bullet3/examples/OpenCL/broadphase/PairBench.cpp
erwincoumans ab8f16961e Code-style consistency improvement:
Apply clang-format-all.sh using the _clang-format file through all the cpp/.h files.
make sure not to apply it to certain serialization structures, since some parser expects the * as part of the name, instead of type.
This commit contains no other changes aside from adding and applying clang-format-all.sh
2018-09-23 14:17:31 -07:00

722 lines
20 KiB
C++

//those header files need to be at the top, because of conflict __global and STL
#include "PairBench.h"
#include "Bullet3Common/b3Quaternion.h"
#include "Bullet3OpenCL/BroadphaseCollision/b3GpuSapBroadphase.h"
#include "Bullet3OpenCL/BroadphaseCollision/b3GpuGridBroadphase.h"
#include "Bullet3OpenCL/BroadphaseCollision/b3GpuParallelLinearBvhBroadphase.h"
#include "../Utils/b3Clock.h"
//#include "../GpuDemoInternalData.h"
#include "Bullet3OpenCL/Initialize/b3OpenCLUtils.h"
#include "Bullet3OpenCL/ParallelPrimitives/b3LauncherCL.h"
#include "../OpenGLWindow/OpenGLInclude.h"
#include "../OpenGLWindow/ShapeData.h"
#include <string.h>
#include "pairsKernel.h"
extern int gPreferredOpenCLDeviceIndex;
extern int gPreferredOpenCLPlatformIndex;
#include "../CommonInterfaces/CommonExampleInterface.h"
#include "../CommonInterfaces/CommonGUIHelperInterface.h"
#include "../CommonInterfaces/CommonRenderInterface.h"
#include "../CommonInterfaces/CommonCameraInterface.h"
#include "../CommonInterfaces/CommonGraphicsAppInterface.h"
#include "../CommonInterfaces/CommonWindowInterface.h"
#include "../CommonOpenCL/CommonOpenCLBase.h"
#include "../OpenGLWindow/GLInstancingRenderer.h"
#include "../OpenGLWindow/GLInstanceRendererInternalData.h"
char* gPairBenchFileName = 0;
class PairBench : public CommonOpenCLBase
{
struct PairBenchInternalData* m_data;
public:
PairBench(GUIHelperInterface* helper);
virtual ~PairBench();
virtual void initPhysics();
virtual void exitPhysics();
void createBroadphase(int xdim, int ydim, int zdim);
void deleteBroadphase();
virtual void stepSimulation(float deltaTime);
virtual void renderScene();
virtual void resetCamera()
{
float dist = 10;
if (gPairBenchFileName)
{
dist = 830;
}
else
{
dist = 130;
}
float pitch = -33;
float yaw = 62;
float targetPos[4] = {15.5, 12.5, 15.5, 0};
m_guiHelper->resetCamera(dist, yaw, pitch, targetPos[0], targetPos[1], targetPos[2]);
}
};
//we use an offset, just for testing to make sure there is no assumption in the broadphase that 'index' starts at 0
#define TEST_INDEX_OFFSET 1024
extern bool useShadowMap;
float maxExtents = -1e30f;
int largeCount = 0;
float timeStepPos = 0.000166666;
float mAmplitude = 251.f;
int dimensions[3] = {10, 10, 10}; //initialized with x_dim/y_dim/z_dim
const char* axisNames[3] = {"# x-axis", "# y-axis", "# z-axis"};
extern bool gReset;
static int curUseLargeAabbOption = 0;
const char* useLargeAabbOptions[] =
{
"NoLargeAabb",
"UseLargeAabb",
};
struct BroadphaseEntry
{
const char* m_name;
b3GpuBroadphaseInterface::CreateFunc* m_createFunc;
};
static PairBench* sPairDemo = 0;
#define BP_COMBO_INDEX 123
static int curSelectedBroadphase = 0;
static BroadphaseEntry allBroadphases[] =
{
{"Gpu Grid", b3GpuGridBroadphase::CreateFunc},
{"Parallel Linear BVH", b3GpuParallelLinearBvhBroadphase::CreateFunc},
{"CPU Brute Force", b3GpuSapBroadphase::CreateFuncBruteForceCpu},
{"GPU Brute Force", b3GpuSapBroadphase::CreateFuncBruteForceGpu},
{"GPU 1-SAP Original", b3GpuSapBroadphase::CreateFuncOriginal},
{"GPU 1-SAP Barrier", b3GpuSapBroadphase::CreateFuncBarrier},
{"GPU 1-SAP LDS", b3GpuSapBroadphase::CreateFuncLocalMemory}};
struct PairBenchInternalData
{
b3GpuBroadphaseInterface* m_broadphaseGPU;
b3GpuBroadphaseInterface* m_validationBroadphase;
cl_kernel m_moveObjectsKernel;
cl_kernel m_sineWaveKernel;
cl_kernel m_colorPairsKernel;
cl_kernel m_updateAabbSimple;
b3OpenCLArray<b3Vector4>* m_instancePosOrnColor;
b3OpenCLArray<float>* m_bodyTimes;
PairBenchInternalData()
: m_broadphaseGPU(0),
m_moveObjectsKernel(0),
m_sineWaveKernel(0),
m_colorPairsKernel(0),
m_instancePosOrnColor(0),
m_bodyTimes(0),
m_updateAabbSimple(0)
{
}
int m_oldYposition;
};
PairBench::PairBench(GUIHelperInterface* helper)
: CommonOpenCLBase(helper)
{
m_data = new PairBenchInternalData;
m_data->m_validationBroadphase = 0;
}
PairBench::~PairBench()
{
delete m_data;
}
static inline float parseFloat(const char*& token)
{
token += strspn(token, " \t");
float f = (float)atof(token);
token += strcspn(token, " \t\r");
return f;
}
enum PairToggleButtons
{
MY_RESET = 1024,
};
#define PAIRS_CL_PROGRAM_PATH "Demos3/GpuDemos/broadphase/pairsKernel.cl"
void PairBench::initPhysics()
{
dimensions[0] = 10;
dimensions[1] = 10;
dimensions[2] = 10;
//m_guiHelper->getRenderInterface() = ci.m_guiHelper->getRenderInterface();
sPairDemo = this;
useShadowMap = false;
initCL(gPreferredOpenCLDeviceIndex, gPreferredOpenCLPlatformIndex);
if (m_clData->m_clContext)
{
cl_int err;
cl_program pairBenchProg = b3OpenCLUtils::compileCLProgramFromString(m_clData->m_clContext, m_clData->m_clDevice, pairsKernelsCL, &err, "", PAIRS_CL_PROGRAM_PATH);
int errNum = 0;
m_data->m_moveObjectsKernel = b3OpenCLUtils::compileCLKernelFromString(m_clData->m_clContext, m_clData->m_clDevice, pairsKernelsCL, "moveObjectsKernel", &errNum, pairBenchProg);
m_data->m_sineWaveKernel = b3OpenCLUtils::compileCLKernelFromString(m_clData->m_clContext, m_clData->m_clDevice, pairsKernelsCL, "sineWaveKernel", &errNum, pairBenchProg);
m_data->m_colorPairsKernel = b3OpenCLUtils::compileCLKernelFromString(m_clData->m_clContext, m_clData->m_clDevice, pairsKernelsCL, "colorPairsKernel2", &errNum, pairBenchProg);
m_data->m_updateAabbSimple = b3OpenCLUtils::compileCLKernelFromString(m_clData->m_clContext, m_clData->m_clDevice, pairsKernelsCL, "updateAabbSimple", &errNum, pairBenchProg);
//Method for validating the overlapping pairs requires that the
//reference broadphase does not maintain internal state aside from AABB data.
//That is, overwriting the AABB state in the broadphase using
// b3GpuBroadphaseInterface::getAllAabbsGPU(),
// b3GpuBroadphaseInterface::getSmallAabbIndicesGPU(), and
// b3GpuBroadphaseInterface::getLargeAabbIndicesGPU()
//and then calling b3GpuBroadphaseInterface::calculateOverlappingPairs() should
//always produce the same result regardless of the current state of the broadphase.
m_data->m_validationBroadphase = b3GpuParallelLinearBvhBroadphase::CreateFunc(m_clData->m_clContext, m_clData->m_clDevice, m_clData->m_clQueue);
}
createBroadphase(dimensions[0], dimensions[1], dimensions[2]);
}
void PairBench::createBroadphase(int arraySizeX, int arraySizeY, int arraySizeZ)
{
m_data->m_broadphaseGPU = (allBroadphases[curSelectedBroadphase].m_createFunc)(m_clData->m_clContext, m_clData->m_clDevice, m_clData->m_clQueue);
int strideInBytes = 9 * sizeof(float);
int numVertices = sizeof(cube_vertices) / strideInBytes;
int numIndices = sizeof(cube_vertices) / sizeof(int);
int shapeId = m_guiHelper->getRenderInterface()->registerShape(&cube_vertices[0], numVertices, cube_indices, numIndices);
int group = 1;
int mask = 1;
int index = TEST_INDEX_OFFSET;
if (gPairBenchFileName)
{
//char* fileName = "32006GPUAABBs.txt";
char relativeFileName[1024];
const char* prefix[] = {"./data/", "../data/", "../../data/", "../../../data/", "../../../../data/"};
int prefixIndex = -1;
{
int numPrefixes = sizeof(prefix) / sizeof(char*);
for (int i = 0; i < numPrefixes; i++)
{
FILE* f = 0;
sprintf(relativeFileName, "%s%s", prefix[i], gPairBenchFileName);
f = fopen(relativeFileName, "rb");
if (f)
{
fseek(f, 0L, SEEK_END);
int size = ftell(f);
rewind(f);
char* buf = (char*)malloc(size);
int actualReadBytes = 0;
while (actualReadBytes < size)
{
int left = size - actualReadBytes;
int chunk = 8192;
int numPlannedRead = left < chunk ? left : chunk;
actualReadBytes += fread(&buf[actualReadBytes], 1, numPlannedRead, f);
}
fclose(f);
char pattern[1024];
pattern[0] = 0x0a;
pattern[1] = 0;
size_t const patlen = strlen(pattern);
size_t patcnt = 0;
char* oriptr;
char* patloc;
for (oriptr = buf; (patloc = strstr(oriptr, pattern)); oriptr = patloc + patlen)
{
if (patloc)
{
*patloc = 0;
const char* token = oriptr;
b3Vector3 aabbMin;
b3Vector3 aabbMax;
aabbMin.x = parseFloat(token);
aabbMin.y = parseFloat(token);
aabbMin.z = parseFloat(token);
aabbMin.w = 0.f;
aabbMax.x = parseFloat(token);
aabbMax.y = parseFloat(token);
aabbMax.z = parseFloat(token);
aabbMax.w = 0.f;
aabbMin *= 0.1;
aabbMax *= 0.1;
b3Vector3 extents = aabbMax - aabbMin;
//printf("%s\n", oriptr);
b3Vector3 position = 0.5 * (aabbMax + aabbMin);
b3Quaternion orn(0, 0, 0, 1);
b3Vector4 scaling = b3MakeVector4(0.5 * extents.x, 0.5 * extents.y, 0.5 * extents.z, 1); //b3MakeVector4(1,1,1,1);
float l = extents.length();
if (l > 500)
{
b3Vector4 color = b3MakeVector4(0, 1, 0, 0.1);
int id;
id = m_guiHelper->getRenderInterface()->registerGraphicsInstance(shapeId, position, orn, color, scaling);
m_data->m_broadphaseGPU->createLargeProxy(aabbMin, aabbMax, index, group, mask);
}
else
{
b3Vector4 color = b3MakeVector4(1, 0, 0, 1);
int id;
id = m_guiHelper->getRenderInterface()->registerGraphicsInstance(shapeId, position, orn, color, scaling);
m_data->m_broadphaseGPU->createProxy(aabbMin, aabbMax, index, group, mask);
index++;
}
patcnt++;
}
}
prefixIndex = i;
break;
}
}
if (prefixIndex < 0)
{
b3Printf("Cannot find %s\n", gPairBenchFileName);
}
}
}
else
{
for (int i = 0; i < arraySizeX; i++)
{
for (int j = 0; j < arraySizeY; j++)
{
for (int k = 0; k < arraySizeZ; k++)
{
b3Vector3 position = b3MakeVector3(k * 3, i * 3, j * 3);
b3Quaternion orn(0, 0, 0, 1);
b3Vector4 color = b3MakeVector4(0, 1, 0, 1);
b3Vector4 scaling = b3MakeVector4(1, 1, 1, 1);
bool large = false;
if (curUseLargeAabbOption)
{
if (i == 0 && j == 0 && k == 0)
{
large = true;
scaling[0] = 1000;
scaling[1] = 1000;
scaling[2] = 1000;
}
}
/*if (j==0)
{
large=true;
scaling[1] = 10000;
}
if (k==0)
{
large=true;
scaling[2] = 10000;
}*/
int id;
id = m_guiHelper->getRenderInterface()->registerGraphicsInstance(shapeId, position, orn, color, scaling);
b3Vector3 aabbMin = position - scaling;
b3Vector3 aabbMax = position + scaling;
if (large)
{
m_data->m_broadphaseGPU->createLargeProxy(aabbMin, aabbMax, index, group, mask);
}
else
{
m_data->m_broadphaseGPU->createProxy(aabbMin, aabbMax, index, group, mask);
}
index++;
}
}
}
}
m_guiHelper->getRenderInterface()->writeTransforms();
m_data->m_broadphaseGPU->writeAabbsToGpu();
}
void PairBench::deleteBroadphase()
{
delete m_data->m_broadphaseGPU;
m_data->m_broadphaseGPU = 0;
delete m_data->m_instancePosOrnColor;
m_data->m_instancePosOrnColor = 0;
delete m_data->m_bodyTimes;
m_data->m_bodyTimes = 0;
m_data->m_broadphaseGPU = 0;
m_guiHelper->getRenderInterface()->removeAllInstances();
}
void PairBench::exitPhysics()
{
//reset the state to 'on'
useShadowMap = true;
if (m_data->m_validationBroadphase)
{
delete m_data->m_validationBroadphase;
m_data->m_validationBroadphase = 0;
}
sPairDemo = 0;
exitCL();
}
void PairBench::renderScene()
{
m_guiHelper->getRenderInterface()->renderScene();
}
struct OverlappingPairSortPredicate
{
inline bool operator()(const b3Int4& a, const b3Int4& b) const
{
if (a.x != b.x) return (a.x < b.x);
if (a.y != b.y) return (a.y < b.y);
if (a.z != b.z) return (a.z < b.z);
return (a.w < b.w);
}
};
void PairBench::stepSimulation(float deltaTime)
{
//color all objects blue
GLInstanceRendererInternalData* internalData = m_guiHelper->getRenderInterface()->getInternalData();
if (internalData == 0)
return;
//bool animate=true;
int numObjects = 0;
{
B3_PROFILE("Num Objects");
numObjects = internalData->m_totalNumInstances;
}
b3Vector4* positions = 0;
if (numObjects)
{
B3_PROFILE("Sync");
GLuint vbo = internalData->m_vbo;
int arraySizeInBytes = numObjects * (3) * sizeof(b3Vector4);
glBindBuffer(GL_ARRAY_BUFFER, vbo);
// cl_bool blocking= CL_TRUE;
char* hostPtr = 0;
{
B3_PROFILE("glMapBufferRange");
hostPtr = (char*)glMapBufferRange(GL_ARRAY_BUFFER, internalData->m_maxShapeCapacityInBytes, arraySizeInBytes, GL_MAP_WRITE_BIT | GL_MAP_READ_BIT); //GL_READ_WRITE);//GL_WRITE_ONLY
}
GLint err = glGetError();
assert(err == GL_NO_ERROR);
positions = (b3Vector4*)hostPtr;
if (m_data->m_instancePosOrnColor && m_data->m_instancePosOrnColor->size() != 3 * numObjects)
{
delete m_data->m_instancePosOrnColor;
m_data->m_instancePosOrnColor = 0;
}
if (!m_data->m_instancePosOrnColor)
{
m_data->m_instancePosOrnColor = new b3OpenCLArray<b3Vector4>(m_clData->m_clContext, m_clData->m_clQueue);
m_data->m_instancePosOrnColor->resize(3 * numObjects);
m_data->m_instancePosOrnColor->copyFromHostPointer(positions, 3 * numObjects, 0);
m_data->m_bodyTimes = new b3OpenCLArray<float>(m_clData->m_clContext, m_clData->m_clQueue);
m_data->m_bodyTimes->resize(numObjects);
b3AlignedObjectArray<float> tmp;
tmp.resize(numObjects);
for (int i = 0; i < numObjects; i++)
{
tmp[i] = float(i) * (1024.f / numObjects);
}
m_data->m_bodyTimes->copyFromHost(tmp);
}
if (!gPairBenchFileName)
{
if (1)
{
if (1)
{
b3LauncherCL launcher(m_clData->m_clQueue, m_data->m_sineWaveKernel, "m_sineWaveKernel");
launcher.setBuffer(m_data->m_instancePosOrnColor->getBufferCL());
launcher.setBuffer(m_data->m_bodyTimes->getBufferCL());
launcher.setConst(timeStepPos);
launcher.setConst(mAmplitude);
launcher.setConst(numObjects);
launcher.launch1D(numObjects);
clFinish(m_clData->m_clQueue);
}
else
{
b3LauncherCL launcher(m_clData->m_clQueue, m_data->m_moveObjectsKernel, "m_moveObjectsKernel");
launcher.setBuffer(m_data->m_instancePosOrnColor->getBufferCL());
launcher.setConst(numObjects);
launcher.launch1D(numObjects);
clFinish(m_clData->m_clQueue);
}
}
}
}
bool updateOnGpu = true;
if (1)
{
if (updateOnGpu)
{
B3_PROFILE("updateOnGpu");
b3LauncherCL launcher(m_clData->m_clQueue, m_data->m_updateAabbSimple, "m_updateAabbSimple");
launcher.setBuffer(m_data->m_instancePosOrnColor->getBufferCL());
launcher.setConst(numObjects);
launcher.setBuffer(m_data->m_broadphaseGPU->getAabbBufferWS());
launcher.launch1D(numObjects);
clFinish(m_clData->m_clQueue);
}
else
{
B3_PROFILE("updateOnCpu");
if (!gPairBenchFileName)
{
// int allAabbs = m_data->m_broadphaseGPU->getAllAabbsCPU().size();
b3AlignedObjectArray<b3Vector4> posOrnColorsCpu;
if (m_data->m_instancePosOrnColor)
m_data->m_instancePosOrnColor->copyToHost(posOrnColorsCpu);
for (int nodeId = 0; nodeId < numObjects; nodeId++)
{
{
b3Vector3 position = posOrnColorsCpu[nodeId];
b3SapAabb orgAabb = m_data->m_broadphaseGPU->getAllAabbsCPU()[nodeId];
b3Vector3 halfExtents = 0.5f * (orgAabb.m_maxVec - orgAabb.m_minVec);
int orgNodeIndex = orgAabb.m_minIndices[3];
int orgBroadphaseIndex = orgAabb.m_signedMaxIndices[3];
m_data->m_broadphaseGPU->getAllAabbsCPU()[nodeId].m_minVec = position - halfExtents;
m_data->m_broadphaseGPU->getAllAabbsCPU()[nodeId].m_minIndices[3] = orgNodeIndex;
m_data->m_broadphaseGPU->getAllAabbsCPU()[nodeId].m_maxVec = position + halfExtents;
m_data->m_broadphaseGPU->getAllAabbsCPU()[nodeId].m_signedMaxIndices[3] = orgBroadphaseIndex;
}
}
m_data->m_broadphaseGPU->writeAabbsToGpu();
}
}
}
int prealloc = 3 * 1024 * 1024;
int maxOverlap = b3Min(prealloc, 16 * numObjects);
unsigned long dt = 0;
if (numObjects)
{
b3Clock cl;
dt = cl.getTimeMicroseconds();
B3_PROFILE("calculateOverlappingPairs");
//int sz = sizeof(b3Int4)*64*numObjects;
m_data->m_broadphaseGPU->calculateOverlappingPairs(maxOverlap);
int numPairs;
numPairs = m_data->m_broadphaseGPU->getNumOverlap();
//printf("numPairs = %d\n", numPairs);
dt = cl.getTimeMicroseconds() - dt;
}
const bool VALIDATE_BROADPHASE = false; //Check that overlapping pairs of 2 broadphases are the same
if (numObjects && VALIDATE_BROADPHASE)
{
B3_PROFILE("validate broadphases");
{
B3_PROFILE("calculateOverlappingPairs m_validationBroadphase");
//m_data->m_validationBroadphase->getAllAabbsCPU() = m_data->m_broadphaseGPU->getAllAabbsCPU();
m_data->m_validationBroadphase->getAllAabbsGPU().copyFromOpenCLArray(m_data->m_broadphaseGPU->getAllAabbsGPU());
m_data->m_validationBroadphase->getSmallAabbIndicesGPU().copyFromOpenCLArray(m_data->m_broadphaseGPU->getSmallAabbIndicesGPU());
m_data->m_validationBroadphase->getLargeAabbIndicesGPU().copyFromOpenCLArray(m_data->m_broadphaseGPU->getLargeAabbIndicesGPU());
m_data->m_validationBroadphase->calculateOverlappingPairs(maxOverlap);
}
static b3AlignedObjectArray<b3Int4> overlappingPairs;
static b3AlignedObjectArray<b3Int4> overlappingPairsReference;
m_data->m_broadphaseGPU->getOverlappingPairsGPU().copyToHost(overlappingPairs);
m_data->m_validationBroadphase->getOverlappingPairsGPU().copyToHost(overlappingPairsReference);
//Reorder pairs so that (pair.x < pair.y) is always true
{
B3_PROFILE("reorder pairs");
for (int i = 0; i < overlappingPairs.size(); ++i)
{
b3Int4 pair = overlappingPairs[i];
if (pair.x > pair.y)
{
b3Swap(pair.x, pair.y);
b3Swap(pair.z, pair.w);
overlappingPairs[i] = pair;
}
}
for (int i = 0; i < overlappingPairsReference.size(); ++i)
{
b3Int4 pair = overlappingPairsReference[i];
if (pair.x > pair.y)
{
b3Swap(pair.x, pair.y);
b3Swap(pair.z, pair.w);
overlappingPairsReference[i] = pair;
}
}
}
//
{
B3_PROFILE("Sort overlapping pairs from most to least significant bit");
overlappingPairs.quickSort(OverlappingPairSortPredicate());
overlappingPairsReference.quickSort(OverlappingPairSortPredicate());
}
//Compare
{
B3_PROFILE("compare pairs");
int numPairs = overlappingPairs.size();
int numPairsReference = overlappingPairsReference.size();
bool success = true;
if (numPairs == numPairsReference)
{
for (int i = 0; i < numPairsReference; ++i)
{
const b3Int4& pairA = overlappingPairs[i];
const b3Int4& pairB = overlappingPairsReference[i];
if (pairA.x != pairB.x || pairA.y != pairB.y || pairA.z != pairB.z || pairA.w != pairB.w)
{
b3Error("Error: one or more overlappingPairs differs from reference.\n");
success = false;
break;
}
}
}
else
{
b3Error("Error: numPairs %d != numPairsReference %d \n", numPairs, numPairsReference);
success = false;
}
printf("Broadphase validation: %d \n", success);
}
}
/*
if (m_data->m_gui)
{
B3_PROFILE("update Gui");
int allAabbs = m_data->m_broadphaseGPU->getAllAabbsCPU().size();
int numOverlap = m_data->m_broadphaseGPU->getNumOverlap();
float time = dt/1000.f;
//printf("time = %f\n", time);
char msg[1024];
sprintf(msg,"#objects = %d, #overlapping pairs = %d, time = %f ms", allAabbs,numOverlap,time );
//printf("msg=%s\n",msg);
m_data->m_gui->setStatusBarMessage(msg,true);
}
*/
if (numObjects)
{
B3_PROFILE("animate");
GLint err = glGetError();
assert(err == GL_NO_ERROR);
//color overlapping objects in red
if (m_data->m_broadphaseGPU->getNumOverlap())
{
bool colorPairsOnHost = false;
if (colorPairsOnHost)
{
}
else
{
int numPairs = m_data->m_broadphaseGPU->getNumOverlap();
cl_mem pairBuf = m_data->m_broadphaseGPU->getOverlappingPairBuffer();
b3LauncherCL launcher(m_clData->m_clQueue, m_data->m_colorPairsKernel, "m_colorPairsKernel");
launcher.setBuffer(m_data->m_instancePosOrnColor->getBufferCL());
launcher.setConst(numObjects);
launcher.setBuffer(pairBuf);
int indexOffset = TEST_INDEX_OFFSET;
launcher.setConst(indexOffset);
launcher.setConst(numPairs);
launcher.launch1D(numPairs);
clFinish(m_clData->m_clQueue);
}
}
if (numObjects)
{
m_data->m_instancePosOrnColor->copyToHostPointer(positions, 3 * numObjects, 0);
}
glUnmapBuffer(GL_ARRAY_BUFFER);
err = glGetError();
assert(err == GL_NO_ERROR);
}
}
class CommonExampleInterface* PairBenchOpenCLCreateFunc(struct CommonExampleOptions& options)
{
return new PairBench(options.m_guiHelper);
}