bullet3/examples/RenderingExamples/RaytracerSetup.cpp
2015-04-20 15:28:52 -07:00

385 lines
10 KiB
C++

#include "RaytracerSetup.h"
#include "../CommonInterfaces/CommonGraphicsAppInterface.h"
#include "Bullet3Common/b3Quaternion.h"
#include "Bullet3Common/b3AlignedObjectArray.h"
#include "../CommonInterfaces/CommonRenderInterface.h"
#include "../CommonInterfaces/Common2dCanvasInterface.h"
//#include "BulletCollision/NarrowPhaseCollision/btVoronoiSimplexSolver.h"
#include "BulletCollision/NarrowPhaseCollision/btSubSimplexConvexCast.h"
//#include "BulletCollision/NarrowPhaseCollision/btGjkConvexCast.h"
//#include "BulletCollision/NarrowPhaseCollision/btContinuousConvexCollision.h"
#include "../CommonInterfaces/ExampleInterface.h"
#include "LinearMath/btAlignedObjectArray.h"
#include "btBulletCollisionCommon.h"
#include "../CommonInterfaces/CommonGUIHelperInterface.h"
struct RaytracerPhysicsSetup : public ExampleInterface
{
struct CommonGraphicsApp* m_app;
struct RaytracerInternalData* m_internalData;
RaytracerPhysicsSetup(struct CommonGraphicsApp* app);
virtual ~RaytracerPhysicsSetup();
virtual void initPhysics();
virtual void exitPhysics();
virtual void stepSimulation(float deltaTime);
virtual void physicsDebugDraw(int debugFlags);
virtual void syncPhysicsToGraphics(struct GraphicsPhysicsBridge& gfxBridge);
///worldRaytest performs a ray versus all objects in a collision world, returning true is a hit is found (filling in worldNormal and worldHitPoint)
bool worldRaytest(const btVector3& rayFrom,const btVector3& rayTo,btVector3& worldNormal,btVector3& worldHitPoint);
///singleObjectRaytest performs a ray versus one collision shape, returning true is a hit is found (filling in worldNormal and worldHitPoint)
bool singleObjectRaytest(const btVector3& rayFrom,const btVector3& rayTo,btVector3& worldNormal,btVector3& worldHitPoint);
///lowlevelRaytest performs a ray versus convex shape, returning true is a hit is found (filling in worldNormal and worldHitPoint)
bool lowlevelRaytest(const btVector3& rayFrom,const btVector3& rayTo,btVector3& worldNormal,btVector3& worldHitPoint);
virtual bool mouseMoveCallback(float x,float y);
virtual bool mouseButtonCallback(int button, int state, float x, float y);
virtual bool keyboardCallback(int key, int state);
virtual void renderScene()
{
}
};
struct RaytracerInternalData
{
int m_canvasIndex;
struct Common2dCanvasInterface* m_canvas;
int m_width;
int m_height;
btAlignedObjectArray<btConvexShape*> m_shapePtr;
btAlignedObjectArray<btTransform> m_transforms;
btVoronoiSimplexSolver m_simplexSolver;
btScalar m_pitch;
btScalar m_roll;
btScalar m_yaw;
RaytracerInternalData()
:m_canvasIndex(-1),
m_canvas(0),
m_roll(0),
m_pitch(0),
m_yaw(0),
#ifdef _DEBUG
m_width(64),
m_height(64)
#else
m_width(128),
m_height(128)
#endif
{
btConeShape* cone = new btConeShape(1,1);
btSphereShape* sphere = new btSphereShape(1);
btBoxShape* box = new btBoxShape (btVector3(1,1,1));
m_shapePtr.push_back(cone);
m_shapePtr.push_back(sphere);
m_shapePtr.push_back(box);
updateTransforms();
}
void updateTransforms()
{
int numObjects = m_shapePtr.size();
m_transforms.resize(numObjects);
for (int i=0;i<numObjects;i++)
{
m_transforms[i].setIdentity();
btVector3 pos(0.f,0.f,-(2.5* numObjects * 0.5)+i*2.5f);
m_transforms[i].setIdentity();
m_transforms[i].setOrigin( pos );
btQuaternion orn;
if (i < 2)
{
orn.setEuler(m_yaw,m_pitch,m_roll);
m_transforms[i].setRotation(orn);
}
}
m_pitch += 0.005f;
m_yaw += 0.01f;
}
};
RaytracerPhysicsSetup::RaytracerPhysicsSetup(struct CommonGraphicsApp* app)
{
m_app = app;
m_internalData = new RaytracerInternalData;
}
RaytracerPhysicsSetup::~RaytracerPhysicsSetup()
{
delete m_internalData;
}
void RaytracerPhysicsSetup::initPhysics()
{
//request a visual bitma/texture we can render to
m_internalData->m_canvas = m_app->m_2dCanvasInterface;
if (m_internalData->m_canvas)
{
m_internalData->m_canvasIndex = m_internalData->m_canvas->createCanvas("raytracer",m_internalData->m_width,m_internalData->m_height);
for (int i=0;i<m_internalData->m_width;i++)
{
for (int j=0;j<m_internalData->m_height;j++)
{
unsigned char red=255;
unsigned char green=255;
unsigned char blue=255;
unsigned char alpha=255;
m_internalData->m_canvas->setPixel(m_internalData->m_canvasIndex,i,j,red,green,blue,alpha);
}
}
m_internalData->m_canvas->refreshImageData(m_internalData->m_canvasIndex);
//int bitmapId = gfxBridge.createRenderBitmap(width,height);
}
}
///worldRaytest performs a ray versus all objects in a collision world, returning true is a hit is found (filling in worldNormal and worldHitPoint)
bool RaytracerPhysicsSetup::worldRaytest(const btVector3& rayFrom,const btVector3& rayTo,btVector3& worldNormal,btVector3& worldHitPoint)
{
return false;
}
///singleObjectRaytest performs a ray versus one collision shape, returning true is a hit is found (filling in worldNormal and worldHitPoint)
bool RaytracerPhysicsSetup::singleObjectRaytest(const btVector3& rayFrom,const btVector3& rayTo,btVector3& worldNormal,btVector3& worldHitPoint)
{
return false;
}
///lowlevelRaytest performs a ray versus convex shape, returning true is a hit is found (filling in worldNormal and worldHitPoint)
bool RaytracerPhysicsSetup::lowlevelRaytest(const btVector3& rayFrom,const btVector3& rayTo,btVector3& worldNormal,btVector3& worldHitPoint)
{
btScalar closestHitResults = 1.f;
bool hasHit = false;
btConvexCast::CastResult rayResult;
btSphereShape pointShape(0.0f);
btTransform rayFromTrans;
btTransform rayToTrans;
rayFromTrans.setIdentity();
rayFromTrans.setOrigin(rayFrom);
rayToTrans.setIdentity();
rayToTrans.setOrigin(rayTo);
int numObjects = m_internalData->m_shapePtr.size();
for (int s=0;s<numObjects;s++)
{
//do some culling, ray versus aabb
btVector3 aabbMin,aabbMax;
m_internalData->m_shapePtr[s]->getAabb( m_internalData->m_transforms[s],aabbMin,aabbMax);
btScalar hitLambda = 1.f;
btVector3 hitNormal;
btCollisionObject tmpObj;
tmpObj.setWorldTransform( m_internalData->m_transforms[s]);
if (btRayAabb(rayFrom,rayTo,aabbMin,aabbMax,hitLambda,hitNormal))
{
//reset previous result
//choose the continuous collision detection method
btSubsimplexConvexCast convexCaster(&pointShape, m_internalData->m_shapePtr[s],&m_internalData->m_simplexSolver);
//btGjkConvexCast convexCaster(&pointShape,shapePtr[s],&simplexSolver);
//btContinuousConvexCollision convexCaster(&pointShape,shapePtr[s],&simplexSolver,0);
if (convexCaster.calcTimeOfImpact(rayFromTrans,rayToTrans, m_internalData->m_transforms[s], m_internalData->m_transforms[s],rayResult))
{
if (rayResult.m_fraction < closestHitResults)
{
closestHitResults = rayResult.m_fraction;
worldNormal = m_internalData->m_transforms[s].getBasis() *rayResult.m_normal;
worldNormal.normalize();
hasHit = true;
}
}
}
}
return hasHit;
}
void RaytracerPhysicsSetup::exitPhysics()
{
if (m_internalData->m_canvas && m_internalData->m_canvasIndex>=0)
{
m_internalData->m_canvas->destroyCanvas(m_internalData->m_canvasIndex);
}
}
void RaytracerPhysicsSetup::stepSimulation(float deltaTime)
{
m_internalData->updateTransforms();
float top = 1.f;
float bottom = -1.f;
float nearPlane = 1.f;
float tanFov = (top-bottom)*0.5f / nearPlane;
float fov = 2.0 * atanf (tanFov);
btVector3 cameraPosition(5,0,0);
btVector3 cameraTargetPosition(0,0,0);
btVector3 rayFrom = cameraPosition;
btVector3 rayForward = cameraTargetPosition-cameraPosition;
rayForward.normalize();
float farPlane = 600.f;
rayForward*= farPlane;
btVector3 rightOffset;
btVector3 vertical(0.f,1.f,0.f);
btVector3 hor;
hor = rayForward.cross(vertical);
hor.normalize();
vertical = hor.cross(rayForward);
vertical.normalize();
float tanfov = tanf(0.5f*fov);
hor *= 2.f * farPlane * tanfov;
vertical *= 2.f * farPlane * tanfov;
btVector3 rayToCenter = rayFrom + rayForward;
btVector3 dHor = hor * 1.f/float(m_internalData->m_width);
btVector3 dVert = vertical * 1.f/float(m_internalData->m_height);
int mode = 0;
int x,y;
for (x=0;x<m_internalData->m_width;x++)
{
for (int y=0;y<m_internalData->m_height;y++)
{
btVector4 rgba(0,0,0,0);
btVector3 rayTo = rayToCenter - 0.5f * hor + 0.5f * vertical;
rayTo += x * dHor;
rayTo -= y * dVert;
btVector3 worldNormal(0,0,0);
btVector3 worldPoint(0,0,0);
bool hasHit = false;
int mode = 0;
switch (mode)
{
case 0:
hasHit = lowlevelRaytest(rayFrom,rayTo,worldNormal,worldPoint);
break;
case 1:
hasHit = singleObjectRaytest(rayFrom,rayTo,worldNormal,worldPoint);
break;
case 2:
hasHit = worldRaytest(rayFrom,rayTo,worldNormal,worldPoint);
break;
default:
{
}
}
if (hasHit)
{
float lightVec0 = worldNormal.dot(btVector3(0,-1,-1));//0.4f,-1.f,-0.4f));
float lightVec1= worldNormal.dot(btVector3(-1,0,-1));//-0.4f,-1.f,-0.4f));
rgba = btVector4(lightVec0,lightVec1,0,1.f);
rgba.setMin(btVector3(1,1,1));
rgba.setMax(btVector3(0.2,0.2,0.2));
rgba[3] = 1.f;
unsigned char red = rgba[0] * 255;
unsigned char green = rgba[1] * 255;
unsigned char blue = rgba[2] * 255;
unsigned char alpha=255;
m_internalData->m_canvas->setPixel(m_internalData->m_canvasIndex,x,y,red,green,blue,alpha);
} else
{
// btVector4 rgba = raytracePicture->getPixel(x,y);
}
if (!rgba.length2())
{
m_internalData->m_canvas->setPixel(m_internalData->m_canvasIndex,x,y,255,0,0,255);
}
}
}
m_internalData->m_canvas->refreshImageData(m_internalData->m_canvasIndex);
}
void RaytracerPhysicsSetup::physicsDebugDraw(int debugDrawFlags)
{
}
bool RaytracerPhysicsSetup::mouseMoveCallback(float x,float y)
{
return false;
}
bool RaytracerPhysicsSetup::mouseButtonCallback(int button, int state, float x, float y)
{
return false;
}
bool RaytracerPhysicsSetup::keyboardCallback(int key, int state)
{
return false;
}
void RaytracerPhysicsSetup::syncPhysicsToGraphics(GraphicsPhysicsBridge& gfxBridge)
{
}
ExampleInterface* RayTracerCreateFunc(struct PhysicsInterface* pint, struct GUIHelperInterface* helper, int option)
{
return new RaytracerPhysicsSetup(helper->getAppInterface());
}