bullet3/test/Bullet2/Source/Tests/Test_v3dot.cpp

165 lines
3.7 KiB
C++

//
// Test_v3dot.cpp
// BulletTest
//
// Copyright (c) 2011 Apple Inc.
//
#include "LinearMath/btScalar.h"
#if defined (BT_USE_SSE_IN_API) || defined (BT_USE_NEON)
#include "Test_v3dot.h"
#include "vector.h"
#include "Utils.h"
#include "main.h"
#include <math.h>
#include <string.h>
#include <LinearMath/btVector3.h>
// reference code for testing purposes
static inline
btScalar v3dot_ref(
const btVector3& v1,
const btVector3& v2);
#define LOOPCOUNT 1000
#define NUM_CYCLES 10000
int Test_v3dot(void)
{
btVector3 v1, v2;
float x,y,z,w;
// Init the data
x = RANDF_01;
y = RANDF_01;
z = RANDF_01;
w = BT_NAN; // w channel NaN
v1.setValue(x,y,z);
v1.setW(w);
x = RANDF_01;
y = RANDF_01;
z = RANDF_01;
v2.setValue(x,y,z);
v2.setW(w);
float correctDot0, testDot0;
{
correctDot0 = w;
testDot0 = w; ;
correctDot0 = v3dot_ref(v1, v2);
testDot0 = v1.dot(v2);
if( fabsf(correctDot0 - testDot0) > FLT_EPSILON * 4 )
{
vlog( "Error - v3dot result error! %f != %f \n", correctDot0, testDot0);
return 1;
}
}
#define DATA_SIZE 1024
btVector3 vec3_arr1[DATA_SIZE];
btVector3 vec3_arr2[DATA_SIZE];
btScalar res_arr[DATA_SIZE];
uint64_t scalarTime;
uint64_t vectorTime;
size_t j, k;
for( k = 0; k < DATA_SIZE; k++ )
{
x = RANDF_01;
y = RANDF_01;
z = RANDF_01;
vec3_arr1[k].setValue(x,y,z);
vec3_arr1[k].setW(w);
x = RANDF_01;
y = RANDF_01;
z = RANDF_01;
vec3_arr2[k].setValue(x,y,z);
vec3_arr2[k].setW(w);
res_arr[k] = w;
}
{
uint64_t startTime, bestTime, currentTime;
bestTime = -1LL;
scalarTime = 0;
for (j = 0; j < NUM_CYCLES; j++)
{
startTime = ReadTicks();
for( k = 0; k+4 <= LOOPCOUNT; k+=4 )
{
size_t k32 = (k & (DATA_SIZE-1));
res_arr[k32] = v3dot_ref( vec3_arr1[k32], vec3_arr2[k32]); k32++;
res_arr[k32] = v3dot_ref( vec3_arr1[k32], vec3_arr2[k32]); k32++;
res_arr[k32] = v3dot_ref( vec3_arr1[k32], vec3_arr2[k32]); k32++;
res_arr[k32] = v3dot_ref( vec3_arr1[k32], vec3_arr2[k32]);
}
currentTime = ReadTicks() - startTime;
scalarTime += currentTime;
if( currentTime < bestTime )
bestTime = currentTime;
}
if( 0 == gReportAverageTimes )
scalarTime = bestTime;
else
scalarTime /= NUM_CYCLES;
}
{
uint64_t startTime, bestTime, currentTime;
bestTime = -1LL;
vectorTime = 0;
for (j = 0; j < NUM_CYCLES; j++)
{
startTime = ReadTicks();
for( k = 0; k+4 <= LOOPCOUNT; k+=4 )
{
size_t k32 = k & (DATA_SIZE -1);
res_arr[k32] = vec3_arr1[k32].dot(vec3_arr2[k32]); k32++;
res_arr[k32] = vec3_arr1[k32].dot(vec3_arr2[k32]); k32++;
res_arr[k32] = vec3_arr1[k32].dot(vec3_arr2[k32]); k32++;
res_arr[k32] = vec3_arr1[k32].dot(vec3_arr2[k32]);
}
currentTime = ReadTicks() - startTime;
vectorTime += currentTime;
if( currentTime < bestTime )
bestTime = currentTime;
}
if( 0 == gReportAverageTimes )
vectorTime = bestTime;
else
vectorTime /= NUM_CYCLES;
}
vlog( "Timing:\n" );
vlog( " \t scalar\t vector\n" );
vlog( " \t%10.4f\t%10.4f\n", TicksToCycles( scalarTime ) / LOOPCOUNT, TicksToCycles( vectorTime ) / LOOPCOUNT );
return 0;
}
static btScalar v3dot_ref(const btVector3& v1,
const btVector3& v2)
{
return (v1.m_floats[0] * v2.m_floats[0] +
v1.m_floats[1] * v2.m_floats[1] +
v1.m_floats[2] * v2.m_floats[2]);
}
#endif //BT_USE_SSE