mirror of
https://github.com/bulletphysics/bullet3
synced 2025-01-11 01:40:10 +00:00
d051e2eacb
Add option to compile without btClock and without profiling: comment out USE_BT_CLOCK, and #define BT_NO_PROFILE Fixed typo/case in #include "LinearMath/btQuickProf.h", in SpuParallelSolver.cpp Removed unnecessary files from libxml CMakeLists.txt
235 lines
6.9 KiB
C++
235 lines
6.9 KiB
C++
/*
|
|
Bullet Continuous Collision Detection and Physics Library
|
|
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
///create 125 (5x5x5) dynamic object
|
|
#define ARRAY_SIZE_X 5
|
|
#define ARRAY_SIZE_Y 5
|
|
#define ARRAY_SIZE_Z 5
|
|
|
|
//maximum number of objects (and allow user to shoot additional boxes)
|
|
#define MAX_PROXIES (ARRAY_SIZE_X*ARRAY_SIZE_Y*ARRAY_SIZE_Z + 1024)
|
|
|
|
#define START_POS_X -5
|
|
#define START_POS_Y -5
|
|
#define START_POS_Z -3
|
|
|
|
#include "BasicDemo.h"
|
|
#include "GlutStuff.h"
|
|
///btBulletDynamicsCommon.h is the main Bullet include file, contains most common include files.
|
|
#include "btBulletDynamicsCommon.h"
|
|
#include <stdio.h> //printf debugging
|
|
|
|
|
|
void BasicDemo::clientMoveAndDisplay()
|
|
{
|
|
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
|
|
|
|
//simple dynamics world doesn't handle fixed-time-stepping
|
|
float ms = getDeltaTimeMicroseconds();
|
|
|
|
///step the simulation
|
|
if (m_dynamicsWorld)
|
|
{
|
|
m_dynamicsWorld->stepSimulation(ms / 1000000.f);
|
|
//optional but useful: debug drawing
|
|
m_dynamicsWorld->debugDrawWorld();
|
|
}
|
|
|
|
renderme();
|
|
|
|
glFlush();
|
|
|
|
glutSwapBuffers();
|
|
|
|
}
|
|
|
|
|
|
|
|
void BasicDemo::displayCallback(void) {
|
|
|
|
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
|
|
|
|
renderme();
|
|
|
|
//optional but useful: debug drawing to detect problems
|
|
if (m_dynamicsWorld)
|
|
m_dynamicsWorld->debugDrawWorld();
|
|
|
|
glFlush();
|
|
glutSwapBuffers();
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void BasicDemo::initPhysics()
|
|
{
|
|
|
|
setCameraDistance(btScalar(50.));
|
|
|
|
///collision configuration contains default setup for memory, collision setup
|
|
m_collisionConfiguration = new btDefaultCollisionConfiguration();
|
|
|
|
///use the default collision dispatcher. For parallel processing you can use a diffent dispatcher (see Extras/BulletMultiThreaded)
|
|
m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration);
|
|
|
|
///the maximum size of the collision world. Make sure objects stay within these boundaries
|
|
///Don't make the world AABB size too large, it will harm simulation quality and performance
|
|
btVector3 worldAabbMin(-10000,-10000,-10000);
|
|
btVector3 worldAabbMax(10000,10000,10000);
|
|
m_overlappingPairCache = new btAxisSweep3(worldAabbMin,worldAabbMax,MAX_PROXIES);
|
|
|
|
///the default constraint solver. For parallel processing you can use a different solver (see Extras/BulletMultiThreaded)
|
|
btSequentialImpulseConstraintSolver* sol = new btSequentialImpulseConstraintSolver;
|
|
m_solver = sol;
|
|
|
|
|
|
m_dynamicsWorld = new btDiscreteDynamicsWorld(m_dispatcher,m_overlappingPairCache,m_solver,m_collisionConfiguration);
|
|
|
|
m_dynamicsWorld->setGravity(btVector3(0,-10,0));
|
|
|
|
///create a few basic rigid bodies
|
|
// btCollisionShape* groundShape = new btBoxShape(btVector3(btScalar(50.),btScalar(50.),btScalar(50.)));
|
|
btCollisionShape* groundShape = new btStaticPlaneShape(btVector3(0,1,0),50);
|
|
|
|
m_collisionShapes.push_back(groundShape);
|
|
|
|
btTransform groundTransform;
|
|
groundTransform.setIdentity();
|
|
groundTransform.setOrigin(btVector3(0,-56,0));
|
|
|
|
//We can also use DemoApplication::localCreateRigidBody, but for clarity it is provided here:
|
|
{
|
|
btScalar mass(0.);
|
|
|
|
//rigidbody is dynamic if and only if mass is non zero, otherwise static
|
|
bool isDynamic = (mass != 0.f);
|
|
|
|
btVector3 localInertia(0,0,0);
|
|
if (isDynamic)
|
|
groundShape->calculateLocalInertia(mass,localInertia);
|
|
|
|
//using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
|
|
btDefaultMotionState* myMotionState = new btDefaultMotionState(groundTransform);
|
|
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,groundShape,localInertia);
|
|
btRigidBody* body = new btRigidBody(rbInfo);
|
|
|
|
//add the body to the dynamics world
|
|
m_dynamicsWorld->addRigidBody(body);
|
|
}
|
|
|
|
|
|
{
|
|
//create a few dynamic rigidbodies
|
|
// Re-using the same collision is better for memory usage and performance
|
|
|
|
btCollisionShape* colShape = new btBoxShape(btVector3(1,1,1));
|
|
//btCollisionShape* colShape = new btSphereShape(btScalar(1.));
|
|
m_collisionShapes.push_back(colShape);
|
|
|
|
/// Create Dynamic Objects
|
|
btTransform startTransform;
|
|
startTransform.setIdentity();
|
|
|
|
btScalar mass(1.f);
|
|
|
|
//rigidbody is dynamic if and only if mass is non zero, otherwise static
|
|
bool isDynamic = (mass != 0.f);
|
|
|
|
btVector3 localInertia(0,0,0);
|
|
if (isDynamic)
|
|
colShape->calculateLocalInertia(mass,localInertia);
|
|
|
|
float start_x = START_POS_X - ARRAY_SIZE_X/2;
|
|
float start_y = START_POS_Y;
|
|
float start_z = START_POS_Z - ARRAY_SIZE_Z/2;
|
|
|
|
for (int k=0;k<ARRAY_SIZE_Y;k++)
|
|
{
|
|
for (int i=0;i<ARRAY_SIZE_X;i++)
|
|
{
|
|
for(int j = 0;j<ARRAY_SIZE_Z;j++)
|
|
{
|
|
startTransform.setOrigin(btVector3(
|
|
2.0*i + start_x,
|
|
2.0*k + start_y,
|
|
2.0*j + start_z));
|
|
|
|
|
|
//using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
|
|
btDefaultMotionState* myMotionState = new btDefaultMotionState(startTransform);
|
|
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,colShape,localInertia);
|
|
btRigidBody* body = new btRigidBody(rbInfo);
|
|
|
|
m_dynamicsWorld->addRigidBody(body);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
clientResetScene();
|
|
}
|
|
|
|
|
|
void BasicDemo::exitPhysics()
|
|
{
|
|
|
|
|
|
//cleanup in the reverse order of creation/initialization
|
|
|
|
//remove the rigidbodies from the dynamics world and delete them
|
|
int i;
|
|
for (i=m_dynamicsWorld->getNumCollisionObjects()-1; i>=0 ;i--)
|
|
{
|
|
btCollisionObject* obj = m_dynamicsWorld->getCollisionObjectArray()[i];
|
|
btRigidBody* body = btRigidBody::upcast(obj);
|
|
if (body && body->getMotionState())
|
|
{
|
|
delete body->getMotionState();
|
|
}
|
|
m_dynamicsWorld->removeCollisionObject( obj );
|
|
delete obj;
|
|
}
|
|
|
|
//delete collision shapes
|
|
for (int j=0;j<m_collisionShapes.size();j++)
|
|
{
|
|
btCollisionShape* shape = m_collisionShapes[j];
|
|
delete shape;
|
|
}
|
|
|
|
//delete dynamics world
|
|
delete m_dynamicsWorld;
|
|
|
|
//delete solver
|
|
delete m_solver;
|
|
|
|
//delete broadphase
|
|
delete m_overlappingPairCache;
|
|
|
|
//delete dispatcher
|
|
delete m_dispatcher;
|
|
|
|
delete m_collisionConfiguration;
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|