mirror of
https://github.com/bulletphysics/bullet3
synced 2024-12-16 06:30:05 +00:00
52761f5578
fix inertial frame for door.urdf allow picking of links of multi-bodies with a fixed base
327 lines
11 KiB
C++
327 lines
11 KiB
C++
// Test of kinematic consistency: check if finite differences of velocities, accelerations
|
|
// match positions
|
|
|
|
#include <cmath>
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <iostream>
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
#include "Bullet3Common/b3Random.h"
|
|
|
|
#include "CloneTreeCreator.hpp"
|
|
#include "CoilCreator.hpp"
|
|
#include "DillCreator.hpp"
|
|
#include "RandomTreeCreator.hpp"
|
|
#include "BulletInverseDynamics/MultiBodyTree.hpp"
|
|
#include "MultiBodyTreeDebugGraph.hpp"
|
|
|
|
using namespace btInverseDynamics;
|
|
|
|
#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS)
|
|
// minimal smart pointer to make this work for c++2003
|
|
template <typename T>
|
|
class ptr {
|
|
ptr();
|
|
ptr(const ptr&);
|
|
public:
|
|
ptr(T* p) : m_p(p) {};
|
|
~ptr() { delete m_p; }
|
|
T& operator*() { return *m_p; }
|
|
T* operator->() { return m_p; }
|
|
T*get() {return m_p;}
|
|
const T*get() const {return m_p;}
|
|
friend bool operator==(const ptr<T>& lhs, const ptr<T>& rhs) { return rhs.m_p == lhs.m_p; }
|
|
friend bool operator!=(const ptr<T>& lhs, const ptr<T>& rhs) { return !(rhs.m_p == lhs.m_p);
|
|
}
|
|
|
|
private:
|
|
T* m_p;
|
|
};
|
|
|
|
void calculateDotJacUError(const MultiBodyTreeCreator& creator, const int nloops,
|
|
double* max_error) {
|
|
// tree1 is used as reference to compute dot(Jacobian)*u from acceleration(dot(u)=0)
|
|
ptr<MultiBodyTree> tree1(CreateMultiBodyTree(creator));
|
|
ASSERT_TRUE(0x0 != tree1);
|
|
CloneTreeCreator clone(tree1.get());
|
|
// tree2 is used to compute dot(Jacobian)*u using the calculateJacobian function
|
|
ptr<MultiBodyTree> tree2(CreateMultiBodyTree(clone));
|
|
ASSERT_TRUE(0x0 != tree2);
|
|
|
|
const int ndofs = tree1->numDoFs();
|
|
const int nbodies = tree1->numBodies();
|
|
if (ndofs <= 0) {
|
|
*max_error = 0;
|
|
return;
|
|
}
|
|
|
|
vecx q(ndofs);
|
|
vecx u(ndofs);
|
|
vecx dot_u(ndofs);
|
|
vecx zero(ndofs);
|
|
setZero(zero);
|
|
|
|
double max_lin_error = 0;
|
|
double max_ang_error = 0;
|
|
|
|
for (int loop = 0; loop < nloops; loop++) {
|
|
for (int i = 0; i < q.size(); i++) {
|
|
q(i) = b3RandRange(-B3_PI, B3_PI);
|
|
u(i) = b3RandRange(-B3_PI, B3_PI);
|
|
}
|
|
|
|
EXPECT_EQ(0, tree1->calculateKinematics(q, u, zero));
|
|
EXPECT_EQ(0, tree2->calculatePositionAndVelocityKinematics(q, u));
|
|
EXPECT_EQ(0, tree2->calculateJacobians(q, u));
|
|
|
|
for (int idx = 0; idx < nbodies; idx++) {
|
|
vec3 tmp1, tmp2;
|
|
vec3 diff;
|
|
EXPECT_EQ(0, tree1->getBodyLinearAcceleration(idx, &tmp1));
|
|
EXPECT_EQ(0, tree2->getBodyDotJacobianTransU(idx, &tmp2));
|
|
diff = tmp1 - tmp2;
|
|
double lin_error = maxAbs(diff);
|
|
|
|
if (lin_error > max_lin_error) {
|
|
max_lin_error = lin_error;
|
|
}
|
|
|
|
EXPECT_EQ(0, tree1->getBodyAngularAcceleration(idx, &tmp1));
|
|
EXPECT_EQ(0, tree2->getBodyDotJacobianRotU(idx, &tmp2));
|
|
diff = tmp1 - tmp2;
|
|
double ang_error = maxAbs(diff);
|
|
if (ang_error > max_ang_error) {
|
|
max_ang_error = ang_error;
|
|
}
|
|
}
|
|
}
|
|
*max_error = max_ang_error > max_lin_error ? max_ang_error : max_lin_error;
|
|
}
|
|
|
|
void calculateJacobianError(const MultiBodyTreeCreator& creator, const int nloops,
|
|
double* max_error) {
|
|
// tree1 is used as reference to compute the Jacobian from velocities with unit u vectors.
|
|
ptr<MultiBodyTree> tree1(CreateMultiBodyTree(creator));
|
|
ASSERT_TRUE(0x0 != tree1);
|
|
// tree2 is used to compute the Jacobians using the calculateJacobian function
|
|
CloneTreeCreator clone(tree1.get());
|
|
ptr<MultiBodyTree> tree2(CreateMultiBodyTree(clone));
|
|
ASSERT_TRUE(0x0 != tree2);
|
|
|
|
const int ndofs = tree1->numDoFs();
|
|
const int nbodies = tree1->numBodies();
|
|
|
|
if (ndofs <= 0) {
|
|
*max_error = 0;
|
|
return;
|
|
}
|
|
|
|
vecx q(ndofs);
|
|
vecx zero(ndofs);
|
|
setZero(zero);
|
|
vecx one(ndofs);
|
|
|
|
double max_lin_error = 0;
|
|
double max_ang_error = 0;
|
|
|
|
for (int loop = 0; loop < nloops; loop++) {
|
|
for (int i = 0; i < q.size(); i++) {
|
|
q(i) = b3RandRange(-B3_PI, B3_PI);
|
|
}
|
|
|
|
EXPECT_EQ(0, tree2->calculatePositionKinematics(q));
|
|
EXPECT_EQ(0, tree2->calculateJacobians(q));
|
|
|
|
for (int idx = 0; idx < nbodies; idx++) {
|
|
mat3x ref_jac_r(3, ndofs);
|
|
mat3x ref_jac_t(3, ndofs);
|
|
ref_jac_r.setZero();
|
|
ref_jac_t.setZero();
|
|
// this re-computes all jacobians for every body ...
|
|
// but avoids std::vector<eigen matrix> issues
|
|
for (int col = 0; col < ndofs; col++) {
|
|
setZero(one);
|
|
one(col) = 1.0;
|
|
EXPECT_EQ(0, tree1->calculatePositionAndVelocityKinematics(q, one));
|
|
vec3 vel, omg;
|
|
EXPECT_EQ(0, tree1->getBodyLinearVelocity(idx, &vel));
|
|
EXPECT_EQ(0, tree1->getBodyAngularVelocity(idx, &omg));
|
|
setMat3xElem(0, col, omg(0), &ref_jac_r);
|
|
setMat3xElem(1, col, omg(1), &ref_jac_r);
|
|
setMat3xElem(2, col, omg(2), &ref_jac_r);
|
|
setMat3xElem(0, col, vel(0), &ref_jac_t);
|
|
setMat3xElem(1, col, vel(1), &ref_jac_t);
|
|
setMat3xElem(2, col, vel(2), &ref_jac_t);
|
|
}
|
|
|
|
mat3x jac_r(3, ndofs);
|
|
mat3x jac_t(3, ndofs);
|
|
mat3x diff(3, ndofs);
|
|
|
|
EXPECT_EQ(0, tree2->getBodyJacobianTrans(idx, &jac_t));
|
|
EXPECT_EQ(0, tree2->getBodyJacobianRot(idx, &jac_r));
|
|
sub(ref_jac_t,jac_t,&diff);
|
|
double lin_error = maxAbsMat3x(diff);
|
|
if (lin_error > max_lin_error) {
|
|
max_lin_error = lin_error;
|
|
}
|
|
sub(ref_jac_r, jac_r,&diff);
|
|
double ang_error = maxAbsMat3x(diff);
|
|
if (ang_error > max_ang_error) {
|
|
max_ang_error = ang_error;
|
|
}
|
|
}
|
|
}
|
|
*max_error = max_ang_error > max_lin_error ? max_ang_error : max_lin_error;
|
|
}
|
|
|
|
void calculateVelocityJacobianError(const MultiBodyTreeCreator& creator, const int nloops,
|
|
double* max_error) {
|
|
// tree1 is used as reference to compute the velocities directly
|
|
ptr<MultiBodyTree> tree1(CreateMultiBodyTree(creator));
|
|
ASSERT_TRUE(0x0 != tree1);
|
|
// tree2 is used to compute the velocities via jacobians
|
|
CloneTreeCreator clone(tree1.get());
|
|
ptr<MultiBodyTree> tree2(CreateMultiBodyTree(clone));
|
|
ASSERT_TRUE(0x0 != tree2);
|
|
|
|
const int ndofs = tree1->numDoFs();
|
|
const int nbodies = tree1->numBodies();
|
|
|
|
if (ndofs <= 0) {
|
|
*max_error = 0;
|
|
return;
|
|
}
|
|
|
|
vecx q(ndofs);
|
|
vecx u(ndofs);
|
|
|
|
double max_lin_error = 0;
|
|
double max_ang_error = 0;
|
|
|
|
for (int loop = 0; loop < nloops; loop++) {
|
|
for (int i = 0; i < q.size(); i++) {
|
|
q(i) = b3RandRange(-B3_PI, B3_PI);
|
|
u(i) = b3RandRange(-B3_PI, B3_PI);
|
|
}
|
|
|
|
EXPECT_EQ(0, tree1->calculatePositionAndVelocityKinematics(q, u));
|
|
EXPECT_EQ(0, tree2->calculatePositionKinematics(q));
|
|
EXPECT_EQ(0, tree2->calculateJacobians(q));
|
|
|
|
for (int idx = 0; idx < nbodies; idx++) {
|
|
vec3 vel1;
|
|
vec3 omg1;
|
|
vec3 vel2;
|
|
vec3 omg2;
|
|
mat3x jac_r2(3, ndofs);
|
|
mat3x jac_t2(3, ndofs);
|
|
|
|
EXPECT_EQ(0, tree1->getBodyLinearVelocity(idx, &vel1));
|
|
EXPECT_EQ(0, tree1->getBodyAngularVelocity(idx, &omg1));
|
|
EXPECT_EQ(0, tree2->getBodyJacobianTrans(idx, &jac_t2));
|
|
EXPECT_EQ(0, tree2->getBodyJacobianRot(idx, &jac_r2));
|
|
omg2 = jac_r2 * u;
|
|
vel2 = jac_t2 * u;
|
|
|
|
double lin_error = maxAbs(vel1 - vel2);
|
|
if (lin_error > max_lin_error) {
|
|
max_lin_error = lin_error;
|
|
}
|
|
double ang_error = maxAbs(omg1 - omg2);
|
|
if (ang_error > max_ang_error) {
|
|
max_ang_error = ang_error;
|
|
}
|
|
}
|
|
}
|
|
*max_error = max_ang_error > max_lin_error ? max_ang_error : max_lin_error;
|
|
}
|
|
|
|
// test nonlinear terms: dot(Jacobian)*u (linear and angular acceleration for dot_u ==0)
|
|
// from Jacobian calculation method and pseudo-numerically using via the kinematics method.
|
|
TEST(InvDynJacobians, JacDotJacU) {
|
|
const int kNumLevels = 5;
|
|
#ifdef B3_USE_DOUBLE_PRECISION
|
|
const double kMaxError = 1e-12;
|
|
#else
|
|
const double kMaxError = 5e-5;
|
|
#endif
|
|
const int kNumLoops = 20;
|
|
for (int level = 0; level < kNumLevels; level++) {
|
|
const int nbodies = BT_ID_POW(2, level);
|
|
CoilCreator coil(nbodies);
|
|
double error;
|
|
calculateDotJacUError(coil, kNumLoops, &error);
|
|
EXPECT_GT(kMaxError, error);
|
|
DillCreator dill(level);
|
|
calculateDotJacUError(dill, kNumLoops, &error);
|
|
EXPECT_GT(kMaxError, error);
|
|
}
|
|
|
|
const int kRandomLoops = 100;
|
|
const int kMaxRandomBodies = 128;
|
|
for (int loop = 0; loop < kRandomLoops; loop++) {
|
|
RandomTreeCreator random(kMaxRandomBodies);
|
|
double error;
|
|
calculateDotJacUError(random, kNumLoops, &error);
|
|
EXPECT_GT(kMaxError, error);
|
|
}
|
|
}
|
|
|
|
// Jacobians: linear and angular acceleration for dot_u ==0
|
|
// from Jacobian calculation method and pseudo-numerically using via the kinematics method.
|
|
TEST(InvDynJacobians, Jacobians) {
|
|
const int kNumLevels = 5;
|
|
#ifdef B3_USE_DOUBLE_PRECISION
|
|
const double kMaxError = 1e-12;
|
|
#else
|
|
const double kMaxError = 5e-5;
|
|
#endif
|
|
const int kNumLoops = 20;
|
|
for (int level = 0; level < kNumLevels; level++) {
|
|
const int nbodies = BT_ID_POW(2, level);
|
|
CoilCreator coil(nbodies);
|
|
double error;
|
|
calculateJacobianError(coil, kNumLoops, &error);
|
|
EXPECT_GT(kMaxError, error);
|
|
DillCreator dill(level);
|
|
calculateDotJacUError(dill, kNumLoops, &error);
|
|
EXPECT_GT(kMaxError, error);
|
|
}
|
|
const int kRandomLoops = 20;
|
|
const int kMaxRandomBodies = 16;
|
|
for (int loop = 0; loop < kRandomLoops; loop++) {
|
|
RandomTreeCreator random(kMaxRandomBodies);
|
|
double error;
|
|
calculateJacobianError(random, kNumLoops, &error);
|
|
EXPECT_GT(kMaxError, error);
|
|
}
|
|
}
|
|
|
|
// test for jacobian*u == velocity
|
|
TEST(InvDynJacobians, VelocitiesFromJacobians) {
|
|
const int kRandomLoops = 20;
|
|
const int kMaxRandomBodies = 16;
|
|
const int kNumLoops = 20;
|
|
#ifdef B3_USE_DOUBLE_PRECISION
|
|
const double kMaxError = 1e-12;
|
|
#else
|
|
const double kMaxError = 5e-5;
|
|
#endif
|
|
for (int loop = 0; loop < kRandomLoops; loop++) {
|
|
RandomTreeCreator random(kMaxRandomBodies);
|
|
double error;
|
|
calculateVelocityJacobianError(random, kNumLoops, &error);
|
|
EXPECT_GT(kMaxError, error);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
int main(int argc, char** argv) {
|
|
b3Srand(1234);
|
|
::testing::InitGoogleTest(&argc, argv);
|
|
return RUN_ALL_TESTS();
|
|
}
|