bullet3/examples/Raycast/RaytestDemo.cpp
erwincoumans ab8f16961e Code-style consistency improvement:
Apply clang-format-all.sh using the _clang-format file through all the cpp/.h files.
make sure not to apply it to certain serialization structures, since some parser expects the * as part of the name, instead of type.
This commit contains no other changes aside from adding and applying clang-format-all.sh
2018-09-23 14:17:31 -07:00

302 lines
9.5 KiB
C++

/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "RaytestDemo.h"
///btBulletDynamicsCommon.h is the main Bullet include file, contains most common include files.
#include "btBulletDynamicsCommon.h"
#include "BulletCollision/NarrowPhaseCollision/btRaycastCallback.h"
#include "BulletCollision/Gimpact/btGImpactShape.h"
#include <stdio.h> //printf debugging
#include "LinearMath/btAlignedObjectArray.h"
///RaytestDemo shows how to use the btCollisionWorld::rayTest feature
#include "../CommonInterfaces/CommonRigidBodyBase.h"
class RaytestDemo : public CommonRigidBodyBase
{
public:
RaytestDemo(struct GUIHelperInterface* helper)
: CommonRigidBodyBase(helper)
{
}
virtual ~RaytestDemo()
{
}
virtual void initPhysics();
virtual void exitPhysics();
void castRays();
virtual void stepSimulation(float deltaTime);
virtual void resetCamera()
{
float dist = 18;
float pitch = -30;
float yaw = 129;
float targetPos[3] = {-4.6, -4.7, -5.75};
m_guiHelper->resetCamera(dist, yaw, pitch, targetPos[0], targetPos[1], targetPos[2]);
}
};
void RaytestDemo::castRays()
{
static float up = 0.f;
static float dir = 1.f;
//add some simple animation
//if (!m_idle)
{
up += 0.01 * dir;
if (btFabs(up) > 2)
{
dir *= -1.f;
}
btTransform tr = m_dynamicsWorld->getCollisionObjectArray()[1]->getWorldTransform();
static float angle = 0.f;
angle += 0.01f;
tr.setRotation(btQuaternion(btVector3(0, 1, 0), angle));
m_dynamicsWorld->getCollisionObjectArray()[1]->setWorldTransform(tr);
}
///step the simulation
if (m_dynamicsWorld)
{
m_dynamicsWorld->updateAabbs();
m_dynamicsWorld->computeOverlappingPairs();
btVector3 red(1, 0, 0);
btVector3 blue(0, 0, 1);
///all hits
{
btVector3 from(-30, 1 + up, 0);
btVector3 to(30, 1, 0);
m_dynamicsWorld->getDebugDrawer()->drawLine(from, to, btVector4(0, 0, 0, 1));
btCollisionWorld::AllHitsRayResultCallback allResults(from, to);
allResults.m_flags |= btTriangleRaycastCallback::kF_KeepUnflippedNormal;
//kF_UseGjkConvexRaytest flag is now enabled by default, use the faster but more approximate algorithm
//allResults.m_flags |= btTriangleRaycastCallback::kF_UseSubSimplexConvexCastRaytest;
allResults.m_flags |= btTriangleRaycastCallback::kF_UseSubSimplexConvexCastRaytest;
m_dynamicsWorld->rayTest(from, to, allResults);
for (int i = 0; i < allResults.m_hitFractions.size(); i++)
{
btVector3 p = from.lerp(to, allResults.m_hitFractions[i]);
m_dynamicsWorld->getDebugDrawer()->drawSphere(p, 0.1, red);
m_dynamicsWorld->getDebugDrawer()->drawLine(p, p + allResults.m_hitNormalWorld[i], red);
}
}
///first hit
{
btVector3 from(-30, 1.2, 0);
btVector3 to(30, 1.2, 0);
m_dynamicsWorld->getDebugDrawer()->drawLine(from, to, btVector4(0, 0, 1, 1));
btCollisionWorld::ClosestRayResultCallback closestResults(from, to);
closestResults.m_flags |= btTriangleRaycastCallback::kF_FilterBackfaces;
m_dynamicsWorld->rayTest(from, to, closestResults);
if (closestResults.hasHit())
{
btVector3 p = from.lerp(to, closestResults.m_closestHitFraction);
m_dynamicsWorld->getDebugDrawer()->drawSphere(p, 0.1, blue);
m_dynamicsWorld->getDebugDrawer()->drawLine(p, p + closestResults.m_hitNormalWorld, blue);
}
}
}
}
void RaytestDemo::stepSimulation(float deltaTime)
{
castRays();
CommonRigidBodyBase::stepSimulation(deltaTime);
}
void RaytestDemo::initPhysics()
{
m_guiHelper->setUpAxis(1);
///collision configuration contains default setup for memory, collision setup
m_collisionConfiguration = new btDefaultCollisionConfiguration();
//m_collisionConfiguration->setConvexConvexMultipointIterations();
///use the default collision dispatcher. For parallel processing you can use a diffent dispatcher (see Extras/BulletMultiThreaded)
m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration);
m_broadphase = new btDbvtBroadphase();
///the default constraint solver. For parallel processing you can use a different solver (see Extras/BulletMultiThreaded)
btSequentialImpulseConstraintSolver* sol = new btSequentialImpulseConstraintSolver;
m_solver = sol;
m_dynamicsWorld = new btDiscreteDynamicsWorld(m_dispatcher, m_broadphase, m_solver, m_collisionConfiguration);
m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
m_dynamicsWorld->setGravity(btVector3(0, -10, 0));
///create a few basic rigid bodies
btCollisionShape* groundShape = new btBoxShape(btVector3(btScalar(50.), btScalar(50.), btScalar(50.)));
// btCollisionShape* groundShape = new btStaticPlaneShape(btVector3(0,1,0),50);
m_collisionShapes.push_back(groundShape);
btTransform groundTransform;
groundTransform.setIdentity();
groundTransform.setOrigin(btVector3(0, -50, 0));
//We can also use DemoApplication::localCreateRigidBody, but for clarity it is provided here:
{
btScalar mass(0.);
//rigidbody is dynamic if and only if mass is non zero, otherwise static
bool isDynamic = (mass != 0.f);
btVector3 localInertia(0, 0, 0);
if (isDynamic)
groundShape->calculateLocalInertia(mass, localInertia);
//using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
btDefaultMotionState* myMotionState = new btDefaultMotionState(groundTransform);
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass, myMotionState, groundShape, localInertia);
btRigidBody* body = new btRigidBody(rbInfo);
body->setFriction(1);
//add the body to the dynamics world
m_dynamicsWorld->addRigidBody(body);
}
{
btVector3 convexPoints[] = {btVector3(-1, -1, -1), btVector3(-1, -1, 1), btVector3(-1, 1, 1), btVector3(-1, 1, -1),
btVector3(2, 0, 0)};
btVector3 quad[] = {
btVector3(0, 1, -1),
btVector3(0, 1, 1),
btVector3(0, -1, 1),
btVector3(0, -1, -1)};
btTriangleMesh* mesh = new btTriangleMesh();
mesh->addTriangle(quad[0], quad[1], quad[2], true);
mesh->addTriangle(quad[0], quad[2], quad[3], true);
btBvhTriangleMeshShape* trimesh = new btBvhTriangleMeshShape(mesh, true, true);
//btGImpactMeshShape * trimesh = new btGImpactMeshShape(mesh);
//trimesh->updateBound();
#define NUM_SHAPES 6
btCollisionShape* colShapes[NUM_SHAPES] = {
trimesh,
new btConvexHullShape(&convexPoints[0].getX(), sizeof(convexPoints) / sizeof(btVector3), sizeof(btVector3)),
new btSphereShape(1),
new btCapsuleShape(0.2, 1),
new btCylinderShape(btVector3(0.2, 1, 0.2)),
new btBoxShape(btVector3(1, 1, 1))};
for (int i = 0; i < NUM_SHAPES; i++)
m_collisionShapes.push_back(colShapes[i]);
for (int i = 0; i < 6; i++)
{
//create a few dynamic rigidbodies
// Re-using the same collision is better for memory usage and performance
/// Create Dynamic Objects
btTransform startTransform;
startTransform.setIdentity();
startTransform.setOrigin(btVector3((i - 3) * 5, 1, 0));
btScalar mass(1.f);
if (!i)
mass = 0.f;
//rigidbody is dynamic if and only if mass is non zero, otherwise static
bool isDynamic = (mass != 0.f);
btVector3 localInertia(0, 0, 0);
btCollisionShape* colShape = colShapes[i % NUM_SHAPES];
if (isDynamic)
colShape->calculateLocalInertia(mass, localInertia);
btRigidBody::btRigidBodyConstructionInfo rbInfo(mass, 0, colShape, localInertia);
rbInfo.m_startWorldTransform = startTransform;
btRigidBody* body = new btRigidBody(rbInfo);
body->setRollingFriction(0.03);
body->setSpinningFriction(0.03);
body->setFriction(1);
body->setAnisotropicFriction(colShape->getAnisotropicRollingFrictionDirection(), btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
m_dynamicsWorld->addRigidBody(body);
}
}
m_guiHelper->autogenerateGraphicsObjects(m_dynamicsWorld);
}
void RaytestDemo::exitPhysics()
{
//cleanup in the reverse order of creation/initialization
//remove the rigidbodies from the dynamics world and delete them
int i;
for (i = m_dynamicsWorld->getNumCollisionObjects() - 1; i >= 0; i--)
{
btCollisionObject* obj = m_dynamicsWorld->getCollisionObjectArray()[i];
btRigidBody* body = btRigidBody::upcast(obj);
if (body && body->getMotionState())
{
delete body->getMotionState();
}
m_dynamicsWorld->removeCollisionObject(obj);
delete obj;
}
//delete collision shapes
for (int j = 0; j < m_collisionShapes.size(); j++)
{
btCollisionShape* shape = m_collisionShapes[j];
delete shape;
}
m_collisionShapes.clear();
delete m_dynamicsWorld;
m_dynamicsWorld = 0;
delete m_solver;
m_solver = 0;
delete m_broadphase;
m_broadphase = 0;
delete m_dispatcher;
m_dispatcher = 0;
delete m_collisionConfiguration;
m_collisionConfiguration = 0;
}
class CommonExampleInterface* RaytestCreateFunc(struct CommonExampleOptions& options)
{
return new RaytestDemo(options.m_guiHelper);
}