bullet3/examples/TinyRenderer/TinyRenderer.cpp
Erwin Coumans ff229baf1e TinyRenderer: support plane shape (creating similar textured plane to OpenGL renderer)
TinyRenderer: perform clipping in double precision to improve accuracy
2020-08-10 20:19:00 -07:00

646 lines
21 KiB
C++

#include "TinyRenderer.h"
#include <cmath>
#include <iostream>
#include <limits>
#include <vector>
#include "../CommonInterfaces/CommonFileIOInterface.h"
#include "../OpenGLWindow/ShapeData.h"
#include "../Utils/b3BulletDefaultFileIO.h"
#include "../Utils/b3ResourcePath.h"
#include "Bullet3Common/b3Logging.h"
#include "Bullet3Common/b3MinMax.h"
#include "LinearMath/btAlignedObjectArray.h"
#include "LinearMath/btVector3.h"
#include "geometry.h"
#include "model.h"
#include "our_gl.h"
#include "tgaimage.h"
using namespace TinyRender;
struct DepthShader : public IShader
{
Model* m_model;
Matrix& m_modelMat;
Matrix m_invModelMat;
Matrix& m_projectionMat;
Vec3f m_localScaling;
Matrix& m_lightModelView;
float m_lightDistance;
mat<2, 3, float> varying_uv; // triangle uv coordinates, written by the vertex shader, read by the fragment shader
mat<4, 3, float> varying_tri; // triangle coordinates (clip coordinates), written by VS, read by FS
mat<3, 3, float> varying_nrm; // normal per vertex to be interpolated by FS
DepthShader(Model* model, Matrix& lightModelView, Matrix& projectionMat, Matrix& modelMat, Vec3f localScaling, float lightDistance)
: m_model(model),
m_modelMat(modelMat),
m_projectionMat(projectionMat),
m_localScaling(localScaling),
m_lightModelView(lightModelView),
m_lightDistance(lightDistance)
{
m_nearPlane = m_projectionMat.col(3)[2] / (m_projectionMat.col(2)[2] - 1);
m_farPlane = m_projectionMat.col(3)[2] / (m_projectionMat.col(2)[2] + 1);
m_invModelMat = m_modelMat.invert_transpose();
}
virtual Vec4f vertex(int iface, int nthvert)
{
Vec2f uv = m_model->uv(iface, nthvert);
varying_uv.set_col(nthvert, uv);
varying_nrm.set_col(nthvert, proj<3>(m_invModelMat * embed<4>(m_model->normal(iface, nthvert), 0.f)));
Vec3f unScaledVert = m_model->vert(iface, nthvert);
Vec3f scaledVert = Vec3f(unScaledVert[0] * m_localScaling[0],
unScaledVert[1] * m_localScaling[1],
unScaledVert[2] * m_localScaling[2]);
Vec4f gl_Vertex = m_projectionMat * m_lightModelView * embed<4>(scaledVert);
varying_tri.set_col(nthvert, gl_Vertex);
return gl_Vertex;
}
virtual bool fragment(Vec3f bar, TGAColor& color)
{
Vec4f p = varying_tri * bar;
color = TGAColor(255, 255, 255) * (p[2] / m_lightDistance);
return false;
}
};
struct Shader : public IShader
{
Model* m_model;
Vec3f m_light_dir_local;
Vec3f m_light_color;
Matrix& m_modelMat;
Matrix m_invModelMat;
Matrix& m_modelView1;
Matrix& m_projectionMat;
Vec3f m_localScaling;
Matrix& m_lightModelView;
Vec4f m_colorRGBA;
Matrix& m_viewportMat;
Matrix m_projectionModelViewMat;
Matrix m_projectionLightViewMat;
float m_ambient_coefficient;
float m_diffuse_coefficient;
float m_specular_coefficient;
b3AlignedObjectArray<float>* m_shadowBuffer;
int m_width;
int m_height;
int m_index;
mat<2, 3, float> varying_uv; // triangle uv coordinates, written by the vertex shader, read by the fragment shader
mat<4, 3, float> varying_tri; // triangle coordinates (clip coordinates), written by VS, read by FS
mat<4, 3, float> varying_tri_light_view;
mat<3, 3, float> varying_nrm; // normal per vertex to be interpolated by FS
mat<4, 3, float> world_tri; // model triangle coordinates in the world space used for backface culling, written by VS
Shader(Model* model, Vec3f light_dir_local, Vec3f light_color, Matrix& modelView, Matrix& lightModelView, Matrix& projectionMat, Matrix& modelMat, Matrix& viewportMat, Vec3f localScaling, const Vec4f& colorRGBA, int width, int height, b3AlignedObjectArray<float>* shadowBuffer, float ambient_coefficient = 0.6, float diffuse_coefficient = 0.35, float specular_coefficient = 0.05)
: m_model(model),
m_light_dir_local(light_dir_local),
m_light_color(light_color),
m_modelMat(modelMat),
m_modelView1(modelView),
m_projectionMat(projectionMat),
m_localScaling(localScaling),
m_lightModelView(lightModelView),
m_colorRGBA(colorRGBA),
m_viewportMat(viewportMat),
m_ambient_coefficient(ambient_coefficient),
m_diffuse_coefficient(diffuse_coefficient),
m_specular_coefficient(specular_coefficient),
m_shadowBuffer(shadowBuffer),
m_width(width),
m_height(height)
{
m_nearPlane = m_projectionMat.col(3)[2] / (m_projectionMat.col(2)[2] - 1);
m_farPlane = m_projectionMat.col(3)[2] / (m_projectionMat.col(2)[2] + 1);
//printf("near=%f, far=%f\n", m_nearPlane, m_farPlane);
m_invModelMat = m_modelMat.invert_transpose();
m_projectionModelViewMat = m_projectionMat * m_modelView1;
m_projectionLightViewMat = m_projectionMat * m_lightModelView;
}
virtual Vec4f vertex(int iface, int nthvert)
{
//B3_PROFILE("vertex");
Vec2f uv = m_model->uv(iface, nthvert);
varying_uv.set_col(nthvert, uv);
varying_nrm.set_col(nthvert, proj<3>(m_invModelMat * embed<4>(m_model->normal(iface, nthvert), 0.f)));
Vec3f unScaledVert = m_model->vert(iface, nthvert);
Vec3f scaledVert = Vec3f(unScaledVert[0] * m_localScaling[0],
unScaledVert[1] * m_localScaling[1],
unScaledVert[2] * m_localScaling[2]);
Vec4f gl_Vertex = m_projectionModelViewMat * embed<4>(scaledVert);
varying_tri.set_col(nthvert, gl_Vertex);
Vec4f world_Vertex = m_modelMat * embed<4>(scaledVert);
world_tri.set_col(nthvert, world_Vertex);
Vec4f gl_VertexLightView = m_projectionLightViewMat * embed<4>(scaledVert);
varying_tri_light_view.set_col(nthvert, gl_VertexLightView);
return gl_Vertex;
}
virtual bool fragment(Vec3f bar, TGAColor& color)
{
//B3_PROFILE("fragment");
Vec4f p = m_viewportMat * (varying_tri_light_view * bar);
float depth = p[2];
p = p / p[3];
float index_x = b3Max(float(0.0), b3Min(float(m_width - 1), p[0]));
float index_y = b3Max(float(0.0), b3Min(float(m_height - 1), p[1]));
int idx = int(index_x) + int(index_y) * m_width; // index in the shadowbuffer array
float shadow = 1.0;
if (m_shadowBuffer && idx >=0 && idx <m_shadowBuffer->size())
{
shadow = 0.8 + 0.2 * (m_shadowBuffer->at(idx) < -depth + 0.05); // magic coeff to avoid z-fighting
}
Vec3f bn = (varying_nrm * bar).normalize();
Vec2f uv = varying_uv * bar;
Vec3f reflection_direction = (bn * (bn * m_light_dir_local * 2.f) - m_light_dir_local).normalize();
float specular = std::pow(b3Max(reflection_direction.z, 0.f),
m_model->specular(uv));
float diffuse = b3Max(0.f, bn * m_light_dir_local);
color = m_model->diffuse(uv);
color[0] *= m_colorRGBA[0];
color[1] *= m_colorRGBA[1];
color[2] *= m_colorRGBA[2];
color[3] *= m_colorRGBA[3];
for (int i = 0; i < 3; ++i)
{
int orgColor = 0;
float floatColor = (m_ambient_coefficient * color[i] + shadow * (m_diffuse_coefficient * diffuse + m_specular_coefficient * specular) * color[i] * m_light_color[i]);
if (floatColor==floatColor)
{
orgColor=int(floatColor);
}
color[i] = b3Min(orgColor, 255);
}
return false;
}
};
TinyRenderObjectData::TinyRenderObjectData(TGAImage& rgbColorBuffer, b3AlignedObjectArray<float>& depthBuffer, b3AlignedObjectArray<float>* shadowBuffer)
: m_model(0),
m_rgbColorBuffer(rgbColorBuffer),
m_depthBuffer(depthBuffer),
m_shadowBuffer(shadowBuffer),
m_segmentationMaskBufferPtr(0),
m_userData(0),
m_userIndex(-1),
m_objectIndex(-1)
{
Vec3f eye(1, 1, 3);
Vec3f center(0, 0, 0);
Vec3f up(0, 0, 1);
m_lightDirWorld.setValue(0, 0, 0);
m_lightColor.setValue(1, 1, 1);
m_localScaling.setValue(1, 1, 1);
m_modelMatrix = Matrix::identity();
m_lightAmbientCoeff = 0.6;
m_lightDiffuseCoeff = 0.35;
m_lightSpecularCoeff = 0.05;
}
TinyRenderObjectData::TinyRenderObjectData(TGAImage& rgbColorBuffer, b3AlignedObjectArray<float>& depthBuffer, b3AlignedObjectArray<float>* shadowBuffer, b3AlignedObjectArray<int>* segmentationMaskBuffer, int objectIndex, int linkIndex)
: m_model(0),
m_rgbColorBuffer(rgbColorBuffer),
m_depthBuffer(depthBuffer),
m_shadowBuffer(shadowBuffer),
m_segmentationMaskBufferPtr(segmentationMaskBuffer),
m_userData(0),
m_userIndex(-1),
m_objectIndex(objectIndex),
m_linkIndex(linkIndex)
{
Vec3f eye(1, 1, 3);
Vec3f center(0, 0, 0);
Vec3f up(0, 0, 1);
m_lightDirWorld.setValue(0, 0, 0);
m_lightColor.setValue(1, 1, 1);
m_localScaling.setValue(1, 1, 1);
m_modelMatrix = Matrix::identity();
m_lightAmbientCoeff = 0.6;
m_lightDiffuseCoeff = 0.35;
m_lightSpecularCoeff = 0.05;
}
TinyRenderObjectData::TinyRenderObjectData(TGAImage& rgbColorBuffer, b3AlignedObjectArray<float>& depthBuffer)
: m_model(0),
m_rgbColorBuffer(rgbColorBuffer),
m_depthBuffer(depthBuffer),
m_segmentationMaskBufferPtr(0),
m_userData(0),
m_userIndex(-1),
m_objectIndex(-1)
{
Vec3f eye(1, 1, 3);
Vec3f center(0, 0, 0);
Vec3f up(0, 0, 1);
m_lightDirWorld.setValue(0, 0, 0);
m_lightColor.setValue(1, 1, 1);
m_localScaling.setValue(1, 1, 1);
m_modelMatrix = Matrix::identity();
m_lightAmbientCoeff = 0.6;
m_lightDiffuseCoeff = 0.35;
m_lightSpecularCoeff = 0.05;
}
TinyRenderObjectData::TinyRenderObjectData(TGAImage& rgbColorBuffer, b3AlignedObjectArray<float>& depthBuffer, b3AlignedObjectArray<int>* segmentationMaskBuffer, int objectIndex)
: m_model(0),
m_rgbColorBuffer(rgbColorBuffer),
m_depthBuffer(depthBuffer),
m_segmentationMaskBufferPtr(segmentationMaskBuffer),
m_userData(0),
m_userIndex(-1),
m_objectIndex(objectIndex)
{
Vec3f eye(1, 1, 3);
Vec3f center(0, 0, 0);
Vec3f up(0, 0, 1);
m_lightDirWorld.setValue(0, 0, 0);
m_lightColor.setValue(1, 1, 1);
m_localScaling.setValue(1, 1, 1);
m_modelMatrix = Matrix::identity();
m_lightAmbientCoeff = 0.6;
m_lightDiffuseCoeff = 0.35;
m_lightSpecularCoeff = 0.05;
}
void TinyRenderObjectData::loadModel(const char* fileName, CommonFileIOInterface* fileIO)
{
//todo(erwincoumans) move the file loading out of here
char relativeFileName[1024];
if (!fileIO->findResourcePath(fileName, relativeFileName, 1024))
{
printf("Cannot find file %s\n", fileName);
}
else
{
m_model = new Model(relativeFileName);
}
}
void TinyRenderObjectData::registerMeshShape(const float* vertices, int numVertices, const int* indices, int numIndices, const float rgbaColor[4],
unsigned char* textureImage, int textureWidth, int textureHeight)
{
if (0 == m_model)
{
{
B3_PROFILE("setColorRGBA");
m_model = new Model();
m_model->setColorRGBA(rgbaColor);
}
if (textureImage)
{
{
B3_PROFILE("setDiffuseTextureFromData");
m_model->setDiffuseTextureFromData(textureImage, textureWidth, textureHeight);
}
}
else
{
/*char relativeFileName[1024];
if (b3ResourcePath::findResourcePath("floor_diffuse.tga", relativeFileName, 1024))
{
m_model->loadDiffuseTexture(relativeFileName);
}
*/
}
{
B3_PROFILE("reserveMemory");
m_model->reserveMemory(numVertices, numIndices);
}
{
B3_PROFILE("addVertex");
for (int i = 0; i < numVertices; i++)
{
m_model->addVertex(vertices[i * 9],
vertices[i * 9 + 1],
vertices[i * 9 + 2],
vertices[i * 9 + 4],
vertices[i * 9 + 5],
vertices[i * 9 + 6],
vertices[i * 9 + 7],
vertices[i * 9 + 8]);
}
}
{
B3_PROFILE("addTriangle");
for (int i = 0; i < numIndices; i += 3)
{
m_model->addTriangle(indices[i], indices[i], indices[i],
indices[i + 1], indices[i + 1], indices[i + 1],
indices[i + 2], indices[i + 2], indices[i + 2]);
}
}
}
}
void TinyRenderObjectData::registerMesh2(btAlignedObjectArray<btVector3>& vertices, btAlignedObjectArray<btVector3>& normals, btAlignedObjectArray<int>& indices, CommonFileIOInterface* fileIO)
{
if (0 == m_model)
{
int numVertices = vertices.size();
int numIndices = indices.size();
m_model = new Model();
char relativeFileName[1024];
if (fileIO->findResourcePath("floor_diffuse.tga", relativeFileName, 1024))
{
m_model->loadDiffuseTexture(relativeFileName);
}
for (int i = 0; i < numVertices; i++)
{
m_model->addVertex(vertices[i].x(),
vertices[i].y(),
vertices[i].z(),
normals[i].x(),
normals[i].y(),
normals[i].z(),
0.5, 0.5);
}
for (int i = 0; i < numIndices; i += 3)
{
m_model->addTriangle(indices[i], indices[i], indices[i],
indices[i + 1], indices[i + 1], indices[i + 1],
indices[i + 2], indices[i + 2], indices[i + 2]);
}
}
}
void TinyRenderObjectData::createCube(float halfExtentsX, float halfExtentsY, float halfExtentsZ, CommonFileIOInterface* fileIO)
{
b3BulletDefaultFileIO defaultFileIO;
if (fileIO==0)
{
fileIO = &defaultFileIO;
}
m_model = new Model();
char relativeFileName[1024];
if (fileIO->findResourcePath("floor_diffuse.tga", relativeFileName, 1024))
{
m_model->loadDiffuseTexture(relativeFileName);
}
int strideInBytes = 9 * sizeof(float);
int numVertices = sizeof(cube_vertices_textured) / strideInBytes;
int numIndices = sizeof(cube_indices) / sizeof(int);
for (int i = 0; i < numVertices; i++)
{
m_model->addVertex(halfExtentsX * cube_vertices_textured[i * 9],
halfExtentsY * cube_vertices_textured[i * 9 + 1],
halfExtentsZ * cube_vertices_textured[i * 9 + 2],
cube_vertices_textured[i * 9 + 4],
cube_vertices_textured[i * 9 + 5],
cube_vertices_textured[i * 9 + 6],
cube_vertices_textured[i * 9 + 7],
cube_vertices_textured[i * 9 + 8]);
}
for (int i = 0; i < numIndices; i += 3)
{
m_model->addTriangle(cube_indices[i], cube_indices[i], cube_indices[i],
cube_indices[i + 1], cube_indices[i + 1], cube_indices[i + 1],
cube_indices[i + 2], cube_indices[i + 2], cube_indices[i + 2]);
}
}
TinyRenderObjectData::~TinyRenderObjectData()
{
delete m_model;
}
static bool equals(const Vec4f& vA, const Vec4f& vB)
{
return false;
}
static void clipEdge(const mat<4, 3, float>& triangleIn, int vertexIndexA, int vertexIndexB, b3AlignedObjectArray<Vec4f>& vertices)
{
Vec4f v0New = triangleIn.col(vertexIndexA);
Vec4f v1New = triangleIn.col(vertexIndexB);
bool v0Inside = v0New[3] > 0.f && v0New[2] > -v0New[3];
bool v1Inside = v1New[3] > 0.f && v1New[2] > -v1New[3];
if (v0Inside && v1Inside)
{
}
else if (v0Inside || v1Inside)
{
float d0 = v0New[2] + v0New[3];
float d1 = v1New[2] + v1New[3];
float factor = 1.0 / (d1 - d0);
Vec4f newVertex = (v0New * d1 - v1New * d0) * factor;
if (v0Inside)
{
v1New = newVertex;
}
else
{
v0New = newVertex;
}
}
else
{
return;
}
if (vertices.size() == 0 || !(equals(vertices[vertices.size() - 1], v0New)))
{
vertices.push_back(v0New);
}
vertices.push_back(v1New);
}
static bool clipTriangleAgainstNearplane(const mat<4, 3, float>& triangleIn, b3AlignedObjectArray<mat<4, 3, float> >& clippedTrianglesOut)
{
//discard triangle if all vertices are behind near-plane
if (triangleIn[3][0] < 0 && triangleIn[3][1] < 0 && triangleIn[3][2] < 0)
{
return true;
}
//accept triangle if all vertices are in front of the near-plane
if (triangleIn[3][0] >= 0 && triangleIn[3][1] >= 0 && triangleIn[3][2] >= 0)
{
clippedTrianglesOut.push_back(triangleIn);
return false;
}
Vec4f vtxCache[5];
b3AlignedObjectArray<Vec4f> vertices;
vertices.initializeFromBuffer(vtxCache, 0, 5);
clipEdge(triangleIn, 0, 1, vertices);
clipEdge(triangleIn, 1, 2, vertices);
clipEdge(triangleIn, 2, 0, vertices);
if (vertices.size() < 3)
return true;
if (equals(vertices[0], vertices[vertices.size() - 1]))
{
vertices.pop_back();
}
//create a fan of triangles
for (int i = 1; i < vertices.size() - 1; i++)
{
mat<4, 3, float>& vtx = clippedTrianglesOut.expand();
vtx.set_col(0, vertices[0]);
vtx.set_col(1, vertices[i]);
vtx.set_col(2, vertices[i + 1]);
}
return true;
}
void TinyRenderer::renderObject(TinyRenderObjectData& renderData)
{
B3_PROFILE("renderObject");
int width = renderData.m_rgbColorBuffer.get_width();
int height = renderData.m_rgbColorBuffer.get_height();
Vec3f light_dir_local = Vec3f(renderData.m_lightDirWorld[0], renderData.m_lightDirWorld[1], renderData.m_lightDirWorld[2]);
Vec3f light_color = Vec3f(renderData.m_lightColor[0], renderData.m_lightColor[1], renderData.m_lightColor[2]);
float light_distance = renderData.m_lightDistance;
Model* model = renderData.m_model;
if (0 == model)
return;
//discard invisible objects (zero alpha)
if (model->getColorRGBA()[3] == 0)
return;
renderData.m_viewportMatrix = viewport(0, 0, width, height);
b3AlignedObjectArray<float>& zbuffer = renderData.m_depthBuffer;
b3AlignedObjectArray<float>* shadowBufferPtr = renderData.m_shadowBuffer;
int* segmentationMaskBufferPtr = (renderData.m_segmentationMaskBufferPtr && renderData.m_segmentationMaskBufferPtr->size()) ? &renderData.m_segmentationMaskBufferPtr->at(0) : 0;
TGAImage& frame = renderData.m_rgbColorBuffer;
{
// light target is set to be the origin, and the up direction is set to be vertical up.
Matrix lightViewMatrix = lookat(light_dir_local * light_distance, Vec3f(0.0, 0.0, 0.0), Vec3f(0.0, 0.0, 1.0));
Matrix lightModelViewMatrix = lightViewMatrix * renderData.m_modelMatrix;
Matrix modelViewMatrix = renderData.m_viewMatrix * renderData.m_modelMatrix;
Vec3f localScaling(renderData.m_localScaling[0], renderData.m_localScaling[1], renderData.m_localScaling[2]);
Matrix viewMatrixInv = renderData.m_viewMatrix.invert();
btVector3 P(viewMatrixInv[0][3], viewMatrixInv[1][3], viewMatrixInv[2][3]);
Shader shader(model, light_dir_local, light_color, modelViewMatrix, lightModelViewMatrix, renderData.m_projectionMatrix, renderData.m_modelMatrix, renderData.m_viewportMatrix, localScaling, model->getColorRGBA(), width, height, shadowBufferPtr, renderData.m_lightAmbientCoeff, renderData.m_lightDiffuseCoeff, renderData.m_lightSpecularCoeff);
{
B3_PROFILE("face");
for (int i = 0; i < model->nfaces(); i++)
{
for (int j = 0; j < 3; j++)
{
shader.vertex(i, j);
}
// backface culling
btVector3 v0(shader.world_tri.col(0)[0], shader.world_tri.col(0)[1], shader.world_tri.col(0)[2]);
btVector3 v1(shader.world_tri.col(1)[0], shader.world_tri.col(1)[1], shader.world_tri.col(1)[2]);
btVector3 v2(shader.world_tri.col(2)[0], shader.world_tri.col(2)[1], shader.world_tri.col(2)[2]);
btVector3 N = (v1 - v0).cross(v2 - v0);
if ((v0 - P).dot(N) >= 0)
continue;
mat<4, 3, float> stackTris[3];
b3AlignedObjectArray<mat<4, 3, float> > clippedTriangles;
clippedTriangles.initializeFromBuffer(stackTris, 0, 3);
bool hasClipped = clipTriangleAgainstNearplane(shader.varying_tri, clippedTriangles);
if (hasClipped)
{
for (int t = 0; t < clippedTriangles.size(); t++)
{
triangleClipped(clippedTriangles[t], shader.varying_tri, shader, frame, &zbuffer[0], segmentationMaskBufferPtr, renderData.m_viewportMatrix, renderData.m_objectIndex + ((renderData.m_linkIndex + 1) << 24));
}
}
else
{
triangle(shader.varying_tri, shader, frame, &zbuffer[0], segmentationMaskBufferPtr, renderData.m_viewportMatrix, renderData.m_objectIndex + ((renderData.m_linkIndex + 1) << 24));
}
}
}
}
}
void TinyRenderer::renderObjectDepth(TinyRenderObjectData& renderData)
{
int width = renderData.m_rgbColorBuffer.get_width();
int height = renderData.m_rgbColorBuffer.get_height();
Vec3f light_dir_local = Vec3f(renderData.m_lightDirWorld[0], renderData.m_lightDirWorld[1], renderData.m_lightDirWorld[2]);
float light_distance = renderData.m_lightDistance;
Model* model = renderData.m_model;
if (0 == model)
return;
renderData.m_viewportMatrix = viewport(0, 0, width, height);
float* shadowBufferPtr = (renderData.m_shadowBuffer && renderData.m_shadowBuffer->size()) ? &renderData.m_shadowBuffer->at(0) : 0;
int* segmentationMaskBufferPtr = 0;
TGAImage depthFrame(width, height, TGAImage::RGB);
{
// light target is set to be the origin, and the up direction is set to be vertical up.
Matrix lightViewMatrix = lookat(light_dir_local * light_distance, Vec3f(0.0, 0.0, 0.0), Vec3f(0.0, 0.0, 1.0));
Matrix lightModelViewMatrix = lightViewMatrix * renderData.m_modelMatrix;
Matrix lightViewProjectionMatrix = renderData.m_projectionMatrix;
Vec3f localScaling(renderData.m_localScaling[0], renderData.m_localScaling[1], renderData.m_localScaling[2]);
DepthShader shader(model, lightModelViewMatrix, lightViewProjectionMatrix, renderData.m_modelMatrix, localScaling, light_distance);
for (int i = 0; i < model->nfaces(); i++)
{
for (int j = 0; j < 3; j++)
{
shader.vertex(i, j);
}
mat<4, 3, float> stackTris[3];
b3AlignedObjectArray<mat<4, 3, float> > clippedTriangles;
clippedTriangles.initializeFromBuffer(stackTris, 0, 3);
bool hasClipped = clipTriangleAgainstNearplane(shader.varying_tri, clippedTriangles);
if (hasClipped)
{
for (int t = 0; t < clippedTriangles.size(); t++)
{
triangleClipped(clippedTriangles[t], shader.varying_tri, shader, depthFrame, shadowBufferPtr, segmentationMaskBufferPtr, renderData.m_viewportMatrix, renderData.m_objectIndex);
}
}
else
{
triangle(shader.varying_tri, shader, depthFrame, shadowBufferPtr, segmentationMaskBufferPtr, renderData.m_viewportMatrix, renderData.m_objectIndex);
}
}
}
}