bullet3/examples/TinyRenderer/our_gl.cpp
Erwin Coumans ff229baf1e TinyRenderer: support plane shape (creating similar textured plane to OpenGL renderer)
TinyRenderer: perform clipping in double precision to improve accuracy
2020-08-10 20:19:00 -07:00

222 lines
6.6 KiB
C++

#include <cmath>
#include <limits>
#include <cstdlib>
#include "our_gl.h"
#include "Bullet3Common/b3MinMax.h"
namespace TinyRender
{
IShader::~IShader() {}
Matrix viewport(int x, int y, int w, int h)
{
Matrix Viewport;
Viewport = Matrix::identity();
Viewport[0][3] = x + w / 2.f;
Viewport[1][3] = y + h / 2.f;
Viewport[2][3] = .5f;
Viewport[0][0] = w / 2.f;
Viewport[1][1] = h / 2.f;
Viewport[2][2] = .5f;
return Viewport;
}
Matrix projection(float coeff)
{
Matrix Projection;
Projection = Matrix::identity();
Projection[3][2] = coeff;
return Projection;
}
Matrix lookat(Vec3f eye, Vec3f center, Vec3f up)
{
Vec3f f = (center - eye).normalize();
Vec3f u = up.normalize();
Vec3f s = cross(f, u).normalize();
u = cross(s, f);
Matrix ModelView;
ModelView[0][0] = s.x;
ModelView[0][1] = s.y;
ModelView[0][2] = s.z;
ModelView[1][0] = u.x;
ModelView[1][1] = u.y;
ModelView[1][2] = u.z;
ModelView[2][0] = -f.x;
ModelView[2][1] = -f.y;
ModelView[2][2] = -f.z;
ModelView[3][0] = 0.f;
ModelView[3][1] = 0.f;
ModelView[3][2] = 0.f;
ModelView[0][3] = -(s[0] * eye[0] + s[1] * eye[1] + s[2] * eye[2]);
ModelView[1][3] = -(u[0] * eye[0] + u[1] * eye[1] + u[2] * eye[2]);
ModelView[2][3] = f[0] * eye[0] + f[1] * eye[1] + f[2] * eye[2];
ModelView[3][3] = 1.f;
return ModelView;
}
Vec3d barycentric(Vec2f A1, Vec2f B1, Vec2f C1, Vec2f P1)
{
Vec2d A(A1.x, A1.y);
Vec2d B(B1.x, B1.y);
Vec2d C(C1.x, C1.y);
Vec2d P(P1.x, P1.y);;
Vec3d s[2];
for (int i = 2; i--;)
{
s[i][0] = C[i] - A[i];
s[i][1] = B[i] - A[i];
s[i][2] = A[i] - P[i];
}
Vec3d u = cross(s[0], s[1]);
if (std::abs(u[2]) > 1e-2) // dont forget that u[2] is integer. If it is zero then triangle ABC is degenerate
return Vec3d(1. - (u.x + u.y) / u.z, u.y / u.z, u.x / u.z);
return Vec3d(-1., 1., 1.); // in this case generate negative coordinates, it will be thrown away by the rasterizator
}
void triangleClipped(mat<4, 3, float> &clipc, mat<4, 3, float> &orgClipc, IShader &shader, TGAImage &image, float *zbuffer, const Matrix &viewPortMatrix)
{
triangleClipped(clipc, orgClipc, shader, image, zbuffer, 0, viewPortMatrix, 0);
}
void triangleClipped(mat<4, 3, float> &clipc, mat<4, 3, float> &orgClipc, IShader &shader, TGAImage &image, float *zbuffer, int *segmentationMaskBuffer, const Matrix &viewPortMatrix, int objectAndLinkIndex)
{
mat<3, 4, float> screenSpacePts = (viewPortMatrix * clipc).transpose(); // transposed to ease access to each of the points
mat<3, 2, float> pts2;
for (int i = 0; i < 3; i++)
{
pts2[i] = proj<2>(screenSpacePts[i] / screenSpacePts[i][3]);
}
Vec2f bboxmin(std::numeric_limits<float>::max(), std::numeric_limits<float>::max());
Vec2f bboxmax(-std::numeric_limits<float>::max(), -std::numeric_limits<float>::max());
Vec2f clamp(image.get_width() - 1, image.get_height() - 1);
for (int i = 0; i < 3; i++)
{
for (int j = 0; j < 2; j++)
{
bboxmin[j] = b3Max(0.f, b3Min(bboxmin[j], pts2[i][j]));
bboxmax[j] = b3Min(clamp[j], b3Max(bboxmax[j], pts2[i][j]));
}
}
Vec2i P;
TGAColor color;
mat<3, 4, float> orgScreenSpacePts = (viewPortMatrix * orgClipc).transpose(); // transposed to ease access to each of the points
mat<3, 2, float> orgPts2;
for (int i = 0; i < 3; i++)
{
orgPts2[i] = proj<2>(orgScreenSpacePts[i] / orgScreenSpacePts[i][3]);
}
for (P.x = bboxmin.x; P.x <= bboxmax.x; P.x++)
{
for (P.y = bboxmin.y; P.y <= bboxmax.y; P.y++)
{
double frag_depth = 0;
{
Vec3d bc_screen = barycentric(pts2[0], pts2[1], pts2[2], P);
Vec3d bc_clip = Vec3d(bc_screen.x / screenSpacePts[0][3], bc_screen.y / screenSpacePts[1][3], bc_screen.z / screenSpacePts[2][3]);
bc_clip = bc_clip / (bc_clip.x + bc_clip.y + bc_clip.z);
Vec3d clipd(clipc[2].x, clipc[2].y, clipc[2].z);
frag_depth = -1. * (clipd * bc_clip);
if (bc_screen.x < 0 || bc_screen.y < 0 || bc_screen.z < 0 ||
zbuffer[P.x + P.y * image.get_width()] > frag_depth)
continue;
}
Vec3d bc_screen2 = barycentric(orgPts2[0], orgPts2[1], orgPts2[2], P);
Vec3d bc_clip2 = Vec3d(bc_screen2.x / orgScreenSpacePts[0][3], bc_screen2.y / orgScreenSpacePts[1][3], bc_screen2.z / orgScreenSpacePts[2][3]);
bc_clip2 = bc_clip2 / (bc_clip2.x + bc_clip2.y + bc_clip2.z);
Vec3d orgClipd(orgClipc[2].x, orgClipc[2].y, orgClipc[2].z);
double frag_depth2 = -1. * (orgClipd * bc_clip2);
Vec3f bc_clip2f(bc_clip2.x, bc_clip2.y, bc_clip2.z);
bool discard = shader.fragment(bc_clip2f, color);
if (!discard)
{
zbuffer[P.x + P.y * image.get_width()] = frag_depth;
if (segmentationMaskBuffer)
{
segmentationMaskBuffer[P.x + P.y * image.get_width()] = objectAndLinkIndex;
}
image.set(P.x, P.y, color);
}
}
}
}
void triangle(mat<4, 3, float> &clipc, IShader &shader, TGAImage &image, float *zbuffer, const Matrix &viewPortMatrix)
{
triangle(clipc, shader, image, zbuffer, 0, viewPortMatrix, 0);
}
void triangle(mat<4, 3, float> &clipc, IShader &shader, TGAImage &image, float *zbuffer, int *segmentationMaskBuffer, const Matrix &viewPortMatrix, int objectAndLinkIndex)
{
mat<3, 4, float> pts = (viewPortMatrix * clipc).transpose(); // transposed to ease access to each of the points
mat<3, 2, float> pts2;
for (int i = 0; i < 3; i++) pts2[i] = proj<2>(pts[i] / pts[i][3]);
Vec2f bboxmin(std::numeric_limits<float>::max(), std::numeric_limits<float>::max());
Vec2f bboxmax(-std::numeric_limits<float>::max(), -std::numeric_limits<float>::max());
Vec2f clamp(image.get_width() - 1, image.get_height() - 1);
for (int i = 0; i < 3; i++)
{
for (int j = 0; j < 2; j++)
{
bboxmin[j] = b3Max(0.f, b3Min(bboxmin[j], pts2[i][j]));
bboxmax[j] = b3Min(clamp[j], b3Max(bboxmax[j], pts2[i][j]));
}
}
Vec2i P;
TGAColor color;
for (P.x = bboxmin.x; P.x <= bboxmax.x; P.x++)
{
for (P.y = bboxmin.y; P.y <= bboxmax.y; P.y++)
{
Vec3d bc_screen = barycentric(pts2[0], pts2[1], pts2[2], P);
Vec3d bc_clip = Vec3d(bc_screen.x / pts[0][3], bc_screen.y / pts[1][3], bc_screen.z / pts[2][3]);
bc_clip = bc_clip / (bc_clip.x + bc_clip.y + bc_clip.z);
Vec3d clipd(clipc[2].x, clipc[2].y, clipc[2].z);
double frag_depth = -1. * (clipd * bc_clip);
if (bc_screen.x < 0 || bc_screen.y < 0 || bc_screen.z < 0 ||
zbuffer[P.x + P.y * image.get_width()] > frag_depth)
continue;
Vec3f bc_clipf(bc_clip.x, bc_clip.y, bc_clip.z);
bool discard = shader.fragment(bc_clipf, color);
if (frag_depth < -shader.m_farPlane)
discard = true;
if (frag_depth > shader.m_nearPlane)
discard = true;
if (!discard)
{
zbuffer[P.x + P.y * image.get_width()] = frag_depth;
if (segmentationMaskBuffer)
{
segmentationMaskBuffer[P.x + P.y * image.get_width()] = objectAndLinkIndex;
}
image.set(P.x, P.y, color);
}
}
}
}
}