bullet3/examples/SharedMemory/PhysicsClientUDP.cpp

622 lines
13 KiB
C++

#include "PhysicsClientUDP.h"
#include <enet/enet.h>
#include <stdio.h>
#include <string.h>
#include "../Utils/b3Clock.h"
#include "PhysicsClient.h"
//#include "LinearMath/btVector3.h"
#include "SharedMemoryCommands.h"
#include <string>
#include "Bullet3Common/b3Logging.h"
#include "../MultiThreading/b3ThreadSupportInterface.h"
void UDPThreadFunc(void* userPtr, void* lsMemory);
void* UDPlsMemoryFunc();
bool gVerboseNetworkMessagesClient = false;
#ifndef _WIN32
#include "../MultiThreading/b3PosixThreadSupport.h"
b3ThreadSupportInterface* createUDPThreadSupport(int numThreads)
{
b3PosixThreadSupport::ThreadConstructionInfo constructionInfo("UDPThread",
UDPThreadFunc,
UDPlsMemoryFunc,
numThreads);
b3ThreadSupportInterface* threadSupport = new b3PosixThreadSupport(constructionInfo);
return threadSupport;
}
#elif defined( _WIN32)
#include "../MultiThreading/b3Win32ThreadSupport.h"
b3ThreadSupportInterface* createUDPThreadSupport(int numThreads)
{
b3Win32ThreadSupport::Win32ThreadConstructionInfo threadConstructionInfo("UDPThread", UDPThreadFunc, UDPlsMemoryFunc, numThreads);
b3Win32ThreadSupport* threadSupport = new b3Win32ThreadSupport(threadConstructionInfo);
return threadSupport;
}
#endif
struct UDPThreadLocalStorage
{
int threadId;
};
unsigned int b3DeserializeInt(const unsigned char* input)
{
unsigned int tmp = (input[3] << 24) + (input[2] << 16) + (input[1] << 8) + input[0];
return tmp;
}
struct UdpNetworkedInternalData
{
ENetHost* m_client;
ENetAddress m_address;
ENetPeer* m_peer;
ENetEvent m_event;
bool m_isConnected;
b3ThreadSupportInterface* m_threadSupport;
b3CriticalSection* m_cs;
UdpNetworkedInternalData* m_udpInternalData;
SharedMemoryCommand m_clientCmd;
bool m_hasCommand;
bool m_hasStatus;
SharedMemoryStatus m_lastStatus;
b3AlignedObjectArray<char> m_stream;
std::string m_hostName;
int m_port;
UdpNetworkedInternalData()
:m_client(0),
m_peer(0),
m_isConnected(false),
m_threadSupport(0),
m_hasCommand(false),
m_hasStatus(false)
{
}
bool connectUDP()
{
if (m_isConnected)
return true;
if (enet_initialize() != 0)
{
fprintf(stderr, "Error initialising enet");
exit(EXIT_FAILURE);
}
m_client = enet_host_create(NULL, /* create a client host */
1, /* number of clients */
2, /* number of channels */
57600 / 8, /* incoming bandwith */
14400 / 8); /* outgoing bandwith */
if (m_client == NULL) {
fprintf(stderr, "Could not create client host");
return false;
}
enet_address_set_host(&m_address, m_hostName.c_str());
m_address.port = m_port;
m_peer = enet_host_connect(m_client,
&m_address, /* address to connect to */
2, /* number of channels */
0); /* user data supplied to
the receiving host */
if (m_peer == NULL) {
fprintf(stderr, "No available peers for initiating an ENet "
"connection.\n");
return false;
}
/* Try to connect to server within 5 seconds */
if (enet_host_service(m_client, &m_event, 5000) > 0 &&
m_event.type == ENET_EVENT_TYPE_CONNECT)
{
puts("Connection to server succeeded.");
}
else
{
/* Either the 5 seconds are up or a disconnect event was */
/* received. Reset the peer in the event the 5 seconds */
/* had run out without any significant event. */
enet_peer_reset(m_peer);
fprintf(stderr, "Connection to server failed.");
return false;
}
int serviceResult = enet_host_service(m_client, &m_event, 0);
if (serviceResult > 0)
{
switch (m_event.type)
{
case ENET_EVENT_TYPE_CONNECT:
printf("A new client connected from %x:%u.\n",
m_event.peer->address.host,
m_event.peer->address.port);
m_event.peer->data = (void*)"New User";
break;
case ENET_EVENT_TYPE_RECEIVE:
if (gVerboseNetworkMessagesClient)
{
printf("A packet of length %lu containing '%s' was "
"received from %s on channel %u.\n",
m_event.packet->dataLength,
m_event.packet->data,
m_event.peer->data,
m_event.channelID);
}
/* Clean up the packet now that we're done using it.
> */
enet_packet_destroy(m_event.packet);
break;
case ENET_EVENT_TYPE_DISCONNECT:
printf("%s disconnected.\n", m_event.peer->data);
break;
default:
{
printf("unknown event type: %d.\n", m_event.type);
}
}
}
else if (serviceResult > 0)
{
puts("Error with servicing the client");
return false;
}
m_isConnected = true;
return m_isConnected;
}
bool checkData()
{
bool hasStatus = false;
int serviceResult = enet_host_service(m_client, &m_event, 0);
if (serviceResult > 0)
{
switch (m_event.type)
{
case ENET_EVENT_TYPE_CONNECT:
printf("A new client connected from %x:%u.\n",
m_event.peer->address.host,
m_event.peer->address.port);
m_event.peer->data = (void*)"New User";
break;
case ENET_EVENT_TYPE_RECEIVE:
{
if (gVerboseNetworkMessagesClient)
{
printf("A packet of length %lu containing '%s' was "
"received from %s on channel %u.\n",
m_event.packet->dataLength,
m_event.packet->data,
m_event.peer->data,
m_event.channelID);
}
int packetSizeInBytes = b3DeserializeInt(m_event.packet->data);
if (packetSizeInBytes == m_event.packet->dataLength)
{
SharedMemoryStatus* statPtr = (SharedMemoryStatus*)&m_event.packet->data[4];
if (statPtr->m_type == CMD_STEP_FORWARD_SIMULATION_COMPLETED)
{
SharedMemoryStatus dummy;
dummy.m_type = CMD_STEP_FORWARD_SIMULATION_COMPLETED;
m_lastStatus = dummy;
m_stream.resize(0);
}
else
{
m_lastStatus = *statPtr;
int streamOffsetInBytes = 4 + sizeof(SharedMemoryStatus);
int numStreamBytes = packetSizeInBytes - streamOffsetInBytes;
m_stream.resize(numStreamBytes);
for (int i = 0; i < numStreamBytes; i++)
{
m_stream[i] = m_event.packet->data[i + streamOffsetInBytes];
}
}
}
else
{
printf("unknown status message received\n");
}
enet_packet_destroy(m_event.packet);
hasStatus = true;
break;
}
case ENET_EVENT_TYPE_DISCONNECT:
{
printf("%s disconnected.\n", m_event.peer->data);
break;
}
default:
{
printf("unknown event type: %d.\n", m_event.type);
}
}
}
else if (serviceResult > 0)
{
puts("Error with servicing the client");
}
return hasStatus;
}
};
enum UDPThreadEnums
{
eUDPRequestTerminate = 13,
eUDPIsUnInitialized,
eUDPIsInitialized,
eUDPInitializationFailed,
eUDPHasTerminated
};
enum UDPCommandEnums
{
eUDPIdle = 13,
eUDP_ConnectRequest,
eUDP_Connected,
eUDP_ConnectionFailed,
eUDP_DisconnectRequest,
eUDP_Disconnected,
};
void UDPThreadFunc(void* userPtr, void* lsMemory)
{
printf("UDPThreadFunc thread started\n");
// UDPThreadLocalStorage* localStorage = (UDPThreadLocalStorage*)lsMemory;
UdpNetworkedInternalData* args = (UdpNetworkedInternalData*)userPtr;
// int workLeft = true;
b3Clock clock;
clock.reset();
bool init = true;
if (init)
{
args->m_cs->lock();
args->m_cs->setSharedParam(0, eUDPIsInitialized);
args->m_cs->unlock();
double deltaTimeInSeconds = 0;
do
{
b3Clock::usleep(0);
deltaTimeInSeconds += double(clock.getTimeMicroseconds()) / 1000000.;
{
clock.reset();
deltaTimeInSeconds = 0.f;
switch (args->m_cs->getSharedParam(1))
{
case eUDP_ConnectRequest:
{
bool connected = args->connectUDP();
if (connected)
{
args->m_cs->setSharedParam(1, eUDP_Connected);
}
else
{
args->m_cs->setSharedParam(1, eUDP_ConnectionFailed);
}
break;
}
default:
{
}
};
if (args->m_isConnected)
{
args->m_cs->lock();
bool hasCommand = args->m_hasCommand;
args->m_cs->unlock();
if (hasCommand)
{
int sz = 0;
ENetPacket *packet = 0;
if (args->m_clientCmd.m_type == CMD_STEP_FORWARD_SIMULATION)
{
sz = sizeof(int);
packet = enet_packet_create(&args->m_clientCmd.m_type, sz, ENET_PACKET_FLAG_RELIABLE);
}
else
{
sz = sizeof(SharedMemoryCommand);
packet = enet_packet_create(&args->m_clientCmd, sz, ENET_PACKET_FLAG_RELIABLE);
}
int res;
res = enet_peer_send(args->m_peer, 0, packet);
args->m_cs->lock();
args->m_hasCommand = false;
args->m_cs->unlock();
}
bool hasNewStatus = args->checkData();
if (hasNewStatus)
{
if (args->m_hasStatus)
{
//overflow: last status hasn't been processed yet
b3Assert(0);
printf("Error: received new status but previous status not processed yet");
}
else
{
args->m_cs->lock();
args->m_hasStatus = hasNewStatus;
args->m_cs->unlock();
}
}
}
}
} while (args->m_cs->getSharedParam(0) != eUDPRequestTerminate);
}
else
{
args->m_cs->lock();
args->m_cs->setSharedParam(0, eUDPInitializationFailed);
args->m_cs->unlock();
}
printf("finished\n");
}
void* UDPlsMemoryFunc()
{
//don't create local store memory, just return 0
return new UDPThreadLocalStorage;
}
UdpNetworkedPhysicsProcessor::UdpNetworkedPhysicsProcessor(const char* hostName, int port)
{
m_data = new UdpNetworkedInternalData;
if (hostName)
{
m_data->m_hostName = hostName;
}
m_data->m_port = port;
}
UdpNetworkedPhysicsProcessor::~UdpNetworkedPhysicsProcessor()
{
disconnect();
delete m_data;
}
bool UdpNetworkedPhysicsProcessor::processCommand(const struct SharedMemoryCommand& clientCmd, struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
if(gVerboseNetworkMessagesClient)
{
printf("PhysicsClientUDP::processCommand\n");
}
// int sz = sizeof(SharedMemoryCommand);
int timeout = 1024 * 1024 * 1024;
m_data->m_cs->lock();
m_data->m_clientCmd = clientCmd;
m_data->m_hasCommand = true;
m_data->m_cs->unlock();
while (m_data->m_hasCommand && (timeout-- > 0))
{
b3Clock::usleep(0);
}
#if 0
timeout = 1024 * 1024 * 1024;
bool hasStatus = false;
const SharedMemoryStatus* stat = 0;
while ((!hasStatus) && (timeout-- > 0))
{
hasStatus = receiveStatus(serverStatusOut, bufferServerToClient, bufferSizeInBytes);
b3Clock::usleep(100);
}
return hasStatus;
#endif
return false;
}
bool UdpNetworkedPhysicsProcessor::receiveStatus(struct SharedMemoryStatus& serverStatusOut, char* bufferServerToClient, int bufferSizeInBytes)
{
bool hasStatus = false;
if (m_data->m_hasStatus)
{
if (gVerboseNetworkMessagesClient)
{
printf("UdpNetworkedPhysicsProcessor::receiveStatus\n");
}
hasStatus = true;
serverStatusOut = m_data->m_lastStatus;
int numStreamBytes = m_data->m_stream.size();
if (numStreamBytes < bufferSizeInBytes)
{
for (int i = 0; i < numStreamBytes; i++)
{
bufferServerToClient[i] = m_data->m_stream[i];
}
}
else
{
printf("Error: steam buffer overflow\n");
}
m_data->m_cs->lock();
m_data->m_hasStatus = false;
m_data->m_cs->unlock();
}
return hasStatus;
}
void UdpNetworkedPhysicsProcessor::renderScene()
{
}
void UdpNetworkedPhysicsProcessor::physicsDebugDraw(int debugDrawFlags)
{
}
void UdpNetworkedPhysicsProcessor::setGuiHelper(struct GUIHelperInterface* guiHelper)
{
}
bool UdpNetworkedPhysicsProcessor::isConnected() const
{
return m_data->m_isConnected;
}
bool UdpNetworkedPhysicsProcessor::connect()
{
if (m_data->m_threadSupport==0)
{
m_data->m_threadSupport = createUDPThreadSupport(1);
m_data->m_cs = m_data->m_threadSupport->createCriticalSection();
m_data->m_cs->setSharedParam(0, eUDPIsUnInitialized);
m_data->m_threadSupport->runTask(B3_THREAD_SCHEDULE_TASK, (void*) m_data, 0);
while (m_data->m_cs->getSharedParam(0) == eUDPIsUnInitialized)
{
b3Clock::usleep(1000);
}
m_data->m_cs->lock();
m_data->m_cs->setSharedParam(1, eUDP_ConnectRequest);
m_data->m_cs->unlock();
while (m_data->m_cs->getSharedParam(1) == eUDP_ConnectRequest)
{
b3Clock::usleep(1000);
}
}
unsigned int sharedParam = m_data->m_cs->getSharedParam(1);
bool isConnected = (sharedParam == eUDP_Connected);
return isConnected;
}
void UdpNetworkedPhysicsProcessor::disconnect()
{
if (m_data->m_threadSupport)
{
m_data->m_cs->lock();
m_data->m_cs->setSharedParam(0, eUDPRequestTerminate);
m_data->m_cs->unlock();
int numActiveThreads = 1;
while (numActiveThreads)
{
int arg0, arg1;
if (m_data->m_threadSupport->isTaskCompleted(&arg0, &arg1, 0))
{
numActiveThreads--;
printf("numActiveThreads = %d\n", numActiveThreads);
}
else
{
b3Clock::usleep(1000);
}
};
printf("stopping threads\n");
delete m_data->m_threadSupport;
m_data->m_threadSupport = 0;
m_data->m_isConnected = false;
}
}