bullet3/test/Bullet2/Source/Tests/Test_qtnorm.cpp

177 lines
4.3 KiB
C++

//
// Test_qtnorm.cpp
// BulletTest
//
// Copyright (c) 2011 Apple Inc.
//
#include "LinearMath/btScalar.h"
#if defined (BT_USE_SSE_IN_API) || defined (BT_USE_NEON)
#include "Test_qtnorm.h"
#include "vector.h"
#include "Utils.h"
#include "main.h"
#include <math.h>
#include <string.h>
#include <LinearMath/btQuaternion.h>
#define BT_OP(a) (a.normalize())
// reference code for testing purposes
static inline btQuaternion& qtnorm_ref(btQuaternion& q1);
static inline btQuaternion& qtnorm_ref(btQuaternion& q1)
{
float dot =
q1.x() * q1.x() +
q1.y() * q1.y() +
q1.z() * q1.z() +
q1.w() * q1.w();
dot = 1.0f / sqrtf(dot);
q1.setValue(q1.x()*dot, q1.y()*dot, q1.z()*dot, q1.w()*dot);
return q1;
}
#define LOOPCOUNT 1024
#define NUM_CYCLES 1000
int Test_qtnorm(void)
{
int i;
btQuaternion q1, q2;
float x, y, z, w, vNaN;
vNaN = BT_NAN; // w channel NaN
btQuaternion correct_res, test_res;
for (i=0; i<LOOPCOUNT; i++)
{
// Init the data
x = RANDF_01;
y = RANDF_01;
z = RANDF_01;
w = RANDF_01;
q1.setValue(x,y,z,w);
q2 = q1;
correct_res.setValue(vNaN, vNaN, vNaN, vNaN);
test_res.setValue(vNaN, vNaN, vNaN, vNaN);
correct_res = qtnorm_ref(q1);
test_res = BT_OP(q2);
if( fabsf(correct_res.x() - test_res.x()) +
fabsf(correct_res.y() - test_res.y()) +
fabsf(correct_res.z() - test_res.z()) +
fabsf(correct_res.w() - test_res.w()) > FLT_EPSILON*10 )
{
vlog( "Error - qtnorm result error! "
"\ncorrect = (%10.7f, %10.7f, %10.7f, %10.7f) "
"\ntested = (%10.7f, %10.7f, %10.7f, %10.7f) \n",
correct_res.x(), correct_res.y(),
correct_res.z(), correct_res.w(),
test_res.x(), test_res.y(),
test_res.z(), test_res.w());
return 1;
}
}
#define DATA_SIZE LOOPCOUNT
btQuaternion qt_arr0[DATA_SIZE];
btQuaternion qt_arr1[DATA_SIZE];
uint64_t scalarTime;
uint64_t vectorTime;
size_t j, k;
{
uint64_t startTime, bestTime, currentTime;
bestTime = -1LL;
scalarTime = 0;
for (j = 0; j < NUM_CYCLES; j++)
{
for( k = 0; k < DATA_SIZE; k++ )
{
x = RANDF_01;
y = RANDF_01;
z = RANDF_01;
w = RANDF_01;
qt_arr1[k].setValue(x,y,z,w);
}
startTime = ReadTicks();
for( k = 0; k+4 <= LOOPCOUNT; k+=4 )
{
size_t km = (k & (DATA_SIZE-1));
qt_arr0[km] = qtnorm_ref(qt_arr1[km]);km++;
qt_arr0[km] = qtnorm_ref(qt_arr1[km]);km++;
qt_arr0[km] = qtnorm_ref(qt_arr1[km]);km++;
qt_arr0[km] = qtnorm_ref(qt_arr1[km]);
}
currentTime = ReadTicks() - startTime;
scalarTime += currentTime;
if( currentTime < bestTime )
bestTime = currentTime;
}
if( 0 == gReportAverageTimes )
scalarTime = bestTime;
else
scalarTime /= NUM_CYCLES;
}
{
uint64_t startTime, bestTime, currentTime;
bestTime = -1LL;
vectorTime = 0;
for (j = 0; j < NUM_CYCLES; j++)
{
for( k = 0; k < DATA_SIZE; k++ )
{
x = RANDF_01;
y = RANDF_01;
z = RANDF_01;
w = RANDF_01;
qt_arr1[k].setValue(x,y,z,w);
}
startTime = ReadTicks();
for( k = 0; k+4 <= LOOPCOUNT; k+=4 )
{
size_t km = (k & (DATA_SIZE-1));
qt_arr0[km] = BT_OP(qt_arr1[km]);km++;
qt_arr0[km] = BT_OP(qt_arr1[km]);km++;
qt_arr0[km] = BT_OP(qt_arr1[km]);km++;
qt_arr0[km] = BT_OP(qt_arr1[km]);km++;
}
currentTime = ReadTicks() - startTime;
vectorTime += currentTime;
if( currentTime < bestTime )
bestTime = currentTime;
}
if( 0 == gReportAverageTimes )
vectorTime = bestTime;
else
vectorTime /= NUM_CYCLES;
}
vlog( "Timing:\n" );
vlog( " \t scalar\t vector\n" );
vlog( " \t%10.4f\t%10.4f\n", TicksToCycles( scalarTime ) / LOOPCOUNT,
TicksToCycles( vectorTime ) / LOOPCOUNT );
return 0;
}
#endif //BT_USE_SSE