bullet3/examples/RobotSimulator/VRGloveSimulatorMain.cpp
erwincoumans ab8f16961e Code-style consistency improvement:
Apply clang-format-all.sh using the _clang-format file through all the cpp/.h files.
make sure not to apply it to certain serialization structures, since some parser expects the * as part of the name, instead of type.
This commit contains no other changes aside from adding and applying clang-format-all.sh
2018-09-23 14:17:31 -07:00

348 lines
12 KiB
C++

//VR Glove hand simulator is a C++ conversion from the Python pybullet vrhand_vive_tracker.py
//For more details about the VR glove, see also https://docs.google.com/document/d/1_qwXJRBTGKmhktdBtVQ6zdOdxwud1K30jt0G5dkAr10/edit
#include "b3RobotSimulatorClientAPI.h"
#include "../Utils/b3Clock.h"
#include "Bullet3Common/b3CommandLineArgs.h"
#include <string.h>
#include <stdio.h>
#include <assert.h>
#include "serial/serial.h"
#include "../Importers/ImportURDFDemo/urdfStringSplit.h"
double convertSensor(int inputV, int minV, int maxV)
{
b3Clamp(inputV, minV, maxV);
double outVal = (double)inputV;
double b = (outVal - (double)minV) / float(maxV - minV);
return (b);
}
void setJointMotorPositionControl(b3RobotSimulatorClientAPI* sim, int obUid, int linkIndex, double targetPosition)
{
b3RobotSimulatorJointMotorArgs controlArgs(CONTROL_MODE_POSITION_VELOCITY_PD);
controlArgs.m_maxTorqueValue = 50.;
controlArgs.m_targetPosition = targetPosition;
controlArgs.m_targetVelocity = 0;
sim->setJointMotorControl(obUid, linkIndex, controlArgs);
}
int main(int argc, char* argv[])
{
b3CommandLineArgs args(argc, argv);
std::string port = "COM9";
args.GetCmdLineArgument("port", port);
int baud = 115200;
args.GetCmdLineArgument("speed", baud);
std::string mode = "SHARED_MEMORY";
args.GetCmdLineArgument("mode", mode);
int disableGui = 0;
args.GetCmdLineArgument("disableGui", disableGui);
int disableShadows = 0;
args.GetCmdLineArgument("disableShadows", disableShadows);
int useKitchen = 0;
args.GetCmdLineArgument("useKitchen", useKitchen);
int deviceTypeFilter = VR_DEVICE_GENERIC_TRACKER;
args.GetCmdLineArgument("deviceTypeFilter", deviceTypeFilter);
printf("port=%s, speed=%d, connection mode=%s\n", port.c_str(), baud, mode.c_str());
b3RobotSimulatorClientAPI* sim = new b3RobotSimulatorClientAPI();
//Can also use eCONNECT_UDP,eCONNECT_TCP, for example: sim->connect(eCONNECT_UDP, "localhost", 1234);
if (mode == "GUI")
{
sim->connect(eCONNECT_GUI);
}
else
{
if (mode == "DIRECT")
{
sim->connect(eCONNECT_DIRECT);
}
else
{
sim->connect(eCONNECT_SHARED_MEMORY);
}
}
sim->setRealTimeSimulation(true);
sim->setInternalSimFlags(0);
sim->resetSimulation();
if (disableGui)
{
sim->configureDebugVisualizer(COV_ENABLE_GUI, 0);
}
if (disableShadows)
{
sim->configureDebugVisualizer(COV_ENABLE_SHADOWS, 0);
}
sim->setTimeOut(12345);
//syncBodies is only needed when connecting to an existing physics server that has already some bodies
sim->syncBodies();
b3Scalar fixedTimeStep = 1. / 240.;
sim->setTimeStep(fixedTimeStep);
b3Quaternion q = sim->getQuaternionFromEuler(b3MakeVector3(0.1, 0.2, 0.3));
b3Vector3 rpy;
rpy = sim->getEulerFromQuaternion(q);
sim->setGravity(b3MakeVector3(0, 0, -9.8));
sim->setContactBreakingThreshold(0.001);
if (useKitchen)
{
b3RobotSimulatorLoadFileResults res;
sim->loadSDF("kitchens/1.sdf", res);
}
else
{
sim->loadURDF("plane_with_collision_audio.urdf");
}
int handUid = -1;
b3RobotSimulatorLoadFileResults mjcfResults;
const char* mjcfFileName = "MPL/mpl2.xml";
if (sim->loadMJCF(mjcfFileName, mjcfResults))
{
printf("mjcfResults = %d\n", mjcfResults.m_uniqueObjectIds.size());
if (mjcfResults.m_uniqueObjectIds.size() == 1)
{
handUid = mjcfResults.m_uniqueObjectIds[0];
}
}
if (handUid < 0)
{
printf("Cannot load MJCF file %s\n", mjcfFileName);
}
#ifdef TOUCH
b3Vector3 handPos = b3MakeVector3(-0.10, -0.03, 0.02);
b3Vector3 rollPitchYaw = b3MakeVector3(0.5 * B3_PI, 0, 1.25 * B3_PI); //-B3_PI/2,0,B3_PI/2);
handOrn = sim->getQuaternionFromEuler(rollPitchYaw);
#else
b3Quaternion handOrn = sim->getQuaternionFromEuler(b3MakeVector3(3.14, -3.14 / 2, 0));
b3Vector3 handPos = b3MakeVector3(-0.05, 0, 0.02);
#endif
b3Vector3 handStartPosWorld = b3MakeVector3(0.500000, 0.300006, 0.900000);
b3Quaternion handStartOrnWorld = b3Quaternion ::getIdentity();
b3JointInfo jointInfo;
jointInfo.m_jointType = eFixedType;
printf("handStartOrnWorld=%f,%f,%f,%f\n", handStartOrnWorld[0], handStartOrnWorld[1], handStartOrnWorld[2], handStartOrnWorld[3]);
jointInfo.m_childFrame[0] = handStartPosWorld[0];
jointInfo.m_childFrame[1] = handStartPosWorld[1];
jointInfo.m_childFrame[2] = handStartPosWorld[2];
jointInfo.m_childFrame[3] = handStartOrnWorld[0];
jointInfo.m_childFrame[4] = handStartOrnWorld[1];
jointInfo.m_childFrame[5] = handStartOrnWorld[2];
jointInfo.m_childFrame[6] = handStartOrnWorld[3];
jointInfo.m_parentFrame[0] = handPos[0];
jointInfo.m_parentFrame[1] = handPos[1];
jointInfo.m_parentFrame[2] = handPos[2];
jointInfo.m_parentFrame[3] = handOrn[0];
jointInfo.m_parentFrame[4] = handOrn[1];
jointInfo.m_parentFrame[5] = handOrn[2];
jointInfo.m_parentFrame[6] = handOrn[3];
sim->resetBasePositionAndOrientation(handUid, handStartPosWorld, handStartOrnWorld);
int handConstraintId = sim->createConstraint(handUid, -1, -1, -1, &jointInfo);
double maxFingerForce = 10;
double maxArmForce = 1000;
for (int j = 0; j < sim->getNumJoints(handUid); j++)
{
b3RobotSimulatorJointMotorArgs controlArgs(CONTROL_MODE_POSITION_VELOCITY_PD);
controlArgs.m_maxTorqueValue = maxFingerForce;
controlArgs.m_kp = 0.1;
controlArgs.m_kd = 1;
controlArgs.m_targetPosition = 0;
controlArgs.m_targetVelocity = 0;
sim->setJointMotorControl(handUid, j, controlArgs);
}
sim->loadURDF("jenga/jenga.urdf", b3RobotSimulatorLoadUrdfFileArgs(b3MakeVector3(1.300000, -0.700000, 0.750000), b3Quaternion(0.000000, 0.707107, 0.000000, 0.707107)));
sim->loadURDF("jenga/jenga.urdf", b3RobotSimulatorLoadUrdfFileArgs(b3MakeVector3(1.200000, -0.700000, 0.750000), b3Quaternion(0.000000, 0.707107, 0.000000, 0.707107)));
sim->loadURDF("jenga/jenga.urdf", b3RobotSimulatorLoadUrdfFileArgs(b3MakeVector3(1.100000, -0.700000, 0.750000), b3Quaternion(0.000000, 0.707107, 0.000000, 0.707107)));
sim->loadURDF("jenga/jenga.urdf", b3RobotSimulatorLoadUrdfFileArgs(b3MakeVector3(1.000000, -0.700000, 0.750000), b3Quaternion(0.000000, 0.707107, 0.000000, 0.707107)));
sim->loadURDF("jenga/jenga.urdf", b3RobotSimulatorLoadUrdfFileArgs(b3MakeVector3(0.900000, -0.700000, 0.750000), b3Quaternion(0.000000, 0.707107, 0.000000, 0.707107)));
sim->loadURDF("jenga/jenga.urdf", b3RobotSimulatorLoadUrdfFileArgs(b3MakeVector3(0.800000, -0.700000, 0.750000), b3Quaternion(0.000000, 0.707107, 0.000000, 0.707107)));
sim->loadURDF("jenga/jenga.urdf", b3RobotSimulatorLoadUrdfFileArgs(b3MakeVector3(0.700000, -0.700000, 0.750000), b3Quaternion(0.000000, 0.707107, 0.000000, 0.707107)));
sim->loadURDF("jenga/jenga.urdf", b3RobotSimulatorLoadUrdfFileArgs(b3MakeVector3(0.600000, -0.700000, 0.750000), b3Quaternion(0.000000, 0.707107, 0.000000, 0.707107)));
sim->loadURDF("table/table.urdf", b3RobotSimulatorLoadUrdfFileArgs(b3MakeVector3(1.000000, -0.200000, 0.000000), b3Quaternion(0.000000, 0.000000, 0.707107, 0.707107)));
sim->loadURDF("cube_small.urdf", b3RobotSimulatorLoadUrdfFileArgs(b3MakeVector3(0.950000, -0.100000, 0.700000), b3Quaternion(0.000000, 0.000000, 0.707107, 0.707107)));
sim->loadURDF("sphere_small.urdf", b3RobotSimulatorLoadUrdfFileArgs(b3MakeVector3(0.850000, -0.400000, 0.700000), b3Quaternion(0.000000, 0.000000, 0.707107, 0.707107)));
b3Clock clock;
double startTime = clock.getTimeInSeconds();
double simWallClockSeconds = 20.;
int vidLogId = -1;
int minitaurLogId = -1;
int rotateCamera = 0;
serial::Serial my_serial;
try
{
// port, baudrate, timeout in milliseconds
my_serial.setBaudrate(baud);
my_serial.setPort(port);
my_serial.setBytesize(serial::sevenbits);
my_serial.setParity(serial::parity_odd);
my_serial.setStopbits(serial::stopbits_two);
my_serial.setTimeout(serial::Timeout::simpleTimeout(0.01));
my_serial.open();
}
catch (...)
{
printf("Cannot open port, use --port=PORTNAME\n");
exit(0);
}
if (!my_serial.isOpen())
{
printf("Cannot open serial port\n");
return -1;
}
my_serial.flush();
while (sim->canSubmitCommand())
{
clock.usleep(1);
b3VREventsData vrEvents;
sim->getVREvents(&vrEvents, deviceTypeFilter);
//instead of iterating over all vr events, we just take the most up-to-date one
if (vrEvents.m_numControllerEvents)
{
int i = vrEvents.m_numControllerEvents - 1;
b3VRControllerEvent& e = vrEvents.m_controllerEvents[i];
// printf("e.pos=%f,%f,%f\n",e.m_pos[0],e.m_pos[1],e.m_pos[2]);
b3JointInfo changeConstraintInfo;
changeConstraintInfo.m_flags = 0;
changeConstraintInfo.m_jointMaxForce = maxArmForce;
changeConstraintInfo.m_flags |= eJointChangeMaxForce;
changeConstraintInfo.m_childFrame[0] = e.m_pos[0];
changeConstraintInfo.m_childFrame[1] = e.m_pos[1];
changeConstraintInfo.m_childFrame[2] = e.m_pos[2];
changeConstraintInfo.m_flags |= eJointChangeChildFramePosition;
changeConstraintInfo.m_childFrame[3] = e.m_orn[0];
changeConstraintInfo.m_childFrame[4] = e.m_orn[1];
changeConstraintInfo.m_childFrame[5] = e.m_orn[2];
changeConstraintInfo.m_childFrame[6] = e.m_orn[3];
changeConstraintInfo.m_flags |= eJointChangeChildFrameOrientation;
sim->changeConstraint(handConstraintId, &changeConstraintInfo);
}
//read the serial output from the hand, extract into parts
std::string result;
try
{
result = my_serial.readline();
}
catch (...)
{
}
if (result.length())
{
my_serial.flush();
int res = result.find("\n");
while (res < 0)
{
result += my_serial.readline();
res = result.find("\n");
}
btAlignedObjectArray<std::string> pieces;
btAlignedObjectArray<std::string> separators;
separators.push_back(",");
urdfStringSplit(pieces, result, separators);
//printf("serial: %s\n", result.c_str());
if (pieces.size() == 6)
{
double pinkTarget = 0;
double middleTarget = 0;
double indexTarget = 0;
double thumbTarget = 0;
{
int pink = atoi(pieces[1].c_str());
int middle = atoi(pieces[2].c_str());
int index = atoi(pieces[3].c_str());
int thumb = atoi(pieces[4].c_str());
pinkTarget = convertSensor(pink, 250, 400);
middleTarget = convertSensor(middle, 250, 400);
indexTarget = convertSensor(index, 250, 400);
thumbTarget = convertSensor(thumb, 250, 400);
}
//printf("pink = %d, middle=%d, index=%d, thumb=%d\n", pink,middle,index,thumb);
setJointMotorPositionControl(sim, handUid, 5, 1.3);
setJointMotorPositionControl(sim, handUid, 7, thumbTarget);
setJointMotorPositionControl(sim, handUid, 9, thumbTarget);
setJointMotorPositionControl(sim, handUid, 11, thumbTarget);
setJointMotorPositionControl(sim, handUid, 15, indexTarget);
setJointMotorPositionControl(sim, handUid, 17, indexTarget);
setJointMotorPositionControl(sim, handUid, 19, indexTarget);
setJointMotorPositionControl(sim, handUid, 22, middleTarget);
setJointMotorPositionControl(sim, handUid, 24, middleTarget);
setJointMotorPositionControl(sim, handUid, 27, middleTarget);
double ringTarget = 0.5f * (pinkTarget + middleTarget);
setJointMotorPositionControl(sim, handUid, 30, ringTarget);
setJointMotorPositionControl(sim, handUid, 32, ringTarget);
setJointMotorPositionControl(sim, handUid, 34, ringTarget);
setJointMotorPositionControl(sim, handUid, 38, pinkTarget);
setJointMotorPositionControl(sim, handUid, 40, pinkTarget);
setJointMotorPositionControl(sim, handUid, 42, pinkTarget);
}
}
b3KeyboardEventsData keyEvents;
sim->getKeyboardEvents(&keyEvents);
//sim->stepSimulation();
if (rotateCamera)
{
static double yaw = 0;
double distance = 1;
yaw += 0.1;
b3Vector3 basePos;
b3Quaternion baseOrn;
// sim->getBasePositionAndOrientation(minitaurUid,basePos,baseOrn);
// sim->resetDebugVisualizerCamera(distance,yaw,20,basePos);
}
//b3Clock::usleep(1000.*1000.*fixedTimeStep);
}
printf("serial.close()\n");
my_serial.close();
printf("sim->disconnect\n");
sim->disconnect();
printf("delete sim\n");
delete sim;
printf("exit\n");
}