mirror of
https://github.com/bulletphysics/bullet3
synced 2024-12-15 06:00:12 +00:00
ab8f16961e
Apply clang-format-all.sh using the _clang-format file through all the cpp/.h files. make sure not to apply it to certain serialization structures, since some parser expects the * as part of the name, instead of type. This commit contains no other changes aside from adding and applying clang-format-all.sh
1112 lines
34 KiB
C++
1112 lines
34 KiB
C++
|
|
/*
|
|
*
|
|
* Mathematics Subpackage (VrMath)
|
|
*
|
|
*
|
|
* Author: Samuel R. Buss, sbuss@ucsd.edu.
|
|
* Web page: http://math.ucsd.edu/~sbuss/MathCG
|
|
*
|
|
*
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*
|
|
*
|
|
*/
|
|
|
|
//
|
|
// MatrixRmn.cpp: Matrix over reals (Variable dimensional vector)
|
|
//
|
|
// Not very sophisticated yet. Needs more functionality
|
|
// To do: better handling of resizing.
|
|
//
|
|
|
|
#include "MatrixRmn.h"
|
|
|
|
MatrixRmn MatrixRmn::WorkMatrix; // Temporary work matrix
|
|
|
|
// Fill the diagonal entries with the value d. The rest of the matrix is unchanged.
|
|
void MatrixRmn::SetDiagonalEntries(double d)
|
|
{
|
|
long diagLen = Min(NumRows, NumCols);
|
|
double* dPtr = x;
|
|
for (; diagLen > 0; diagLen--)
|
|
{
|
|
*dPtr = d;
|
|
dPtr += NumRows + 1;
|
|
}
|
|
}
|
|
|
|
// Fill the diagonal entries with values in vector d. The rest of the matrix is unchanged.
|
|
void MatrixRmn::SetDiagonalEntries(const VectorRn& d)
|
|
{
|
|
long diagLen = Min(NumRows, NumCols);
|
|
assert(d.length == diagLen);
|
|
double* dPtr = x;
|
|
double* from = d.x;
|
|
for (; diagLen > 0; diagLen--)
|
|
{
|
|
*dPtr = *(from++);
|
|
dPtr += NumRows + 1;
|
|
}
|
|
}
|
|
|
|
// Fill the superdiagonal entries with the value d. The rest of the matrix is unchanged.
|
|
void MatrixRmn::SetSuperDiagonalEntries(double d)
|
|
{
|
|
long sDiagLen = Min(NumRows, (long)(NumCols - 1));
|
|
double* to = x + NumRows;
|
|
for (; sDiagLen > 0; sDiagLen--)
|
|
{
|
|
*to = d;
|
|
to += NumRows + 1;
|
|
}
|
|
}
|
|
|
|
// Fill the superdiagonal entries with values in vector d. The rest of the matrix is unchanged.
|
|
void MatrixRmn::SetSuperDiagonalEntries(const VectorRn& d)
|
|
{
|
|
long sDiagLen = Min((long)(NumRows - 1), NumCols);
|
|
assert(sDiagLen == d.length);
|
|
double* to = x + NumRows;
|
|
double* from = d.x;
|
|
for (; sDiagLen > 0; sDiagLen--)
|
|
{
|
|
*to = *(from++);
|
|
to += NumRows + 1;
|
|
}
|
|
}
|
|
|
|
// Fill the subdiagonal entries with the value d. The rest of the matrix is unchanged.
|
|
void MatrixRmn::SetSubDiagonalEntries(double d)
|
|
{
|
|
long sDiagLen = Min(NumRows, NumCols) - 1;
|
|
double* to = x + 1;
|
|
for (; sDiagLen > 0; sDiagLen--)
|
|
{
|
|
*to = d;
|
|
to += NumRows + 1;
|
|
}
|
|
}
|
|
|
|
// Fill the subdiagonal entries with values in vector d. The rest of the matrix is unchanged.
|
|
void MatrixRmn::SetSubDiagonalEntries(const VectorRn& d)
|
|
{
|
|
long sDiagLen = Min(NumRows, NumCols) - 1;
|
|
assert(sDiagLen == d.length);
|
|
double* to = x + 1;
|
|
double* from = d.x;
|
|
for (; sDiagLen > 0; sDiagLen--)
|
|
{
|
|
*to = *(from++);
|
|
to += NumRows + 1;
|
|
}
|
|
}
|
|
|
|
// Set the i-th column equal to d.
|
|
void MatrixRmn::SetColumn(long i, const VectorRn& d)
|
|
{
|
|
assert(NumRows == d.GetLength());
|
|
double* to = x + i * NumRows;
|
|
const double* from = d.x;
|
|
for (i = NumRows; i > 0; i--)
|
|
{
|
|
*(to++) = *(from++);
|
|
}
|
|
}
|
|
|
|
// Set the i-th column equal to d.
|
|
void MatrixRmn::SetRow(long i, const VectorRn& d)
|
|
{
|
|
assert(NumCols == d.GetLength());
|
|
double* to = x + i;
|
|
const double* from = d.x;
|
|
for (i = NumRows; i > 0; i--)
|
|
{
|
|
*to = *(from++);
|
|
to += NumRows;
|
|
}
|
|
}
|
|
|
|
// Sets a "linear" portion of the array with the values from a vector d
|
|
// The first row and column position are given by startRow, startCol.
|
|
// Successive positions are found by using the deltaRow, deltaCol values
|
|
// to increment the row and column indices. There is no wrapping around.
|
|
void MatrixRmn::SetSequence(const VectorRn& d, long startRow, long startCol, long deltaRow, long deltaCol)
|
|
{
|
|
long length = d.length;
|
|
assert(startRow >= 0 && startRow < NumRows && startCol >= 0 && startCol < NumCols);
|
|
assert(startRow + (length - 1) * deltaRow >= 0 && startRow + (length - 1) * deltaRow < NumRows);
|
|
assert(startCol + (length - 1) * deltaCol >= 0 && startCol + (length - 1) * deltaCol < NumCols);
|
|
double* to = x + startRow + NumRows * startCol;
|
|
double* from = d.x;
|
|
long stride = deltaRow + NumRows * deltaCol;
|
|
for (; length > 0; length--)
|
|
{
|
|
*to = *(from++);
|
|
to += stride;
|
|
}
|
|
}
|
|
|
|
// The matrix A is loaded, in into "this" matrix, based at (0,0).
|
|
// The size of "this" matrix must be large enough to accomodate A.
|
|
// The rest of "this" matrix is left unchanged. It is not filled with zeroes!
|
|
|
|
void MatrixRmn::LoadAsSubmatrix(const MatrixRmn& A)
|
|
{
|
|
assert(A.NumRows <= NumRows && A.NumCols <= NumCols);
|
|
int extraColStep = NumRows - A.NumRows;
|
|
double* to = x;
|
|
double* from = A.x;
|
|
for (long i = A.NumCols; i > 0; i--)
|
|
{ // Copy columns of A, one per time thru loop
|
|
for (long j = A.NumRows; j > 0; j--)
|
|
{ // Copy all elements of this column of A
|
|
*(to++) = *(from++);
|
|
}
|
|
to += extraColStep;
|
|
}
|
|
}
|
|
|
|
// The matrix A is loaded, in transposed order into "this" matrix, based at (0,0).
|
|
// The size of "this" matrix must be large enough to accomodate A.
|
|
// The rest of "this" matrix is left unchanged. It is not filled with zeroes!
|
|
void MatrixRmn::LoadAsSubmatrixTranspose(const MatrixRmn& A)
|
|
{
|
|
assert(A.NumRows <= NumCols && A.NumCols <= NumRows);
|
|
double* rowPtr = x;
|
|
double* from = A.x;
|
|
for (long i = A.NumCols; i > 0; i--)
|
|
{ // Copy columns of A, once per loop
|
|
double* to = rowPtr;
|
|
for (long j = A.NumRows; j > 0; j--)
|
|
{ // Loop copying values from the column of A
|
|
*to = *(from++);
|
|
to += NumRows;
|
|
}
|
|
rowPtr++;
|
|
}
|
|
}
|
|
|
|
// Calculate the Frobenius Norm (square root of sum of squares of entries of the matrix)
|
|
double MatrixRmn::FrobeniusNorm() const
|
|
{
|
|
return sqrt(FrobeniusNormSq());
|
|
}
|
|
|
|
// Multiply this matrix by column vector v.
|
|
// Result is column vector "result"
|
|
void MatrixRmn::Multiply(const VectorRn& v, VectorRn& result) const
|
|
{
|
|
assert(v.GetLength() == NumCols && result.GetLength() == NumRows);
|
|
double* out = result.GetPtr(); // Points to entry in result vector
|
|
const double* rowPtr = x; // Points to beginning of next row in matrix
|
|
for (long j = NumRows; j > 0; j--)
|
|
{
|
|
const double* in = v.GetPtr();
|
|
const double* m = rowPtr++;
|
|
*out = 0.0f;
|
|
for (long i = NumCols; i > 0; i--)
|
|
{
|
|
*out += (*(in++)) * (*m);
|
|
m += NumRows;
|
|
}
|
|
out++;
|
|
}
|
|
}
|
|
|
|
// Multiply transpose of this matrix by column vector v.
|
|
// Result is column vector "result"
|
|
// Equivalent to mult by row vector on left
|
|
void MatrixRmn::MultiplyTranspose(const VectorRn& v, VectorRn& result) const
|
|
{
|
|
assert(v.GetLength() == NumRows && result.GetLength() == NumCols);
|
|
double* out = result.GetPtr(); // Points to entry in result vector
|
|
const double* colPtr = x; // Points to beginning of next column in matrix
|
|
for (long i = NumCols; i > 0; i--)
|
|
{
|
|
const double* in = v.GetPtr();
|
|
*out = 0.0f;
|
|
for (long j = NumRows; j > 0; j--)
|
|
{
|
|
*out += (*(in++)) * (*(colPtr++));
|
|
}
|
|
out++;
|
|
}
|
|
}
|
|
|
|
// Form the dot product of a vector v with the i-th column of the array
|
|
double MatrixRmn::DotProductColumn(const VectorRn& v, long colNum) const
|
|
{
|
|
assert(v.GetLength() == NumRows);
|
|
double* ptrC = x + colNum * NumRows;
|
|
double* ptrV = v.x;
|
|
double ret = 0.0;
|
|
for (long i = NumRows; i > 0; i--)
|
|
{
|
|
ret += (*(ptrC++)) * (*(ptrV++));
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
// Add a constant to each entry on the diagonal
|
|
MatrixRmn& MatrixRmn::AddToDiagonal(double d) // Adds d to each diagonal entry
|
|
{
|
|
long diagLen = Min(NumRows, NumCols);
|
|
double* dPtr = x;
|
|
for (; diagLen > 0; diagLen--)
|
|
{
|
|
*dPtr += d;
|
|
dPtr += NumRows + 1;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
// Add a vector to the entries on the diagonal
|
|
MatrixRmn& MatrixRmn::AddToDiagonal(const VectorRn& dVec) // Adds dVec to the diagonal entries
|
|
{
|
|
long diagLen = Min(NumRows, NumCols);
|
|
double* dPtr = x;
|
|
for (int i = 0; i < diagLen && i < dVec.GetLength(); ++i)
|
|
{
|
|
*dPtr += dVec[i];
|
|
dPtr += NumRows + 1;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
// Multiply two MatrixRmn's
|
|
MatrixRmn& MatrixRmn::Multiply(const MatrixRmn& A, const MatrixRmn& B, MatrixRmn& dst)
|
|
{
|
|
assert(A.NumCols == B.NumRows && A.NumRows == dst.NumRows && B.NumCols == dst.NumCols);
|
|
long length = A.NumCols;
|
|
|
|
double* bPtr = B.x; // Points to beginning of column in B
|
|
double* dPtr = dst.x;
|
|
for (long i = dst.NumCols; i > 0; i--)
|
|
{
|
|
double* aPtr = A.x; // Points to beginning of row in A
|
|
for (long j = dst.NumRows; j > 0; j--)
|
|
{
|
|
*dPtr = DotArray(length, aPtr, A.NumRows, bPtr, 1);
|
|
dPtr++;
|
|
aPtr++;
|
|
}
|
|
bPtr += B.NumRows;
|
|
}
|
|
|
|
return dst;
|
|
}
|
|
|
|
// Multiply two MatrixRmn's, Transpose the first matrix before multiplying
|
|
MatrixRmn& MatrixRmn::TransposeMultiply(const MatrixRmn& A, const MatrixRmn& B, MatrixRmn& dst)
|
|
{
|
|
assert(A.NumRows == B.NumRows && A.NumCols == dst.NumRows && B.NumCols == dst.NumCols);
|
|
long length = A.NumRows;
|
|
|
|
double* bPtr = B.x; // bPtr Points to beginning of column in B
|
|
double* dPtr = dst.x;
|
|
for (long i = dst.NumCols; i > 0; i--)
|
|
{ // Loop over all columns of dst
|
|
double* aPtr = A.x; // aPtr Points to beginning of column in A
|
|
for (long j = dst.NumRows; j > 0; j--)
|
|
{ // Loop over all rows of dst
|
|
*dPtr = DotArray(length, aPtr, 1, bPtr, 1);
|
|
dPtr++;
|
|
aPtr += A.NumRows;
|
|
}
|
|
bPtr += B.NumRows;
|
|
}
|
|
|
|
return dst;
|
|
}
|
|
|
|
// Multiply two MatrixRmn's. Transpose the second matrix before multiplying
|
|
MatrixRmn& MatrixRmn::MultiplyTranspose(const MatrixRmn& A, const MatrixRmn& B, MatrixRmn& dst)
|
|
{
|
|
assert(A.NumCols == B.NumCols && A.NumRows == dst.NumRows && B.NumRows == dst.NumCols);
|
|
long length = A.NumCols;
|
|
|
|
double* bPtr = B.x; // Points to beginning of row in B
|
|
double* dPtr = dst.x;
|
|
for (long i = dst.NumCols; i > 0; i--)
|
|
{
|
|
double* aPtr = A.x; // Points to beginning of row in A
|
|
for (long j = dst.NumRows; j > 0; j--)
|
|
{
|
|
*dPtr = DotArray(length, aPtr, A.NumRows, bPtr, B.NumRows);
|
|
dPtr++;
|
|
aPtr++;
|
|
}
|
|
bPtr++;
|
|
}
|
|
|
|
return dst;
|
|
}
|
|
|
|
// Solves the equation (*this)*xVec = b;
|
|
// Uses row operations. Assumes *this is square and invertible.
|
|
// No error checking for divide by zero or instability (except with asserts)
|
|
void MatrixRmn::Solve(const VectorRn& b, VectorRn* xVec) const
|
|
{
|
|
assert(NumRows == NumCols && NumCols == xVec->GetLength() && NumRows == b.GetLength());
|
|
|
|
// Copy this matrix and b into an Augmented Matrix
|
|
MatrixRmn& AugMat = GetWorkMatrix(NumRows, NumCols + 1);
|
|
AugMat.LoadAsSubmatrix(*this);
|
|
AugMat.SetColumn(NumRows, b);
|
|
|
|
// Put into row echelon form with row operations
|
|
AugMat.ConvertToRefNoFree();
|
|
|
|
// Solve for x vector values using back substitution
|
|
double* xLast = xVec->x + NumRows - 1; // Last entry in xVec
|
|
double* endRow = AugMat.x + NumRows * NumCols - 1; // Last entry in the current row of the coefficient part of Augmented Matrix
|
|
double* bPtr = endRow + NumRows; // Last entry in augmented matrix (end of last column, in augmented part)
|
|
for (long i = NumRows; i > 0; i--)
|
|
{
|
|
double accum = *(bPtr--);
|
|
// Next loop computes back substitution terms
|
|
double* rowPtr = endRow; // Points to entries of the current row for back substitution.
|
|
double* xPtr = xLast; // Points to entries in the x vector (also for back substitution)
|
|
for (long j = NumRows - i; j > 0; j--)
|
|
{
|
|
accum -= (*rowPtr) * (*(xPtr--));
|
|
rowPtr -= NumCols; // Previous entry in the row
|
|
}
|
|
assert(*rowPtr != 0.0); // Are not supposed to be any free variables in this matrix
|
|
*xPtr = accum / (*rowPtr);
|
|
endRow--;
|
|
}
|
|
}
|
|
|
|
// ConvertToRefNoFree
|
|
// Converts the matrix (in place) to row echelon form
|
|
// For us, row echelon form allows any non-zero values, not just 1's, in the
|
|
// position for a lead variable.
|
|
// The "NoFree" version operates on the assumption that no free variable will be found.
|
|
// Algorithm uses row operations and row pivoting (only).
|
|
// Augmented matrix is correctly accomodated. Only the first square part participates
|
|
// in the main work of row operations.
|
|
void MatrixRmn::ConvertToRefNoFree()
|
|
{
|
|
// Loop over all columns (variables)
|
|
// Find row with most non-zero entry.
|
|
// Swap to the highest active row
|
|
// Subtract appropriately from all the lower rows (row op of type 3)
|
|
long numIters = Min(NumRows, NumCols);
|
|
double* rowPtr1 = x;
|
|
const long diagStep = NumRows + 1;
|
|
long lenRowLeft = NumCols;
|
|
for (; numIters > 1; numIters--)
|
|
{
|
|
// Find row with most non-zero entry.
|
|
double* rowPtr2 = rowPtr1;
|
|
double maxAbs = fabs(*rowPtr1);
|
|
double* rowPivot = rowPtr1;
|
|
long i;
|
|
for (i = numIters - 1; i > 0; i--)
|
|
{
|
|
const double& newMax = *(++rowPivot);
|
|
if (newMax > maxAbs)
|
|
{
|
|
maxAbs = *rowPivot;
|
|
rowPtr2 = rowPivot;
|
|
}
|
|
else if (-newMax > maxAbs)
|
|
{
|
|
maxAbs = -newMax;
|
|
rowPtr2 = rowPivot;
|
|
}
|
|
}
|
|
// Pivot step: Swap the row with highest entry to the current row
|
|
if (rowPtr1 != rowPtr2)
|
|
{
|
|
double* to = rowPtr1;
|
|
for (long i = lenRowLeft; i > 0; i--)
|
|
{
|
|
double temp = *to;
|
|
*to = *rowPtr2;
|
|
*rowPtr2 = temp;
|
|
to += NumRows;
|
|
rowPtr2 += NumRows;
|
|
}
|
|
}
|
|
// Subtract this row appropriately from all the lower rows (row operation of type 3)
|
|
rowPtr2 = rowPtr1;
|
|
for (i = numIters - 1; i > 0; i--)
|
|
{
|
|
rowPtr2++;
|
|
double* to = rowPtr2;
|
|
double* from = rowPtr1;
|
|
assert(*from != 0.0);
|
|
double alpha = (*to) / (*from);
|
|
*to = 0.0;
|
|
for (long j = lenRowLeft - 1; j > 0; j--)
|
|
{
|
|
to += NumRows;
|
|
from += NumRows;
|
|
*to -= (*from) * alpha;
|
|
}
|
|
}
|
|
// Update for next iteration of loop
|
|
rowPtr1 += diagStep;
|
|
lenRowLeft--;
|
|
}
|
|
}
|
|
|
|
// Calculate the c=cosine and s=sine values for a Givens transformation.
|
|
// The matrix M = ( (c, -s), (s, c) ) in row order transforms the
|
|
// column vector (a, b)^T to have y-coordinate zero.
|
|
void MatrixRmn::CalcGivensValues(double a, double b, double* c, double* s)
|
|
{
|
|
double denomInv = sqrt(a * a + b * b);
|
|
if (denomInv == 0.0)
|
|
{
|
|
*c = 1.0;
|
|
*s = 0.0;
|
|
}
|
|
else
|
|
{
|
|
denomInv = 1.0 / denomInv;
|
|
*c = a * denomInv;
|
|
*s = -b * denomInv;
|
|
}
|
|
}
|
|
|
|
// Applies Givens transform to columns i and i+1.
|
|
// Equivalent to postmultiplying by the matrix
|
|
// ( c -s )
|
|
// ( s c )
|
|
// with non-zero entries in rows i and i+1 and columns i and i+1
|
|
void MatrixRmn::PostApplyGivens(double c, double s, long idx)
|
|
{
|
|
assert(0 <= idx && idx < NumCols);
|
|
double* colA = x + idx * NumRows;
|
|
double* colB = colA + NumRows;
|
|
for (long i = NumRows; i > 0; i--)
|
|
{
|
|
double temp = *colA;
|
|
*colA = (*colA) * c + (*colB) * s;
|
|
*colB = (*colB) * c - temp * s;
|
|
colA++;
|
|
colB++;
|
|
}
|
|
}
|
|
|
|
// Applies Givens transform to columns idx1 and idx2.
|
|
// Equivalent to postmultiplying by the matrix
|
|
// ( c -s )
|
|
// ( s c )
|
|
// with non-zero entries in rows idx1 and idx2 and columns idx1 and idx2
|
|
void MatrixRmn::PostApplyGivens(double c, double s, long idx1, long idx2)
|
|
{
|
|
assert(idx1 != idx2 && 0 <= idx1 && idx1 < NumCols && 0 <= idx2 && idx2 < NumCols);
|
|
double* colA = x + idx1 * NumRows;
|
|
double* colB = x + idx2 * NumRows;
|
|
for (long i = NumRows; i > 0; i--)
|
|
{
|
|
double temp = *colA;
|
|
*colA = (*colA) * c + (*colB) * s;
|
|
*colB = (*colB) * c - temp * s;
|
|
colA++;
|
|
colB++;
|
|
}
|
|
}
|
|
|
|
// ********************************************************************************************
|
|
// Singular value decomposition.
|
|
// Return othogonal matrices U and V and diagonal matrix with diagonal w such that
|
|
// (this) = U * Diag(w) * V^T (V^T is V-transpose.)
|
|
// Diagonal entries have all non-zero entries before all zero entries, but are not
|
|
// necessarily sorted. (Someday, I will write ComputedSortedSVD that handles
|
|
// sorting the eigenvalues by magnitude.)
|
|
// ********************************************************************************************
|
|
void MatrixRmn::ComputeSVD(MatrixRmn& U, VectorRn& w, MatrixRmn& V) const
|
|
{
|
|
assert(U.NumRows == NumRows && V.NumCols == NumCols && U.NumRows == U.NumCols && V.NumRows == V.NumCols && w.GetLength() == Min(NumRows, NumCols));
|
|
|
|
// double temp=0.0;
|
|
VectorRn& superDiag = VectorRn::GetWorkVector(w.GetLength() - 1); // Some extra work space. Will get passed around.
|
|
|
|
// Choose larger of U, V to hold intermediate results
|
|
// If U is larger than V, use U to store intermediate results
|
|
// Otherwise use V. In the latter case, we form the SVD of A transpose,
|
|
// (which is essentially identical to the SVD of A).
|
|
MatrixRmn* leftMatrix;
|
|
MatrixRmn* rightMatrix;
|
|
if (NumRows >= NumCols)
|
|
{
|
|
U.LoadAsSubmatrix(*this); // Copy A into U
|
|
leftMatrix = &U;
|
|
rightMatrix = &V;
|
|
}
|
|
else
|
|
{
|
|
V.LoadAsSubmatrixTranspose(*this); // Copy A-transpose into V
|
|
leftMatrix = &V;
|
|
rightMatrix = &U;
|
|
}
|
|
|
|
// Do the actual work to calculate the SVD
|
|
// Now matrix has at least as many rows as columns
|
|
CalcBidiagonal(*leftMatrix, *rightMatrix, w, superDiag);
|
|
ConvertBidiagToDiagonal(*leftMatrix, *rightMatrix, w, superDiag);
|
|
}
|
|
|
|
void MatrixRmn::ComputeInverse(MatrixRmn& R) const
|
|
{
|
|
assert(this->NumRows == this->NumCols);
|
|
MatrixRmn U(this->NumRows, this->NumCols);
|
|
VectorRn w(this->NumRows);
|
|
MatrixRmn V(this->NumRows, this->NumCols);
|
|
|
|
this->ComputeSVD(U, w, V);
|
|
|
|
assert(this->DebugCheckSVD(U, w, V));
|
|
|
|
double PseudoInverseThresholdFactor = 0.01;
|
|
double pseudoInverseThreshold = PseudoInverseThresholdFactor * w.MaxAbs();
|
|
|
|
MatrixRmn VD(this->NumRows, this->NumCols);
|
|
MatrixRmn D(this->NumRows, this->NumCols);
|
|
D.SetZero();
|
|
long diagLength = w.GetLength();
|
|
double* wPtr = w.GetPtr();
|
|
for (long i = 0; i < diagLength; ++i)
|
|
{
|
|
double alpha = *(wPtr++);
|
|
if (fabs(alpha) > pseudoInverseThreshold)
|
|
{
|
|
D.Set(i, i, 1.0 / alpha);
|
|
}
|
|
}
|
|
|
|
Multiply(V, D, VD);
|
|
MultiplyTranspose(VD, U, R);
|
|
}
|
|
|
|
// ************************************************ CalcBidiagonal **************************
|
|
// Helper routine for SVD computation
|
|
// U is a matrix to be bidiagonalized.
|
|
// On return, U and V are orthonormal and w holds the new diagonal
|
|
// elements and superDiag holds the super diagonal elements.
|
|
|
|
void MatrixRmn::CalcBidiagonal(MatrixRmn& U, MatrixRmn& V, VectorRn& w, VectorRn& superDiag)
|
|
{
|
|
assert(U.NumRows >= V.NumRows);
|
|
|
|
// The diagonal and superdiagonal entries of the bidiagonalized
|
|
// version of the U matrix
|
|
// are stored in the vectors w and superDiag (temporarily).
|
|
|
|
// Apply Householder transformations to U.
|
|
// Householder transformations come in pairs.
|
|
// First, on the left, we map a portion of a column to zeros
|
|
// Second, on the right, we map a portion of a row to zeros
|
|
const long rowStep = U.NumCols;
|
|
const long diagStep = U.NumCols + 1;
|
|
double* diagPtr = U.x;
|
|
double* wPtr = w.x;
|
|
double* superDiagPtr = superDiag.x;
|
|
long colLengthLeft = U.NumRows;
|
|
long rowLengthLeft = V.NumCols;
|
|
while (true)
|
|
{
|
|
// Apply a Householder xform on left to zero part of a column
|
|
SvdHouseholder(diagPtr, colLengthLeft, rowLengthLeft, 1, rowStep, wPtr);
|
|
|
|
if (rowLengthLeft == 2)
|
|
{
|
|
*superDiagPtr = *(diagPtr + rowStep);
|
|
break;
|
|
}
|
|
// Apply a Householder xform on the right to zero part of a row
|
|
SvdHouseholder(diagPtr + rowStep, rowLengthLeft - 1, colLengthLeft, rowStep, 1, superDiagPtr);
|
|
|
|
rowLengthLeft--;
|
|
colLengthLeft--;
|
|
diagPtr += diagStep;
|
|
wPtr++;
|
|
superDiagPtr++;
|
|
}
|
|
|
|
int extra = 0;
|
|
diagPtr += diagStep;
|
|
wPtr++;
|
|
if (colLengthLeft > 2)
|
|
{
|
|
extra = 1;
|
|
// Do one last Householder transformation when the matrix is not square
|
|
colLengthLeft--;
|
|
SvdHouseholder(diagPtr, colLengthLeft, 1, 1, 0, wPtr);
|
|
}
|
|
else
|
|
{
|
|
*wPtr = *diagPtr;
|
|
}
|
|
|
|
// Form U and V from the Householder transformations
|
|
V.ExpandHouseholders(V.NumCols - 2, 1, U.x + U.NumRows, U.NumRows, 1);
|
|
U.ExpandHouseholders(V.NumCols - 1 + extra, 0, U.x, 1, U.NumRows);
|
|
|
|
// Done with bidiagonalization
|
|
return;
|
|
}
|
|
|
|
// Helper routine for CalcBidiagonal
|
|
// Performs a series of Householder transformations on a matrix
|
|
// Stores results compactly into the matrix: The Householder vector u (normalized)
|
|
// is stored into the first row/column being transformed.
|
|
// The leading term of that row (= plus/minus its magnitude is returned
|
|
// separately into "retFirstEntry"
|
|
void MatrixRmn::SvdHouseholder(double* basePt,
|
|
long colLength, long numCols, long colStride, long rowStride,
|
|
double* retFirstEntry)
|
|
{
|
|
// Calc norm of vector u
|
|
double* cPtr = basePt;
|
|
double norm = 0.0;
|
|
long i;
|
|
for (i = colLength; i > 0; i--)
|
|
{
|
|
norm += Square(*cPtr);
|
|
cPtr += colStride;
|
|
}
|
|
norm = sqrt(norm); // Norm of vector to reflect to axis e_1
|
|
|
|
// Handle sign issues
|
|
double imageVal; // Choose sign to maximize distance
|
|
if ((*basePt) < 0.0)
|
|
{
|
|
imageVal = norm;
|
|
norm = 2.0 * norm * (norm - (*basePt));
|
|
}
|
|
else
|
|
{
|
|
imageVal = -norm;
|
|
norm = 2.0 * norm * (norm + (*basePt));
|
|
}
|
|
norm = sqrt(norm); // Norm is norm of reflection vector
|
|
|
|
if (norm == 0.0)
|
|
{ // If the vector being transformed is equal to zero
|
|
// Force to zero in case of roundoff errors
|
|
cPtr = basePt;
|
|
for (i = colLength; i > 0; i--)
|
|
{
|
|
*cPtr = 0.0;
|
|
cPtr += colStride;
|
|
}
|
|
*retFirstEntry = 0.0;
|
|
return;
|
|
}
|
|
|
|
*retFirstEntry = imageVal;
|
|
|
|
// Set up the normalized Householder vector
|
|
*basePt -= imageVal; // First component changes. Rest stay the same.
|
|
// Normalize the vector
|
|
norm = 1.0 / norm; // Now it is the inverse norm
|
|
cPtr = basePt;
|
|
for (i = colLength; i > 0; i--)
|
|
{
|
|
*cPtr *= norm;
|
|
cPtr += colStride;
|
|
}
|
|
|
|
// Transform the rest of the U matrix with the Householder transformation
|
|
double* rPtr = basePt;
|
|
for (long j = numCols - 1; j > 0; j--)
|
|
{
|
|
rPtr += rowStride;
|
|
// Calc dot product with Householder transformation vector
|
|
double dotP = DotArray(colLength, basePt, colStride, rPtr, colStride);
|
|
// Transform with I - 2*dotP*(Householder vector)
|
|
AddArrayScale(colLength, basePt, colStride, rPtr, colStride, -2.0 * dotP);
|
|
}
|
|
}
|
|
|
|
// ********************************* ExpandHouseholders ********************************************
|
|
// The matrix will be square.
|
|
// numXforms = number of Householder transformations to concatenate
|
|
// Each Householder transformation is represented by a unit vector
|
|
// Each successive Householder transformation starts one position later
|
|
// and has one more implied leading zero
|
|
// basePt = beginning of the first Householder transform
|
|
// colStride, rowStride: Householder xforms are stored in "columns"
|
|
// numZerosSkipped is the number of implicit zeros on the front each
|
|
// Householder transformation vector (only values supported are 0 and 1).
|
|
void MatrixRmn::ExpandHouseholders(long numXforms, int numZerosSkipped, const double* basePt, long colStride, long rowStride)
|
|
{
|
|
// Number of applications of the last Householder transform
|
|
// (That are not trivial!)
|
|
long numToTransform = NumCols - numXforms + 1 - numZerosSkipped;
|
|
assert(numToTransform > 0);
|
|
|
|
if (numXforms == 0)
|
|
{
|
|
SetIdentity();
|
|
return;
|
|
}
|
|
|
|
// Handle the first one separately as a special case,
|
|
// "this" matrix will be treated to simulate being preloaded with the identity
|
|
long hDiagStride = rowStride + colStride;
|
|
const double* hBase = basePt + hDiagStride * (numXforms - 1); // Pointer to the last Householder vector
|
|
const double* hDiagPtr = hBase + colStride * (numToTransform - 1); // Pointer to last entry in that vector
|
|
long i;
|
|
double* diagPtr = x + NumCols * NumRows - 1; // Last entry in matrix (points to diagonal entry)
|
|
double* colPtr = diagPtr - (numToTransform - 1); // Pointer to column in matrix
|
|
for (i = numToTransform; i > 0; i--)
|
|
{
|
|
CopyArrayScale(numToTransform, hBase, colStride, colPtr, 1, -2.0 * (*hDiagPtr));
|
|
*diagPtr += 1.0; // Add back in 1 to the diagonal entry (since xforming the identity)
|
|
diagPtr -= (NumRows + 1); // Next diagonal entry in this matrix
|
|
colPtr -= NumRows; // Next column in this matrix
|
|
hDiagPtr -= colStride;
|
|
}
|
|
|
|
// Now handle the general case
|
|
// A row of zeros must be in effect added to the top of each old column (in each loop)
|
|
double* colLastPtr = x + NumRows * NumCols - numToTransform - 1;
|
|
for (i = numXforms - 1; i > 0; i--)
|
|
{
|
|
numToTransform++; // Number of non-trivial applications of this Householder transformation
|
|
hBase -= hDiagStride; // Pointer to the beginning of the Householder transformation
|
|
colPtr = colLastPtr;
|
|
for (long j = numToTransform - 1; j > 0; j--)
|
|
{
|
|
// Get dot product
|
|
double dotProd2N = -2.0 * DotArray(numToTransform - 1, hBase + colStride, colStride, colPtr + 1, 1);
|
|
*colPtr = dotProd2N * (*hBase); // Adding onto zero at initial point
|
|
AddArrayScale(numToTransform - 1, hBase + colStride, colStride, colPtr + 1, 1, dotProd2N);
|
|
colPtr -= NumRows;
|
|
}
|
|
// Do last one as a special case (may overwrite the Householder vector)
|
|
CopyArrayScale(numToTransform, hBase, colStride, colPtr, 1, -2.0 * (*hBase));
|
|
*colPtr += 1.0; // Add back one one as identity
|
|
// Done with this Householder transformation
|
|
colLastPtr--;
|
|
}
|
|
|
|
if (numZerosSkipped != 0)
|
|
{
|
|
assert(numZerosSkipped == 1);
|
|
// Fill first row and column with identity (More generally: first numZerosSkipped many rows and columns)
|
|
double* d = x;
|
|
*d = 1;
|
|
double* d2 = d;
|
|
for (i = NumRows - 1; i > 0; i--)
|
|
{
|
|
*(++d) = 0;
|
|
*(d2 += NumRows) = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
// **************** ConvertBidiagToDiagonal ***********************************************
|
|
// Do the iterative transformation from bidiagonal form to diagonal form using
|
|
// Givens transformation. (Golub-Reinsch)
|
|
// U and V are square. Size of U less than or equal to that of U.
|
|
void MatrixRmn::ConvertBidiagToDiagonal(MatrixRmn& U, MatrixRmn& V, VectorRn& w, VectorRn& superDiag) const
|
|
{
|
|
// These two index into the last bidiagonal block (last in the matrix, it will be
|
|
// first one handled.
|
|
long lastBidiagIdx = V.NumRows - 1;
|
|
long firstBidiagIdx = 0;
|
|
double eps = 1.0e-15 * Max(w.MaxAbs(), superDiag.MaxAbs());
|
|
|
|
while (true)
|
|
{
|
|
bool workLeft = UpdateBidiagIndices(&firstBidiagIdx, &lastBidiagIdx, w, superDiag, eps);
|
|
if (!workLeft)
|
|
{
|
|
break;
|
|
}
|
|
|
|
// Get ready for first Givens rotation
|
|
// Push non-zero to M[2,1] with Givens transformation
|
|
double* wPtr = w.x + firstBidiagIdx;
|
|
double* sdPtr = superDiag.x + firstBidiagIdx;
|
|
double extraOffDiag = 0.0;
|
|
if ((*wPtr) == 0.0)
|
|
{
|
|
ClearRowWithDiagonalZero(firstBidiagIdx, lastBidiagIdx, U, wPtr, sdPtr, eps);
|
|
if (firstBidiagIdx > 0)
|
|
{
|
|
if (NearZero(*(--sdPtr), eps))
|
|
{
|
|
*sdPtr = 0.0;
|
|
}
|
|
else
|
|
{
|
|
ClearColumnWithDiagonalZero(firstBidiagIdx, V, wPtr, sdPtr, eps);
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Estimate an eigenvalue from bottom four entries of M
|
|
// This gives a lambda value which will shift the Givens rotations
|
|
// Last four entries of M^T * M are ( ( A, B ), ( B, C ) ).
|
|
double A;
|
|
A = (firstBidiagIdx < lastBidiagIdx - 1) ? Square(superDiag[lastBidiagIdx - 2]) : 0.0;
|
|
double BSq = Square(w[lastBidiagIdx - 1]);
|
|
A += BSq; // The "A" entry of M^T * M
|
|
double C = Square(superDiag[lastBidiagIdx - 1]);
|
|
BSq *= C; // The squared "B" entry
|
|
C += Square(w[lastBidiagIdx]); // The "C" entry
|
|
double lambda; // lambda will hold the estimated eigenvalue
|
|
lambda = sqrt(Square((A - C) * 0.5) + BSq); // Use the lambda value that is closest to C.
|
|
if (A > C)
|
|
{
|
|
lambda = -lambda;
|
|
}
|
|
lambda += (A + C) * 0.5; // Now lambda equals the estimate for the last eigenvalue
|
|
double t11 = Square(w[firstBidiagIdx]);
|
|
double t12 = w[firstBidiagIdx] * superDiag[firstBidiagIdx];
|
|
|
|
double c, s;
|
|
CalcGivensValues(t11 - lambda, t12, &c, &s);
|
|
ApplyGivensCBTD(c, s, wPtr, sdPtr, &extraOffDiag, wPtr + 1);
|
|
V.PostApplyGivens(c, -s, firstBidiagIdx);
|
|
long i;
|
|
for (i = firstBidiagIdx; i < lastBidiagIdx - 1; i++)
|
|
{
|
|
// Push non-zero from M[i+1,i] to M[i,i+2]
|
|
CalcGivensValues(*wPtr, extraOffDiag, &c, &s);
|
|
ApplyGivensCBTD(c, s, wPtr, sdPtr, &extraOffDiag, extraOffDiag, wPtr + 1, sdPtr + 1);
|
|
U.PostApplyGivens(c, -s, i);
|
|
// Push non-zero from M[i,i+2] to M[1+2,i+1]
|
|
CalcGivensValues(*sdPtr, extraOffDiag, &c, &s);
|
|
ApplyGivensCBTD(c, s, sdPtr, wPtr + 1, &extraOffDiag, extraOffDiag, sdPtr + 1, wPtr + 2);
|
|
V.PostApplyGivens(c, -s, i + 1);
|
|
wPtr++;
|
|
sdPtr++;
|
|
}
|
|
// Push non-zero value from M[i+1,i] to M[i,i+1] for i==lastBidiagIdx-1
|
|
CalcGivensValues(*wPtr, extraOffDiag, &c, &s);
|
|
ApplyGivensCBTD(c, s, wPtr, &extraOffDiag, sdPtr, wPtr + 1);
|
|
U.PostApplyGivens(c, -s, i);
|
|
|
|
// DEBUG
|
|
// DebugCalcBidiagCheck( V, w, superDiag, U );
|
|
}
|
|
}
|
|
|
|
// This is called when there is a zero diagonal entry, with a non-zero superdiagonal entry on the same row.
|
|
// We use Givens rotations to "chase" the non-zero entry across the row; when it reaches the last
|
|
// column, it is finally zeroed away.
|
|
// wPtr points to the zero entry on the diagonal. sdPtr points to the non-zero superdiagonal entry on the same row.
|
|
void MatrixRmn::ClearRowWithDiagonalZero(long firstBidiagIdx, long lastBidiagIdx, MatrixRmn& U, double* wPtr, double* sdPtr, double eps)
|
|
{
|
|
double curSd = *sdPtr; // Value being chased across the row
|
|
*sdPtr = 0.0;
|
|
long i = firstBidiagIdx + 1;
|
|
while (true)
|
|
{
|
|
// Rotate row i and row firstBidiagIdx (Givens rotation)
|
|
double c, s;
|
|
CalcGivensValues(*(++wPtr), curSd, &c, &s);
|
|
U.PostApplyGivens(c, -s, i, firstBidiagIdx);
|
|
*wPtr = c * (*wPtr) - s * curSd;
|
|
if (i == lastBidiagIdx)
|
|
{
|
|
break;
|
|
}
|
|
curSd = s * (*(++sdPtr)); // New value pops up one column over to the right
|
|
*sdPtr = c * (*sdPtr);
|
|
i++;
|
|
}
|
|
}
|
|
|
|
// This is called when there is a zero diagonal entry, with a non-zero superdiagonal entry in the same column.
|
|
// We use Givens rotations to "chase" the non-zero entry up the column; when it reaches the last
|
|
// column, it is finally zeroed away.
|
|
// wPtr points to the zero entry on the diagonal. sdPtr points to the non-zero superdiagonal entry in the same column.
|
|
void MatrixRmn::ClearColumnWithDiagonalZero(long endIdx, MatrixRmn& V, double* wPtr, double* sdPtr, double eps)
|
|
{
|
|
double curSd = *sdPtr; // Value being chased up the column
|
|
*sdPtr = 0.0;
|
|
long i = endIdx - 1;
|
|
while (true)
|
|
{
|
|
double c, s;
|
|
CalcGivensValues(*(--wPtr), curSd, &c, &s);
|
|
V.PostApplyGivens(c, -s, i, endIdx);
|
|
*wPtr = c * (*wPtr) - s * curSd;
|
|
if (i == 0)
|
|
{
|
|
break;
|
|
}
|
|
curSd = s * (*(--sdPtr)); // New value pops up one row above
|
|
if (NearZero(curSd, eps))
|
|
{
|
|
break;
|
|
}
|
|
*sdPtr = c * (*sdPtr);
|
|
i--;
|
|
}
|
|
}
|
|
|
|
// Matrix A is ( ( a c ) ( b d ) ), i.e., given in column order.
|
|
// Mult's G[c,s] times A, replaces A.
|
|
void MatrixRmn::ApplyGivensCBTD(double cosine, double sine, double* a, double* b, double* c, double* d)
|
|
{
|
|
double temp = *a;
|
|
*a = cosine * (*a) - sine * (*b);
|
|
*b = sine * temp + cosine * (*b);
|
|
temp = *c;
|
|
*c = cosine * (*c) - sine * (*d);
|
|
*d = sine * temp + cosine * (*d);
|
|
}
|
|
|
|
// Now matrix A given in row order, A = ( ( a b c ) ( d e f ) ).
|
|
// Return G[c,s] * A, replace A. d becomes zero, no need to return.
|
|
// Also, it is certain the old *c value is taken to be zero!
|
|
void MatrixRmn::ApplyGivensCBTD(double cosine, double sine, double* a, double* b, double* c,
|
|
double d, double* e, double* f)
|
|
{
|
|
*a = cosine * (*a) - sine * d;
|
|
double temp = *b;
|
|
*b = cosine * (*b) - sine * (*e);
|
|
*e = sine * temp + cosine * (*e);
|
|
*c = -sine * (*f);
|
|
*f = cosine * (*f);
|
|
}
|
|
|
|
// Helper routine for SVD conversion from bidiagonal to diagonal
|
|
bool MatrixRmn::UpdateBidiagIndices(long* firstBidiagIdx, long* lastBidiagIdx, VectorRn& w, VectorRn& superDiag, double eps)
|
|
{
|
|
long lastIdx = *lastBidiagIdx;
|
|
double* sdPtr = superDiag.GetPtr(lastIdx - 1); // Entry above the last diagonal entry
|
|
while (NearZero(*sdPtr, eps))
|
|
{
|
|
*(sdPtr--) = 0.0;
|
|
lastIdx--;
|
|
if (lastIdx == 0)
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
*lastBidiagIdx = lastIdx;
|
|
long firstIdx = lastIdx - 1;
|
|
double* wPtr = w.GetPtr(firstIdx);
|
|
while (firstIdx > 0)
|
|
{
|
|
if (NearZero(*wPtr, eps))
|
|
{ // If this diagonal entry (near) zero
|
|
*wPtr = 0.0;
|
|
break;
|
|
}
|
|
if (NearZero(*(--sdPtr), eps))
|
|
{ // If the entry above the diagonal entry is (near) zero
|
|
*sdPtr = 0.0;
|
|
break;
|
|
}
|
|
wPtr--;
|
|
firstIdx--;
|
|
}
|
|
*firstBidiagIdx = firstIdx;
|
|
return true;
|
|
}
|
|
|
|
// ******************************************DEBUG STUFFF
|
|
|
|
bool MatrixRmn::DebugCheckSVD(const MatrixRmn& U, const VectorRn& w, const MatrixRmn& V) const
|
|
{
|
|
// Special SVD test code
|
|
|
|
MatrixRmn IV(V.GetNumRows(), V.GetNumColumns());
|
|
IV.SetIdentity();
|
|
MatrixRmn VTV(V.GetNumRows(), V.GetNumColumns());
|
|
MatrixRmn::TransposeMultiply(V, V, VTV);
|
|
IV -= VTV;
|
|
double error = IV.FrobeniusNorm();
|
|
|
|
MatrixRmn IU(U.GetNumRows(), U.GetNumColumns());
|
|
IU.SetIdentity();
|
|
MatrixRmn UTU(U.GetNumRows(), U.GetNumColumns());
|
|
MatrixRmn::TransposeMultiply(U, U, UTU);
|
|
IU -= UTU;
|
|
error += IU.FrobeniusNorm();
|
|
|
|
MatrixRmn Diag(U.GetNumRows(), V.GetNumRows());
|
|
Diag.SetZero();
|
|
Diag.SetDiagonalEntries(w);
|
|
MatrixRmn B(U.GetNumRows(), V.GetNumRows());
|
|
MatrixRmn C(U.GetNumRows(), V.GetNumRows());
|
|
MatrixRmn::Multiply(U, Diag, B);
|
|
MatrixRmn::MultiplyTranspose(B, V, C);
|
|
C -= *this;
|
|
error += C.FrobeniusNorm();
|
|
|
|
bool ret = (fabs(error) <= 1.0e-13 * w.MaxAbs());
|
|
assert(ret);
|
|
return ret;
|
|
}
|
|
|
|
bool MatrixRmn::DebugCheckInverse(const MatrixRmn& MInv) const
|
|
{
|
|
assert(this->NumRows == this->NumCols);
|
|
assert(MInv.NumRows == MInv.NumCols);
|
|
MatrixRmn I(this->NumRows, this->NumCols);
|
|
I.SetIdentity();
|
|
MatrixRmn MMInv(this->NumRows, this->NumCols);
|
|
Multiply(*this, MInv, MMInv);
|
|
I -= MMInv;
|
|
double error = I.FrobeniusNorm();
|
|
bool ret = (fabs(error) <= 1.0e-13);
|
|
assert(ret);
|
|
return ret;
|
|
}
|
|
|
|
bool MatrixRmn::DebugCalcBidiagCheck(const MatrixRmn& U, const VectorRn& w, const VectorRn& superDiag, const MatrixRmn& V) const
|
|
{
|
|
// Special SVD test code
|
|
|
|
MatrixRmn IV(V.GetNumRows(), V.GetNumColumns());
|
|
IV.SetIdentity();
|
|
MatrixRmn VTV(V.GetNumRows(), V.GetNumColumns());
|
|
MatrixRmn::TransposeMultiply(V, V, VTV);
|
|
IV -= VTV;
|
|
double error = IV.FrobeniusNorm();
|
|
|
|
MatrixRmn IU(U.GetNumRows(), U.GetNumColumns());
|
|
IU.SetIdentity();
|
|
MatrixRmn UTU(U.GetNumRows(), U.GetNumColumns());
|
|
MatrixRmn::TransposeMultiply(U, U, UTU);
|
|
IU -= UTU;
|
|
error += IU.FrobeniusNorm();
|
|
|
|
MatrixRmn DiagAndSuper(U.GetNumRows(), V.GetNumRows());
|
|
DiagAndSuper.SetZero();
|
|
DiagAndSuper.SetDiagonalEntries(w);
|
|
if (this->GetNumRows() >= this->GetNumColumns())
|
|
{
|
|
DiagAndSuper.SetSequence(superDiag, 0, 1, 1, 1);
|
|
}
|
|
else
|
|
{
|
|
DiagAndSuper.SetSequence(superDiag, 1, 0, 1, 1);
|
|
}
|
|
MatrixRmn B(U.GetNumRows(), V.GetNumRows());
|
|
MatrixRmn C(U.GetNumRows(), V.GetNumRows());
|
|
MatrixRmn::Multiply(U, DiagAndSuper, B);
|
|
MatrixRmn::MultiplyTranspose(B, V, C);
|
|
C -= *this;
|
|
error += C.FrobeniusNorm();
|
|
|
|
bool ret = (fabs(error) < 1.0e-13 * Max(w.MaxAbs(), superDiag.MaxAbs()));
|
|
assert(ret);
|
|
return ret;
|
|
}
|