bullet3/examples/ThirdPartyLibs/openvr/samples/shared/Matrices.cpp
erwincoumans ab8f16961e Code-style consistency improvement:
Apply clang-format-all.sh using the _clang-format file through all the cpp/.h files.
make sure not to apply it to certain serialization structures, since some parser expects the * as part of the name, instead of type.
This commit contains no other changes aside from adding and applying clang-format-all.sh
2018-09-23 14:17:31 -07:00

590 lines
18 KiB
C++

///////////////////////////////////////////////////////////////////////////////
// Matrice.cpp
// ===========
// NxN Matrix Math classes
//
// The elements of the matrix are stored as column major order.
// | 0 2 | | 0 3 6 | | 0 4 8 12 |
// | 1 3 | | 1 4 7 | | 1 5 9 13 |
// | 2 5 8 | | 2 6 10 14 |
// | 3 7 11 15 |
//
// AUTHOR: Song Ho Ahn (song.ahn@gmail.com)
// CREATED: 2005-06-24
// UPDATED: 2014-09-21
//
// Copyright (C) 2005 Song Ho Ahn
///////////////////////////////////////////////////////////////////////////////
#include <cmath>
#include <algorithm>
#include "Matrices.h"
const float DEG2RAD = 3.141593f / 180;
const float EPSILON = 0.00001f;
///////////////////////////////////////////////////////////////////////////////
// transpose 2x2 matrix
///////////////////////////////////////////////////////////////////////////////
Matrix2& Matrix2::transpose()
{
std::swap(m[1], m[2]);
return *this;
}
///////////////////////////////////////////////////////////////////////////////
// return the determinant of 2x2 matrix
///////////////////////////////////////////////////////////////////////////////
float Matrix2::getDeterminant()
{
return m[0] * m[3] - m[1] * m[2];
}
///////////////////////////////////////////////////////////////////////////////
// inverse of 2x2 matrix
// If cannot find inverse, set identity matrix
///////////////////////////////////////////////////////////////////////////////
Matrix2& Matrix2::invert()
{
float determinant = getDeterminant();
if (fabs(determinant) <= EPSILON)
{
return identity();
}
float tmp = m[0]; // copy the first element
float invDeterminant = 1.0f / determinant;
m[0] = invDeterminant * m[3];
m[1] = -invDeterminant * m[1];
m[2] = -invDeterminant * m[2];
m[3] = invDeterminant * tmp;
return *this;
}
///////////////////////////////////////////////////////////////////////////////
// transpose 3x3 matrix
///////////////////////////////////////////////////////////////////////////////
Matrix3& Matrix3::transpose()
{
std::swap(m[1], m[3]);
std::swap(m[2], m[6]);
std::swap(m[5], m[7]);
return *this;
}
///////////////////////////////////////////////////////////////////////////////
// return determinant of 3x3 matrix
///////////////////////////////////////////////////////////////////////////////
float Matrix3::getDeterminant()
{
return m[0] * (m[4] * m[8] - m[5] * m[7]) -
m[1] * (m[3] * m[8] - m[5] * m[6]) +
m[2] * (m[3] * m[7] - m[4] * m[6]);
}
///////////////////////////////////////////////////////////////////////////////
// inverse 3x3 matrix
// If cannot find inverse, set identity matrix
///////////////////////////////////////////////////////////////////////////////
Matrix3& Matrix3::invert()
{
float determinant, invDeterminant;
float tmp[9];
tmp[0] = m[4] * m[8] - m[5] * m[7];
tmp[1] = m[2] * m[7] - m[1] * m[8];
tmp[2] = m[1] * m[5] - m[2] * m[4];
tmp[3] = m[5] * m[6] - m[3] * m[8];
tmp[4] = m[0] * m[8] - m[2] * m[6];
tmp[5] = m[2] * m[3] - m[0] * m[5];
tmp[6] = m[3] * m[7] - m[4] * m[6];
tmp[7] = m[1] * m[6] - m[0] * m[7];
tmp[8] = m[0] * m[4] - m[1] * m[3];
// check determinant if it is 0
determinant = m[0] * tmp[0] + m[1] * tmp[3] + m[2] * tmp[6];
if (fabs(determinant) <= EPSILON)
{
return identity(); // cannot inverse, make it idenety matrix
}
// divide by the determinant
invDeterminant = 1.0f / determinant;
m[0] = invDeterminant * tmp[0];
m[1] = invDeterminant * tmp[1];
m[2] = invDeterminant * tmp[2];
m[3] = invDeterminant * tmp[3];
m[4] = invDeterminant * tmp[4];
m[5] = invDeterminant * tmp[5];
m[6] = invDeterminant * tmp[6];
m[7] = invDeterminant * tmp[7];
m[8] = invDeterminant * tmp[8];
return *this;
}
///////////////////////////////////////////////////////////////////////////////
// transpose 4x4 matrix
///////////////////////////////////////////////////////////////////////////////
Matrix4& Matrix4::transpose()
{
std::swap(m[1], m[4]);
std::swap(m[2], m[8]);
std::swap(m[3], m[12]);
std::swap(m[6], m[9]);
std::swap(m[7], m[13]);
std::swap(m[11], m[14]);
return *this;
}
///////////////////////////////////////////////////////////////////////////////
// inverse 4x4 matrix
///////////////////////////////////////////////////////////////////////////////
Matrix4& Matrix4::invert()
{
// If the 4th row is [0,0,0,1] then it is affine matrix and
// it has no projective transformation.
if (m[3] == 0 && m[7] == 0 && m[11] == 0 && m[15] == 1)
this->invertAffine();
else
{
this->invertGeneral();
/*@@ invertProjective() is not optimized (slower than generic one)
if(fabs(m[0]*m[5] - m[1]*m[4]) > EPSILON)
this->invertProjective(); // inverse using matrix partition
else
this->invertGeneral(); // generalized inverse
*/
}
return *this;
}
///////////////////////////////////////////////////////////////////////////////
// compute the inverse of 4x4 Euclidean transformation matrix
//
// Euclidean transformation is translation, rotation, and reflection.
// With Euclidean transform, only the position and orientation of the object
// will be changed. Euclidean transform does not change the shape of an object
// (no scaling). Length and angle are reserved.
//
// Use inverseAffine() if the matrix has scale and shear transformation.
//
// M = [ R | T ]
// [ --+-- ] (R denotes 3x3 rotation/reflection matrix)
// [ 0 | 1 ] (T denotes 1x3 translation matrix)
//
// y = M*x -> y = R*x + T -> x = R^-1*(y - T) -> x = R^T*y - R^T*T
// (R is orthogonal, R^-1 = R^T)
//
// [ R | T ]-1 [ R^T | -R^T * T ] (R denotes 3x3 rotation matrix)
// [ --+-- ] = [ ----+--------- ] (T denotes 1x3 translation)
// [ 0 | 1 ] [ 0 | 1 ] (R^T denotes R-transpose)
///////////////////////////////////////////////////////////////////////////////
Matrix4& Matrix4::invertEuclidean()
{
// transpose 3x3 rotation matrix part
// | R^T | 0 |
// | ----+-- |
// | 0 | 1 |
float tmp;
tmp = m[1];
m[1] = m[4];
m[4] = tmp;
tmp = m[2];
m[2] = m[8];
m[8] = tmp;
tmp = m[6];
m[6] = m[9];
m[9] = tmp;
// compute translation part -R^T * T
// | 0 | -R^T x |
// | --+------- |
// | 0 | 0 |
float x = m[12];
float y = m[13];
float z = m[14];
m[12] = -(m[0] * x + m[4] * y + m[8] * z);
m[13] = -(m[1] * x + m[5] * y + m[9] * z);
m[14] = -(m[2] * x + m[6] * y + m[10] * z);
// last row should be unchanged (0,0,0,1)
return *this;
}
///////////////////////////////////////////////////////////////////////////////
// compute the inverse of a 4x4 affine transformation matrix
//
// Affine transformations are generalizations of Euclidean transformations.
// Affine transformation includes translation, rotation, reflection, scaling,
// and shearing. Length and angle are NOT preserved.
// M = [ R | T ]
// [ --+-- ] (R denotes 3x3 rotation/scale/shear matrix)
// [ 0 | 1 ] (T denotes 1x3 translation matrix)
//
// y = M*x -> y = R*x + T -> x = R^-1*(y - T) -> x = R^-1*y - R^-1*T
//
// [ R | T ]-1 [ R^-1 | -R^-1 * T ]
// [ --+-- ] = [ -----+---------- ]
// [ 0 | 1 ] [ 0 + 1 ]
///////////////////////////////////////////////////////////////////////////////
Matrix4& Matrix4::invertAffine()
{
// R^-1
Matrix3 r(m[0], m[1], m[2], m[4], m[5], m[6], m[8], m[9], m[10]);
r.invert();
m[0] = r[0];
m[1] = r[1];
m[2] = r[2];
m[4] = r[3];
m[5] = r[4];
m[6] = r[5];
m[8] = r[6];
m[9] = r[7];
m[10] = r[8];
// -R^-1 * T
float x = m[12];
float y = m[13];
float z = m[14];
m[12] = -(r[0] * x + r[3] * y + r[6] * z);
m[13] = -(r[1] * x + r[4] * y + r[7] * z);
m[14] = -(r[2] * x + r[5] * y + r[8] * z);
// last row should be unchanged (0,0,0,1)
//m[3] = m[7] = m[11] = 0.0f;
//m[15] = 1.0f;
return *this;
}
///////////////////////////////////////////////////////////////////////////////
// inverse matrix using matrix partitioning (blockwise inverse)
// It devides a 4x4 matrix into 4 of 2x2 matrices. It works in case of where
// det(A) != 0. If not, use the generic inverse method
// inverse formula.
// M = [ A | B ] A, B, C, D are 2x2 matrix blocks
// [ --+-- ] det(M) = |A| * |D - ((C * A^-1) * B)|
// [ C | D ]
//
// M^-1 = [ A' | B' ] A' = A^-1 - (A^-1 * B) * C'
// [ ---+--- ] B' = (A^-1 * B) * -D'
// [ C' | D' ] C' = -D' * (C * A^-1)
// D' = (D - ((C * A^-1) * B))^-1
//
// NOTE: I wrap with () if it it used more than once.
// The matrix is invertable even if det(A)=0, so must check det(A) before
// calling this function, and use invertGeneric() instead.
///////////////////////////////////////////////////////////////////////////////
Matrix4& Matrix4::invertProjective()
{
// partition
Matrix2 a(m[0], m[1], m[4], m[5]);
Matrix2 b(m[8], m[9], m[12], m[13]);
Matrix2 c(m[2], m[3], m[6], m[7]);
Matrix2 d(m[10], m[11], m[14], m[15]);
// pre-compute repeated parts
a.invert(); // A^-1
Matrix2 ab = a * b; // A^-1 * B
Matrix2 ca = c * a; // C * A^-1
Matrix2 cab = ca * b; // C * A^-1 * B
Matrix2 dcab = d - cab; // D - C * A^-1 * B
// check determinant if |D - C * A^-1 * B| = 0
//NOTE: this function assumes det(A) is already checked. if |A|=0 then,
// cannot use this function.
float determinant = dcab[0] * dcab[3] - dcab[1] * dcab[2];
if (fabs(determinant) <= EPSILON)
{
return identity();
}
// compute D' and -D'
Matrix2 d1 = dcab; // (D - C * A^-1 * B)
d1.invert(); // (D - C * A^-1 * B)^-1
Matrix2 d2 = -d1; // -(D - C * A^-1 * B)^-1
// compute C'
Matrix2 c1 = d2 * ca; // -D' * (C * A^-1)
// compute B'
Matrix2 b1 = ab * d2; // (A^-1 * B) * -D'
// compute A'
Matrix2 a1 = a - (ab * c1); // A^-1 - (A^-1 * B) * C'
// assemble inverse matrix
m[0] = a1[0];
m[4] = a1[2]; /*|*/
m[8] = b1[0];
m[12] = b1[2];
m[1] = a1[1];
m[5] = a1[3]; /*|*/
m[9] = b1[1];
m[13] = b1[3];
/*-----------------------------+-----------------------------*/
m[2] = c1[0];
m[6] = c1[2]; /*|*/
m[10] = d1[0];
m[14] = d1[2];
m[3] = c1[1];
m[7] = c1[3]; /*|*/
m[11] = d1[1];
m[15] = d1[3];
return *this;
}
///////////////////////////////////////////////////////////////////////////////
// compute the inverse of a general 4x4 matrix using Cramer's Rule
// If cannot find inverse, return indentity matrix
// M^-1 = adj(M) / det(M)
///////////////////////////////////////////////////////////////////////////////
Matrix4& Matrix4::invertGeneral()
{
// get cofactors of minor matrices
float cofactor0 = getCofactor(m[5], m[6], m[7], m[9], m[10], m[11], m[13], m[14], m[15]);
float cofactor1 = getCofactor(m[4], m[6], m[7], m[8], m[10], m[11], m[12], m[14], m[15]);
float cofactor2 = getCofactor(m[4], m[5], m[7], m[8], m[9], m[11], m[12], m[13], m[15]);
float cofactor3 = getCofactor(m[4], m[5], m[6], m[8], m[9], m[10], m[12], m[13], m[14]);
// get determinant
float determinant = m[0] * cofactor0 - m[1] * cofactor1 + m[2] * cofactor2 - m[3] * cofactor3;
if (fabs(determinant) <= EPSILON)
{
return identity();
}
// get rest of cofactors for adj(M)
float cofactor4 = getCofactor(m[1], m[2], m[3], m[9], m[10], m[11], m[13], m[14], m[15]);
float cofactor5 = getCofactor(m[0], m[2], m[3], m[8], m[10], m[11], m[12], m[14], m[15]);
float cofactor6 = getCofactor(m[0], m[1], m[3], m[8], m[9], m[11], m[12], m[13], m[15]);
float cofactor7 = getCofactor(m[0], m[1], m[2], m[8], m[9], m[10], m[12], m[13], m[14]);
float cofactor8 = getCofactor(m[1], m[2], m[3], m[5], m[6], m[7], m[13], m[14], m[15]);
float cofactor9 = getCofactor(m[0], m[2], m[3], m[4], m[6], m[7], m[12], m[14], m[15]);
float cofactor10 = getCofactor(m[0], m[1], m[3], m[4], m[5], m[7], m[12], m[13], m[15]);
float cofactor11 = getCofactor(m[0], m[1], m[2], m[4], m[5], m[6], m[12], m[13], m[14]);
float cofactor12 = getCofactor(m[1], m[2], m[3], m[5], m[6], m[7], m[9], m[10], m[11]);
float cofactor13 = getCofactor(m[0], m[2], m[3], m[4], m[6], m[7], m[8], m[10], m[11]);
float cofactor14 = getCofactor(m[0], m[1], m[3], m[4], m[5], m[7], m[8], m[9], m[11]);
float cofactor15 = getCofactor(m[0], m[1], m[2], m[4], m[5], m[6], m[8], m[9], m[10]);
// build inverse matrix = adj(M) / det(M)
// adjugate of M is the transpose of the cofactor matrix of M
float invDeterminant = 1.0f / determinant;
m[0] = invDeterminant * cofactor0;
m[1] = -invDeterminant * cofactor4;
m[2] = invDeterminant * cofactor8;
m[3] = -invDeterminant * cofactor12;
m[4] = -invDeterminant * cofactor1;
m[5] = invDeterminant * cofactor5;
m[6] = -invDeterminant * cofactor9;
m[7] = invDeterminant * cofactor13;
m[8] = invDeterminant * cofactor2;
m[9] = -invDeterminant * cofactor6;
m[10] = invDeterminant * cofactor10;
m[11] = -invDeterminant * cofactor14;
m[12] = -invDeterminant * cofactor3;
m[13] = invDeterminant * cofactor7;
m[14] = -invDeterminant * cofactor11;
m[15] = invDeterminant * cofactor15;
return *this;
}
///////////////////////////////////////////////////////////////////////////////
// return determinant of 4x4 matrix
///////////////////////////////////////////////////////////////////////////////
float Matrix4::getDeterminant()
{
return m[0] * getCofactor(m[5], m[6], m[7], m[9], m[10], m[11], m[13], m[14], m[15]) -
m[1] * getCofactor(m[4], m[6], m[7], m[8], m[10], m[11], m[12], m[14], m[15]) +
m[2] * getCofactor(m[4], m[5], m[7], m[8], m[9], m[11], m[12], m[13], m[15]) -
m[3] * getCofactor(m[4], m[5], m[6], m[8], m[9], m[10], m[12], m[13], m[14]);
}
///////////////////////////////////////////////////////////////////////////////
// compute cofactor of 3x3 minor matrix without sign
// input params are 9 elements of the minor matrix
// NOTE: The caller must know its sign.
///////////////////////////////////////////////////////////////////////////////
float Matrix4::getCofactor(float m0, float m1, float m2,
float m3, float m4, float m5,
float m6, float m7, float m8)
{
return m0 * (m4 * m8 - m5 * m7) -
m1 * (m3 * m8 - m5 * m6) +
m2 * (m3 * m7 - m4 * m6);
}
///////////////////////////////////////////////////////////////////////////////
// translate this matrix by (x, y, z)
///////////////////////////////////////////////////////////////////////////////
Matrix4& Matrix4::translate(const Vector3& v)
{
return translate(v.x, v.y, v.z);
}
Matrix4& Matrix4::translate(float x, float y, float z)
{
m[0] += m[3] * x;
m[4] += m[7] * x;
m[8] += m[11] * x;
m[12] += m[15] * x;
m[1] += m[3] * y;
m[5] += m[7] * y;
m[9] += m[11] * y;
m[13] += m[15] * y;
m[2] += m[3] * z;
m[6] += m[7] * z;
m[10] += m[11] * z;
m[14] += m[15] * z;
return *this;
}
///////////////////////////////////////////////////////////////////////////////
// uniform scale
///////////////////////////////////////////////////////////////////////////////
Matrix4& Matrix4::scale(float s)
{
return scale(s, s, s);
}
Matrix4& Matrix4::scale(float x, float y, float z)
{
m[0] *= x;
m[4] *= x;
m[8] *= x;
m[12] *= x;
m[1] *= y;
m[5] *= y;
m[9] *= y;
m[13] *= y;
m[2] *= z;
m[6] *= z;
m[10] *= z;
m[14] *= z;
return *this;
}
///////////////////////////////////////////////////////////////////////////////
// build a rotation matrix with given angle(degree) and rotation axis, then
// multiply it with this object
///////////////////////////////////////////////////////////////////////////////
Matrix4& Matrix4::rotate(float angle, const Vector3& axis)
{
return rotate(angle, axis.x, axis.y, axis.z);
}
Matrix4& Matrix4::rotate(float angle, float x, float y, float z)
{
float c = cosf(angle * DEG2RAD); // cosine
float s = sinf(angle * DEG2RAD); // sine
float c1 = 1.0f - c; // 1 - c
float m0 = m[0], m4 = m[4], m8 = m[8], m12 = m[12],
m1 = m[1], m5 = m[5], m9 = m[9], m13 = m[13],
m2 = m[2], m6 = m[6], m10 = m[10], m14 = m[14];
// build rotation matrix
float r0 = x * x * c1 + c;
float r1 = x * y * c1 + z * s;
float r2 = x * z * c1 - y * s;
float r4 = x * y * c1 - z * s;
float r5 = y * y * c1 + c;
float r6 = y * z * c1 + x * s;
float r8 = x * z * c1 + y * s;
float r9 = y * z * c1 - x * s;
float r10 = z * z * c1 + c;
// multiply rotation matrix
m[0] = r0 * m0 + r4 * m1 + r8 * m2;
m[1] = r1 * m0 + r5 * m1 + r9 * m2;
m[2] = r2 * m0 + r6 * m1 + r10 * m2;
m[4] = r0 * m4 + r4 * m5 + r8 * m6;
m[5] = r1 * m4 + r5 * m5 + r9 * m6;
m[6] = r2 * m4 + r6 * m5 + r10 * m6;
m[8] = r0 * m8 + r4 * m9 + r8 * m10;
m[9] = r1 * m8 + r5 * m9 + r9 * m10;
m[10] = r2 * m8 + r6 * m9 + r10 * m10;
m[12] = r0 * m12 + r4 * m13 + r8 * m14;
m[13] = r1 * m12 + r5 * m13 + r9 * m14;
m[14] = r2 * m12 + r6 * m13 + r10 * m14;
return *this;
}
Matrix4& Matrix4::rotateX(float angle)
{
float c = cosf(angle * DEG2RAD);
float s = sinf(angle * DEG2RAD);
float m1 = m[1], m2 = m[2],
m5 = m[5], m6 = m[6],
m9 = m[9], m10 = m[10],
m13 = m[13], m14 = m[14];
m[1] = m1 * c + m2 * -s;
m[2] = m1 * s + m2 * c;
m[5] = m5 * c + m6 * -s;
m[6] = m5 * s + m6 * c;
m[9] = m9 * c + m10 * -s;
m[10] = m9 * s + m10 * c;
m[13] = m13 * c + m14 * -s;
m[14] = m13 * s + m14 * c;
return *this;
}
Matrix4& Matrix4::rotateY(float angle)
{
float c = cosf(angle * DEG2RAD);
float s = sinf(angle * DEG2RAD);
float m0 = m[0], m2 = m[2],
m4 = m[4], m6 = m[6],
m8 = m[8], m10 = m[10],
m12 = m[12], m14 = m[14];
m[0] = m0 * c + m2 * s;
m[2] = m0 * -s + m2 * c;
m[4] = m4 * c + m6 * s;
m[6] = m4 * -s + m6 * c;
m[8] = m8 * c + m10 * s;
m[10] = m8 * -s + m10 * c;
m[12] = m12 * c + m14 * s;
m[14] = m12 * -s + m14 * c;
return *this;
}
Matrix4& Matrix4::rotateZ(float angle)
{
float c = cosf(angle * DEG2RAD);
float s = sinf(angle * DEG2RAD);
float m0 = m[0], m1 = m[1],
m4 = m[4], m5 = m[5],
m8 = m[8], m9 = m[9],
m12 = m[12], m13 = m[13];
m[0] = m0 * c + m1 * -s;
m[1] = m0 * s + m1 * c;
m[4] = m4 * c + m5 * -s;
m[5] = m4 * s + m5 * c;
m[8] = m8 * c + m9 * -s;
m[9] = m8 * s + m9 * c;
m[12] = m12 * c + m13 * -s;
m[13] = m12 * s + m13 * c;
return *this;
}