}
static bool parseVector3(btVector3& vec3, const std::string& vector_str, ErrorLogger* logger, bool lastThree = false)
{
vec3.setZero();
btArray<std::string> pieces;
btArray<double> rgba;
btAlignedObjectArray<std::string> strArray;
urdfIsAnyOf(" ", strArray);
urdfStringSplit(pieces, vector_str, strArray);
for (int i = 0; i < pieces.size(); ++i)
{
if (!pieces[i].empty())
{
rgba.push_back(urdfLexicalCast<double>(pieces[i].c_str()));
}
}
if (rgba.size() < 3)
{
logger->reportWarning("Couldn't parse vector3");
return false;
}
if (lastThree)
{
vec3.setValue(rgba[rgba.size() - 3], rgba[rgba.size() - 2], rgba[rgba.size() - 1]);
}
else
{
vec3.setValue(rgba[0], rgba[1], rgba[2]);
}
return true;
}
bool UrdfParser::parseMaterial(UrdfMaterial& material, XMLElement* config, ErrorLogger* logger)
{
if (!config->Attribute("name"))
{
logger->reportError("Material must contain a name attribute");
return false;
}
material.m_name = config->Attribute("name");
// texture
XMLElement* t = config->FirstChildElement("texture");
if (t)
{
if (t->Attribute("filename"))
{
material.m_textureFilename = t->Attribute("filename");
}
}
if (material.m_textureFilename.length() == 0)
{
//logger->reportWarning("material has no texture file name");
}
// color
{
XMLElement* c = config->FirstChildElement("color");
if (c)
{
if (c->Attribute("rgba"))
{
if (!parseVector4(material.m_matColor.m_rgbaColor, c->Attribute("rgba")))
{
std::string msg = material.m_name + " has no rgba";
logger->reportWarning(msg.c_str());
}
}
}
}
{
// specular (non-standard)
XMLElement* s = config->FirstChildElement("specular");
if (s)
{
if (s->Attribute("rgb"))
{
if (!parseVector3(material.m_matColor.m_specularColor, s->Attribute("rgb"), logger))
{
}
}
}
}
return true;
}
bool UrdfParser::parseTransform(btTransform& tr, XMLElement* xml, ErrorLogger* logger, bool parseSDF)
{
tr.setIdentity();
btVector3 vec(0, 0, 0);
if (parseSDF)
{
parseVector3(vec, std::string(xml->GetText()), logger);
}
else
{
const char* xyz_str = xml->Attribute("xyz");
if (xyz_str)
{
parseVector3(vec, std::string(xyz_str), logger);
}
}
tr.setOrigin(vec * m_urdfScaling);
if (parseSDF)
{
btVector3 rpy;
if (parseVector3(rpy, std::string(xml->GetText()), logger, true))
{
double phi, the, psi;
double roll = rpy[0];
double pitch = rpy[1];
double yaw = rpy[2];
phi = roll / 2.0;
the = pitch / 2.0;
psi = yaw / 2.0;
btQuaternion orn(
sin(phi) * cos(the) * cos(psi) - cos(phi) * sin(the) * sin(psi),
cos(phi) * sin(the) * cos(psi) + sin(phi) * cos(the) * sin(psi),
cos(phi) * cos(the) * sin(psi) - sin(phi) * sin(the) * cos(psi),
cos(phi) * cos(the) * cos(psi) + sin(phi) * sin(the) * sin(psi));
orn.normalize();
tr.setRotation(orn);
}
}
else
{
const char* rpy_str = xml->Attribute("rpy");
if (rpy_str != NULL)
{
btVector3 rpy;
if (parseVector3(rpy, std::string(rpy_str), logger))
{
double phi, the, psi;
double roll = rpy[0];
double pitch = rpy[1];
double yaw = rpy[2];
phi = roll / 2.0;
the = pitch / 2.0;
psi = yaw / 2.0;
btQuaternion orn(
sin(phi) * cos(the) * cos(psi) - cos(phi) * sin(the) * sin(psi),
cos(phi) * sin(the) * cos(psi) + sin(phi) * cos(the) * sin(psi),
cos(phi) * cos(the) * sin(psi) - sin(phi) * sin(the) * cos(psi),
cos(phi) * cos(the) * cos(psi) + sin(phi) * sin(the) * sin(psi));
orn.normalize();
tr.setRotation(orn);
}
}
}
return true;
}
bool UrdfParser::parseInertia(UrdfInertia& inertia, XMLElement* config, ErrorLogger* logger)
{
inertia.m_linkLocalFrame.setIdentity();
inertia.m_mass = 0.f;
if (m_parseSDF)
{
XMLElement* pose = config->FirstChildElement("pose");
if (pose)
{
parseTransform(inertia.m_linkLocalFrame, pose, logger, m_parseSDF);
}
}
// Origin
XMLElement* o = config->FirstChildElement("origin");
if (o)
{
if (!parseTransform(inertia.m_linkLocalFrame, o, logger))
{
return false;
}
}
XMLElement* mass_xml = config->FirstChildElement("mass");
if (!mass_xml)
{
logger->reportError("Inertial element must have a mass element");
return false;
}
if (m_parseSDF)
{
inertia.m_mass = urdfLexicalCast<double>(mass_xml->GetText());
}
else
{
if (!mass_xml->Attribute("value"))
{
logger->reportError("Inertial: mass element must have value attribute");
return false;
}
inertia.m_mass = urdfLexicalCast<double>(mass_xml->Attribute("value"));
}
XMLElement* inertia_xml = config->FirstChildElement("inertia");
if (!inertia_xml)
{
logger->reportError("Inertial element must have inertia element");
return false;
}
if (m_parseSDF)
{
XMLElement* ixx = inertia_xml->FirstChildElement("ixx");
XMLElement* ixy = inertia_xml->FirstChildElement("ixy");
XMLElement* ixz = inertia_xml->FirstChildElement("ixz");
XMLElement* iyy = inertia_xml->FirstChildElement("iyy");
XMLElement* iyz = inertia_xml->FirstChildElement("iyz");
XMLElement* izz = inertia_xml->FirstChildElement("izz");
if (ixx && ixy && ixz && iyy && iyz && izz)
{
inertia.m_ixx = urdfLexicalCast<double>(ixx->GetText());
inertia.m_ixy = urdfLexicalCast<double>(ixy->GetText());
inertia.m_ixz = urdfLexicalCast<double>(ixz->GetText());
inertia.m_iyy = urdfLexicalCast<double>(iyy->GetText());
inertia.m_iyz = urdfLexicalCast<double>(iyz->GetText());
inertia.m_izz = urdfLexicalCast<double>(izz->GetText());
}
else
{
if (ixx && iyy && izz)
{
inertia.m_ixx = urdfLexicalCast<double>(ixx->GetText());
inertia.m_ixy = 0;
inertia.m_ixz = 0;
inertia.m_iyy = urdfLexicalCast<double>(iyy->GetText());
inertia.m_iyz = 0;
inertia.m_izz = urdfLexicalCast<double>(izz->GetText());
}
else
{
logger->reportError("Inertial: inertia element must have ixx,ixy,ixz,iyy,iyz,izz child elements");
return false;
}
}
}
else
{
if (!(inertia_xml->Attribute("ixx") && inertia_xml->Attribute("ixy") && inertia_xml->Attribute("ixz") &&
inertia_xml->Attribute("iyy") && inertia_xml->Attribute("iyz") &&
inertia_xml->Attribute("izz")))
{
if ((inertia_xml->Attribute("ixx") && inertia_xml->Attribute("iyy") &&
inertia_xml->Attribute("izz")))
{
inertia.m_ixx = urdfLexicalCast<double>(inertia_xml->Attribute("ixx"));
inertia.m_ixy = 0;
inertia.m_ixz = 0;
inertia.m_iyy = urdfLexicalCast<double>(inertia_xml->Attribute("iyy"));
inertia.m_iyz = 0;
inertia.m_izz = urdfLexicalCast<double>(inertia_xml->Attribute("izz"));
}
else
{
logger->reportError("Inertial: inertia element must have ixx,ixy,ixz,iyy,iyz,izz attributes");
return false;
}
}
else
{
inertia.m_ixx = urdfLexicalCast<double>(inertia_xml->Attribute("ixx"));
inertia.m_ixy = urdfLexicalCast<double>(inertia_xml->Attribute("ixy"));
inertia.m_ixz = urdfLexicalCast<double>(inertia_xml->Attribute("ixz"));
inertia.m_iyy = urdfLexicalCast<double>(inertia_xml->Attribute("iyy"));
inertia.m_iyz = urdfLexicalCast<double>(inertia_xml->Attribute("iyz"));
inertia.m_izz = urdfLexicalCast<double>(inertia_xml->Attribute("izz"));
}
}
return true;
}
bool UrdfParser::parseGeometry(UrdfGeometry& geom, XMLElement* g, ErrorLogger* logger)
{
// btAssert(g);
if (g == 0)
return false;
XMLElement* shape = g->FirstChildElement();
if (!shape)
{
logger->reportError("Geometry tag contains no child element.");
return false;
}
//const std::string type_name = shape->ValueTStr().c_str();
const std::string type_name = shape->Value();
if (type_name == "sphere")
{
geom.m_type = URDF_GEOM_SPHERE;
if (m_parseSDF)
{
XMLElement* size = shape->FirstChildElement("radius");
if (0 == size)
{
logger->reportError("sphere requires a radius child element");
return false;
}
geom.m_sphereRadius = urdfLexicalCast<double>(size->GetText());
}
else
{
if (!shape->Attribute("radius"))
{
logger->reportError("Sphere shape must have a radius attribute");
return false;
}
else
{
geom.m_sphereRadius = m_urdfScaling * urdfLexicalCast<double>(shape->Attribute("radius"));
}
}
}
else if (type_name == "box")
{
geom.m_type = URDF_GEOM_BOX;
if (m_parseSDF)
{
XMLElement* size = shape->FirstChildElement("size");
if (0 == size)
{
logger->reportError("box requires a size child element");
return false;
}
parseVector3(geom.m_boxSize, size->GetText(), logger);
geom.m_boxSize *= m_urdfScaling;
}
else
{
if (!shape->Attribute("size"))
{
logger->reportError("box requires a size attribute");
return false;
}
else
{
parseVector3(geom.m_boxSize, shape->Attribute("size"), logger);
geom.m_boxSize *= m_urdfScaling;
}
}
}
else if (type_name == "cylinder")
{
geom.m_type = URDF_GEOM_CYLINDER;
geom.m_hasFromTo = false;
geom.m_capsuleRadius = 0.1;
geom.m_capsuleHeight = 0.1;
if (m_parseSDF)
{
if (XMLElement* scale = shape->FirstChildElement("radius"))
{
parseVector3(geom.m_meshScale, scale->GetText(), logger);
geom.m_capsuleRadius = m_urdfScaling * urdfLexicalCast<double>(scale->GetText());
}
if (XMLElement* scale = shape->FirstChildElement("length"))
{
parseVector3(geom.m_meshScale, scale->GetText(), logger);
geom.m_capsuleHeight = m_urdfScaling * urdfLexicalCast<double>(scale->GetText());
}
}
else
{
if (!shape->Attribute("length") || !shape->Attribute("radius"))
{
logger->reportError("Cylinder shape must have both length and radius attributes");
return false;
}
geom.m_capsuleRadius = m_urdfScaling * urdfLexicalCast<double>(shape->Attribute("radius"));
geom.m_capsuleHeight = m_urdfScaling * urdfLexicalCast<double>(shape->Attribute("length"));
}
}
else if (type_name == "capsule")
{
geom.m_type = URDF_GEOM_CAPSULE;
geom.m_hasFromTo = false;
if (m_parseSDF)
{
if (XMLElement* scale = shape->FirstChildElement("radius"))
{
parseVector3(geom.m_meshScale, scale->GetText(), logger);
geom.m_capsuleRadius = m_urdfScaling * urdfLexicalCast<double>(scale->GetText());
}
if (XMLElement* scale = shape->FirstChildElement("length"))
{
parseVector3(geom.m_meshScale, scale->GetText(), logger);
geom.m_capsuleHeight = m_urdfScaling * urdfLexicalCast<double>(scale->GetText());
}
}
else
{
if (!shape->Attribute("length") || !shape->Attribute("radius"))
{
logger->reportError("Capsule shape must have both length and radius attributes");
return false;
}
geom.m_capsuleRadius = m_urdfScaling * urdfLexicalCast<double>(shape->Attribute("radius"));
geom.m_capsuleHeight = m_urdfScaling * urdfLexicalCast<double>(shape->Attribute("length"));
}
}
else if ((type_name == "mesh") || (type_name == "cdf"))
{
if ((type_name == "cdf"))
{
geom.m_type = URDF_GEOM_CDF;
}
else
{
geom.m_type = URDF_GEOM_MESH;
}
geom.m_meshScale.setValue(1, 1, 1);
std::string fn;
if (m_parseSDF)
{
if (XMLElement* scale = shape->FirstChildElement("scale"))
{
parseVector3(geom.m_meshScale, scale->GetText(), logger);
}
if (XMLElement* filename = shape->FirstChildElement("uri"))
{
fn = filename->GetText();
}
}
else
{
// URDF
if (shape->Attribute("filename"))
{
fn = shape->Attribute("filename");
}
if (shape->Attribute("scale"))
{
if (!parseVector3(geom.m_meshScale, shape->Attribute("scale"), logger))
{
logger->reportWarning("Scale should be a vector3, not single scalar. Workaround activated.\n");
std::string scalar_str = shape->Attribute("scale");
double scaleFactor = urdfLexicalCast<double>(scalar_str.c_str());
if (scaleFactor)
{
geom.m_meshScale.setValue(scaleFactor, scaleFactor, scaleFactor);
}
}
}
}
geom.m_meshScale *= m_urdfScaling;
if (fn.empty())
{
logger->reportError("Mesh filename is empty");
return false;
}
geom.m_meshFileName = fn;
bool success = UrdfFindMeshFile(m_fileIO,
m_urdf2Model.m_sourceFile, fn, sourceFileLocation(shape),
&geom.m_meshFileName, &geom.m_meshFileType);
if (!success)
{
// warning already printed
return false;
}
}
else
{
if (type_name == "plane")
{
geom.m_type = URDF_GEOM_PLANE;
if (this->m_parseSDF)
{
XMLElement* n = shape->FirstChildElement("normal");
XMLElement* s = shape->FirstChildElement("size");
if ((0 == n) || (0 == s))
{
logger->reportError("Plane shape must have both normal and size attributes");
return false;
}
parseVector3(geom.m_planeNormal, n->GetText(), logger);
}
else
{
if (!shape->Attribute("normal"))
{
logger->reportError("plane requires a normal attribute");
return false;
}
else
{
parseVector3(geom.m_planeNormal, shape->Attribute("normal"), logger);
}
}
}
else
{
logger->reportError("Unknown geometry type:");
logger->reportError(type_name.c_str());
return false;
}
}
return true;
}
bool UrdfParser::parseCollision(UrdfCollision& collision, XMLElement* config, ErrorLogger* logger)
{
collision.m_linkLocalFrame.setIdentity();
if (m_parseSDF)
{
XMLElement* pose = config->FirstChildElement("pose");
if (pose)
{
parseTransform(collision.m_linkLocalFrame, pose, logger, m_parseSDF);
}
}
// Origin
XMLElement* o = config->FirstChildElement("origin");
if (o)
{
if (!parseTransform(collision.m_linkLocalFrame, o, logger))
return false;
}
// Geometry
XMLElement* geom = config->FirstChildElement("geometry");
if (!parseGeometry(collision.m_geometry, geom, logger))
{
return false;
}
{
const char* group_char = config->Attribute("group");
if (group_char)
{
collision.m_flags |= URDF_HAS_COLLISION_GROUP;
collision.m_collisionGroup = urdfLexicalCast<int>(group_char);
}
}
{
const char* mask_char = config->Attribute("mask");
if (mask_char)
{
collision.m_flags |= URDF_HAS_COLLISION_MASK;
collision.m_collisionMask = urdfLexicalCast<int>(mask_char);
}
}
const char* name_char = config->Attribute("name");
if (name_char)
collision.m_name = name_char;
const char* concave_char = config->Attribute("concave");
if (concave_char)
collision.m_flags |= URDF_FORCE_CONCAVE_TRIMESH;
return true;
}
bool UrdfParser::parseVisual(UrdfModel& model, UrdfVisual& visual, XMLElement* config, ErrorLogger* logger)
{
visual.m_linkLocalFrame.setIdentity();
if (m_parseSDF)
{
XMLElement* pose = config->FirstChildElement("pose");
if (pose)
{
parseTransform(visual.m_linkLocalFrame, pose, logger, m_parseSDF);
}
}
// Origin
XMLElement* o = config->FirstChildElement("origin");
if (o)
{
if (!parseTransform(visual.m_linkLocalFrame, o, logger))
return false;
}
// Geometry
XMLElement* geom = config->FirstChildElement("geometry");
if (!parseGeometry(visual.m_geometry, geom, logger))
{
return false;
}
const char* name_char = config->Attribute("name");
if (name_char)
visual.m_name = name_char;
visual.m_geometry.m_hasLocalMaterial = false;
// Material
XMLElement* mat = config->FirstChildElement("material");
//todo(erwincoumans) skip materials in SDF for now (due to complexity)
if (mat)
{
if (m_parseSDF)
{
UrdfMaterial* matPtr = new UrdfMaterial;
matPtr->m_name = "mat";
if (name_char)
matPtr->m_name = name_char;
UrdfMaterial** oldMatPtrPtr = model.m_materials[matPtr->m_name.c_str()];
if (oldMatPtrPtr)
{
UrdfMaterial* oldMatPtr = *oldMatPtrPtr;
model.m_materials.remove(matPtr->m_name.c_str());
if (oldMatPtr)
delete oldMatPtr;
}
model.m_materials.insert(matPtr->m_name.c_str(), matPtr);
{
XMLElement* diffuse = mat->FirstChildElement("diffuse");
if (diffuse)
{
std::string diffuseText = diffuse->GetText();
btVector4 rgba(1, 0, 0, 1);
parseVector4(rgba, diffuseText);
matPtr->m_matColor.m_rgbaColor = rgba;
visual.m_materialName = matPtr->m_name;
visual.m_geometry.m_hasLocalMaterial = true;
}
}
{
XMLElement* specular = mat->FirstChildElement("specular");
if (specular)
{
std::string specularText = specular->GetText();
btVector3 rgba(1, 1, 1);
parseVector3(rgba, specularText, logger);
matPtr->m_matColor.m_specularColor = rgba;
visual.m_materialName = matPtr->m_name;
visual.m_geometry.m_hasLocalMaterial = true;
}
}
}
else
{
// get material name
if (!mat->Attribute("name"))
{
logger->reportError("Visual material must contain a name attribute");
return false;
}
visual.m_materialName = mat->Attribute("name");
// try to parse material element in place
XMLElement* t = mat->FirstChildElement("texture");
XMLElement* c = mat->FirstChildElement("color");
XMLElement* s = mat->FirstChildElement("specular");
if (t || c || s)
{
if (parseMaterial(visual.m_geometry.m_localMaterial, mat, logger))
{
UrdfMaterial* matPtr = new UrdfMaterial(visual.m_geometry.m_localMaterial);
UrdfMaterial** oldMatPtrPtr = model.m_materials[matPtr->m_name.c_str()];
if (oldMatPtrPtr)
{
UrdfMaterial* oldMatPtr = *oldMatPtrPtr;
model.m_materials.remove(matPtr->m_name.c_str());
if (oldMatPtr)
delete oldMatPtr;
}
model.m_materials.insert(matPtr->m_name.c_str(), matPtr);
visual.m_geometry.m_hasLocalMaterial = true;
}
}
}
}
return true;
}
bool UrdfParser::parseLink(UrdfModel& model, UrdfLink& link, XMLElement* config, ErrorLogger* logger)
{
const char* linkName = config->Attribute("name");
if (!linkName)
{
logger->reportError("Link with no name");
return false;
}
link.m_name = linkName;
if (m_parseSDF)
{
XMLElement* pose = config->FirstChildElement("pose");
if (0 == pose)
{
link.m_linkTransformInWorld.setIdentity();
}
else
{
parseTransform(link.m_linkTransformInWorld, pose, logger, m_parseSDF);
}
}
{
//optional 'audio_source' parameters
//modified version of SDF audio_source specification in //http://sdformat.org/spec?ver=1.6&elem=link
#if 0
<audio_source>
<uri>file://media/audio/cheer.mp3</uri>
<pitch>2.0</pitch>
<gain>1.0</gain>
<loop>false</loop>
<contact>
<collision>collision</collision>
</contact>
</audio_source>
#endif
XMLElement* ci = config->FirstChildElement("audio_source");
if (ci)
{
link.m_audioSource.m_flags |= SDFAudioSource::SDFAudioSourceValid;
const char* fn = ci->Attribute("filename");
if (fn)
{
link.m_audioSource.m_uri = fn;
}
else
{
if (XMLElement* filename_xml = ci->FirstChildElement("uri"))
{
link.m_audioSource.m_uri = filename_xml->GetText();
}
}
if (XMLElement* pitch_xml = ci->FirstChildElement("pitch"))
{
link.m_audioSource.m_pitch = urdfLexicalCast<double>(pitch_xml->GetText());
}
if (XMLElement* gain_xml = ci->FirstChildElement("gain"))
{
link.m_audioSource.m_gain = urdfLexicalCast<double>(gain_xml->GetText());
}
if (XMLElement* attack_rate_xml = ci->FirstChildElement("attack_rate"))
{
link.m_audioSource.m_attackRate = urdfLexicalCast<double>(attack_rate_xml->GetText());
}
if (XMLElement* decay_rate_xml = ci->FirstChildElement("decay_rate"))
{
link.m_audioSource.m_decayRate = urdfLexicalCast<double>(decay_rate_xml->GetText());
}
if (XMLElement* sustain_level_xml = ci->FirstChildElement("sustain_level"))
{
link.m_audioSource.m_sustainLevel = urdfLexicalCast<double>(sustain_level_xml->GetText());
}
if (XMLElement* release_rate_xml = ci->FirstChildElement("release_rate"))
{
link.m_audioSource.m_releaseRate = urdfLexicalCast<double>(release_rate_xml->GetText());
}
if (XMLElement* loop_xml = ci->FirstChildElement("loop"))
{
std::string looptxt = loop_xml->GetText();
if (looptxt == "true")
{
link.m_audioSource.m_flags |= SDFAudioSource::SDFAudioSourceLooping;
}
}
if (XMLElement* forceThreshold_xml = ci->FirstChildElement("collision_force_threshold"))
{
link.m_audioSource.m_collisionForceThreshold = urdfLexicalCast<double>(forceThreshold_xml->GetText());
}
//todo: see other audio_source children
//pitch, gain, loop, contact
}
}
{
//optional 'contact' parameters
XMLElement* ci = config->FirstChildElement("contact");
if (ci)
{
XMLElement* damping_xml = ci->FirstChildElement("inertia_scaling");
if (damping_xml)
{
if (m_parseSDF)
{
link.m_contactInfo.m_inertiaScaling = urdfLexicalCast<double>(damping_xml->GetText());
link.m_contactInfo.m_flags |= URDF_CONTACT_HAS_INERTIA_SCALING;
}
else
{
if (!damping_xml->Attribute("value"))
{
logger->reportError("Link/contact: damping element must have value attribute");
return false;
}
link.m_contactInfo.m_inertiaScaling = urdfLexicalCast<double>(damping_xml->Attribute("value"));
link.m_contactInfo.m_flags |= URDF_CONTACT_HAS_INERTIA_SCALING;
}
}
{
XMLElement* friction_xml = ci->FirstChildElement("lateral_friction");
if (friction_xml)
{
if (m_parseSDF)
{
link.m_contactInfo.m_lateralFriction = urdfLexicalCast<double>(friction_xml->GetText());
}
else
{
if (!friction_xml->Attribute("value"))
{
logger->reportError("Link/contact: lateral_friction element must have value attribute");
return false;
}
link.m_contactInfo.m_lateralFriction = urdfLexicalCast<double>(friction_xml->Attribute("value"));
}
}
}
{
XMLElement* rolling_xml = ci->FirstChildElement("rolling_friction");
if (rolling_xml)
{
if (m_parseSDF)
{
link.m_contactInfo.m_rollingFriction = urdfLexicalCast<double>(rolling_xml->GetText());
link.m_contactInfo.m_flags |= URDF_CONTACT_HAS_ROLLING_FRICTION;
}
else
{
if (!rolling_xml->Attribute("value"))
{
logger->reportError("Link/contact: rolling friction element must have value attribute");
return false;
}
link.m_contactInfo.m_rollingFriction = urdfLexicalCast<double>(rolling_xml->Attribute("value"));
link.m_contactInfo.m_flags |= URDF_CONTACT_HAS_ROLLING_FRICTION;
}
}
}
{
XMLElement* restitution_xml = ci->FirstChildElement("restitution");
if (restitution_xml)
{
if (m_parseSDF)
{
link.m_contactInfo.m_restitution = urdfLexicalCast<double>(restitution_xml->GetText());
link.m_contactInfo.m_flags |= URDF_CONTACT_HAS_RESTITUTION;
}
else
{
if (!restitution_xml->Attribute("value"))
{
logger->reportError("Link/contact: restitution element must have value attribute");
return false;
}
link.m_contactInfo.m_restitution = urdfLexicalCast<double>(restitution_xml->Attribute("value"));
link.m_contactInfo.m_flags |= URDF_CONTACT_HAS_RESTITUTION;
}
}
}
{
XMLElement* spinning_xml = ci->FirstChildElement("spinning_friction");
if (spinning_xml)
{
if (m_parseSDF)
{
link.m_contactInfo.m_spinningFriction = urdfLexicalCast<double>(spinning_xml->GetText());
link.m_contactInfo.m_flags |= URDF_CONTACT_HAS_SPINNING_FRICTION;
}
else
{
if (!spinning_xml->Attribute("value"))
{
logger->reportError("Link/contact: spinning friction element must have value attribute");
return false;
}
link.m_contactInfo.m_spinningFriction = urdfLexicalCast<double>(spinning_xml->Attribute("value"));
link.m_contactInfo.m_flags |= URDF_CONTACT_HAS_SPINNING_FRICTION;
}
}
}
{
XMLElement* friction_anchor = ci->FirstChildElement("friction_anchor");
if (friction_anchor)
{
link.m_contactInfo.m_flags |= URDF_CONTACT_HAS_FRICTION_ANCHOR;
}
}
{
XMLElement* stiffness_xml = ci->FirstChildElement("stiffness");
if (stiffness_xml)
{
if (m_parseSDF)
{
link.m_contactInfo.m_contactStiffness = urdfLexicalCast<double>(stiffness_xml->GetText());
link.m_contactInfo.m_flags |= URDF_CONTACT_HAS_STIFFNESS_DAMPING;
}
else
{
if (!stiffness_xml->Attribute("value"))
{
logger->reportError("Link/contact: stiffness element must have value attribute");
return false;
}
link.m_contactInfo.m_contactStiffness = urdfLexicalCast<double>(stiffness_xml->Attribute("value"));
link.m_contactInfo.m_flags |= URDF_CONTACT_HAS_STIFFNESS_DAMPING;
}
}
}
{
XMLElement* damping_xml = ci->FirstChildElement("damping");
if (damping_xml)
{
if (m_parseSDF)
{
link.m_contactInfo.m_contactDamping = urdfLexicalCast<double>(damping_xml->GetText());
link.m_contactInfo.m_flags |= URDF_CONTACT_HAS_STIFFNESS_DAMPING;
}
else
{
if (!damping_xml->Attribute("value"))
{
logger->reportError("Link/contact: damping element must have value attribute");
return false;
}
link.m_contactInfo.m_contactDamping = urdfLexicalCast<double>(damping_xml->Attribute("value"));
link.m_contactInfo.m_flags |= URDF_CONTACT_HAS_STIFFNESS_DAMPING;
}
}
}
}
}
// Inertial (optional)
XMLElement* i = config->FirstChildElement("inertial");
if (i)
{
if (!parseInertia(link.m_inertia, i, logger))
{
logger->reportError("Could not parse inertial element for Link:");
logger->reportError(link.m_name.c_str());
return false;
}
}
else
{
if ((strlen(linkName) == 5) && (strncmp(linkName, "world", 5)) == 0)
{
link.m_inertia.m_mass = 0.f;
link.m_inertia.m_linkLocalFrame.setIdentity();
link.m_inertia.m_ixx = 0.f;
link.m_inertia.m_iyy = 0.f;
link.m_inertia.m_izz = 0.f;
}
else
{
logger->reportWarning("No inertial data for link, using mass=1, localinertiadiagonal = 1,1,1, identity local inertial frame");
link.m_inertia.m_mass = 1.f;
link.m_inertia.m_linkLocalFrame.setIdentity();
link.m_inertia.m_ixx = 1.f;
link.m_inertia.m_iyy = 1.f;
link.m_inertia.m_izz = 1.f;
logger->reportWarning(link.m_name.c_str());
}
}
// Multiple Visuals (optional)
for (XMLElement* vis_xml = config->FirstChildElement("visual"); vis_xml; vis_xml = vis_xml->NextSiblingElement("visual"))
{
UrdfVisual visual;
visual.m_sourceFileLocation = sourceFileLocation(vis_xml);
if (parseVisual(model, visual, vis_xml, logger))
{
link.m_visualArray.push_back(visual);
}
else
{
logger->reportError("Could not parse visual element for Link:");
logger->reportError(link.m_name.c_str());
return false;
}
}
// Multiple Collisions (optional)
for (XMLElement* col_xml = config->FirstChildElement("collision"); col_xml; col_xml = col_xml->NextSiblingElement("collision"))
{
UrdfCollision col;
col.m_sourceFileLocation = sourceFileLocation(col_xml);
if (parseCollision(col, col_xml, logger))
{
link.m_collisionArray.push_back(col);
}
else
{
logger->reportError("Could not parse collision element for Link:");
logger->reportError(link.m_name.c_str());
return false;
}
}
return true;
}
bool UrdfParser::parseJointLimits(UrdfJoint& joint, XMLElement* config, ErrorLogger* logger)
{
joint.m_lowerLimit = 0.f;
joint.m_upperLimit = -1.f;
joint.m_effortLimit = 0.f;
joint.m_velocityLimit = 0.f;
joint.m_jointDamping = 0.f;
joint.m_jointFriction = 0.f;
if (m_parseSDF)
{
XMLElement* lower_xml = config->FirstChildElement("lower");
if (lower_xml)
{
joint.m_lowerLimit = urdfLexicalCast<double>(lower_xml->GetText());
}
XMLElement* upper_xml = config->FirstChildElement("upper");
if (upper_xml)
{
joint.m_upperLimit = urdfLexicalCast<double>(upper_xml->GetText());
}
XMLElement* effort_xml = config->FirstChildElement("effort");
if (effort_xml)
{
joint.m_effortLimit = urdfLexicalCast<double>(effort_xml->GetText());
}
XMLElement* velocity_xml = config->FirstChildElement("velocity");
if (velocity_xml)
{
joint.m_velocityLimit = urdfLexicalCast<double>(velocity_xml->GetText());
}
}
else
{
const char* lower_str = config->Attribute("lower");
if (lower_str)
{
joint.m_lowerLimit = urdfLexicalCast<double>(lower_str);
}
const char* upper_str = config->Attribute("upper");
if (upper_str)
{
joint.m_upperLimit = urdfLexicalCast<double>(upper_str);
}
if (joint.m_type == URDFPrismaticJoint)
{
joint.m_lowerLimit *= m_urdfScaling;
joint.m_upperLimit *= m_urdfScaling;
}
// Get joint effort limit
const char* effort_str = config->Attribute("effort");
if (effort_str)
{
joint.m_effortLimit = urdfLexicalCast<double>(effort_str);
}
// Get joint velocity limit
const char* velocity_str = config->Attribute("velocity");
if (velocity_str)
{
joint.m_velocityLimit = urdfLexicalCast<double>(velocity_str);
}
}
return true;
}
bool UrdfParser::parseJointDynamics(UrdfJoint& joint, XMLElement* config, ErrorLogger* logger)
{
joint.m_jointDamping = 0;
joint.m_jointFriction = 0;
if (m_parseSDF)
{
XMLElement* damping_xml = config->FirstChildElement("damping");
if (damping_xml)
{
joint.m_jointDamping = urdfLexicalCast<double>(damping_xml->GetText());
}
XMLElement* friction_xml = config->FirstChildElement("friction");
if (friction_xml)
{
joint.m_jointFriction = urdfLexicalCast<double>(friction_xml->GetText());
}
if (damping_xml == NULL && friction_xml == NULL)
{
logger->reportError("joint dynamics element specified with no damping and no friction");
return false;
}
}
else
{
// Get joint damping
const char* damping_str = config->Attribute("damping");
if (damping_str)
{
joint.m_jointDamping = urdfLexicalCast<double>(damping_str);
}
// Get joint friction
const char* friction_str = config->Attribute("friction");
if (friction_str)
{
joint.m_jointFriction = urdfLexicalCast<double>(friction_str);
}
if (damping_str == NULL && friction_str == NULL)
{
logger->reportError("joint dynamics element specified with no damping and no friction");
return false;
}
}
return true;
}
bool UrdfParser::parseJoint(UrdfJoint& joint, XMLElement* config, ErrorLogger* logger)
{
// Get Joint Name
const char* name = config->Attribute("name");
if (!name)
{
logger->reportError("unnamed joint found");
return false;
}
joint.m_name = name;
joint.m_parentLinkToJointTransform.setIdentity();
// Get transform from Parent Link to Joint Frame
XMLElement* origin_xml = config->FirstChildElement("origin");
if (origin_xml)
{
if (!parseTransform(joint.m_parentLinkToJointTransform, origin_xml, logger))
{
logger->reportError("Malformed parent origin element for joint:");
logger->reportError(joint.m_name.c_str());
return false;
}
}
// Get Parent Link
XMLElement* parent_xml = config->FirstChildElement("parent");
if (parent_xml)
{
if (m_parseSDF)
{
joint.m_parentLinkName = std::string(parent_xml->GetText());
}
else
{
const char* pname = parent_xml->Attribute("link");
if (!pname)
{
logger->reportError("no parent link name specified for Joint link. this might be the root?");
logger->reportError(joint.m_name.c_str());
return false;
}
else
{
joint.m_parentLinkName = std::string(pname);
}
}
}
// Get Child Link
XMLElement* child_xml = config->FirstChildElement("child");
if (child_xml)
{
if (m_parseSDF)
{
joint.m_childLinkName = std::string(child_xml->GetText());
}
else
{
const char* pname = child_xml->Attribute("link");
if (!pname)
{
logger->reportError("no child link name specified for Joint link [%s].");
logger->reportError(joint.m_name.c_str());
return false;
}
else
{
joint.m_childLinkName = std::string(pname);
}
}
}
// Get Joint type
const char* type_char = config->Attribute("type");
if (!type_char)
{
logger->reportError("joint [%s] has no type, check to see if it's a reference.");
logger->reportError(joint.m_name.c_str());
return false;
}
std::string type_str = type_char;
if (type_str == "spherical")
joint.m_type = URDFSphericalJoint;
else if (type_str == "planar")
joint.m_type = URDFPlanarJoint;
else if (type_str == "floating")
joint.m_type = URDFFloatingJoint;
else if (type_str == "revolute")
joint.m_type = URDFRevoluteJoint;
else if (type_str == "continuous")
joint.m_type = URDFContinuousJoint;
else if (type_str == "prismatic")
joint.m_type = URDFPrismaticJoint;
else if (type_str == "fixed")
joint.m_type = URDFFixedJoint;
else
{
logger->reportError("Joint ");
logger->reportError(joint.m_name.c_str());
logger->reportError("has unknown type:");
logger->reportError(type_str.c_str());
return false;
}
if (m_parseSDF)
{
if (joint.m_type != URDFFloatingJoint && joint.m_type != URDFFixedJoint)
{
// axis
XMLElement* axis_xml = config->FirstChildElement("axis");
if (!axis_xml)
{
logger->reportWarning("urdfdom: no axis elemement for Joint, defaulting to (1,0,0) axis");
logger->reportWarning(joint.m_name.c_str());
joint.m_localJointAxis.setValue(1, 0, 0);
}
else
{
XMLElement* xyz_xml = axis_xml->FirstChildElement("xyz");
if (xyz_xml)
{
if (!parseVector3(joint.m_localJointAxis, std::string(xyz_xml->GetText()), logger))
{
logger->reportError("Malformed axis element:");
logger->reportError(joint.m_name.c_str());
logger->reportError(" for joint:");
logger->reportError(xyz_xml->GetText());
return false;
}
}
XMLElement* limit_xml = axis_xml->FirstChildElement("limit");
if (limit_xml)
{
if (joint.m_type != URDFContinuousJoint)
{
if (!parseJointLimits(joint, limit_xml, logger))
{
logger->reportError("Could not parse limit element for joint:");
logger->reportError(joint.m_name.c_str());
return false;
}
}
}
else if (joint.m_type == URDFRevoluteJoint)
{
logger->reportError("Joint is of type REVOLUTE but it does not specify limits");
logger->reportError(joint.m_name.c_str());
return false;
}
else if (joint.m_type == URDFPrismaticJoint)
{
logger->reportError("Joint is of type PRISMATIC without limits");
logger->reportError(joint.m_name.c_str());
return false;
}
XMLElement* prop_xml = axis_xml->FirstChildElement("dynamics");
if (prop_xml)
{
if (!parseJointDynamics(joint, prop_xml, logger))
{
logger->reportError("Could not parse dynamics element for joint:");
logger->reportError(joint.m_name.c_str());
return false;
}
}
}
}
}
else
{
// Get Joint Axis
if (joint.m_type != URDFFloatingJoint && joint.m_type != URDFFixedJoint)
{
// axis
XMLElement* axis_xml = config->FirstChildElement("axis");
if (!axis_xml)
{
logger->reportWarning("urdfdom: no axis elemement for Joint, defaulting to (1,0,0) axis");
logger->reportWarning(joint.m_name.c_str());
joint.m_localJointAxis.setValue(1, 0, 0);
}
else
{
if (axis_xml->Attribute("xyz"))
{
if (!parseVector3(joint.m_localJointAxis, axis_xml->Attribute("xyz"), logger))
{
logger->reportError("Malformed axis element:");
logger->reportError(joint.m_name.c_str());
logger->reportError(" for joint:");
logger->reportError(axis_xml->Attribute("xyz"));
return false;
}
}
}
}
// Get limit
XMLElement* limit_xml = config->FirstChildElement("limit");
if (limit_xml)
{
if (!parseJointLimits(joint, limit_xml, logger))
{
logger->reportError("Could not parse limit element for joint:");
logger->reportError(joint.m_name.c_str());
return false;
}
}
else if (joint.m_type == URDFRevoluteJoint)
{
logger->reportError("Joint is of type REVOLUTE but it does not specify limits");
logger->reportError(joint.m_name.c_str());
return false;
}
else if (joint.m_type == URDFPrismaticJoint)
{
logger->reportError("Joint is of type PRISMATIC without limits");
logger->reportError(joint.m_name.c_str());
return false;
}
joint.m_jointDamping = 0;
joint.m_jointFriction = 0;
// Get Dynamics
XMLElement* prop_xml = config->FirstChildElement("dynamics");
if (prop_xml)
{
// Get joint damping
const char* damping_str = prop_xml->Attribute("damping");
if (damping_str)
{
joint.m_jointDamping = urdfLexicalCast<double>(damping_str);
}
// Get joint friction
const char* friction_str = prop_xml->Attribute("friction");
if (friction_str)
{
joint.m_jointFriction = urdfLexicalCast<double>(friction_str);
}
if (damping_str == NULL && friction_str == NULL)
{
logger->reportError("joint dynamics element specified with no damping and no friction");
return false;
}
}
}
return true;
}
bool UrdfParser::parseSensor(UrdfModel& model, UrdfLink& link, UrdfJoint& joint, XMLElement* config, ErrorLogger* logger)
{
// Sensors are mapped to Links with a Fixed Joints connecting to the parents.
// They has no extent or mass so they will work with the existing
// model without affecting the system.
logger->reportError("Adding Sensor ");
const char* sensorName = config->Attribute("name");
if (!sensorName)
{
logger->reportError("Sensor with no name");
return false;
}
logger->reportError(sensorName);
link.m_name = sensorName;
link.m_linkTransformInWorld.setIdentity();
link.m_inertia.m_mass = 0.f;
link.m_inertia.m_linkLocalFrame.setIdentity();
link.m_inertia.m_ixx = 0.f;
link.m_inertia.m_iyy = 0.f;
link.m_inertia.m_izz = 0.f;
// Get Parent Link
XMLElement* parent_xml = config->FirstChildElement("parent");
if (parent_xml)
{
if (m_parseSDF)
{
joint.m_parentLinkName = std::string(parent_xml->GetText());
}
else
{
const char* pname = parent_xml->Attribute("link");
if (!pname)
{
logger->reportError("no parent link name specified for sensor. this might be the root?");
logger->reportError(joint.m_name.c_str());
return false;
}
else
{
joint.m_parentLinkName = std::string(pname);
}
}
}
joint.m_name = std::string(sensorName).append("_Joint");
joint.m_childLinkName = sensorName;
joint.m_type = URDFFixedJoint;
joint.m_localJointAxis.setValue(0, 0, 0);
// Get transform from Parent Link to Joint Frame
XMLElement* origin_xml = config->FirstChildElement("origin");
if (origin_xml)
{
if (!parseTransform(joint.m_parentLinkToJointTransform, origin_xml, logger))
{
logger->reportError("Malformed origin element for sensor:");
logger->reportError(joint.m_name.c_str());
return false;
}
}
return true;
}
bool UrdfParser::initTreeAndRoot(UrdfModel& model, ErrorLogger* logger)
{
// every link has children links and joints, but no parents, so we create a
// local convenience data structure for keeping child->parent relations
btHashMap<btHashString, btHashString> parentLinkTree;
// loop through all joints, for every link, assign children links and children joints
for (int i = 0; i < model.m_joints.size(); i++)
{
UrdfJoint** jointPtr = model.m_joints.getAtIndex(i);
if (jointPtr)
{
UrdfJoint* joint = *jointPtr;
std::string parent_link_name = joint->m_parentLinkName;
std::string child_link_name = joint->m_childLinkName;
if (parent_link_name.empty() || child_link_name.empty())
{
logger->reportError("parent link or child link is empty for joint");
logger->reportError(joint->m_name.c_str());
return false;
}
UrdfLink** childLinkPtr = model.m_links.find(joint->m_childLinkName.c_str());
if (!childLinkPtr)
{
logger->reportError("Cannot find child link for joint ");
logger->reportError(joint->m_name.c_str());
return false;
}
UrdfLink* childLink = *childLinkPtr;
UrdfLink** parentLinkPtr = model.m_links.find(joint->m_parentLinkName.c_str());
if (!parentLinkPtr)
{
logger->reportError("Cannot find parent link for a joint");
logger->reportError(joint->m_name.c_str());
return false;
}
UrdfLink* parentLink = *parentLinkPtr;
childLink->m_parentLink = parentLink;
childLink->m_parentJoint = joint;
parentLink->m_childJoints.push_back(joint);
parentLink->m_childLinks.push_back(childLink);
parentLinkTree.insert(childLink->m_name.c_str(), parentLink->m_name.c_str());
}
}
//search for children that have no parent, those are 'root'
for (int i = 0; i < model.m_links.size(); i++)
{
UrdfLink** linkPtr = model.m_links.getAtIndex(i);
btAssert(linkPtr);
if (linkPtr)
{
UrdfLink* link = *linkPtr;
link->m_linkIndex = i;
if (!link->m_parentLink)
{
model.m_rootLinks.push_back(link);
}
}
}
if (model.m_rootLinks.size() > 1)
{
std::string multipleRootMessage =
"URDF file with multiple root links found:";
for (int i = 0; i < model.m_rootLinks.size(); i++)
{
multipleRootMessage += " ";
multipleRootMessage += model.m_rootLinks[i]->m_name.c_str();
}
logger->reportWarning(multipleRootMessage.c_str());
}
if (model.m_rootLinks.size() == 0)
{
logger->reportError("URDF without root link found");
return false;
}
return true;
}
bool UrdfParser::loadUrdf(const char* urdfText, ErrorLogger* logger, bool forceFixedBase, bool parseSensors)
{
XMLDocument xml_doc;
xml_doc.Parse(urdfText);
if (xml_doc.Error())
{
#ifdef G3_TINYXML2
logger->reportError("xml reading error");
#else
logger->reportError(xml_doc.ErrorStr());
xml_doc.ClearError();
#endif
return false;
}
XMLElement* robot_xml = xml_doc.FirstChildElement("robot");
if (!robot_xml)
{
logger->reportError("expected a robot element");
return false;
}
// Get robot name
const char* name = robot_xml->Attribute("name");
if (!name)
{
logger->reportError("Expected a name for robot");
return false;
}
m_urdf2Model.m_name = name;
// Get all Material elements
for (XMLElement* material_xml = robot_xml->FirstChildElement("material"); material_xml; material_xml = material_xml->NextSiblingElement("material"))
{
UrdfMaterial* material = new UrdfMaterial;
parseMaterial(*material, material_xml, logger);
UrdfMaterial** mat = m_urdf2Model.m_materials.find(material->m_name.c_str());
if (mat)
{
delete material;
logger->reportWarning("Duplicate material");
}
else
{
m_urdf2Model.m_materials.insert(material->m_name.c_str(), material);
}
}
// char msg[1024];
// sprintf(msg,"Num materials=%d", m_model.m_materials.size());
// logger->printMessage(msg);
for (XMLElement* link_xml = robot_xml->FirstChildElement("link"); link_xml; link_xml = link_xml->NextSiblingElement("link"))
{
UrdfLink* link = new UrdfLink;
if (parseLink(m_urdf2Model, *link, link_xml, logger))
{
if (m_urdf2Model.m_links.find(link->m_name.c_str()))
{
logger->reportError("Link name is not unique, link names in the same model have to be unique");
logger->reportError(link->m_name.c_str());
delete link;
return false;
}
else
{
//copy model material into link material, if link has no local material
for (int i = 0; i < link->m_visualArray.size(); i++)
{
UrdfVisual& vis = link->m_visualArray.at(i);
if (!vis.m_geometry.m_hasLocalMaterial && vis.m_materialName.c_str())
{
UrdfMaterial** mat = m_urdf2Model.m_materials.find(vis.m_materialName.c_str());
if (mat && *mat)
{
vis.m_geometry.m_localMaterial = **mat;
}
else
{
//logger->reportError("Cannot find material with name:");
//logger->reportError(vis.m_materialName.c_str());
}
}
}
m_urdf2Model.m_links.insert(link->m_name.c_str(), link);
}
}
else
{
logger->reportError("failed to parse link");
delete link;
return false;
}
}
if (m_urdf2Model.m_links.size() == 0)
{
logger->reportWarning("No links found in URDF file");
return false;
}
// Get all Joint elements
for (XMLElement* joint_xml = robot_xml->FirstChildElement("joint"); joint_xml; joint_xml = joint_xml->NextSiblingElement("joint"))
{
UrdfJoint* joint = new UrdfJoint;
if (parseJoint(*joint, joint_xml, logger))
{
if (m_urdf2Model.m_joints.find(joint->m_name.c_str()))
{
logger->reportError("joint '%s' is not unique.");
logger->reportError(joint->m_name.c_str());
delete joint;
return false;
}
else
{
m_urdf2Model.m_joints.insert(joint->m_name.c_str(), joint);
}
}
else
{
logger->reportError("joint xml is not initialized correctly");
delete joint;
return false;
}
}
if (parseSensors)
{
// Get all Sensor Elements.
for (XMLElement* sensor_xml = robot_xml->FirstChildElement("sensor"); sensor_xml; sensor_xml = sensor_xml->NextSiblingElement("sensor"))
{
UrdfLink* sensor = new UrdfLink;
UrdfJoint* sensor_joint = new UrdfJoint;
if (parseSensor(m_urdf2Model, *sensor, *sensor_joint, sensor_xml, logger))
{
if (m_urdf2Model.m_links.find(sensor->m_name.c_str()))
{
logger->reportError("Sensor name is not unique, sensor and link names in the same model have to be unique");
logger->reportError(sensor->m_name.c_str());
delete sensor;
delete sensor_joint;
return false;
}
else if (m_urdf2Model.m_joints.find(sensor_joint->m_name.c_str()))
{
logger->reportError("Sensor Joint name is not unique, joint names in the same model have to be unique");
logger->reportError(sensor_joint->m_name.c_str());
delete sensor;
delete sensor_joint;
return false;
}
else
{
m_urdf2Model.m_links.insert(sensor->m_name.c_str(), sensor);
m_urdf2Model.m_joints.insert(sensor_joint->m_name.c_str(), sensor_joint);
}
}
else
{
logger->reportError("failed to parse sensor");
delete sensor;
delete sensor_joint;
return false;
}
}
}
if (m_urdf2Model.m_links.size() == 0)
{
logger->reportWarning("No links found in URDF file");
return false;
}
bool ok(initTreeAndRoot(m_urdf2Model, logger));
if (!ok)
{
return false;
}
if (forceFixedBase)
{
for (int i = 0; i < m_urdf2Model.m_rootLinks.size(); i++)
{
UrdfLink* link(m_urdf2Model.m_rootLinks.at(i));
link->m_inertia.m_mass = 0.0;
link->m_inertia.m_ixx = 0.0;
link->m_inertia.m_ixy = 0.0;
link->m_inertia.m_ixz = 0.0;
link->m_inertia.m_iyy = 0.0;
link->m_inertia.m_iyz = 0.0;
link->m_inertia.m_izz = 0.0;
}
}
return true;
}
void UrdfParser::activateModel(int modelIndex)
{
m_activeSdfModel = modelIndex;
}
bool UrdfParser::loadSDF(const char* sdfText, ErrorLogger* logger)
{
XMLDocument xml_doc;
xml_doc.Parse(sdfText);
if (xml_doc.Error())
{
#ifdef G3_TINYXML2
logger->reportError("xml reading error");
#else
logger->reportError(xml_doc.ErrorStr());
xml_doc.ClearError();
#endif
return false;
}
XMLElement* sdf_xml = xml_doc.FirstChildElement("sdf");
if (!sdf_xml)
{
logger->reportError("expected an sdf element");
return false;
}
//apparently, SDF doesn't require a "world" element, optional? URDF does.
XMLElement* world_xml = sdf_xml->FirstChildElement("world");
XMLElement* robot_xml = 0;
if (!world_xml)
{
logger->reportWarning("expected a world element, continuing without it.");
robot_xml = sdf_xml->FirstChildElement("model");
}
else
{
robot_xml = world_xml->FirstChildElement("model");
}
// Get all model (robot) elements
for (; robot_xml; robot_xml = robot_xml->NextSiblingElement("model"))
{
UrdfModel* localModel = new UrdfModel;
m_tmpModels.push_back(localModel);
XMLElement* stat = robot_xml->FirstChildElement("static");
if (0 != stat)
{
int val = int(atof(stat->GetText()));
if (val == 1)
{
localModel->m_overrideFixedBase = true;
}
}
// Get robot name
const char* name = robot_xml->Attribute("name");
if (!name)
{
logger->reportError("Expected a name for robot");
return false;
}
localModel->m_name = name;
XMLElement* pose_xml = robot_xml->FirstChildElement("pose");
if (0 == pose_xml)
{
localModel->m_rootTransformInWorld.setIdentity();
}
else
{
parseTransform(localModel->m_rootTransformInWorld, pose_xml, logger, m_parseSDF);
}
// Get all Material elements
for (XMLElement* material_xml = robot_xml->FirstChildElement("material"); material_xml; material_xml = material_xml->NextSiblingElement("material"))
{
UrdfMaterial* material = new UrdfMaterial;
parseMaterial(*material, material_xml, logger);
UrdfMaterial** mat = localModel->m_materials.find(material->m_name.c_str());
if (mat)
{
logger->reportWarning("Duplicate material");
delete material;
}
else
{
localModel->m_materials.insert(material->m_name.c_str(), material);
}
}
// char msg[1024];
// sprintf(msg,"Num materials=%d", m_model.m_materials.size());
// logger->printMessage(msg);
for (XMLElement* link_xml = robot_xml->FirstChildElement("link"); link_xml; link_xml = link_xml->NextSiblingElement("link"))
{
UrdfLink* link = new UrdfLink;
if (parseLink(*localModel, *link, link_xml, logger))
{
if (localModel->m_links.find(link->m_name.c_str()))
{
logger->reportError("Link name is not unique, link names in the same model have to be unique");
logger->reportError(link->m_name.c_str());
delete link;
return false;
}
else
{
//copy model material into link material, if link has no local material
for (int i = 0; i < link->m_visualArray.size(); i++)
{
UrdfVisual& vis = link->m_visualArray.at(i);
if (!vis.m_geometry.m_hasLocalMaterial && vis.m_materialName.c_str())
{
UrdfMaterial** mat = localModel->m_materials.find(vis.m_materialName.c_str());
if (mat && *mat)
{
vis.m_geometry.m_localMaterial = **mat;
}
else
{
//logger->reportError("Cannot find material with name:");
//logger->reportError(vis.m_materialName.c_str());
}
}
}
localModel->m_links.insert(link->m_name.c_str(), link);
}
}
else
{
logger->reportError("failed to parse link");
delete link;
return false;
}
}
if (localModel->m_links.size() == 0)
{
logger->reportWarning("No links found in URDF file");
return false;
}
// Get all Joint elements
for (XMLElement* joint_xml = robot_xml->FirstChildElement("joint"); joint_xml; joint_xml = joint_xml->NextSiblingElement("joint"))
{
UrdfJoint* joint = new UrdfJoint;
if (parseJoint(*joint, joint_xml, logger))
{
if (localModel->m_joints.find(joint->m_name.c_str()))
{
logger->reportError("joint '%s' is not unique.");
logger->reportError(joint->m_name.c_str());
delete joint;
return false;
}
else
{
localModel->m_joints.insert(joint->m_name.c_str(), joint);
}
}
else
{
logger->reportError("joint xml is not initialized correctly");
delete joint;
return false;
}
}
bool ok(initTreeAndRoot(*localModel, logger));
if (!ok)
{
return false;
}
m_sdfModels.push_back(localModel);
}
return true;
}
std::string UrdfParser::sourceFileLocation(XMLElement* e)
{
#if 0
//no C++11 etc, no snprintf
char buf[1024];
snprintf(buf, sizeof(buf), "%s:%i", m_urdf2Model.m_sourceFile.c_str(), e->Row());
return buf;
#else
char row[1024];
#ifdef G3_TINYXML2
sprintf(row, "unknown line");
#else
sprintf(row, "%d", e->GetLineNum());
#endif
std::string str = m_urdf2Model.m_sourceFile.c_str() + std::string(":") + std::string(row);
return str;
#endif
}