mirror of
https://github.com/bulletphysics/bullet3
synced 2024-12-14 22:00:05 +00:00
606 lines
19 KiB
C++
Executable File
606 lines
19 KiB
C++
Executable File
/*
|
|
Bullet Continuous Collision Detection and Physics Library Copyright (c) 2007 Erwin Coumans
|
|
Motor Demo
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
|
|
#include "NN3DWalkers.h"
|
|
#include <map>
|
|
|
|
#include "btBulletDynamicsCommon.h"
|
|
|
|
#include "LinearMath/btIDebugDraw.h"
|
|
#include "LinearMath/btAlignedObjectArray.h"
|
|
class btBroadphaseInterface;
|
|
class btCollisionShape;
|
|
class btOverlappingPairCache;
|
|
class btCollisionDispatcher;
|
|
class btConstraintSolver;
|
|
struct btCollisionAlgorithmCreateFunc;
|
|
class btDefaultCollisionConfiguration;
|
|
|
|
#include "../CommonInterfaces/CommonRigidBodyBase.h"
|
|
#include "../CommonInterfaces/CommonParameterInterface.h"
|
|
|
|
//TODO: Maybe add pointworldToLocal and AxisWorldToLocal etc. to a helper class
|
|
|
|
//TODO: How to detect perpetually interpenetrating btRigidBodies? (Maybe contactpoints can tell us something)
|
|
|
|
btVector3 getPointWorldToLocal(btTransform localObjectCenterOfMassTransform, btVector3 point);
|
|
btVector3 getPointLocalToWorld(btTransform localObjectCenterOfMassTransform, btVector3 point);
|
|
|
|
btVector3 getAxisLocalToWorld(btTransform localObjectCenterOfMassTransform, btVector3 axis);
|
|
btVector3 getAxisWorldToLocal(btTransform localObjectCenterOfMassTransform, btVector3 axis);
|
|
|
|
btTransform getTransformLocalToWorld(btTransform localObjectCenterOfMassTransform, btTransform transform);
|
|
btTransform getTransformWorldToLocal(btTransform localObjectCenterOfMassTransform, btTransform transform);
|
|
|
|
static btScalar gRootBodyRadius = 0.25f;
|
|
static btScalar gRootBodyHeight = 0.1f;
|
|
static btScalar gLegRadius = 0.1f;
|
|
static btScalar gLegLength = 0.45f;
|
|
static btScalar gForeLegLength = 0.75f;
|
|
static btScalar gForeLegRadius = 0.08f;
|
|
|
|
class NN3DWalkers : public CommonRigidBodyBase
|
|
{
|
|
btScalar m_Time;
|
|
btScalar m_targetAccumulator;
|
|
btScalar m_targetFrequency;
|
|
btScalar m_motorStrength;
|
|
|
|
btAlignedObjectArray<class NNWalker*> m_walkers;
|
|
|
|
|
|
public:
|
|
NN3DWalkers(struct GUIHelperInterface* helper)
|
|
:CommonRigidBodyBase(helper), m_Time(0),m_motorStrength(0.5f),m_targetFrequency(3),m_targetAccumulator(0)
|
|
{
|
|
|
|
}
|
|
void initPhysics();
|
|
|
|
virtual void exitPhysics();
|
|
|
|
virtual ~NN3DWalkers()
|
|
{
|
|
}
|
|
|
|
void spawnWalker(const btVector3& startOffset, bool bFixed);
|
|
|
|
virtual bool keyboardCallback(int key, int state);
|
|
|
|
void setMotorTargets(btScalar deltaTime);
|
|
|
|
void resetCamera()
|
|
{
|
|
float dist = 11;
|
|
float pitch = 52;
|
|
float yaw = 35;
|
|
float targetPos[3]={0,0.46,0};
|
|
m_guiHelper->resetCamera(dist,pitch,yaw,targetPos[0],targetPos[1],targetPos[2]);
|
|
}
|
|
|
|
virtual void renderScene();
|
|
};
|
|
|
|
static NN3DWalkers* nn3DWalkers = NULL;
|
|
|
|
#ifndef SIMD_PI_4
|
|
#define SIMD_PI_4 0.5 * SIMD_HALF_PI
|
|
#endif
|
|
|
|
#ifndef SIMD_PI_8
|
|
#define SIMD_PI_8 0.25 * SIMD_HALF_PI
|
|
#endif
|
|
|
|
void* GROUND_ID = (void*)1;
|
|
bool RANDOM_MOVEMENT = false;
|
|
|
|
bool RANDOM_DIMENSIONS = false;
|
|
|
|
#define NUM_LEGS 6
|
|
#define BODYPART_COUNT (2 * NUM_LEGS + 1)
|
|
#define JOINT_COUNT (BODYPART_COUNT - 1)
|
|
|
|
class NNWalker
|
|
{
|
|
btDynamicsWorld* m_ownerWorld;
|
|
btCollisionShape* m_shapes[BODYPART_COUNT];
|
|
btRigidBody* m_bodies[BODYPART_COUNT];
|
|
btTypedConstraint* m_joints[JOINT_COUNT];
|
|
std::map<void*,int> m_bodyTouchSensorIndexMap;
|
|
bool m_touchSensors[BODYPART_COUNT];
|
|
float m_sensoryMotorWeights[BODYPART_COUNT*JOINT_COUNT];
|
|
|
|
btRigidBody* localCreateRigidBody (btScalar mass, const btTransform& startTransform, btCollisionShape* shape)
|
|
{
|
|
bool isDynamic = (mass != 0.f);
|
|
|
|
btVector3 localInertia(0,0,0);
|
|
if (isDynamic)
|
|
shape->calculateLocalInertia(mass,localInertia);
|
|
|
|
btDefaultMotionState* motionState = new btDefaultMotionState(startTransform);
|
|
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,motionState,shape,localInertia);
|
|
btRigidBody* body = new btRigidBody(rbInfo);
|
|
|
|
m_ownerWorld->addRigidBody(body);
|
|
|
|
return body;
|
|
}
|
|
|
|
|
|
public:
|
|
NNWalker(btDynamicsWorld* ownerWorld, const btVector3& positionOffset, bool bFixed)
|
|
: m_ownerWorld (ownerWorld)
|
|
{
|
|
btVector3 vUp(0, 1, 0); // up in local reference frame
|
|
|
|
//initialize random weights
|
|
for(int i = 0;i < BODYPART_COUNT;i++){
|
|
for(int j = 0;j < JOINT_COUNT;j++){
|
|
m_sensoryMotorWeights[i+j*BODYPART_COUNT] = ((double) rand() / (RAND_MAX))*2.0f-1.0f;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Setup geometry
|
|
//
|
|
m_shapes[0] = new btCapsuleShape(gRootBodyRadius, gRootBodyHeight); // root body capsule
|
|
int i;
|
|
for ( i=0; i<NUM_LEGS; i++)
|
|
{
|
|
m_shapes[1 + 2*i] = new btCapsuleShape(gLegRadius, gLegLength); // leg capsule
|
|
m_shapes[2 + 2*i] = new btCapsuleShape(gForeLegRadius, gForeLegLength); // fore leg capsule
|
|
}
|
|
|
|
//
|
|
// Setup rigid bodies
|
|
//
|
|
float rootAboveGroundHeight = gForeLegLength;
|
|
btTransform bodyOffset; bodyOffset.setIdentity();
|
|
bodyOffset.setOrigin(positionOffset);
|
|
|
|
// root body
|
|
btVector3 localRootBodyPosition = btVector3(btScalar(0.), btScalar(rootAboveGroundHeight), btScalar(0.)); // root body position in local reference frame
|
|
btTransform transform;
|
|
transform.setIdentity();
|
|
transform.setOrigin(localRootBodyPosition);
|
|
if (bFixed) // if fixed body
|
|
{
|
|
m_bodies[0] = localCreateRigidBody(btScalar(0.), bodyOffset*transform, m_shapes[0]);
|
|
} else
|
|
{
|
|
m_bodies[0] = localCreateRigidBody(btScalar(1.), bodyOffset*transform, m_shapes[0]);
|
|
}
|
|
|
|
btHingeConstraint* hingeC;
|
|
//btConeTwistConstraint* coneC;
|
|
|
|
btTransform localA, localB, localC;
|
|
|
|
// legs
|
|
for ( i=0; i<NUM_LEGS; i++)
|
|
{
|
|
float footAngle = 2 * SIMD_PI * i / NUM_LEGS; // legs are uniformly distributed around the root body
|
|
float footYUnitPosition = sin(footAngle); // y position of the leg on the unit circle
|
|
float footXUnitPosition = cos(footAngle); // x position of the leg on the unit circle
|
|
|
|
transform.setIdentity();
|
|
btVector3 legCOM = btVector3(btScalar(footXUnitPosition*(gRootBodyRadius+0.5*gLegLength)), btScalar(rootAboveGroundHeight), btScalar(footYUnitPosition*(gRootBodyRadius+0.5*gLegLength)));
|
|
transform.setOrigin(legCOM);
|
|
|
|
// thigh
|
|
btVector3 legDirection = (legCOM - localRootBodyPosition).normalize();
|
|
btVector3 kneeAxis = legDirection.cross(vUp);
|
|
transform.setRotation(btQuaternion(kneeAxis, SIMD_HALF_PI));
|
|
m_bodies[1+2*i] = localCreateRigidBody(btScalar(1.), bodyOffset*transform, m_shapes[1+2*i]);
|
|
|
|
// shin
|
|
transform.setIdentity();
|
|
transform.setOrigin(btVector3(btScalar(footXUnitPosition*(gRootBodyRadius+gLegLength)), btScalar(rootAboveGroundHeight-0.5*gForeLegLength), btScalar(footYUnitPosition*(gRootBodyRadius+gLegLength))));
|
|
m_bodies[2+2*i] = localCreateRigidBody(btScalar(1.), bodyOffset*transform, m_shapes[2+2*i]);
|
|
|
|
//
|
|
// Setup the constraints
|
|
//
|
|
|
|
// hip joints
|
|
localA.setIdentity(); localB.setIdentity();
|
|
localA.getBasis().setEulerZYX(0,-footAngle,0); localA.setOrigin(btVector3(btScalar(footXUnitPosition*gRootBodyRadius), btScalar(0.), btScalar(footYUnitPosition*gRootBodyRadius)));
|
|
localB = getTransformWorldToLocal(m_bodies[1+2*i]->getWorldTransform(), getTransformLocalToWorld(m_bodies[0]->getWorldTransform(),localA));
|
|
hingeC = new btHingeConstraint(*m_bodies[0], *m_bodies[1+2*i], localA, localB);
|
|
hingeC->setLimit(btScalar(-0.75 * SIMD_PI_4), btScalar(SIMD_PI_8));
|
|
//hingeC->setLimit(btScalar(-0.1), btScalar(0.1));
|
|
m_joints[2*i] = hingeC;
|
|
m_ownerWorld->addConstraint(m_joints[2*i], true);
|
|
|
|
// knee joints
|
|
localA.setIdentity(); localB.setIdentity(); localC.setIdentity();
|
|
localA.getBasis().setEulerZYX(0,-footAngle,0); localA.setOrigin(btVector3(btScalar(footXUnitPosition*(gRootBodyRadius+gLegLength)), btScalar(0.), btScalar(footYUnitPosition*(gRootBodyRadius+gLegLength))));
|
|
localB = getTransformWorldToLocal(m_bodies[1+2*i]->getWorldTransform(), getTransformLocalToWorld(m_bodies[0]->getWorldTransform(),localA));
|
|
localC = getTransformWorldToLocal(m_bodies[2+2*i]->getWorldTransform(), getTransformLocalToWorld(m_bodies[0]->getWorldTransform(),localA));
|
|
hingeC = new btHingeConstraint(*m_bodies[1+2*i], *m_bodies[2+2*i], localB, localC);
|
|
//hingeC->setLimit(btScalar(-0.01), btScalar(0.01));
|
|
hingeC->setLimit(btScalar(-SIMD_PI_8), btScalar(0.2));
|
|
m_joints[1+2*i] = hingeC;
|
|
m_ownerWorld->addConstraint(m_joints[1+2*i], true);
|
|
}
|
|
|
|
// Setup some damping on the m_bodies
|
|
for (i = 0; i < BODYPART_COUNT; ++i)
|
|
{
|
|
m_bodies[i]->setDamping(0.05, 0.85);
|
|
m_bodies[i]->setDeactivationTime(0.8);
|
|
//m_bodies[i]->setSleepingThresholds(1.6, 2.5);
|
|
m_bodies[i]->setSleepingThresholds(0.5f, 0.5f);
|
|
m_bodies[i]->setUserPointer(this);
|
|
m_bodyTouchSensorIndexMap.insert(std::pair<void*,int>(m_bodies[i],i));
|
|
|
|
}
|
|
}
|
|
|
|
virtual ~NNWalker ()
|
|
{
|
|
int i;
|
|
|
|
// Remove all constraints
|
|
for ( i = 0; i < JOINT_COUNT; ++i)
|
|
{
|
|
m_ownerWorld->removeConstraint(m_joints[i]);
|
|
delete m_joints[i]; m_joints[i] = 0;
|
|
}
|
|
|
|
// Remove all bodies and shapes
|
|
for ( i = 0; i < BODYPART_COUNT; ++i)
|
|
{
|
|
m_ownerWorld->removeRigidBody(m_bodies[i]);
|
|
|
|
delete m_bodies[i]->getMotionState();
|
|
|
|
delete m_bodies[i]; m_bodies[i] = 0;
|
|
delete m_shapes[i]; m_shapes[i] = 0;
|
|
}
|
|
}
|
|
|
|
btTypedConstraint** getJoints() {return &m_joints[0];}
|
|
|
|
void setTouchSensor(void* bodyPointer){
|
|
m_touchSensors[m_bodyTouchSensorIndexMap.at(bodyPointer)] = true;
|
|
}
|
|
|
|
void clearTouchSensors(){
|
|
for(int i = 0 ; i < BODYPART_COUNT;i++){
|
|
m_touchSensors[i] = false;
|
|
}
|
|
}
|
|
|
|
bool getTouchSensor(int i){ return m_touchSensors[i];}
|
|
|
|
const float* getSensoryMotorWeights() const {
|
|
return m_sensoryMotorWeights;
|
|
}
|
|
};
|
|
|
|
|
|
|
|
void legMotorPreTickCallback (btDynamicsWorld *world, btScalar timeStep)
|
|
{
|
|
NN3DWalkers* motorDemo = (NN3DWalkers*)world->getWorldUserInfo();
|
|
|
|
motorDemo->setMotorTargets(timeStep);
|
|
|
|
}
|
|
|
|
bool legContactProcessedCallback(btManifoldPoint& cp,
|
|
void* body0, void* body1)
|
|
{
|
|
btCollisionObject* o1 = static_cast<btCollisionObject*>(body0);
|
|
btCollisionObject* o2 = static_cast<btCollisionObject*>(body1);
|
|
|
|
void* ID1 = o1->getUserPointer();
|
|
void* ID2 = o2->getUserPointer();
|
|
|
|
if (ID2 != GROUND_ID || ID1 != GROUND_ID) {
|
|
// Make a circle with a 0.9 radius at (0,0,0)
|
|
// with RGB color (1,0,0).
|
|
if(nn3DWalkers->m_dynamicsWorld->getDebugDrawer() != NULL)
|
|
nn3DWalkers->m_dynamicsWorld->getDebugDrawer()->drawSphere(cp.getPositionWorldOnA(), 0.1, btVector3(1., 0., 0.));
|
|
|
|
if(ID1 != GROUND_ID){
|
|
((NNWalker*)ID1)->setTouchSensor(o1);
|
|
}
|
|
|
|
if(ID2 != GROUND_ID){
|
|
((NNWalker*)ID2)->setTouchSensor(o2);
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
|
|
void NN3DWalkers::initPhysics()
|
|
{
|
|
gContactProcessedCallback = legContactProcessedCallback;
|
|
|
|
m_guiHelper->setUpAxis(1);
|
|
|
|
// Setup the basic world
|
|
|
|
m_Time = 0;
|
|
|
|
createEmptyDynamicsWorld();
|
|
|
|
m_dynamicsWorld->setInternalTickCallback(legMotorPreTickCallback,this,true);
|
|
m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
|
|
|
|
m_targetFrequency = 3;
|
|
|
|
// new SIMD solver for joints clips accumulated impulse, so the new limits for the motor
|
|
// should be (numberOfsolverIterations * oldLimits)
|
|
m_motorStrength = 0.05f * m_dynamicsWorld->getSolverInfo().m_numIterations;
|
|
|
|
|
|
{ // create a slider to change the motor update frequency
|
|
SliderParams slider("Motor update frequency", &m_targetFrequency);
|
|
slider.m_minVal = 0;
|
|
slider.m_maxVal = 10;
|
|
slider.m_clampToNotches = false;
|
|
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(
|
|
slider);
|
|
}
|
|
|
|
{ // create a slider to change the motor torque
|
|
SliderParams slider("Motor force", &m_motorStrength);
|
|
slider.m_minVal = 1;
|
|
slider.m_maxVal = 50;
|
|
slider.m_clampToNotches = false;
|
|
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(
|
|
slider);
|
|
}
|
|
|
|
{ // create a slider to change the root body radius
|
|
SliderParams slider("Root body radius", &gRootBodyRadius);
|
|
slider.m_minVal = 0.01f;
|
|
slider.m_maxVal = 10;
|
|
slider.m_clampToNotches = false;
|
|
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(
|
|
slider);
|
|
}
|
|
|
|
{ // create a slider to change the root body height
|
|
SliderParams slider("Root body height", &gRootBodyHeight);
|
|
slider.m_minVal = 0.01f;
|
|
slider.m_maxVal = 10;
|
|
slider.m_clampToNotches = false;
|
|
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(
|
|
slider);
|
|
}
|
|
|
|
{ // create a slider to change the leg radius
|
|
SliderParams slider("Leg radius", &gLegRadius);
|
|
slider.m_minVal = 0.01f;
|
|
slider.m_maxVal = 10;
|
|
slider.m_clampToNotches = false;
|
|
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(
|
|
slider);
|
|
}
|
|
|
|
{ // create a slider to change the leg length
|
|
SliderParams slider("Leg length", &gLegLength);
|
|
slider.m_minVal = 0.01f;
|
|
slider.m_maxVal = 10;
|
|
slider.m_clampToNotches = false;
|
|
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(
|
|
slider);
|
|
}
|
|
|
|
{ // create a slider to change the fore leg radius
|
|
SliderParams slider("Fore Leg radius", &gForeLegRadius);
|
|
slider.m_minVal = 0.01f;
|
|
slider.m_maxVal = 10;
|
|
slider.m_clampToNotches = false;
|
|
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(
|
|
slider);
|
|
}
|
|
|
|
{ // create a slider to change the fore leg length
|
|
SliderParams slider("Fore Leg length", &gForeLegLength);
|
|
slider.m_minVal = 0.01f;
|
|
slider.m_maxVal = 10;
|
|
slider.m_clampToNotches = false;
|
|
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(
|
|
slider);
|
|
}
|
|
|
|
|
|
// Setup a big ground box
|
|
{
|
|
btCollisionShape* groundShape = new btBoxShape(btVector3(btScalar(200.),btScalar(10.),btScalar(200.)));
|
|
m_collisionShapes.push_back(groundShape);
|
|
btTransform groundTransform;
|
|
groundTransform.setIdentity();
|
|
groundTransform.setOrigin(btVector3(0,-10,0));
|
|
btRigidBody* ground = createRigidBody(btScalar(0.),groundTransform,groundShape);
|
|
ground->setFriction(5);
|
|
ground->setUserPointer(GROUND_ID);
|
|
}
|
|
|
|
for(int i = 0; i < 5 ; i++){
|
|
for(int j = 0; j < 5; j++){
|
|
|
|
float maxDimension = 0.2f;
|
|
|
|
if(RANDOM_DIMENSIONS){
|
|
// randomize the dimensions
|
|
gRootBodyRadius = ((double) rand() / (RAND_MAX)) * (maxDimension-0.01f) + 0.01f;
|
|
gRootBodyHeight = ((double) rand() / (RAND_MAX)) * (maxDimension-0.01f) + 0.01f;
|
|
gLegRadius = ((double) rand() / (RAND_MAX)) * (maxDimension-0.01f) + 0.01f;
|
|
gLegLength = ((double) rand() / (RAND_MAX)) * (maxDimension-0.01f) + 0.01f;
|
|
gForeLegLength = ((double) rand() / (RAND_MAX)) * (maxDimension-0.01f) + 0.01f;
|
|
gForeLegRadius = ((double) rand() / (RAND_MAX)) * (maxDimension-0.01f) + 0.01f;
|
|
}
|
|
|
|
// Spawn one walker
|
|
btVector3 spacing(10.0f,0.8f,10.0f);
|
|
btVector3 startOffset(spacing * btVector3(i,0,j));
|
|
spawnWalker(startOffset, false);
|
|
}
|
|
}
|
|
|
|
m_guiHelper->autogenerateGraphicsObjects(m_dynamicsWorld);
|
|
}
|
|
|
|
|
|
void NN3DWalkers::spawnWalker(const btVector3& startOffset, bool bFixed)
|
|
{
|
|
NNWalker* walker = new NNWalker(m_dynamicsWorld, startOffset, bFixed);
|
|
m_walkers.push_back(walker);
|
|
}
|
|
|
|
void NN3DWalkers::setMotorTargets(btScalar deltaTime)
|
|
{
|
|
|
|
float ms = deltaTime*1000000.;
|
|
float minFPS = 1000000.f/60.f;
|
|
if (ms > minFPS)
|
|
ms = minFPS;
|
|
|
|
m_Time += ms;
|
|
|
|
m_targetAccumulator +=ms;
|
|
|
|
if(m_targetAccumulator >= 1000000.0f /((double)m_targetFrequency))
|
|
{
|
|
m_targetAccumulator = 0;
|
|
//
|
|
// set per-frame sinusoidal position targets using angular motor (hacky?)
|
|
//
|
|
for (int r=0; r<m_walkers.size(); r++)
|
|
{
|
|
for (int i=0; i<2*NUM_LEGS; i++)
|
|
{
|
|
btScalar targetAngle = 0;
|
|
btHingeConstraint* hingeC = static_cast<btHingeConstraint*>(m_walkers[r]->getJoints()[i]);
|
|
|
|
if(RANDOM_MOVEMENT){
|
|
targetAngle = ((double) rand() / (RAND_MAX));//0.5 * (1 + sin(2 * SIMD_PI * fTargetPercent+ i* SIMD_PI/NUM_LEGS));
|
|
}
|
|
else{
|
|
|
|
// accumulate sensor inputs with weights
|
|
for(int j = 0; j < JOINT_COUNT;j++){
|
|
targetAngle += m_walkers[r]->getSensoryMotorWeights()[i+j*BODYPART_COUNT] * m_walkers[r]->getTouchSensor(i);
|
|
}
|
|
|
|
// apply the activation function
|
|
targetAngle = (tanh(targetAngle)+1.0f)*0.5f;
|
|
}
|
|
btScalar targetLimitAngle = hingeC->getLowerLimit() + targetAngle * (hingeC->getUpperLimit() - hingeC->getLowerLimit());
|
|
btScalar currentAngle = hingeC->getHingeAngle();
|
|
btScalar angleError = targetLimitAngle - currentAngle;
|
|
btScalar desiredAngularVel = 1000000.f * angleError/ms;
|
|
hingeC->enableAngularMotor(true, desiredAngularVel, m_motorStrength);
|
|
}
|
|
|
|
// clear sensor signals after usage
|
|
m_walkers[r]->clearTouchSensors();
|
|
}
|
|
}
|
|
}
|
|
|
|
bool NN3DWalkers::keyboardCallback(int key, int state)
|
|
{
|
|
switch (key)
|
|
{
|
|
case '[':
|
|
m_motorStrength /= 1.1f;
|
|
return true;
|
|
break;
|
|
case ']':
|
|
m_motorStrength *= 1.1f;
|
|
return true;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
|
|
void NN3DWalkers::exitPhysics()
|
|
{
|
|
|
|
gContactProcessedCallback = NULL; // clear contact processed callback on exiting
|
|
|
|
int i;
|
|
|
|
for (i=0;i<m_walkers.size();i++)
|
|
{
|
|
NNWalker* walker = m_walkers[i];
|
|
delete walker;
|
|
}
|
|
|
|
CommonRigidBodyBase::exitPhysics();
|
|
}
|
|
|
|
void NN3DWalkers::renderScene()
|
|
{
|
|
m_guiHelper->syncPhysicsToGraphics(m_dynamicsWorld);
|
|
|
|
m_guiHelper->render(m_dynamicsWorld);
|
|
|
|
debugDraw(m_dynamicsWorld->getDebugDrawer()->getDebugMode());
|
|
}
|
|
|
|
class CommonExampleInterface* ET_NN3DWalkersCreateFunc(struct CommonExampleOptions& options)
|
|
{
|
|
nn3DWalkers = new NN3DWalkers(options.m_guiHelper);
|
|
return nn3DWalkers;
|
|
}
|
|
|
|
|
|
btVector3 getPointWorldToLocal( btTransform localObjectCenterOfMassTransform, btVector3 point) {
|
|
return localObjectCenterOfMassTransform.inverse() * point; // transforms the point from the world frame into the local frame
|
|
}
|
|
|
|
btVector3 getPointLocalToWorld( btTransform localObjectCenterOfMassTransform, btVector3 point) {
|
|
return localObjectCenterOfMassTransform * point; // transforms the point from the world frame into the local frame
|
|
}
|
|
|
|
btVector3 getAxisWorldToLocal(btTransform localObjectCenterOfMassTransform, btVector3 axis) {
|
|
btTransform local1 = localObjectCenterOfMassTransform.inverse(); // transforms the axis from the local frame into the world frame
|
|
btVector3 zero(0,0,0);
|
|
local1.setOrigin(zero);
|
|
return local1 * axis;
|
|
}
|
|
|
|
btVector3 getAxisLocalToWorld(btTransform localObjectCenterOfMassTransform, btVector3 axis) {
|
|
btTransform local1 = localObjectCenterOfMassTransform; // transforms the axis from the local frame into the world frame
|
|
btVector3 zero(0,0,0);
|
|
local1.setOrigin(zero);
|
|
return local1 * axis;
|
|
}
|
|
|
|
btTransform getTransformWorldToLocal(btTransform localObjectCenterOfMassTransform, btTransform transform) {
|
|
return localObjectCenterOfMassTransform.inverse() * transform; // transforms the axis from the local frame into the world frame
|
|
}
|
|
|
|
btTransform getTransformLocalToWorld(btTransform localObjectCenterOfMassTransform, btTransform transform) {
|
|
return localObjectCenterOfMassTransform * transform; // transforms the axis from the local frame into the world frame
|
|
}
|