mirror of
https://github.com/bulletphysics/bullet3
synced 2025-01-05 15:21:06 +00:00
ab8f16961e
Apply clang-format-all.sh using the _clang-format file through all the cpp/.h files. make sure not to apply it to certain serialization structures, since some parser expects the * as part of the name, instead of type. This commit contains no other changes aside from adding and applying clang-format-all.sh
239 lines
7.3 KiB
C++
239 lines
7.3 KiB
C++
#include "float_math.h"
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <math.h>
|
|
|
|
/*----------------------------------------------------------------------
|
|
Copyright (c) 2004 Open Dynamics Framework Group
|
|
www.physicstools.org
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without modification, are permitted provided
|
|
that the following conditions are met:
|
|
|
|
Redistributions of source code must retain the above copyright notice, this list of conditions
|
|
and the following disclaimer.
|
|
|
|
Redistributions in binary form must reproduce the above copyright notice,
|
|
this list of conditions and the following disclaimer in the documentation
|
|
and/or other materials provided with the distribution.
|
|
|
|
Neither the name of the Open Dynamics Framework Group nor the names of its contributors may
|
|
be used to endorse or promote products derived from this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 'AS IS' AND ANY EXPRESS OR IMPLIED WARRANTIES,
|
|
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
DISCLAIMED. IN NO EVENT SHALL THE INTEL OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
|
|
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
-----------------------------------------------------------------------*/
|
|
|
|
// http://codesuppository.blogspot.com
|
|
//
|
|
// mailto: jratcliff@infiniplex.net
|
|
//
|
|
// http://www.amillionpixels.us
|
|
//
|
|
|
|
void fm_inverseRT(const float *matrix, const float *pos, float *t) // inverse rotate translate the point.
|
|
{
|
|
float _x = pos[0] - matrix[3 * 4 + 0];
|
|
float _y = pos[1] - matrix[3 * 4 + 1];
|
|
float _z = pos[2] - matrix[3 * 4 + 2];
|
|
|
|
// Multiply inverse-translated source vector by inverted rotation transform
|
|
|
|
t[0] = (matrix[0 * 4 + 0] * _x) + (matrix[0 * 4 + 1] * _y) + (matrix[0 * 4 + 2] * _z);
|
|
t[1] = (matrix[1 * 4 + 0] * _x) + (matrix[1 * 4 + 1] * _y) + (matrix[1 * 4 + 2] * _z);
|
|
t[2] = (matrix[2 * 4 + 0] * _x) + (matrix[2 * 4 + 1] * _y) + (matrix[2 * 4 + 2] * _z);
|
|
}
|
|
|
|
void fm_identity(float *matrix) // set 4x4 matrix to identity.
|
|
{
|
|
matrix[0 * 4 + 0] = 1;
|
|
matrix[1 * 4 + 1] = 1;
|
|
matrix[2 * 4 + 2] = 1;
|
|
matrix[3 * 4 + 3] = 1;
|
|
|
|
matrix[1 * 4 + 0] = 0;
|
|
matrix[2 * 4 + 0] = 0;
|
|
matrix[3 * 4 + 0] = 0;
|
|
|
|
matrix[0 * 4 + 1] = 0;
|
|
matrix[2 * 4 + 1] = 0;
|
|
matrix[3 * 4 + 1] = 0;
|
|
|
|
matrix[0 * 4 + 2] = 0;
|
|
matrix[1 * 4 + 2] = 0;
|
|
matrix[3 * 4 + 2] = 0;
|
|
|
|
matrix[0 * 4 + 3] = 0;
|
|
matrix[1 * 4 + 3] = 0;
|
|
matrix[2 * 4 + 3] = 0;
|
|
}
|
|
|
|
void fm_eulerMatrix(float ax, float ay, float az, float *matrix) // convert euler (in radians) to a dest 4x4 matrix (translation set to zero)
|
|
{
|
|
float quat[4];
|
|
fm_eulerToQuat(ax, ay, az, quat);
|
|
fm_quatToMatrix(quat, matrix);
|
|
}
|
|
|
|
void fm_getAABB(unsigned int vcount, const float *points, unsigned int pstride, float *bmin, float *bmax)
|
|
{
|
|
const unsigned char *source = (const unsigned char *)points;
|
|
|
|
bmin[0] = points[0];
|
|
bmin[1] = points[1];
|
|
bmin[2] = points[2];
|
|
|
|
bmax[0] = points[0];
|
|
bmax[1] = points[1];
|
|
bmax[2] = points[2];
|
|
|
|
for (unsigned int i = 1; i < vcount; i++)
|
|
{
|
|
source += pstride;
|
|
const float *p = (const float *)source;
|
|
|
|
if (p[0] < bmin[0]) bmin[0] = p[0];
|
|
if (p[1] < bmin[1]) bmin[1] = p[1];
|
|
if (p[2] < bmin[2]) bmin[2] = p[2];
|
|
|
|
if (p[0] > bmax[0]) bmax[0] = p[0];
|
|
if (p[1] > bmax[1]) bmax[1] = p[1];
|
|
if (p[2] > bmax[2]) bmax[2] = p[2];
|
|
}
|
|
}
|
|
|
|
void fm_eulerToQuat(float roll, float pitch, float yaw, float *quat) // convert euler angles to quaternion.
|
|
{
|
|
roll *= 0.5f;
|
|
pitch *= 0.5f;
|
|
yaw *= 0.5f;
|
|
|
|
float cr = cosf(roll);
|
|
float cp = cosf(pitch);
|
|
float cy = cosf(yaw);
|
|
|
|
float sr = sinf(roll);
|
|
float sp = sinf(pitch);
|
|
float sy = sinf(yaw);
|
|
|
|
float cpcy = cp * cy;
|
|
float spsy = sp * sy;
|
|
float spcy = sp * cy;
|
|
float cpsy = cp * sy;
|
|
|
|
quat[0] = (sr * cpcy - cr * spsy);
|
|
quat[1] = (cr * spcy + sr * cpsy);
|
|
quat[2] = (cr * cpsy - sr * spcy);
|
|
quat[3] = cr * cpcy + sr * spsy;
|
|
}
|
|
|
|
void fm_quatToMatrix(const float *quat, float *matrix) // convert quaterinion rotation to matrix, zeros out the translation component.
|
|
{
|
|
float xx = quat[0] * quat[0];
|
|
float yy = quat[1] * quat[1];
|
|
float zz = quat[2] * quat[2];
|
|
float xy = quat[0] * quat[1];
|
|
float xz = quat[0] * quat[2];
|
|
float yz = quat[1] * quat[2];
|
|
float wx = quat[3] * quat[0];
|
|
float wy = quat[3] * quat[1];
|
|
float wz = quat[3] * quat[2];
|
|
|
|
matrix[0 * 4 + 0] = 1 - 2 * (yy + zz);
|
|
matrix[1 * 4 + 0] = 2 * (xy - wz);
|
|
matrix[2 * 4 + 0] = 2 * (xz + wy);
|
|
|
|
matrix[0 * 4 + 1] = 2 * (xy + wz);
|
|
matrix[1 * 4 + 1] = 1 - 2 * (xx + zz);
|
|
matrix[2 * 4 + 1] = 2 * (yz - wx);
|
|
|
|
matrix[0 * 4 + 2] = 2 * (xz - wy);
|
|
matrix[1 * 4 + 2] = 2 * (yz + wx);
|
|
matrix[2 * 4 + 2] = 1 - 2 * (xx + yy);
|
|
|
|
matrix[3 * 4 + 0] = matrix[3 * 4 + 1] = matrix[3 * 4 + 2] = 0.0f;
|
|
matrix[0 * 4 + 3] = matrix[1 * 4 + 3] = matrix[2 * 4 + 3] = 0.0f;
|
|
matrix[3 * 4 + 3] = 1.0f;
|
|
}
|
|
|
|
void fm_quatRotate(const float *quat, const float *v, float *r) // rotate a vector directly by a quaternion.
|
|
{
|
|
float left[4];
|
|
|
|
left[0] = quat[3] * v[0] + quat[1] * v[2] - v[1] * quat[2];
|
|
left[1] = quat[3] * v[1] + quat[2] * v[0] - v[2] * quat[0];
|
|
left[2] = quat[3] * v[2] + quat[0] * v[1] - v[0] * quat[1];
|
|
left[3] = -quat[0] * v[0] - quat[1] * v[1] - quat[2] * v[2];
|
|
|
|
r[0] = (left[3] * -quat[0]) + (quat[3] * left[0]) + (left[1] * -quat[2]) - (-quat[1] * left[2]);
|
|
r[1] = (left[3] * -quat[1]) + (quat[3] * left[1]) + (left[2] * -quat[0]) - (-quat[2] * left[0]);
|
|
r[2] = (left[3] * -quat[2]) + (quat[3] * left[2]) + (left[0] * -quat[1]) - (-quat[0] * left[1]);
|
|
}
|
|
|
|
void fm_getTranslation(const float *matrix, float *t)
|
|
{
|
|
t[0] = matrix[3 * 4 + 0];
|
|
t[1] = matrix[3 * 4 + 1];
|
|
t[2] = matrix[3 * 4 + 2];
|
|
}
|
|
|
|
void fm_matrixToQuat(const float *matrix, float *quat) // convert the 3x3 portion of a 4x4 matrix into a quaterion as x,y,z,w
|
|
{
|
|
float tr = matrix[0 * 4 + 0] + matrix[1 * 4 + 1] + matrix[2 * 4 + 2];
|
|
|
|
// check the diagonal
|
|
|
|
if (tr > 0.0f)
|
|
{
|
|
float s = (float)sqrt((double)(tr + 1.0f));
|
|
quat[3] = s * 0.5f;
|
|
s = 0.5f / s;
|
|
quat[0] = (matrix[1 * 4 + 2] - matrix[2 * 4 + 1]) * s;
|
|
quat[1] = (matrix[2 * 4 + 0] - matrix[0 * 4 + 2]) * s;
|
|
quat[2] = (matrix[0 * 4 + 1] - matrix[1 * 4 + 0]) * s;
|
|
}
|
|
else
|
|
{
|
|
// diagonal is negative
|
|
int nxt[3] = {1, 2, 0};
|
|
float qa[4];
|
|
|
|
int i = 0;
|
|
|
|
if (matrix[1 * 4 + 1] > matrix[0 * 4 + 0]) i = 1;
|
|
if (matrix[2 * 4 + 2] > matrix[i * 4 + i]) i = 2;
|
|
|
|
int j = nxt[i];
|
|
int k = nxt[j];
|
|
|
|
float s = sqrtf(((matrix[i * 4 + i] - (matrix[j * 4 + j] + matrix[k * 4 + k])) + 1.0f));
|
|
|
|
qa[i] = s * 0.5f;
|
|
|
|
if (s != 0.0f) s = 0.5f / s;
|
|
|
|
qa[3] = (matrix[j * 4 + k] - matrix[k * 4 + j]) * s;
|
|
qa[j] = (matrix[i * 4 + j] + matrix[j * 4 + i]) * s;
|
|
qa[k] = (matrix[i * 4 + k] + matrix[k * 4 + i]) * s;
|
|
|
|
quat[0] = qa[0];
|
|
quat[1] = qa[1];
|
|
quat[2] = qa[2];
|
|
quat[3] = qa[3];
|
|
}
|
|
}
|
|
|
|
float fm_sphereVolume(float radius) // return's the volume of a sphere of this radius (4/3 PI * R cubed )
|
|
{
|
|
return (4.0f / 3.0f) * FM_PI * radius * radius * radius;
|
|
}
|