bullet3/Extras/SATConvexCollision/Geometry.cpp

230 lines
5.0 KiB
C++

// Bullet Continuous Collision Detection and Physics Library
// Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
//
// Geometry.cpp
//
// Copyright (c) 2006 Simon Hobbs
// This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
///for now this is windows only, Intel SSE SIMD intrinsics
#ifdef WIN32
#if _MSC_VER >= 1310
#include "Geometry.h"
#include "Maths.h"
#include <assert.h>
////////////////////////////////////////////////////////////////////////////////
// Line
////////////////////////////////////////////////////////////////////////////////
// Ray
// returns false if the lines are parallel
// t1 and t2 are set to the times of the nearest points on each line
bool Intersect(const Line& la, const Line& lb, float& ta, float& tb)
{
Vector3 ea = la.m_end - la.m_start;
Vector3 eb = lb.m_end - lb.m_start;
Vector3 u = la.m_start - lb.m_start;
float a = Dot(ea, ea);
float b = Dot(ea, eb);
float c = Dot(eb, eb);
float d = Dot(ea, u);
float e = Dot(eb, u);
float det = (a * c - b * b);
if (Abs(det) < 0.001f)
return false;
float invDet = RcpNr(det);
ta = (b * e - c * d) * invDet;
tb = (a * e - b * d) * invDet;
return true;
}
bool IntersectSegments(const Line& la, const Line& lb, float& ta, float& tb)
{
Vector3 ea = la.m_end - la.m_start;
Vector3 eb = lb.m_end - lb.m_start;
Vector3 u = la.m_start - lb.m_start;
float a = Dot(ea, ea);
float b = Dot(ea, eb);
float c = Dot(eb, eb);
float d = Dot(ea, u);
float e = Dot(eb, u);
float det = (a * c - b * b);
if (Abs(det) < 0.001f)
return false;
float numa = (b * e - c * d);
float numb = (a * e - b * d);
// clip a
float dena = det, denb = det;
if (numa < 0.0f)
{
numa = 0.0f;
numb = e;
denb = c;
}
else if (numa > det)
{
numa = det;
numb = e + b;
denb = c;
}
else
denb = det;
// clip b
if (numb < 0.0f)
{
numb = 0.0f;
if (-d < 0.0f)
{
numa = 0.0f;
}
else if (-d > a)
{
numa = dena;
}
else
{
numa = -d;
dena = a;
}
}
else if (numb > denb)
{
numb = denb;
if ((-d + b) < 0.0f)
{
numa = 0.0f;
}
else if ((-d + b) > a)
{
numa = dena;
}
else
{
numa = -d + b;
dena = a;
}
}
// compute the times
ta = numa / dena;
tb = numb / denb;
return true;
}
// returns intersection of 2 rays or nearest point to it
// t1 and t2 are set to the times of the nearest points on each ray (not clamped to ray though)
// asserts if rays are parallel
bool Intersect(const Ray& ra, const Ray& rb, float& ta, float& tb)
{
Vector3 u = ra.m_start - rb.m_start;
Scalar a = Dot(ra.m_dir, ra.m_dir);
Scalar b = Dot(ra.m_dir, rb.m_dir);
Scalar c = Dot(rb.m_dir, rb.m_dir);
Scalar d = Dot(ra.m_dir, u);
Scalar e = Dot(rb.m_dir, u);
Scalar det = (a * c - b * b);
if (Abs(det) < 0.001f)
return false;
Scalar invDet = RcpNr(det);
ta = (b * e - c * d) * invDet;
tb = (a * e - b * d) * invDet;
return true;
}
////////////////////////////////////////////////////////////////////////////////
// Plane
bool Plane::IsFinite() const
{
if (IsNan(GetX()) || IsNan(GetY()) || IsNan(GetZ()) || IsNan(GetW()))
return false;
return true;
}
////////////////////////////////////////////////////////////////////////////////
// Bounds3 - axis aligned bounding box
Bounds3::OriginTag Bounds3::Origin;
Bounds3::EmptyTag Bounds3::Empty;
bool Bounds3::Intersect(const Ray& ray, float& tnear, float& tfar) const
{
Vector3 rcpDir = RcpNr(ray.m_dir);
Vector3 v1 = (m_min - ray.m_start) * rcpDir;
Vector3 v2 = (m_max - ray.m_start) * rcpDir;
Vector3 vmin = Min(v1, v2);
Vector3 vmax = Max(v1, v2);
Scalar snear = MaxComp(vmin);
// handle ray being parallel to any axis
// (most rays don't need this)
if (IsNan(snear))
{
int inside = (ray.m_start >= m_min) & (ray.m_start <= m_max);
for (int i = 0; i < 3; i++)
{
if (IsNan(rcpDir.Get(i)))
{
if ((inside & (1 << i)) == 0)
return false;
vmin.Set(i, Scalar::Consts::MinValue);
vmax.Set(i, Scalar::Consts::MaxValue);
}
}
snear = MaxComp(vmin);
}
tnear = snear;
tfar = MinComp(vmax);
if (tnear > tfar)
return false;
if (tfar < 0.0f)
return false;
return true;
}
////////////////////////////////////////////////////////////////////////////////
// OrientedBounds3 - oriented bounding box
#endif
#endif //WIN32