bullet3/examples/SharedMemory/physx/URDF2PhysX.cpp
erwincoumans a9996088c8 Implement PyBullet.getCameraImage for PhysX backend.
PhysX backend, allow arbitrary plane normal, a few other fixes.
2019-02-24 14:09:42 -08:00

1040 lines
34 KiB
C++

#include "URDF2PhysX.h"
#include "PhysXUrdfImporter.h"
#include "Bullet3Common/b3Logging.h"
#include "PxArticulationReducedCoordinate.h"
#include "PxArticulationJointReducedCoordinate.h"
#include "PxRigidActorExt.h"
#include "PxArticulation.h"
#include "PxRigidBodyExt.h"
#include "PxRigidBody.h"
#include "LinearMath/btThreads.h"
#include "PxRigidActorExt.h"
#include "PxArticulationBase.h"
#include "PxArticulationLink.h"
#include "PxMaterial.h"
#include "PxCooking.h"
#include "PxScene.h"
#include "PxRigidStatic.h"
#include "PxRigidDynamic.h"
#include "PxActor.h"
#include "PxAggregate.h"
#include "Bullet3Common/b3FileUtils.h"
#include "PhysXUserData.h"
#include "../../CommonInterfaces/CommonFileIOInterface.h"
#include "../../Importers/ImportObjDemo/LoadMeshFromObj.h"
#include "../../Importers/ImportSTLDemo/LoadMeshFromSTL.h"
#include "../../Importers/ImportURDFDemo/UrdfParser.h"
struct URDF2PhysXCachedData
{
URDF2PhysXCachedData()
: m_currentMultiBodyLinkIndex(-1),
m_articulation(0),
m_rigidStatic(0),
m_rigidDynamic(0),
m_totalNumJoints1(0)
{
}
//these arrays will be initialized in the 'InitURDF2BulletCache'
btAlignedObjectArray<int> m_urdfLinkParentIndices;
btAlignedObjectArray<int> m_urdfLinkIndices2BulletLinkIndices;
btAlignedObjectArray<class physx::PxArticulationLink*> m_urdfLink2physxLink;
btAlignedObjectArray<btTransform> m_urdfLinkLocalInertialFrames;
int m_currentMultiBodyLinkIndex;
physx::PxArticulationReducedCoordinate* m_articulation;
physx::PxRigidStatic* m_rigidStatic;
physx::PxRigidDynamic* m_rigidDynamic;
btAlignedObjectArray<physx::PxTransform> m_linkTransWorldSpace;
btAlignedObjectArray<int> m_urdfLinkIndex;
btAlignedObjectArray<int> m_parentUrdfLinkIndex;
btAlignedObjectArray<physx::PxReal> m_linkMasses;
btAlignedObjectArray<physx::PxArticulationJointType::Enum> m_jointTypes;
btAlignedObjectArray<physx::PxTransform> m_parentLocalPoses;
btAlignedObjectArray<physx::PxTransform> m_childLocalPoses;
btAlignedObjectArray<UrdfGeomTypes> m_geomTypes;
btAlignedObjectArray<physx::PxVec3> m_geomDimensions;
btAlignedObjectArray<physx::PxVec3> m_linkMaterials;
btAlignedObjectArray<physx::PxTransform> m_geomLocalPoses;
//this will be initialized in the constructor
int m_totalNumJoints1;
int getParentUrdfIndex(int linkIndex) const
{
return m_urdfLinkParentIndices[linkIndex];
}
int getMbIndexFromUrdfIndex(int urdfIndex) const
{
if (urdfIndex == -2)
return -2;
return m_urdfLinkIndices2BulletLinkIndices[urdfIndex];
}
void registerMultiBody(int urdfLinkIndex, class physx::PxArticulationLink* body, const btTransform& worldTransform, btScalar mass, const btVector3& localInertiaDiagonal, const btTransform& localInertialFrame)
{
m_urdfLink2physxLink[urdfLinkIndex] = body;
m_urdfLinkLocalInertialFrames[urdfLinkIndex] = localInertialFrame;
}
class physx::PxArticulationLink* getPhysxLinkFromLink(int urdfLinkIndex)
{
return m_urdfLink2physxLink[urdfLinkIndex];
}
void registerRigidBody(int urdfLinkIndex, class physx::PxArticulationLink* body, const btTransform& worldTransform, btScalar mass, const btVector3& localInertiaDiagonal, const class btCollisionShape* compound, const btTransform& localInertialFrame)
{
btAssert(m_urdfLink2physxLink[urdfLinkIndex] == 0);
m_urdfLink2physxLink[urdfLinkIndex] = body;
m_urdfLinkLocalInertialFrames[urdfLinkIndex] = localInertialFrame;
}
};
void ComputeParentIndices(const URDFImporterInterface& u2b, URDF2PhysXCachedData& cache, int urdfLinkIndex, int urdfParentIndex)
{
cache.m_urdfLinkParentIndices[urdfLinkIndex] = urdfParentIndex;
cache.m_urdfLinkIndices2BulletLinkIndices[urdfLinkIndex] = cache.m_currentMultiBodyLinkIndex++;
btAlignedObjectArray<int> childIndices;
u2b.getLinkChildIndices(urdfLinkIndex, childIndices);
for (int i = 0; i < childIndices.size(); i++)
{
ComputeParentIndices(u2b, cache, childIndices[i], urdfLinkIndex);
}
}
void ComputeTotalNumberOfJoints(const URDFImporterInterface& u2b, URDF2PhysXCachedData& cache, int linkIndex)
{
btAlignedObjectArray<int> childIndices;
u2b.getLinkChildIndices(linkIndex, childIndices);
cache.m_totalNumJoints1 += childIndices.size();
for (int i = 0; i < childIndices.size(); i++)
{
int childIndex = childIndices[i];
ComputeTotalNumberOfJoints(u2b, cache, childIndex);
}
}
void InitURDF2BulletCache(const URDFImporterInterface& u2b, URDF2PhysXCachedData& cache, int flags)
{
//compute the number of links, and compute parent indices array (and possibly other cached data?)
cache.m_totalNumJoints1 = 0;
int rootLinkIndex = u2b.getRootLinkIndex();
if (rootLinkIndex >= 0)
{
ComputeTotalNumberOfJoints(u2b, cache, rootLinkIndex);
int numTotalLinksIncludingBase = 1 + cache.m_totalNumJoints1;
cache.m_urdfLinkParentIndices.resize(numTotalLinksIncludingBase);
cache.m_urdfLinkIndices2BulletLinkIndices.resize(numTotalLinksIncludingBase);
cache.m_urdfLink2physxLink.resize(numTotalLinksIncludingBase);
cache.m_urdfLinkLocalInertialFrames.resize(numTotalLinksIncludingBase);
cache.m_currentMultiBodyLinkIndex = -1; //multi body base has 'link' index -1
bool maintainLinkOrder = (flags & CUF_MAINTAIN_LINK_ORDER) != 0;
if (maintainLinkOrder)
{
URDF2PhysXCachedData cache2 = cache;
ComputeParentIndices(u2b, cache2, rootLinkIndex, -2);
for (int j = 0; j<numTotalLinksIncludingBase; j++)
{
cache.m_urdfLinkParentIndices[j] = cache2.m_urdfLinkParentIndices[j];
cache.m_urdfLinkIndices2BulletLinkIndices[j] = j - 1;
}
}
else
{
ComputeParentIndices(u2b, cache, rootLinkIndex, -2);
}
}
}
struct ArticulationCreationInterface
{
physx::PxFoundation* m_foundation;
physx::PxPhysics* m_physics;
physx::PxCooking* m_cooking;
physx::PxScene* m_scene;
CommonFileIOInterface* m_fileIO;
b3AlignedObjectArray<int> m_mb2urdfLink;
void addLinkMapping(int urdfLinkIndex, int mbLinkIndex)
{
if (m_mb2urdfLink.size() < (mbLinkIndex + 1))
{
m_mb2urdfLink.resize((mbLinkIndex + 1), -2);
}
// m_urdf2mbLink[urdfLinkIndex] = mbLinkIndex;
m_mb2urdfLink[mbLinkIndex] = urdfLinkIndex;
}
};
static btVector4 colors4[4] =
{
btVector4(1, 0, 0, 1),
btVector4(0, 1, 0, 1),
btVector4(0, 1, 1, 1),
btVector4(1, 1, 0, 1),
};
static btVector4 selectColor4()
{
static btSpinMutex sMutex;
sMutex.lock();
static int curColor = 0;
btVector4 color = colors4[curColor];
curColor++;
curColor &= 3;
sMutex.unlock();
return color;
}
static physx::PxConvexMesh* createPhysXConvex(physx::PxU32 numVerts, const physx::PxVec3* verts, ArticulationCreationInterface& creation)
{
physx::PxCookingParams params = creation.m_cooking->getParams();
// Use the new (default) PxConvexMeshCookingType::eQUICKHULL
params.convexMeshCookingType = physx::PxConvexMeshCookingType::eQUICKHULL;
// If the gaussMapLimit is chosen higher than the number of output vertices, no gauss map is added to the convex mesh data (here 256).
// If the gaussMapLimit is chosen lower than the number of output vertices, a gauss map is added to the convex mesh data (here 16).
int gaussMapLimit = 256;
params.gaussMapLimit = gaussMapLimit;
creation.m_cooking->setParams(params);
// Setup the convex mesh descriptor
physx::PxConvexMeshDesc desc;
// We provide points only, therefore the PxConvexFlag::eCOMPUTE_CONVEX flag must be specified
desc.points.data = verts;
desc.points.count = numVerts;
desc.points.stride = sizeof(physx::PxVec3);
desc.flags = physx::PxConvexFlag::eCOMPUTE_CONVEX;
physx::PxU32 meshSize = 0;
// Directly insert mesh into PhysX
physx::PxConvexMesh* convex = creation.m_cooking->createConvexMesh(desc, creation.m_physics->getPhysicsInsertionCallback());
PX_ASSERT(convex);
return convex;
}
int convertLinkPhysXShapes(const URDFImporterInterface& u2b, URDF2PhysXCachedData& cache, ArticulationCreationInterface& creation, int urdfLinkIndex, const char* pathPrefix, const btTransform& localInertiaFrame,
physx::PxArticulationReducedCoordinate* articulation, int mbLinkIndex, physx::PxRigidActor* linkPtr)
{
int numShapes = 0;
URDFLinkContactInfo contactInfo;
u2b.getLinkContactInfo(urdfLinkIndex, contactInfo);
//static friction, dynamic frictoin, restitution
cache.m_linkMaterials.push_back(physx::PxVec3(contactInfo.m_lateralFriction, contactInfo.m_lateralFriction, contactInfo.m_restitution));
physx::PxMaterial* material = creation.m_physics->createMaterial(contactInfo.m_lateralFriction, contactInfo.m_lateralFriction, contactInfo.m_restitution);
const UrdfLink* link = u2b.getUrdfLink(urdfLinkIndex);//.convertLinkCollisionShapes m_data->m_urdfParser.getModel().m_links.getAtIndex(linkIndex);
btAssert(linkPtr);
if (linkPtr)
{
for (int v = 0; v < link->m_collisionArray.size(); v++)
{
const UrdfCollision& col = link->m_collisionArray[v];
const UrdfCollision* collision = &col;
btTransform childTrans = col.m_linkLocalFrame;
btTransform localTrans = localInertiaFrame.inverse()*childTrans;
physx::PxTransform tr;
tr.p = physx::PxVec3(localTrans.getOrigin()[0], localTrans.getOrigin()[1], localTrans.getOrigin()[2]);
tr.q = physx::PxQuat(localTrans.getRotation()[0], localTrans.getRotation()[1], localTrans.getRotation()[2], localTrans.getRotation()[3]);
physx::PxShape* shape = 0;
cache.m_geomTypes.push_back(col.m_geometry.m_type);
switch (col.m_geometry.m_type)
{
case URDF_GEOM_PLANE:
{
btVector3 planeNormal = col.m_geometry.m_planeNormal;
btScalar planeConstant = 0; //not available?
btVector3 planeRefAxis(1, 0, 0);
btQuaternion diffQuat = shortestArcQuat(planeRefAxis, planeNormal);
shape = physx::PxRigidActorExt::createExclusiveShape(*linkPtr, physx::PxPlaneGeometry(), *material);
btTransform diffTr;
diffTr.setIdentity();
diffTr.setRotation(diffQuat);
btTransform localTrans = localInertiaFrame.inverse()*childTrans*diffTr;
physx::PxTransform tr;
tr.p = physx::PxVec3(localTrans.getOrigin()[0], localTrans.getOrigin()[1], localTrans.getOrigin()[2]);
tr.q = physx::PxQuat(localTrans.getRotation()[0], localTrans.getRotation()[1], localTrans.getRotation()[2], localTrans.getRotation()[3]);
physx::PxTransform localPose = tr;
shape->setLocalPose(localPose);
numShapes++;
break;
}
case URDF_GEOM_CAPSULE:
{
btScalar radius = collision->m_geometry.m_capsuleRadius;
btScalar height = collision->m_geometry.m_capsuleHeight;
//static PxShape* createExclusiveShape(PxRigidActor& actor, const PxGeometry& geometry, PxMaterial*const* materials, PxU16 materialCount,
// PxShapeFlags shapeFlags = PxShapeFlag::eVISUALIZATION | PxShapeFlag::eSCENE_QUERY_SHAPE | PxShapeFlag::eSIMULATION_SHAPE)
//{
physx::PxShapeFlags shapeFlags = physx::PxShapeFlag::eVISUALIZATION | physx::PxShapeFlag::eSCENE_QUERY_SHAPE | physx::PxShapeFlag::eSIMULATION_SHAPE;
//shape = PxGetPhysics().createShape(physx::PxCapsuleGeometry(radius, 0.5*height), &material, 1, false, shapeFlags);
shape = physx::PxRigidActorExt::createExclusiveShape(*linkPtr, physx::PxCapsuleGeometry(radius, 0.5*height), *material);
btTransform childTrans = col.m_linkLocalFrame;
btTransform x2z;
x2z.setIdentity();
x2z.setRotation(btQuaternion(btVector3(0, 1, 0), SIMD_HALF_PI));
btTransform localTrans = localInertiaFrame.inverse()*childTrans*x2z;
physx::PxTransform tr;
tr.p = physx::PxVec3(localTrans.getOrigin()[0], localTrans.getOrigin()[1], localTrans.getOrigin()[2]);
tr.q = physx::PxQuat(localTrans.getRotation()[0], localTrans.getRotation()[1], localTrans.getRotation()[2], localTrans.getRotation()[3]);
shape->setLocalPose(tr);
cache.m_geomLocalPoses.push_back(tr);
numShapes++;
//btCapsuleShapeZ* capsuleShape = new btCapsuleShapeZ(radius, height);
//shape = capsuleShape;
//shape->setMargin(gUrdfDefaultCollisionMargin);
break;
}
case URDF_GEOM_CYLINDER:
{
btScalar cylRadius = collision->m_geometry.m_capsuleRadius;
btScalar cylHalfLength = 0.5 * collision->m_geometry.m_capsuleHeight;
cache.m_geomDimensions.push_back(physx::PxVec3(cylRadius, cylHalfLength,0));
//if (m_data->m_flags & CUF_USE_IMPLICIT_CYLINDER)
//{
// btVector3 halfExtents(cylRadius, cylRadius, cylHalfLength);
// btCylinderShapeZ* cylZShape = new btCylinderShapeZ(halfExtents);
// shape = cylZShape;
//}
//else
{
btAlignedObjectArray<physx::PxVec3> vertices;
int numSteps = 32;
for (int i = 0; i < numSteps; i++)
{
physx::PxVec3 vert(cylRadius * btSin(SIMD_2_PI * (float(i) / numSteps)), cylRadius * btCos(SIMD_2_PI * (float(i) / numSteps)), cylHalfLength);
vertices.push_back(vert);
vert[2] = -cylHalfLength;
vertices.push_back(vert);
}
physx::PxConvexMesh* convexMesh = createPhysXConvex(vertices.size(), &vertices[0], creation);
shape = physx::PxRigidActorExt::createExclusiveShape(*linkPtr,
physx::PxConvexMeshGeometry(convexMesh), *material);
shape->setLocalPose(tr);
cache.m_geomLocalPoses.push_back(tr);
numShapes++;
}
break;
}
case URDF_GEOM_BOX:
{
btVector3 extents = collision->m_geometry.m_boxSize;
shape = physx::PxRigidActorExt::createExclusiveShape(*linkPtr, physx::PxBoxGeometry(extents[0] * 0.5, extents[1] * 0.5, extents[2] * 0.5), *material);
cache.m_geomDimensions.push_back(physx::PxVec3(extents[0]*0.5, extents[1] * 0.5, extents[2] * 0.5));
shape->setLocalPose(tr);
cache.m_geomLocalPoses.push_back(tr);
numShapes++;
break;
}
case URDF_GEOM_SPHERE:
{
btScalar radius = collision->m_geometry.m_sphereRadius;
shape = physx::PxRigidActorExt::createExclusiveShape(*linkPtr, physx::PxSphereGeometry(radius), *material);
cache.m_geomDimensions.push_back(physx::PxVec3(radius,0,0));
shape->setLocalPose(tr);
cache.m_geomLocalPoses.push_back(tr);
numShapes++;
break;
}
case URDF_GEOM_MESH:
{
btAlignedObjectArray<physx::PxVec3> vertices;
GLInstanceGraphicsShape* glmesh = 0;
switch (collision->m_geometry.m_meshFileType)
{
case UrdfGeometry::FILE_OBJ:
{
char relativeFileName[1024];
char pathPrefix[1024];
pathPrefix[0] = 0;
if (creation.m_fileIO->findResourcePath(collision->m_geometry.m_meshFileName.c_str(), relativeFileName, 1024))
{
b3FileUtils::extractPath(relativeFileName, pathPrefix, 1024);
}
glmesh = LoadMeshFromObj(collision->m_geometry.m_meshFileName.c_str(), pathPrefix, creation.m_fileIO);
break;
}
case UrdfGeometry::FILE_STL:
{
glmesh = LoadMeshFromSTL(collision->m_geometry.m_meshFileName.c_str(), creation.m_fileIO);
break;
}
default:
{
}
}
if (glmesh && glmesh->m_numvertices)
{
for (int i = 0; i < glmesh->m_numvertices; i++)
{
physx::PxVec3 vert(
glmesh->m_vertices->at(i).xyzw[0] * collision->m_geometry.m_meshScale[0],
glmesh->m_vertices->at(i).xyzw[1] * collision->m_geometry.m_meshScale[1],
glmesh->m_vertices->at(i).xyzw[2] * collision->m_geometry.m_meshScale[2]);
vertices.push_back(vert);
}
physx::PxConvexMesh* convexMesh = createPhysXConvex(vertices.size(), &vertices[0], creation);
shape = physx::PxRigidActorExt::createExclusiveShape(*linkPtr,
physx::PxConvexMeshGeometry(convexMesh), *material);
shape->setLocalPose(tr);
cache.m_geomLocalPoses.push_back(tr);
numShapes++;
}
break;
}
default:
{
printf("unknown physx shape\n");
}
}
if (shape)
{
//see https://github.com/NVIDIAGameWorks/PhysX/issues/21
physx::PxReal contactOffset = shape->getContactOffset();
physx::PxReal restOffset = shape->getContactOffset();
//shape->setContactOffset(physx::PxReal(.03));
//shape->setRestOffset(physx::PxReal(.01)); //
}
}
}
return numShapes;
}
btTransform ConvertURDF2PhysXInternal(
const PhysXURDFImporter& u2b,
ArticulationCreationInterface& creation,
URDF2PhysXCachedData& cache, int urdfLinkIndex,
const btTransform& parentTransformInWorldSpace,
bool createActiculation, const char* pathPrefix,
int flags,
UrdfVisualShapeCache2* cachedLinkGraphicsShapesIn,
UrdfVisualShapeCache2* cachedLinkGraphicsShapesOut,
bool recursive)
{
B3_PROFILE("ConvertURDF2PhysXInternal");
//b3Printf("start converting/extracting data from URDF interface\n");
btTransform linkTransformInWorldSpace;
linkTransformInWorldSpace.setIdentity();
int mbLinkIndex = cache.getMbIndexFromUrdfIndex(urdfLinkIndex);
int urdfParentIndex = cache.getParentUrdfIndex(urdfLinkIndex);
int mbParentIndex = cache.getMbIndexFromUrdfIndex(urdfParentIndex);
//b3Printf("mb link index = %d\n",mbLinkIndex);
btTransform parentLocalInertialFrame;
parentLocalInertialFrame.setIdentity();
btScalar parentMass(1);
btVector3 parentLocalInertiaDiagonal(1, 1, 1);
if (urdfParentIndex == -2)
{
//b3Printf("root link has no parent\n");
}
else
{
//b3Printf("urdf parent index = %d\n",urdfParentIndex);
//b3Printf("mb parent index = %d\n",mbParentIndex);
//parentRigidBody = cache.getRigidBodyFromLink(urdfParentIndex);
u2b.getMassAndInertia2(urdfParentIndex, parentMass, parentLocalInertiaDiagonal, parentLocalInertialFrame, flags);
}
btScalar mass = 0;
btTransform localInertialFrame;
localInertialFrame.setIdentity();
btVector3 localInertiaDiagonal(0, 0, 0);
u2b.getMassAndInertia2(urdfLinkIndex, mass, localInertiaDiagonal, localInertialFrame, flags);
btTransform parent2joint;
parent2joint.setIdentity();
int jointType;
btVector3 jointAxisInJointSpace;
btScalar jointLowerLimit;
btScalar jointUpperLimit;
btScalar jointDamping;
btScalar jointFriction;
btScalar jointMaxForce;
btScalar jointMaxVelocity;
bool hasParentJoint = u2b.getJointInfo2(urdfLinkIndex, parent2joint, linkTransformInWorldSpace, jointAxisInJointSpace, jointType, jointLowerLimit, jointUpperLimit, jointDamping, jointFriction, jointMaxForce, jointMaxVelocity);
btTransform axis2Reference;
axis2Reference.setIdentity();
switch (jointType)
{
case URDFContinuousJoint:
case URDFPrismaticJoint:
case URDFRevoluteJoint:
{
//rotate from revolute 'axis' to standard X axis
btVector3 refAxis(1, 0, 0);
btVector3 axis = jointAxisInJointSpace;
//btQuaternion axis2ReferenceRot(btVector3(0, 1, 0), SIMD_HALF_PI);// = shortestArcQuat(refAxis, btVector3(axis[0], axis[1], axis[2]));
btQuaternion axis2ReferenceRot = shortestArcQuat(refAxis, btVector3(axis[0], axis[1], axis[2]));
axis2Reference.setRotation(axis2ReferenceRot);
break;
}
default:
{
}
};
parent2joint = parent2joint*axis2Reference;
//localInertialFrame = axis2Reference.inverse()*localInertialFrame;
std::string linkName = u2b.getLinkName(urdfLinkIndex);
if (flags & CUF_USE_SDF)
{
parent2joint = parentTransformInWorldSpace.inverse() * linkTransformInWorldSpace;
}
else
{
if (flags & CUF_USE_MJCF)
{
linkTransformInWorldSpace = parentTransformInWorldSpace * linkTransformInWorldSpace;
}
else
{
linkTransformInWorldSpace = parentTransformInWorldSpace * parent2joint;
}
}
int graphicsIndex;
{
B3_PROFILE("convertLinkVisualShapes");
graphicsIndex = u2b.convertLinkVisualShapes3(urdfLinkIndex, pathPrefix, localInertialFrame, u2b.getUrdfLink(urdfLinkIndex), u2b.getUrdfModel(), -1, u2b.getBodyUniqueId(), creation.m_fileIO);
#if 0
if (cachedLinkGraphicsShapesIn && cachedLinkGraphicsShapesIn->m_cachedUrdfLinkVisualShapeIndices.size() > (mbLinkIndex + 1))
{
graphicsIndex = cachedLinkGraphicsShapesIn->m_cachedUrdfLinkVisualShapeIndices[mbLinkIndex + 1];
UrdfMaterialColor matColor = cachedLinkGraphicsShapesIn->m_cachedUrdfLinkColors[mbLinkIndex + 1];
u2b.setLinkColor2(urdfLinkIndex, matColor);
}
else
{
graphicsIndex =
if (cachedLinkGraphicsShapesOut)
{
cachedLinkGraphicsShapesOut->m_cachedUrdfLinkVisualShapeIndices.push_back(graphicsIndex);
UrdfMaterialColor matColor;
u2b.getLinkColor2(urdfLinkIndex, matColor);
cachedLinkGraphicsShapesOut->m_cachedUrdfLinkColors.push_back(matColor);
}
}
#endif
}
if (1)
{
UrdfMaterialColor matColor;
btVector4 color2 = selectColor4();
btVector3 specular(0.5, 0.5, 0.5);
if (u2b.getLinkColor2(urdfLinkIndex, matColor))
{
color2 = matColor.m_rgbaColor;
specular = matColor.m_specularColor;
}
/*
if (visual->material.get())
{
color.setValue(visual->material->color.r,visual->material->color.g,visual->material->color.b);//,visual->material->color.a);
}
*/
if (mass)
{
if (!(flags & CUF_USE_URDF_INERTIA))
{
//b3Assert(0);
//compoundShape->calculateLocalInertia(mass, localInertiaDiagonal);
btAssert(localInertiaDiagonal[0] < 1e10);
btAssert(localInertiaDiagonal[1] < 1e10);
btAssert(localInertiaDiagonal[2] < 1e10);
}
URDFLinkContactInfo contactInfo;
u2b.getLinkContactInfo(urdfLinkIndex, contactInfo);
//temporary inertia scaling until we load inertia from URDF
if (contactInfo.m_flags & URDF_CONTACT_HAS_INERTIA_SCALING)
{
localInertiaDiagonal *= contactInfo.m_inertiaScaling;
}
}
btTransform inertialFrameInWorldSpace = linkTransformInWorldSpace * localInertialFrame;
bool canSleep = (flags & CUF_ENABLE_SLEEPING) != 0;
physx::PxRigidActor* linkPtr = 0;
physx::PxRigidBody* rbLinkPtr = 0;
physx::PxTransform tr;
tr.p = physx::PxVec3(linkTransformInWorldSpace.getOrigin().x(), linkTransformInWorldSpace.getOrigin().y(), linkTransformInWorldSpace.getOrigin().z());
tr.q = physx::PxQuat(linkTransformInWorldSpace.getRotation().x(), linkTransformInWorldSpace.getRotation().y(), linkTransformInWorldSpace.getRotation().z(), linkTransformInWorldSpace.getRotation().w());
bool isFixedBase = (mass == 0); //todo: figure out when base is fixed
if (!createActiculation)
{
if (isFixedBase)
{
physx::PxRigidStatic* s = creation.m_physics->createRigidStatic(tr);
if ((cache.m_rigidStatic == 0) && (cache.m_rigidDynamic == 0))
{
cache.m_rigidStatic = s;
}
linkPtr = s;
}
else
{
physx::PxRigidDynamic* d = creation.m_physics->createRigidDynamic(tr);
linkPtr = d;
if ((cache.m_rigidStatic == 0) && (cache.m_rigidDynamic == 0))
{
cache.m_rigidDynamic = d;
}
rbLinkPtr = d;
}
}
else
{
cache.m_linkTransWorldSpace.push_back(tr);
cache.m_urdfLinkIndex.push_back(urdfLinkIndex);
cache.m_parentUrdfLinkIndex.push_back(urdfParentIndex);
cache.m_linkMasses.push_back(mass);
if (cache.m_articulation == 0)
{
cache.m_articulation = creation.m_physics->createArticulationReducedCoordinate();
if (isFixedBase)
{
cache.m_articulation->setArticulationFlags(physx::PxArticulationFlag::eFIX_BASE);
}
physx::PxArticulationLink* base = cache.m_articulation->createLink(NULL,tr);
linkPtr = base;
rbLinkPtr = base;
//physx::PxRigidActorExt::createExclusiveShape(*base, PxBoxGeometry(0.5f, 0.25f, 1.5f), *gMaterial);
physx::PxRigidBody& body = *base;
//Now create the slider and fixed joints...
//cache.m_articulation->setSolverIterationCounts(4);//todo: API?
cache.m_articulation->setSolverIterationCounts(32);//todo: API?
cache.m_jointTypes.push_back(physx::PxArticulationJointType::eUNDEFINED);
cache.m_parentLocalPoses.push_back(physx::PxTransform());
cache.m_childLocalPoses.push_back(physx::PxTransform());
// Stabilization can create artefacts on jointed objects so we just disable it
//cache.m_articulation->setStabilizationThreshold(0.0f);
//cache.m_articulation->setMaxProjectionIterations(16);
//cache.m_articulation->setSeparationTolerance(0.001f);
#if 0
int totalNumJoints = cache.m_totalNumJoints1;
cache.m_bulletMultiBody = creation.allocateMultiBody(urdfLinkIndex, totalNumJoints, mass, localInertiaDiagonal, isFixedBase, canSleep);
if (flags & CUF_GLOBAL_VELOCITIES_MB)
{
cache.m_bulletMultiBody->useGlobalVelocities(true);
}
if (flags & CUF_USE_MJCF)
{
cache.m_bulletMultiBody->setBaseWorldTransform(linkTransformInWorldSpace);
}
#endif
cache.registerMultiBody(urdfLinkIndex, base, inertialFrameInWorldSpace, mass, localInertiaDiagonal, localInertialFrame);
}
else
{
physx::PxArticulationLink* parentLink = cache.getPhysxLinkFromLink(urdfParentIndex);
physx::PxArticulationLink* childLink = cache.m_articulation->createLink(parentLink, tr);
linkPtr = childLink;
rbLinkPtr = childLink;
physx::PxArticulationJointReducedCoordinate* joint = static_cast<physx::PxArticulationJointReducedCoordinate*>(childLink->getInboundJoint());
switch (jointType)
{
case URDFFixedJoint:
{
joint->setJointType(physx::PxArticulationJointType::eFIX);
break;
}
case URDFSphericalJoint:
{
joint->setJointType(physx::PxArticulationJointType::eSPHERICAL);
joint->setMotion(physx::PxArticulationAxis::eTWIST, physx::PxArticulationMotion::eFREE);
joint->setMotion(physx::PxArticulationAxis::eSWING2, physx::PxArticulationMotion::eFREE);
joint->setMotion(physx::PxArticulationAxis::eSWING1, physx::PxArticulationMotion::eFREE);
break;
}
case URDFContinuousJoint:
case URDFRevoluteJoint:
{
joint->setJointType(physx::PxArticulationJointType::eREVOLUTE);
joint->setMotion(physx::PxArticulationAxis::eTWIST, physx::PxArticulationMotion::eFREE);
break;
}
case URDFPrismaticJoint:
{
joint->setJointType(physx::PxArticulationJointType::ePRISMATIC);
joint->setMotion(physx::PxArticulationAxis::eX, physx::PxArticulationMotion::eFREE);
break;
}
default:
{
joint->setJointType(physx::PxArticulationJointType::eFIX);
btAssert(0);
}
};
cache.m_jointTypes.push_back(joint->getJointType());
btTransform offsetInA, offsetInB;
offsetInA = parentLocalInertialFrame.inverse() * parent2joint;
offsetInB = (axis2Reference.inverse()*localInertialFrame).inverse();
physx::PxTransform parentPose(physx::PxVec3(offsetInA.getOrigin()[0], offsetInA.getOrigin()[1], offsetInA.getOrigin()[2]),
physx::PxQuat(offsetInA.getRotation()[0], offsetInA.getRotation()[1], offsetInA.getRotation()[2], offsetInA.getRotation()[3]));
physx::PxTransform childPose(physx::PxVec3(offsetInB.getOrigin()[0], offsetInB.getOrigin()[1], offsetInB.getOrigin()[2]),
physx::PxQuat(offsetInB.getRotation()[0], offsetInB.getRotation()[1], offsetInB.getRotation()[2], offsetInB.getRotation()[3]));
cache.m_parentLocalPoses.push_back(parentPose);
cache.m_childLocalPoses.push_back(childPose);
joint->setParentPose(parentPose);
joint->setChildPose(childPose);
cache.registerMultiBody(urdfLinkIndex, childLink, inertialFrameInWorldSpace, mass, localInertiaDiagonal, localInertialFrame);
}
}
if (linkPtr)
{
//todo: mem leaks
MyPhysXUserData* userData = new MyPhysXUserData();
userData->m_graphicsUniqueId = graphicsIndex;
userData->m_bodyUniqueId = u2b.getBodyUniqueId();
userData->m_linkIndex = mbLinkIndex;
linkPtr->userData = userData;
}
//create collision shapes
//physx::PxRigidActorExt::createExclusiveShape
convertLinkPhysXShapes(u2b, cache, creation, urdfLinkIndex, pathPrefix, localInertialFrame, cache.m_articulation, mbLinkIndex, linkPtr);
if (rbLinkPtr && mass)
{
physx::PxRigidBodyExt::updateMassAndInertia(*rbLinkPtr, mass);
}
//base->setMass(massOut);
//base->setMassSpaceInertiaTensor(diagTensor);
//base->setCMassLocalPose(PxTransform(com, orient));
//create a joint if necessary
if (hasParentJoint)
{
btTransform offsetInA, offsetInB;
offsetInA = parentLocalInertialFrame.inverse() * parent2joint;
offsetInB = localInertialFrame.inverse();
btQuaternion parentRotToThis = offsetInB.getRotation() * offsetInA.inverse().getRotation();
bool disableParentCollision = true;
if (createActiculation && cache.m_articulation)
{
#if 0
cache.m_bulletMultiBody->getLink(mbLinkIndex).m_jointDamping = jointDamping;
cache.m_bulletMultiBody->getLink(mbLinkIndex).m_jointFriction = jointFriction;
cache.m_bulletMultiBody->getLink(mbLinkIndex).m_jointLowerLimit = jointLowerLimit;
cache.m_bulletMultiBody->getLink(mbLinkIndex).m_jointUpperLimit = jointUpperLimit;
cache.m_bulletMultiBody->getLink(mbLinkIndex).m_jointMaxForce = jointMaxForce;
cache.m_bulletMultiBody->getLink(mbLinkIndex).m_jointMaxVelocity = jointMaxVelocity;
#endif
}
}
if (createActiculation)
{
}
else
{
}
}//was if 'shape/compountShape'
btAlignedObjectArray<int> urdfChildIndices;
u2b.getLinkChildIndices(urdfLinkIndex, urdfChildIndices);
int numChildren = urdfChildIndices.size();
if (recursive)
{
for (int i = 0; i < numChildren; i++)
{
int urdfChildLinkIndex = urdfChildIndices[i];
ConvertURDF2PhysXInternal(u2b, creation, cache, urdfChildLinkIndex, linkTransformInWorldSpace, createActiculation, pathPrefix, flags, cachedLinkGraphicsShapesIn, cachedLinkGraphicsShapesOut, recursive);
}
}
return linkTransformInWorldSpace;
}
physx::PxBase* URDF2PhysX(physx::PxFoundation* foundation, physx::PxPhysics* physics, physx::PxCooking* cooking, physx::PxScene* scene, class PhysXURDFImporter& u2p, int flags, const char* pathPrefix, const btTransform& rootTransformInWorldSpace, struct CommonFileIOInterface* fileIO, bool createActiculation)
{
URDF2PhysXCachedData cache;
InitURDF2BulletCache(u2p, cache, flags);
int urdfLinkIndex = u2p.getRootLinkIndex();
int rootIndex = u2p.getRootLinkIndex();
B3_PROFILE("ConvertURDF2Bullet");
UrdfVisualShapeCache2 cachedLinkGraphicsShapesOut;
UrdfVisualShapeCache2 cachedLinkGraphicsShapes;
ArticulationCreationInterface creation;
creation.m_foundation = foundation;
creation.m_physics = physics;
creation.m_cooking = cooking;
creation.m_scene = scene;
creation.m_fileIO = fileIO;
bool recursive = (flags & CUF_MAINTAIN_LINK_ORDER) == 0;
if (recursive)
{
ConvertURDF2PhysXInternal(u2p, creation, cache, urdfLinkIndex, rootTransformInWorldSpace, createActiculation, pathPrefix, flags, &cachedLinkGraphicsShapes, &cachedLinkGraphicsShapesOut, recursive);
}
else
{
#if 0
btAlignedObjectArray<btTransform> parentTransforms;
if (urdfLinkIndex >= parentTransforms.size())
{
parentTransforms.resize(urdfLinkIndex + 1);
}
parentTransforms[urdfLinkIndex] = rootTransformInWorldSpace;
btAlignedObjectArray<childParentIndex> allIndices;
GetAllIndices(u2b, cache, urdfLinkIndex, -1, allIndices);
allIndices.quickSort(MyIntCompareFunc);
for (int i = 0; i < allIndices.size(); i++)
{
int urdfLinkIndex = allIndices[i].m_index;
int parentIndex = allIndices[i].m_parentIndex;
btTransform parentTr = parentIndex >= 0 ? parentTransforms[parentIndex] : rootTransformInWorldSpace;
btTransform tr = ConvertURDF2BulletInternal(u2b, creation, cache, urdfLinkIndex, parentTr, world1, createActiculation, pathPrefix, flags, cachedLinkGraphicsShapes, &cachedLinkGraphicsShapesOut, recursive);
if ((urdfLinkIndex + 1) >= parentTransforms.size())
{
parentTransforms.resize(urdfLinkIndex + 1);
}
parentTransforms[urdfLinkIndex] = tr;
}
#endif
}
#if 0
if (cachedLinkGraphicsShapes && cachedLinkGraphicsShapesOut.m_cachedUrdfLinkVisualShapeIndices.size() > cachedLinkGraphicsShapes->m_cachedUrdfLinkVisualShapeIndices.size())
{
*cachedLinkGraphicsShapes = cachedLinkGraphicsShapesOut;
}
#endif
if (cache.m_articulation)
{
#ifdef DEBUG_ARTICULATIONS
printf("\n-----------------\n");
printf("m_linkTransWorldSpace\n");
for (int i = 0; i < cache.m_linkTransWorldSpace.size(); i++)
{
printf("PxTransform(PxVec3(%f,%f,%f), PxQuat(%f,%f,%f,%f),\n",
cache.m_linkTransWorldSpace[i].p.x, cache.m_linkTransWorldSpace[i].p.y, cache.m_linkTransWorldSpace[i].p.z,
cache.m_linkTransWorldSpace[i].q.x, cache.m_linkTransWorldSpace[i].q.y, cache.m_linkTransWorldSpace[i].q.z, cache.m_linkTransWorldSpace[i].q.w);
}
printf("m_parentLocalPoses\n");
for (int i = 0; i < cache.m_parentLocalPoses.size(); i++)
{
printf("PxTransform(PxVec3(%f,%f,%f), PxQuat(%f,%f,%f,%f),\n",
cache.m_parentLocalPoses[i].p.x, cache.m_parentLocalPoses[i].p.y, cache.m_parentLocalPoses[i].p.z,
cache.m_parentLocalPoses[i].q.x, cache.m_parentLocalPoses[i].q.y, cache.m_parentLocalPoses[i].q.z, cache.m_parentLocalPoses[i].q.w);
}
printf("m_childLocalPoses\n");
for (int i = 0; i < cache.m_childLocalPoses.size(); i++)
{
printf("PxTransform(PxVec3(%f,%f,%f), PxQuat(%f,%f,%f,%f),\n",
cache.m_childLocalPoses[i].p.x, cache.m_childLocalPoses[i].p.y, cache.m_childLocalPoses[i].p.z,
cache.m_childLocalPoses[i].q.x, cache.m_childLocalPoses[i].q.y, cache.m_childLocalPoses[i].q.z, cache.m_childLocalPoses[i].q.w);
}
printf("m_geomDimensions\n");
for (int i = 0; i < cache.m_geomDimensions.size(); i++)
{
printf("PxVec3(%f,%f,%f),\n",
cache.m_geomDimensions[i].x, cache.m_geomDimensions[i].y, cache.m_geomDimensions[i].z);
}
printf("m_geomLocalPoses\n");
for (int i = 0; i < cache.m_geomLocalPoses.size(); i++)
{
printf("PxTransform(PxVec3(%f,%f,%f), PxQuat(%f,%f,%f,%f),\n",
cache.m_geomLocalPoses[i].p.x, cache.m_geomLocalPoses[i].p.y, cache.m_geomLocalPoses[i].p.z,
cache.m_geomLocalPoses[i].q.x, cache.m_geomLocalPoses[i].q.y, cache.m_geomLocalPoses[i].q.z, cache.m_geomLocalPoses[i].q.w);
}
printf("m_linkMaterials\n");
for (int i = 0; i < cache.m_linkMaterials.size(); i++)
{
printf("PxVec3(%f,%f,%f),\n",
cache.m_linkMaterials[i].x, cache.m_linkMaterials[i].y, cache.m_linkMaterials[i].z);
}
#endif //DEBUG_ARTICULATIONS
//see also https://github.com/NVIDIAGameWorks/PhysX/issues/43
if ((flags & CUF_USE_SELF_COLLISION) == 0)
{
physx::PxU32 nbActors = cache.m_articulation->getNbLinks();; // Max number of actors expected in the aggregate
bool selfCollisions = false;
physx::PxAggregate* aggregate = physics->createAggregate(nbActors, selfCollisions);
aggregate->addArticulation(*cache.m_articulation);
scene->addAggregate(*aggregate);
}
else
{
scene->addArticulation(*cache.m_articulation);
}
return cache.m_articulation;
}
if (cache.m_rigidStatic)
{
scene->addActor(*cache.m_rigidStatic);
return cache.m_rigidStatic;
}
if (cache.m_rigidDynamic)
{
scene->addActor(*cache.m_rigidDynamic);
return cache.m_rigidDynamic;
}
return NULL;
}