bullet3/examples/RenderingExamples/RaytracerSetup.cpp
erwincoumans ab8f16961e Code-style consistency improvement:
Apply clang-format-all.sh using the _clang-format file through all the cpp/.h files.
make sure not to apply it to certain serialization structures, since some parser expects the * as part of the name, instead of type.
This commit contains no other changes aside from adding and applying clang-format-all.sh
2018-09-23 14:17:31 -07:00

362 lines
10 KiB
C++

#include "RaytracerSetup.h"
#include "../CommonInterfaces/CommonGraphicsAppInterface.h"
#include "Bullet3Common/b3Quaternion.h"
#include "Bullet3Common/b3AlignedObjectArray.h"
#include "../CommonInterfaces/CommonRenderInterface.h"
#include "../CommonInterfaces/Common2dCanvasInterface.h"
//#include "BulletCollision/NarrowPhaseCollision/btVoronoiSimplexSolver.h"
#include "BulletCollision/NarrowPhaseCollision/btSubSimplexConvexCast.h"
//#include "BulletCollision/NarrowPhaseCollision/btGjkConvexCast.h"
//#include "BulletCollision/NarrowPhaseCollision/btContinuousConvexCollision.h"
#include "../CommonInterfaces/CommonExampleInterface.h"
#include "LinearMath/btAlignedObjectArray.h"
#include "btBulletCollisionCommon.h"
#include "../CommonInterfaces/CommonGUIHelperInterface.h"
struct RaytracerPhysicsSetup : public CommonExampleInterface
{
struct CommonGraphicsApp* m_app;
struct RaytracerInternalData* m_internalData;
RaytracerPhysicsSetup(struct CommonGraphicsApp* app);
virtual ~RaytracerPhysicsSetup();
virtual void initPhysics();
virtual void exitPhysics();
virtual void stepSimulation(float deltaTime);
virtual void physicsDebugDraw(int debugFlags);
virtual void syncPhysicsToGraphics(struct GraphicsPhysicsBridge& gfxBridge);
///worldRaytest performs a ray versus all objects in a collision world, returning true is a hit is found (filling in worldNormal and worldHitPoint)
bool worldRaytest(const btVector3& rayFrom, const btVector3& rayTo, btVector3& worldNormal, btVector3& worldHitPoint);
///singleObjectRaytest performs a ray versus one collision shape, returning true is a hit is found (filling in worldNormal and worldHitPoint)
bool singleObjectRaytest(const btVector3& rayFrom, const btVector3& rayTo, btVector3& worldNormal, btVector3& worldHitPoint);
///lowlevelRaytest performs a ray versus convex shape, returning true is a hit is found (filling in worldNormal and worldHitPoint)
bool lowlevelRaytest(const btVector3& rayFrom, const btVector3& rayTo, btVector3& worldNormal, btVector3& worldHitPoint);
virtual bool mouseMoveCallback(float x, float y);
virtual bool mouseButtonCallback(int button, int state, float x, float y);
virtual bool keyboardCallback(int key, int state);
virtual void renderScene()
{
}
};
struct RaytracerInternalData
{
int m_canvasIndex;
struct Common2dCanvasInterface* m_canvas;
int m_width;
int m_height;
btAlignedObjectArray<btConvexShape*> m_shapePtr;
btAlignedObjectArray<btTransform> m_transforms;
btVoronoiSimplexSolver m_simplexSolver;
btScalar m_pitch;
btScalar m_roll;
btScalar m_yaw;
RaytracerInternalData()
: m_canvasIndex(-1),
m_canvas(0),
#ifdef _DEBUG
m_width(64),
m_height(64),
#else
m_width(128),
m_height(128),
#endif
m_pitch(0),
m_roll(0),
m_yaw(0)
{
btConeShape* cone = new btConeShape(1, 1);
btSphereShape* sphere = new btSphereShape(1);
btBoxShape* box = new btBoxShape(btVector3(1, 1, 1));
m_shapePtr.push_back(cone);
m_shapePtr.push_back(sphere);
m_shapePtr.push_back(box);
updateTransforms();
}
void updateTransforms()
{
int numObjects = m_shapePtr.size();
m_transforms.resize(numObjects);
for (int i = 0; i < numObjects; i++)
{
m_transforms[i].setIdentity();
btVector3 pos(0.f, 0.f, -(2.5 * numObjects * 0.5) + i * 2.5f);
m_transforms[i].setIdentity();
m_transforms[i].setOrigin(pos);
btQuaternion orn;
if (i < 2)
{
orn.setEuler(m_yaw, m_pitch, m_roll);
m_transforms[i].setRotation(orn);
}
}
m_pitch += 0.005f;
m_yaw += 0.01f;
}
};
RaytracerPhysicsSetup::RaytracerPhysicsSetup(struct CommonGraphicsApp* app)
{
m_app = app;
m_internalData = new RaytracerInternalData;
}
RaytracerPhysicsSetup::~RaytracerPhysicsSetup()
{
delete m_internalData;
}
void RaytracerPhysicsSetup::initPhysics()
{
//request a visual bitma/texture we can render to
m_internalData->m_canvas = m_app->m_2dCanvasInterface;
if (m_internalData->m_canvas)
{
m_internalData->m_canvasIndex = m_internalData->m_canvas->createCanvas("raytracer", m_internalData->m_width, m_internalData->m_height, 15, 55);
for (int i = 0; i < m_internalData->m_width; i++)
{
for (int j = 0; j < m_internalData->m_height; j++)
{
unsigned char red = 255;
unsigned char green = 255;
unsigned char blue = 255;
unsigned char alpha = 255;
m_internalData->m_canvas->setPixel(m_internalData->m_canvasIndex, i, j, red, green, blue, alpha);
}
}
m_internalData->m_canvas->refreshImageData(m_internalData->m_canvasIndex);
//int bitmapId = gfxBridge.createRenderBitmap(width,height);
}
}
///worldRaytest performs a ray versus all objects in a collision world, returning true is a hit is found (filling in worldNormal and worldHitPoint)
bool RaytracerPhysicsSetup::worldRaytest(const btVector3& rayFrom, const btVector3& rayTo, btVector3& worldNormal, btVector3& worldHitPoint)
{
return false;
}
///singleObjectRaytest performs a ray versus one collision shape, returning true is a hit is found (filling in worldNormal and worldHitPoint)
bool RaytracerPhysicsSetup::singleObjectRaytest(const btVector3& rayFrom, const btVector3& rayTo, btVector3& worldNormal, btVector3& worldHitPoint)
{
return false;
}
///lowlevelRaytest performs a ray versus convex shape, returning true is a hit is found (filling in worldNormal and worldHitPoint)
bool RaytracerPhysicsSetup::lowlevelRaytest(const btVector3& rayFrom, const btVector3& rayTo, btVector3& worldNormal, btVector3& worldHitPoint)
{
btScalar closestHitResults = 1.f;
bool hasHit = false;
btConvexCast::CastResult rayResult;
btSphereShape pointShape(0.0f);
btTransform rayFromTrans;
btTransform rayToTrans;
rayFromTrans.setIdentity();
rayFromTrans.setOrigin(rayFrom);
rayToTrans.setIdentity();
rayToTrans.setOrigin(rayTo);
int numObjects = m_internalData->m_shapePtr.size();
for (int s = 0; s < numObjects; s++)
{
//do some culling, ray versus aabb
btVector3 aabbMin, aabbMax;
m_internalData->m_shapePtr[s]->getAabb(m_internalData->m_transforms[s], aabbMin, aabbMax);
btScalar hitLambda = 1.f;
btVector3 hitNormal;
btCollisionObject tmpObj;
tmpObj.setWorldTransform(m_internalData->m_transforms[s]);
if (btRayAabb(rayFrom, rayTo, aabbMin, aabbMax, hitLambda, hitNormal))
{
//reset previous result
//choose the continuous collision detection method
btSubsimplexConvexCast convexCaster(&pointShape, m_internalData->m_shapePtr[s], &m_internalData->m_simplexSolver);
//btGjkConvexCast convexCaster(&pointShape,shapePtr[s],&simplexSolver);
//btContinuousConvexCollision convexCaster(&pointShape,shapePtr[s],&simplexSolver,0);
if (convexCaster.calcTimeOfImpact(rayFromTrans, rayToTrans, m_internalData->m_transforms[s], m_internalData->m_transforms[s], rayResult))
{
if (rayResult.m_fraction < closestHitResults)
{
closestHitResults = rayResult.m_fraction;
worldNormal = m_internalData->m_transforms[s].getBasis() * rayResult.m_normal;
worldNormal.normalize();
hasHit = true;
}
}
}
}
return hasHit;
}
void RaytracerPhysicsSetup::exitPhysics()
{
if (m_internalData->m_canvas && m_internalData->m_canvasIndex >= 0)
{
m_internalData->m_canvas->destroyCanvas(m_internalData->m_canvasIndex);
}
}
void RaytracerPhysicsSetup::stepSimulation(float deltaTime)
{
m_internalData->updateTransforms();
float top = 1.f;
float bottom = -1.f;
float nearPlane = 1.f;
float tanFov = (top - bottom) * 0.5f / nearPlane;
float fov = 2.0 * atanf(tanFov);
btVector3 cameraPosition(5, 0, 0);
btVector3 cameraTargetPosition(0, 0, 0);
if (m_app->m_renderer && m_app->m_renderer->getActiveCamera())
{
m_app->m_renderer->getActiveCamera()->getCameraPosition(cameraPosition);
m_app->m_renderer->getActiveCamera()->getCameraTargetPosition(cameraTargetPosition);
}
btVector3 rayFrom = cameraPosition;
btVector3 rayForward = cameraTargetPosition - cameraPosition;
rayForward.normalize();
float farPlane = 600.f;
rayForward *= farPlane;
btVector3 rightOffset;
btVector3 vertical(0.f, 1.f, 0.f);
btVector3 hor;
hor = rayForward.cross(vertical);
hor.normalize();
vertical = hor.cross(rayForward);
vertical.normalize();
float tanfov = tanf(0.5f * fov);
hor *= 2.f * farPlane * tanfov;
vertical *= 2.f * farPlane * tanfov;
btVector3 rayToCenter = rayFrom + rayForward;
btVector3 dHor = hor * 1.f / float(m_internalData->m_width);
btVector3 dVert = vertical * 1.f / float(m_internalData->m_height);
// int mode = 0;
int x, y;
for (x = 0; x < m_internalData->m_width; x++)
{
for (y = 0; y < m_internalData->m_height; y++)
{
btVector4 rgba(0, 0, 0, 0);
btVector3 rayTo = rayToCenter - 0.5f * hor + 0.5f * vertical;
rayTo += x * dHor;
rayTo -= y * dVert;
btVector3 worldNormal(0, 0, 0);
btVector3 worldPoint(0, 0, 0);
bool hasHit = false;
int mode = 0;
switch (mode)
{
case 0:
hasHit = lowlevelRaytest(rayFrom, rayTo, worldNormal, worldPoint);
break;
case 1:
hasHit = singleObjectRaytest(rayFrom, rayTo, worldNormal, worldPoint);
break;
case 2:
hasHit = worldRaytest(rayFrom, rayTo, worldNormal, worldPoint);
break;
default:
{
}
}
if (hasHit)
{
float lightVec0 = worldNormal.dot(btVector3(0, -1, -1)); //0.4f,-1.f,-0.4f));
float lightVec1 = worldNormal.dot(btVector3(-1, 0, -1)); //-0.4f,-1.f,-0.4f));
rgba = btVector4(lightVec0, lightVec1, 0, 1.f);
rgba.setMin(btVector3(1, 1, 1));
rgba.setMax(btVector3(0.2, 0.2, 0.2));
rgba[3] = 1.f;
unsigned char red = rgba[0] * 255;
unsigned char green = rgba[1] * 255;
unsigned char blue = rgba[2] * 255;
unsigned char alpha = 255;
m_internalData->m_canvas->setPixel(m_internalData->m_canvasIndex, x, y, red, green, blue, alpha);
}
else
{
// btVector4 rgba = raytracePicture->getPixel(x,y);
}
if (!rgba.length2())
{
m_internalData->m_canvas->setPixel(m_internalData->m_canvasIndex, x, y, 255, 0, 0, 255);
}
}
}
m_internalData->m_canvas->refreshImageData(m_internalData->m_canvasIndex);
}
void RaytracerPhysicsSetup::physicsDebugDraw(int debugDrawFlags)
{
}
bool RaytracerPhysicsSetup::mouseMoveCallback(float x, float y)
{
return false;
}
bool RaytracerPhysicsSetup::mouseButtonCallback(int button, int state, float x, float y)
{
return false;
}
bool RaytracerPhysicsSetup::keyboardCallback(int key, int state)
{
return false;
}
void RaytracerPhysicsSetup::syncPhysicsToGraphics(GraphicsPhysicsBridge& gfxBridge)
{
}
CommonExampleInterface* RayTracerCreateFunc(struct CommonExampleOptions& options)
{
return new RaytracerPhysicsSetup(options.m_guiHelper->getAppInterface());
}