bullet3/examples/ExtendedTutorials/NewtonsRopeCradle.cpp

387 lines
14 KiB
C++

/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2015 Google Inc. http://bulletphysics.org
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "NewtonsRopeCradle.h"
#include <cmath>
#include <iterator>
#include <vector> // TODO: Should I use another data structure?
#include "btBulletDynamicsCommon.h"
#include "LinearMath/btVector3.h"
#include "LinearMath/btAlignedObjectArray.h"
#include "../CommonInterfaces/CommonRigidBodyBase.h"
#include "BulletSoftBody/btSoftRigidDynamicsWorld.h"
#include "BulletSoftBody/btSoftBodyHelpers.h"
#include "BulletSoftBody/btSoftBodyRigidBodyCollisionConfiguration.h"
#include "../CommonInterfaces/CommonParameterInterface.h"
static btScalar gPendulaQty = 5; // Number of pendula in newton's cradle
//TODO: This would actually be an Integer, but the Slider does not like integers, so I floor it when changed
static btScalar gDisplacedPendula = 1; // number of displaced pendula
//TODO: This is an int as well
static btScalar gPendulaRestitution = 1; // pendula restition when hitting against each other
static btScalar gSphereRadius = 1; // pendula radius
static btScalar gInitialPendulumWidth = 4; // default pendula width
static btScalar gInitialPendulumHeight = 8; // default pendula height
static btScalar gRopeResolution = 1; // default rope resolution (number of links as in a chain)
static btScalar gDisplacementForce = 30; // default force to displace the pendula
static btScalar gForceScalar = 0; // default force scalar to apply a displacement
struct NewtonsRopeCradleExample : public CommonRigidBodyBase
{
NewtonsRopeCradleExample(struct GUIHelperInterface* helper) : CommonRigidBodyBase(helper)
{
}
virtual ~NewtonsRopeCradleExample() {}
virtual void initPhysics();
virtual void stepSimulation(float deltaTime);
virtual void renderScene();
virtual void applyPendulumForce(btScalar pendulumForce);
void createEmptyDynamicsWorld()
{
m_collisionConfiguration = new btSoftBodyRigidBodyCollisionConfiguration();
m_dispatcher = new btCollisionDispatcher(m_collisionConfiguration);
m_broadphase = new btDbvtBroadphase();
m_solver = new btSequentialImpulseConstraintSolver;
m_dynamicsWorld = new btSoftRigidDynamicsWorld(m_dispatcher, m_broadphase, m_solver, m_collisionConfiguration);
m_dynamicsWorld->setGravity(btVector3(0, -10, 0));
softBodyWorldInfo.m_broadphase = m_broadphase;
softBodyWorldInfo.m_dispatcher = m_dispatcher;
softBodyWorldInfo.m_gravity = m_dynamicsWorld->getGravity();
softBodyWorldInfo.m_sparsesdf.Initialize();
}
virtual void createRopePendulum(btSphereShape* colShape,
const btVector3& position, const btQuaternion& pendulumOrientation, btScalar width, btScalar height, btScalar mass);
virtual void changePendulaRestitution(btScalar restitution);
virtual void connectWithRope(btRigidBody* body1, btRigidBody* body2);
virtual bool keyboardCallback(int key, int state);
virtual btSoftRigidDynamicsWorld* getSoftDynamicsWorld()
{
///just make it a btSoftRigidDynamicsWorld please
///or we will add type checking
return (btSoftRigidDynamicsWorld*)m_dynamicsWorld;
}
void resetCamera()
{
float dist = 41;
float pitch = -35;
float yaw = 52;
float targetPos[3] = {0, 0.46, 0};
m_guiHelper->resetCamera(dist, yaw, pitch, targetPos[0], targetPos[1], targetPos[2]);
}
std::vector<btSliderConstraint*> constraints;
std::vector<btRigidBody*> pendula;
btSoftBodyWorldInfo softBodyWorldInfo;
};
static NewtonsRopeCradleExample* nex = NULL;
void onRopePendulaRestitutionChanged(float pendulaRestitution, void*);
void applyRForceWithForceScalar(float forceScalar);
void NewtonsRopeCradleExample::initPhysics()
{
{ // create a slider to change the number of pendula
SliderParams slider("Number of Pendula", &gPendulaQty);
slider.m_minVal = 1;
slider.m_maxVal = 50;
slider.m_clampToIntegers = true;
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(
slider);
}
{ // create a slider to change the number of displaced pendula
SliderParams slider("Number of Displaced Pendula", &gDisplacedPendula);
slider.m_minVal = 0;
slider.m_maxVal = 49;
slider.m_clampToIntegers = true;
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(
slider);
}
{ // create a slider to change the pendula restitution
SliderParams slider("Pendula Restitution", &gPendulaRestitution);
slider.m_minVal = 0;
slider.m_maxVal = 1;
slider.m_clampToNotches = false;
slider.m_callback = onRopePendulaRestitutionChanged;
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(
slider);
}
{ // create a slider to change the rope resolution
SliderParams slider("Rope Resolution", &gRopeResolution);
slider.m_minVal = 1;
slider.m_maxVal = 20;
slider.m_clampToIntegers = true;
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(
slider);
}
{ // create a slider to change the pendulum width
SliderParams slider("Pendulum Width", &gInitialPendulumWidth);
slider.m_minVal = 0;
slider.m_maxVal = 40;
slider.m_clampToNotches = false;
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(
slider);
}
{ // create a slider to change the pendulum height
SliderParams slider("Pendulum Height", &gInitialPendulumHeight);
slider.m_minVal = 0;
slider.m_maxVal = 40;
slider.m_clampToNotches = false;
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(
slider);
}
{ // create a slider to change the force to displace the lowest pendulum
SliderParams slider("Displacement force", &gDisplacementForce);
slider.m_minVal = 0.1;
slider.m_maxVal = 200;
slider.m_clampToNotches = false;
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(
slider);
}
{ // create a slider to apply the force by slider
SliderParams slider("Apply displacement force", &gForceScalar);
slider.m_minVal = -1;
slider.m_maxVal = 1;
slider.m_clampToNotches = false;
m_guiHelper->getParameterInterface()->registerSliderFloatParameter(
slider);
}
m_guiHelper->setUpAxis(1);
createEmptyDynamicsWorld();
// create a debug drawer
m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
if (m_dynamicsWorld->getDebugDrawer())
m_dynamicsWorld->getDebugDrawer()->setDebugMode(
btIDebugDraw::DBG_DrawWireframe + btIDebugDraw::DBG_DrawContactPoints + btIDebugDraw::DBG_DrawConstraints + btIDebugDraw::DBG_DrawConstraintLimits);
{ // create the pendula starting at the indicated position below and where each pendulum has the following mass
btScalar pendulumMass(1.0f);
btVector3 position(0.0f, 15.0f, 0.0f); // initial left-most pendulum position
btQuaternion orientation(0, 0, 0, 1); // orientation of the pendula
// Re-using the same collision is better for memory usage and performance
btSphereShape* pendulumShape = new btSphereShape(gSphereRadius);
m_collisionShapes.push_back(pendulumShape);
for (int i = 0; i < std::floor(gPendulaQty); i++)
{
// create pendulum
createRopePendulum(pendulumShape, position, orientation, gInitialPendulumWidth,
gInitialPendulumHeight, pendulumMass);
// displace the pendula 1.05 sphere size, so that they all nearly touch (small spacings in between)
position.setX(position.x() - 2.1f * gSphereRadius);
}
}
m_guiHelper->autogenerateGraphicsObjects(m_dynamicsWorld);
}
void NewtonsRopeCradleExample::connectWithRope(btRigidBody* body1, btRigidBody* body2)
{
btSoftBody* softBodyRope0 = btSoftBodyHelpers::CreateRope(softBodyWorldInfo, body1->getWorldTransform().getOrigin(), body2->getWorldTransform().getOrigin(), gRopeResolution, 0);
softBodyRope0->setTotalMass(0.1f);
softBodyRope0->appendAnchor(0, body1);
softBodyRope0->appendAnchor(softBodyRope0->m_nodes.size() - 1, body2);
softBodyRope0->m_cfg.piterations = 5;
softBodyRope0->m_cfg.kDP = 0.005f;
softBodyRope0->m_cfg.kSHR = 1;
softBodyRope0->m_cfg.kCHR = 1;
softBodyRope0->m_cfg.kKHR = 1;
getSoftDynamicsWorld()->addSoftBody(softBodyRope0);
}
void NewtonsRopeCradleExample::stepSimulation(float deltaTime)
{
applyRForceWithForceScalar(gForceScalar); // apply force defined by apply force slider
if (m_dynamicsWorld)
{
m_dynamicsWorld->stepSimulation(deltaTime);
}
}
void NewtonsRopeCradleExample::createRopePendulum(btSphereShape* colShape,
const btVector3& position, const btQuaternion& pendulumOrientation, btScalar width, btScalar height, btScalar mass)
{
// The pendulum looks like this (names when built):
// O O topSphere1 topSphere2
// \ /
// O bottomSphere
//create a dynamic pendulum
btTransform startTransform;
startTransform.setIdentity();
// calculate sphere positions
btVector3 topSphere1RelPosition(0, 0, width);
btVector3 topSphere2RelPosition(0, 0, -width);
btVector3 bottomSphereRelPosition(0, -height, 0);
// position the top sphere above ground with appropriate orientation
startTransform.setOrigin(btVector3(0, 0, 0)); // no translation intitially
startTransform.setRotation(pendulumOrientation); // pendulum rotation
startTransform.setOrigin(startTransform * topSphere1RelPosition); // rotate this position
startTransform.setOrigin(position + startTransform.getOrigin()); // add non-rotated position to the relative position
btRigidBody* topSphere1 = createRigidBody(0, startTransform, colShape); // make top sphere static
// position the top sphere above ground with appropriate orientation
startTransform.setOrigin(btVector3(0, 0, 0)); // no translation intitially
startTransform.setRotation(pendulumOrientation); // pendulum rotation
startTransform.setOrigin(startTransform * topSphere2RelPosition); // rotate this position
startTransform.setOrigin(position + startTransform.getOrigin()); // add non-rotated position to the relative position
btRigidBody* topSphere2 = createRigidBody(0, startTransform, colShape); // make top sphere static
// position the bottom sphere below the top sphere
startTransform.setOrigin(btVector3(0, 0, 0)); // no translation intitially
startTransform.setRotation(pendulumOrientation); // pendulum rotation
startTransform.setOrigin(startTransform * bottomSphereRelPosition); // rotate this position
startTransform.setOrigin(position + startTransform.getOrigin()); // add non-rotated position to the relative position
btRigidBody* bottomSphere = createRigidBody(mass, startTransform, colShape);
bottomSphere->setFriction(0); // we do not need friction here
pendula.push_back(bottomSphere);
// disable the deactivation when objects do not move anymore
topSphere1->setActivationState(DISABLE_DEACTIVATION);
topSphere2->setActivationState(DISABLE_DEACTIVATION);
bottomSphere->setActivationState(DISABLE_DEACTIVATION);
bottomSphere->setRestitution(gPendulaRestitution); // set pendula restitution
// add ropes between spheres
connectWithRope(topSphere1, bottomSphere);
connectWithRope(topSphere2, bottomSphere);
}
void NewtonsRopeCradleExample::renderScene()
{
CommonRigidBodyBase::renderScene();
btSoftRigidDynamicsWorld* softWorld = getSoftDynamicsWorld();
for (int i = 0; i < softWorld->getSoftBodyArray().size(); i++)
{
btSoftBody* psb = (btSoftBody*)softWorld->getSoftBodyArray()[i];
//if (softWorld->getDebugDrawer() && !(softWorld->getDebugDrawer()->getDebugMode() & (btIDebugDraw::DBG_DrawWireframe)))
{
btSoftBodyHelpers::DrawFrame(psb, softWorld->getDebugDrawer());
btSoftBodyHelpers::Draw(psb, softWorld->getDebugDrawer(), softWorld->getDrawFlags());
}
}
}
void NewtonsRopeCradleExample::changePendulaRestitution(btScalar restitution)
{
for (std::vector<btRigidBody*>::iterator rit = pendula.begin();
rit != pendula.end(); rit++)
{
btAssert((*rit) && "Null constraint");
(*rit)->setRestitution(restitution);
}
}
bool NewtonsRopeCradleExample::keyboardCallback(int key, int state)
{
//b3Printf("Key pressed: %d in state %d \n",key,state);
// key 3
switch (key)
{
case '3' /*ASCII for 3*/:
{
applyPendulumForce(gDisplacementForce);
return true;
}
}
return false;
}
void NewtonsRopeCradleExample::applyPendulumForce(btScalar pendulumForce)
{
if (pendulumForce != 0)
{
b3Printf("Apply %f to pendulum", pendulumForce);
for (int i = 0; i < gDisplacedPendula; i++)
{
if (gDisplacedPendula >= 0 && gDisplacedPendula <= gPendulaQty)
pendula[i]->applyCentralForce(btVector3(pendulumForce, 0, 0));
}
}
}
// GUI parameter modifiers
void onRopePendulaRestitutionChanged(float pendulaRestitution, void*)
{
if (nex)
{
nex->changePendulaRestitution(pendulaRestitution);
}
}
void applyRForceWithForceScalar(float forceScalar)
{
if (nex)
{
btScalar appliedForce = forceScalar * gDisplacementForce;
if (fabs(gForceScalar) < 0.2f)
gForceScalar = 0;
nex->applyPendulumForce(appliedForce);
}
}
CommonExampleInterface* ET_NewtonsRopeCradleCreateFunc(
CommonExampleOptions& options)
{
nex = new NewtonsRopeCradleExample(options.m_guiHelper);
return nex;
}