bullet3/Demos/CcdPhysicsDemo/CcdPhysicsDemo.cpp
Erwin Coumans dc491936a2 rename ObsoleteDemos back to Demos
fix some relative path issues for loading assets
2014-05-12 16:12:01 -07:00

425 lines
11 KiB
C++

/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#define CUBE_HALF_EXTENTS 1
#define EXTRA_HEIGHT 1.f
#include "CcdPhysicsDemo.h"
#include "GlutStuff.h"
#include "GLDebugFont.h"
///btBulletDynamicsCommon.h is the main Bullet include file, contains most common include files.
#include "btBulletDynamicsCommon.h"
#include <stdio.h> //printf debugging
#include "GLDebugDrawer.h"
#if 0
extern btAlignedObjectArray<btVector3> debugContacts;
extern btAlignedObjectArray<btVector3> debugNormals;
#endif
static GLDebugDrawer sDebugDrawer;
CcdPhysicsDemo::CcdPhysicsDemo()
:m_ccdMode(USE_CCD)
{
setDebugMode(btIDebugDraw::DBG_DrawText+btIDebugDraw::DBG_NoHelpText);
setCameraDistance(btScalar(40.));
}
void CcdPhysicsDemo::clientMoveAndDisplay()
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
//simple dynamics world doesn't handle fixed-time-stepping
//float ms = getDeltaTimeMicroseconds();
///step the simulation
if (m_dynamicsWorld)
{
m_dynamicsWorld->stepSimulation(1./60.,0);//ms / 1000000.f);
//optional but useful: debug drawing
m_dynamicsWorld->debugDrawWorld();
}
renderme();
displayText();
#if 0
for (int i=0;i<debugContacts.size();i++)
{
getDynamicsWorld()->getDebugDrawer()->drawContactPoint(debugContacts[i],debugNormals[i],0,0,btVector3(1,0,0));
}
#endif
glFlush();
swapBuffers();
}
void CcdPhysicsDemo::displayText()
{
int lineWidth=440;
int xStart = m_glutScreenWidth - lineWidth;
int yStart = 20;
if((getDebugMode() & btIDebugDraw::DBG_DrawText)!=0)
{
setOrthographicProjection();
glDisable(GL_LIGHTING);
glColor3f(0, 0, 0);
char buf[124];
glRasterPos3f(xStart, yStart, 0);
switch (m_ccdMode)
{
case USE_CCD:
{
sprintf(buf,"Predictive contacts and motion clamping");
break;
}
case USE_NO_CCD:
{
sprintf(buf,"CCD handling disabled");
break;
}
default:
{
sprintf(buf,"unknown CCD setting");
};
};
GLDebugDrawString(xStart,20,buf);
glRasterPos3f(xStart, yStart, 0);
sprintf(buf,"Press 'p' to change CCD mode");
yStart+=20;
GLDebugDrawString(xStart,yStart,buf);
glRasterPos3f(xStart, yStart, 0);
sprintf(buf,"Press '.' or right mouse to shoot bullets");
yStart+=20;
GLDebugDrawString(xStart,yStart,buf);
glRasterPos3f(xStart, yStart, 0);
sprintf(buf,"space to restart, h(elp), t(ext), w(ire)");
yStart+=20;
GLDebugDrawString(xStart,yStart,buf);
resetPerspectiveProjection();
glEnable(GL_LIGHTING);
}
}
void CcdPhysicsDemo::displayCallback(void) {
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
renderme();
displayText();
//optional but useful: debug drawing to detect problems
if (m_dynamicsWorld)
{
m_dynamicsWorld->debugDrawWorld();
}
#if 0
for (int i=0;i<debugContacts.size();i++)
{
getDynamicsWorld()->getDebugDrawer()->drawContactPoint(debugContacts[i],debugNormals[i],0,0,btVector3(1,0,0));
}
#endif
glFlush();
swapBuffers();
}
void CcdPhysicsDemo::initPhysics()
{
setTexturing(true);
setShadows(true);
m_ShootBoxInitialSpeed = 4000.f;
m_defaultContactProcessingThreshold = 0.f;
///collision configuration contains default setup for memory, collision setup
m_collisionConfiguration = new btDefaultCollisionConfiguration();
// m_collisionConfiguration->setConvexConvexMultipointIterations();
///use the default collision dispatcher. For parallel processing you can use a diffent dispatcher (see Extras/BulletMultiThreaded)
m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration);
//m_dispatcher->registerCollisionCreateFunc(BOX_SHAPE_PROXYTYPE,BOX_SHAPE_PROXYTYPE,m_collisionConfiguration->getCollisionAlgorithmCreateFunc(CONVEX_SHAPE_PROXYTYPE,CONVEX_SHAPE_PROXYTYPE));
m_broadphase = new btDbvtBroadphase();
///the default constraint solver. For parallel processing you can use a different solver (see Extras/BulletMultiThreaded)
btSequentialImpulseConstraintSolver* sol = new btSequentialImpulseConstraintSolver;
m_solver = sol;
m_dynamicsWorld = new btDiscreteDynamicsWorld(m_dispatcher,m_broadphase,m_solver,m_collisionConfiguration);
m_dynamicsWorld->getSolverInfo().m_solverMode |=SOLVER_USE_2_FRICTION_DIRECTIONS|SOLVER_RANDMIZE_ORDER;
m_dynamicsWorld ->setDebugDrawer(&sDebugDrawer);
//m_dynamicsWorld->getSolverInfo().m_splitImpulse=false;
if (m_ccdMode==USE_CCD)
{
m_dynamicsWorld->getDispatchInfo().m_useContinuous=true;
} else
{
m_dynamicsWorld->getDispatchInfo().m_useContinuous=false;
}
m_dynamicsWorld->setGravity(btVector3(0,-10,0));
///create a few basic rigid bodies
btBoxShape* box = new btBoxShape(btVector3(btScalar(110.),btScalar(1.),btScalar(110.)));
// box->initializePolyhedralFeatures();
btCollisionShape* groundShape = box;
// btCollisionShape* groundShape = new btStaticPlaneShape(btVector3(0,1,0),50);
m_collisionShapes.push_back(groundShape);
//m_collisionShapes.push_back(new btCylinderShape (btVector3(CUBE_HALF_EXTENTS,CUBE_HALF_EXTENTS,CUBE_HALF_EXTENTS)));
m_collisionShapes.push_back(new btBoxShape (btVector3(CUBE_HALF_EXTENTS,CUBE_HALF_EXTENTS,CUBE_HALF_EXTENTS)));
btTransform groundTransform;
groundTransform.setIdentity();
//groundTransform.setOrigin(btVector3(5,5,5));
//We can also use DemoApplication::localCreateRigidBody, but for clarity it is provided here:
{
btScalar mass(0.);
//rigidbody is dynamic if and only if mass is non zero, otherwise static
bool isDynamic = (mass != 0.f);
btVector3 localInertia(0,0,0);
if (isDynamic)
groundShape->calculateLocalInertia(mass,localInertia);
//using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
btDefaultMotionState* myMotionState = new btDefaultMotionState(groundTransform);
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,groundShape,localInertia);
btRigidBody* body = new btRigidBody(rbInfo);
body->setFriction(0.5);
//body->setRollingFriction(0.3);
//add the body to the dynamics world
m_dynamicsWorld->addRigidBody(body);
}
{
//create a few dynamic rigidbodies
// Re-using the same collision is better for memory usage and performance
btCollisionShape* colShape = new btBoxShape(btVector3(1,1,1));
//btCollisionShape* colShape = new btSphereShape(btScalar(1.));
m_collisionShapes.push_back(colShape);
/// Create Dynamic Objects
btTransform startTransform;
startTransform.setIdentity();
btScalar mass(1.f);
//rigidbody is dynamic if and only if mass is non zero, otherwise static
bool isDynamic = (mass != 0.f);
btVector3 localInertia(0,0,0);
if (isDynamic)
colShape->calculateLocalInertia(mass,localInertia);
int gNumObjects = 120;//120;
int i;
for (i=0;i<gNumObjects;i++)
{
btCollisionShape* shape = m_collisionShapes[1];
btTransform trans;
trans.setIdentity();
//stack them
int colsize = 10;
int row = (i*CUBE_HALF_EXTENTS*2)/(colsize*2*CUBE_HALF_EXTENTS);
int row2 = row;
int col = (i)%(colsize)-colsize/2;
if (col>3)
{
col=11;
row2 |=1;
}
btVector3 pos(col*2*CUBE_HALF_EXTENTS + (row2%2)*CUBE_HALF_EXTENTS,
row*2*CUBE_HALF_EXTENTS+CUBE_HALF_EXTENTS+EXTRA_HEIGHT,0);
trans.setOrigin(pos);
float mass = 1.f;
btRigidBody* body = localCreateRigidBody(mass,trans,shape);
body->setAnisotropicFriction(shape->getAnisotropicRollingFrictionDirection(),btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
body->setFriction(0.5);
//body->setRollingFriction(.3);
///when using m_ccdMode
if (m_ccdMode==USE_CCD)
{
body->setCcdMotionThreshold(CUBE_HALF_EXTENTS);
body->setCcdSweptSphereRadius(0.9*CUBE_HALF_EXTENTS);
}
}
}
}
void CcdPhysicsDemo::clientResetScene()
{
exitPhysics();
initPhysics();
}
void CcdPhysicsDemo::keyboardCallback(unsigned char key, int x, int y)
{
if (key=='p')
{
switch (m_ccdMode)
{
case USE_CCD:
{
m_ccdMode = USE_NO_CCD;
break;
}
case USE_NO_CCD:
default:
{
m_ccdMode = USE_CCD;
}
};
clientResetScene();
} else
{
DemoApplication::keyboardCallback(key,x,y);
}
}
void CcdPhysicsDemo::shootBox(const btVector3& destination)
{
if (m_dynamicsWorld)
{
float mass = 1.f;
btTransform startTransform;
startTransform.setIdentity();
btVector3 camPos = getCameraPosition();
startTransform.setOrigin(camPos);
setShootBoxShape ();
btRigidBody* body = this->localCreateRigidBody(mass, startTransform,m_shootBoxShape);
body->setLinearFactor(btVector3(1,1,1));
//body->setRestitution(1);
btVector3 linVel(destination[0]-camPos[0],destination[1]-camPos[1],destination[2]-camPos[2]);
linVel.normalize();
linVel*=m_ShootBoxInitialSpeed;
body->getWorldTransform().setOrigin(camPos);
body->getWorldTransform().setRotation(btQuaternion(0,0,0,1));
body->setLinearVelocity(linVel);
body->setAngularVelocity(btVector3(0,0,0));
body->setContactProcessingThreshold(1e30);
///when using m_ccdMode, disable regular CCD
if (m_ccdMode==USE_CCD)
{
body->setCcdMotionThreshold(CUBE_HALF_EXTENTS);
body->setCcdSweptSphereRadius(0.4f);
}
}
}
void CcdPhysicsDemo::exitPhysics()
{
//cleanup in the reverse order of creation/initialization
//remove the rigidbodies from the dynamics world and delete them
int i;
for (i=m_dynamicsWorld->getNumCollisionObjects()-1; i>=0 ;i--)
{
btCollisionObject* obj = m_dynamicsWorld->getCollisionObjectArray()[i];
btRigidBody* body = btRigidBody::upcast(obj);
if (body && body->getMotionState())
{
delete body->getMotionState();
}
m_dynamicsWorld->removeCollisionObject( obj );
delete obj;
}
//delete collision shapes
for (int j=0;j<m_collisionShapes.size();j++)
{
btCollisionShape* shape = m_collisionShapes[j];
delete shape;
}
m_collisionShapes.clear();
delete m_dynamicsWorld;
delete m_solver;
delete m_broadphase;
delete m_dispatcher;
delete m_collisionConfiguration;
}