speed up mid-side coding

This commit is contained in:
Josh Coalson 2001-01-25 10:41:06 +00:00
parent e49dc3d6c7
commit 94e02cd4a0

View File

@ -44,14 +44,18 @@ typedef struct FLAC__EncoderPrivate {
int32 *integer_signal_mid_side[2]; /* the integer version of the mid-side input signal (stereo only) */
real *real_signal[FLAC__MAX_CHANNELS]; /* the floating-point version of the input signal */
real *real_signal_mid_side[2]; /* the floating-point version of the mid-side input signal (stereo only) */
int32 *residual[2]; /* where the candidate and best subframe residual signals will be stored */
int32 *residual_workspace[FLAC__MAX_CHANNELS][2]; /* each channel has a candidate and best workspace where the subframe residual signals will be stored */
int32 *residual_workspace_mid_side[2][2];
FLAC__Subframe subframe_workspace[FLAC__MAX_CHANNELS][2];
FLAC__Subframe subframe_workspace_mid_side[2][2];
FLAC__Subframe *subframe_workspace_ptr[FLAC__MAX_CHANNELS][2];
FLAC__Subframe *subframe_workspace_ptr_mid_side[2][2];
unsigned best_subframe[FLAC__MAX_CHANNELS]; /* index into the above workspaces */
unsigned best_subframe_mid_side[2];
unsigned best_subframe_bits[FLAC__MAX_CHANNELS]; /* size in bits of the best subframe for each channel */
unsigned best_subframe_bits_mid_side[2];
uint32 *abs_residual; /* workspace where the abs(candidate residual) is stored */
unsigned best_residual; /* index into the above */
FLAC__BitBuffer frame; /* the current frame being worked on */
FLAC__BitBuffer frame_mid_side; /* special parallel workspace for the mid-side coded version of the current frame */
FLAC__BitBuffer frame_left_side; /* special parallel workspace for the left-side coded version of the current frame */
FLAC__BitBuffer frame_right_side; /* special parallel workspace for the right-side coded version of the current frame */
FLAC__Subframe best_subframe, candidate_subframe;
bool current_frame_can_do_mid_side; /* encoder sets this false when any given sample of a frame's side channel exceeds 16 bits */
FLAC__StreamMetaData metadata;
unsigned current_sample_number;
@ -64,13 +68,18 @@ typedef struct FLAC__EncoderPrivate {
static bool encoder_resize_buffers_(FLAC__Encoder *encoder, unsigned new_size);
static bool encoder_process_frame_(FLAC__Encoder *encoder, bool is_last_frame);
static bool encoder_process_subframes_(FLAC__Encoder *encoder, bool is_last_frame, bool verbatim_only, const FLAC__FrameHeader *frame_header, unsigned channels, const int32 *integer_signal[], const real *real_signal[], FLAC__BitBuffer *bitbuffer);
static bool encoder_process_subframes_(FLAC__Encoder *encoder, bool is_last_frame);
static bool encoder_process_subframe_(FLAC__Encoder *encoder, unsigned max_partition_order, bool verbatim_only, const FLAC__FrameHeader *frame_header, const int32 integer_signal[], const real real_signal[], FLAC__Subframe *subframe[2], int32 *residual[2], unsigned *best_subframe, unsigned *best_bits);
static bool encoder_add_subframe_(FLAC__Encoder *encoder, const FLAC__FrameHeader *frame_header, const FLAC__Subframe *subframe, FLAC__BitBuffer *frame);
static unsigned encoder_evaluate_constant_subframe_(const int32 signal, unsigned bits_per_sample, FLAC__Subframe *subframe);
static unsigned encoder_evaluate_fixed_subframe_(const int32 signal[], int32 residual[], uint32 abs_residual[], unsigned blocksize, unsigned bits_per_sample, unsigned order, unsigned rice_parameter, unsigned max_partition_order, FLAC__Subframe *subframe);
static unsigned encoder_evaluate_lpc_subframe_(const int32 signal[], int32 residual[], uint32 abs_residual[], const real lp_coeff[], unsigned blocksize, unsigned bits_per_sample, unsigned order, unsigned qlp_coeff_precision, unsigned rice_parameter, unsigned max_partition_order, FLAC__Subframe *subframe);
static unsigned encoder_evaluate_verbatim_subframe_(unsigned blocksize, unsigned bits_per_sample, FLAC__Subframe *subframe);
static unsigned encoder_evaluate_verbatim_subframe_(const int32 signal[], unsigned blocksize, unsigned bits_per_sample, FLAC__Subframe *subframe);
static unsigned encoder_find_best_partition_order_(const int32 residual[], uint32 abs_residual[], unsigned residual_samples, unsigned predictor_order, unsigned rice_parameter, unsigned max_partition_order, unsigned *best_partition_order, unsigned best_parameters[]);
static void encoder_promote_candidate_subframe_(FLAC__Encoder *encoder);
#if 0
@@@
static void encoder_promote_candidate_subframe_(FLAC__Subframe *best_subframe, FLAC__Subframe *candidata_subframe, unsigned *best_residual);
#endif
static bool encoder_set_partitioned_rice_(const uint32 abs_residual[], const unsigned residual_samples, const unsigned predictor_order, const unsigned rice_parameter, const unsigned partition_order, unsigned parameters[], unsigned *bits);
const char *FLAC__EncoderWriteStatusString[] = {
@ -101,7 +110,7 @@ const char *FLAC__EncoderStateString[] = {
bool encoder_resize_buffers_(FLAC__Encoder *encoder, unsigned new_size)
{
bool ok;
unsigned i;
unsigned i, channel;
int32 *previous_is, *current_is;
real *previous_rs, *current_rs;
int32 *residual;
@ -173,16 +182,32 @@ bool encoder_resize_buffers_(FLAC__Encoder *encoder, unsigned new_size)
}
}
if(ok) {
for(i = 0; i < 2; i++) {
residual = (int32*)malloc(sizeof(int32) * new_size);
if(0 == residual) {
encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
ok = 0;
for(channel = 0; channel < encoder->channels; channel++) {
for(i = 0; i < 2; i++) {
residual = (int32*)malloc(sizeof(int32) * new_size);
if(0 == residual) {
encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
ok = 0;
}
else {
if(encoder->guts->residual_workspace[channel][i] != 0)
free(encoder->guts->residual_workspace[channel][i]);
encoder->guts->residual_workspace[channel][i] = residual;
}
}
else {
if(encoder->guts->residual[i] != 0)
free(encoder->guts->residual[i]);
encoder->guts->residual[i] = residual;
}
for(channel = 0; channel < 2; channel++) {
for(i = 0; i < 2; i++) {
residual = (int32*)malloc(sizeof(int32) * new_size);
if(0 == residual) {
encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
ok = 0;
}
else {
if(encoder->guts->residual_workspace_mid_side[channel][i] != 0)
free(encoder->guts->residual_workspace_mid_side[channel][i]);
encoder->guts->residual_workspace_mid_side[channel][i] = residual;
}
}
}
abs_residual = (uint32*)malloc(sizeof(uint32) * new_size);
@ -307,10 +332,23 @@ FLAC__EncoderState FLAC__encoder_init(FLAC__Encoder *encoder, FLAC__EncoderWrite
encoder->guts->integer_signal_mid_side[i] = 0;
encoder->guts->real_signal_mid_side[i] = 0;
}
encoder->guts->residual[0] = 0;
encoder->guts->residual[1] = 0;
for(i = 0; i < encoder->channels; i++) {
encoder->guts->residual_workspace[i][0] = encoder->guts->residual_workspace[i][1] = 0;
encoder->guts->best_subframe[i] = 0;
}
for(i = 0; i < 2; i++) {
encoder->guts->residual_workspace_mid_side[i][0] = encoder->guts->residual_workspace_mid_side[i][1] = 0;
encoder->guts->best_subframe_mid_side[i] = 0;
}
for(i = 0; i < encoder->channels; i++) {
encoder->guts->subframe_workspace_ptr[i][0] = &encoder->guts->subframe_workspace[i][0];
encoder->guts->subframe_workspace_ptr[i][1] = &encoder->guts->subframe_workspace[i][1];
}
for(i = 0; i < 2; i++) {
encoder->guts->subframe_workspace_ptr_mid_side[i][0] = &encoder->guts->subframe_workspace_mid_side[i][0];
encoder->guts->subframe_workspace_ptr_mid_side[i][1] = &encoder->guts->subframe_workspace_mid_side[i][1];
}
encoder->guts->abs_residual = 0;
encoder->guts->best_residual = 0;
encoder->guts->current_frame_can_do_mid_side = true;
encoder->guts->current_sample_number = 0;
encoder->guts->current_frame_number = 0;
@ -364,7 +402,7 @@ FLAC__EncoderState FLAC__encoder_init(FLAC__Encoder *encoder, FLAC__EncoderWrite
void FLAC__encoder_finish(FLAC__Encoder *encoder)
{
unsigned i;
unsigned i, channel;
assert(encoder != 0);
if(encoder->state == FLAC__ENCODER_UNINITIALIZED)
@ -396,10 +434,20 @@ void FLAC__encoder_finish(FLAC__Encoder *encoder)
encoder->guts->real_signal_mid_side[i] = 0;
}
}
for(i = 0; i < 2; i++) {
if(encoder->guts->residual[i] != 0) {
free(encoder->guts->residual[i]);
encoder->guts->residual[i] = 0;
for(channel = 0; channel < encoder->channels; channel++) {
for(i = 0; i < 2; i++) {
if(encoder->guts->residual_workspace[channel][i] != 0) {
free(encoder->guts->residual_workspace[channel][i]);
encoder->guts->residual_workspace[channel][i] = 0;
}
}
}
for(channel = 0; channel < 2; channel++) {
for(i = 0; i < 2; i++) {
if(encoder->guts->residual_workspace_mid_side[channel][i] != 0) {
free(encoder->guts->residual_workspace_mid_side[channel][i]);
encoder->guts->residual_workspace_mid_side[channel][i] = 0;
}
}
}
if(encoder->guts->abs_residual != 0) {
@ -507,9 +555,6 @@ bool FLAC__encoder_process_interleaved(FLAC__Encoder *encoder, const int32 buf[]
bool encoder_process_frame_(FLAC__Encoder *encoder, bool is_last_frame)
{
FLAC__FrameHeader frame_header;
FLAC__BitBuffer *smallest_frame;
assert(encoder->state == FLAC__ENCODER_OK);
/*
@ -521,102 +566,17 @@ bool encoder_process_frame_(FLAC__Encoder *encoder, bool is_last_frame)
}
/*
* First do a normal encoding pass
* Process the frame header and subframes into the frame bitbuffer
*/
frame_header.blocksize = encoder->blocksize;
frame_header.sample_rate = encoder->sample_rate;
frame_header.channels = encoder->channels;
frame_header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT; /* the default unless the encoder determines otherwise */
frame_header.bits_per_sample = encoder->bits_per_sample;
frame_header.number.frame_number = encoder->guts->current_frame_number;
if(!FLAC__bitbuffer_clear(&encoder->guts->frame)) {
encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
if(!encoder_process_subframes_(encoder, is_last_frame)) {
/* the above function sets the state for us in case of an error */
return false;
}
if(!FLAC__frame_add_header(&frame_header, encoder->streamable_subset, is_last_frame, &encoder->guts->frame)) {
encoder->state = FLAC__ENCODER_FRAMING_ERROR;
return false;
}
if(!encoder_process_subframes_(encoder, is_last_frame, encoder->force_mid_side_stereo, &frame_header, encoder->channels, encoder->guts->integer_signal, encoder->guts->real_signal, &encoder->guts->frame))
return false;
smallest_frame = &encoder->guts->frame;
/*
* Now try a mid-side version if necessary; otherwise, just use the previous step's frame
*/
if(encoder->do_mid_side_stereo && encoder->guts->current_frame_can_do_mid_side) {
int32 *integer_signal[2];
real *real_signal[2];
assert(encoder->channels == 2);
/* mid-side */
frame_header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_MID_SIDE;
if(!FLAC__bitbuffer_clear(&encoder->guts->frame_mid_side)) {
encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
return false;
}
if(!FLAC__frame_add_header(&frame_header, encoder->streamable_subset, is_last_frame, &encoder->guts->frame_mid_side)) {
encoder->state = FLAC__ENCODER_FRAMING_ERROR;
return false;
}
integer_signal[0] = encoder->guts->integer_signal_mid_side[0]; /* mid channel */
integer_signal[1] = encoder->guts->integer_signal_mid_side[1]; /* side channel */
real_signal[0] = encoder->guts->real_signal_mid_side[0]; /* mid channel */
real_signal[1] = encoder->guts->real_signal_mid_side[1]; /* side channel */
if(!encoder_process_subframes_(encoder, is_last_frame, false, &frame_header, encoder->channels, integer_signal, real_signal, &encoder->guts->frame_mid_side))
return false;
if(encoder->guts->frame_mid_side.total_bits < smallest_frame->total_bits)
smallest_frame = &encoder->guts->frame_mid_side;
if(!encoder->force_mid_side_stereo) {
/* left-side */
frame_header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE;
if(!FLAC__bitbuffer_clear(&encoder->guts->frame_left_side)) {
encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
return false;
}
if(!FLAC__frame_add_header(&frame_header, encoder->streamable_subset, is_last_frame, &encoder->guts->frame_left_side)) {
encoder->state = FLAC__ENCODER_FRAMING_ERROR;
return false;
}
integer_signal[0] = encoder->guts->integer_signal[0]; /* left channel */
integer_signal[1] = encoder->guts->integer_signal_mid_side[1]; /* side channel */
real_signal[0] = encoder->guts->real_signal[0]; /* left channel */
real_signal[1] = encoder->guts->real_signal_mid_side[1]; /* side channel */
if(!encoder_process_subframes_(encoder, is_last_frame, false, &frame_header, encoder->channels, integer_signal, real_signal, &encoder->guts->frame_left_side))
return false;
if(encoder->guts->frame_left_side.total_bits < smallest_frame->total_bits)
smallest_frame = &encoder->guts->frame_left_side;
/* right-side */
frame_header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE;
if(!FLAC__bitbuffer_clear(&encoder->guts->frame_right_side)) {
encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
return false;
}
if(!FLAC__frame_add_header(&frame_header, encoder->streamable_subset, is_last_frame, &encoder->guts->frame_right_side)) {
encoder->state = FLAC__ENCODER_FRAMING_ERROR;
return false;
}
integer_signal[0] = encoder->guts->integer_signal_mid_side[1]; /* side channel */
integer_signal[1] = encoder->guts->integer_signal[1]; /* right channel */
real_signal[0] = encoder->guts->real_signal_mid_side[1]; /* side channel */
real_signal[1] = encoder->guts->real_signal[1]; /* right channel */
if(!encoder_process_subframes_(encoder, is_last_frame, false, &frame_header, encoder->channels, integer_signal, real_signal, &encoder->guts->frame_right_side))
return false;
if(encoder->guts->frame_right_side.total_bits < smallest_frame->total_bits)
smallest_frame = &encoder->guts->frame_right_side;
}
}
/*
* Zero-pad the frame to a byte_boundary
*/
if(!FLAC__bitbuffer_zero_pad_to_byte_boundary(smallest_frame)) {
if(!FLAC__bitbuffer_zero_pad_to_byte_boundary(&encoder->guts->frame)) {
encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
return false;
}
@ -624,9 +584,9 @@ bool encoder_process_frame_(FLAC__Encoder *encoder, bool is_last_frame)
/*
* Write it
*/
assert(smallest_frame->bits == 0); /* assert that we're byte-aligned before writing */
assert(smallest_frame->total_consumed_bits == 0); /* assert that no reading of the buffer was done */
if(encoder->guts->write_callback(encoder, smallest_frame->buffer, smallest_frame->bytes, encoder->blocksize, encoder->guts->current_frame_number, encoder->guts->client_data) != FLAC__ENCODER_WRITE_OK) {
assert(encoder->guts->frame.bits == 0); /* assert that we're byte-aligned before writing */
assert(encoder->guts->frame.total_consumed_bits == 0); /* assert that no reading of the buffer was done */
if(encoder->guts->write_callback(encoder, encoder->guts->frame.buffer, encoder->guts->frame.bytes, encoder->blocksize, encoder->guts->current_frame_number, encoder->guts->client_data) != FLAC__ENCODER_WRITE_OK) {
encoder->state = FLAC__ENCODER_FATAL_ERROR_WHILE_WRITING;
return false;
}
@ -638,12 +598,466 @@ bool encoder_process_frame_(FLAC__Encoder *encoder, bool is_last_frame)
encoder->guts->current_sample_number = 0;
encoder->guts->current_frame_number++;
encoder->guts->metadata.data.encoding.total_samples += (uint64)encoder->blocksize;
encoder->guts->metadata.data.encoding.min_framesize = min(smallest_frame->bytes, encoder->guts->metadata.data.encoding.min_framesize);
encoder->guts->metadata.data.encoding.max_framesize = max(smallest_frame->bytes, encoder->guts->metadata.data.encoding.max_framesize);
encoder->guts->metadata.data.encoding.min_framesize = min(encoder->guts->frame.bytes, encoder->guts->metadata.data.encoding.min_framesize);
encoder->guts->metadata.data.encoding.max_framesize = max(encoder->guts->frame.bytes, encoder->guts->metadata.data.encoding.max_framesize);
return true;
}
bool encoder_process_subframes_(FLAC__Encoder *encoder, bool is_last_frame)
{
FLAC__FrameHeader frame_header;
unsigned channel, max_partition_order;
/*
* Calculate the max Rice partition order
*/
if(is_last_frame) {
max_partition_order = 0;
}
else {
unsigned limit = 0, b = encoder->blocksize;
while(!(b & 1)) {
limit++;
b >>= 1;
}
max_partition_order = min(encoder->rice_optimization_level, limit);
}
/*
* Setup the frame
*/
if(!FLAC__bitbuffer_clear(&encoder->guts->frame)) {
encoder->state = FLAC__ENCODER_MEMORY_ALLOCATION_ERROR;
return false;
}
frame_header.blocksize = encoder->blocksize;
frame_header.sample_rate = encoder->sample_rate;
frame_header.channels = encoder->channels;
frame_header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT; /* the default unless the encoder determines otherwise */
frame_header.bits_per_sample = encoder->bits_per_sample;
frame_header.number.frame_number = encoder->guts->current_frame_number;
/*
* First do a normal encoding pass of each independent channel
*/
for(channel = 0; channel < encoder->channels; channel++) {
if(!encoder_process_subframe_(encoder, max_partition_order, encoder->force_mid_side_stereo, &frame_header, encoder->guts->integer_signal[channel], encoder->guts->real_signal[channel], encoder->guts->subframe_workspace_ptr[channel], encoder->guts->residual_workspace[channel], encoder->guts->best_subframe+channel, encoder->guts->best_subframe_bits+channel))
return false;
}
/*
* Now do mid and side channels if requested
*/
if(encoder->do_mid_side_stereo && encoder->guts->current_frame_can_do_mid_side) {
assert(encoder->channels == 2);
for(channel = 0; channel < 2; channel++) {
if(!encoder_process_subframe_(encoder, max_partition_order, false, &frame_header, encoder->guts->integer_signal_mid_side[channel], encoder->guts->real_signal_mid_side[channel], encoder->guts->subframe_workspace_ptr_mid_side[channel], encoder->guts->residual_workspace_mid_side[channel], encoder->guts->best_subframe_mid_side+channel, encoder->guts->best_subframe_bits_mid_side+channel))
return false;
}
}
/*
* Compose the frame bitbuffer
*/
if(encoder->do_mid_side_stereo && encoder->guts->current_frame_can_do_mid_side) {
unsigned bits[4]; /* WATCHOUT - indexed by FLAC__ChannelAssignment */
unsigned min_bits;
FLAC__ChannelAssignment ca, min_assignment;
assert(encoder->channels == 2);
/* We have to figure out which channel assignent results in the smallest frame */
bits[FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT] = encoder->guts->best_subframe_bits [0] + encoder->guts->best_subframe_bits [1];
bits[FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE ] = encoder->guts->best_subframe_bits [0] + encoder->guts->best_subframe_bits_mid_side[1];
bits[FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE ] = encoder->guts->best_subframe_bits [1] + encoder->guts->best_subframe_bits_mid_side[1];
bits[FLAC__CHANNEL_ASSIGNMENT_MID_SIDE ] = encoder->guts->best_subframe_bits_mid_side[0] + encoder->guts->best_subframe_bits_mid_side[1];
for(min_assignment = 0, min_bits = bits[0], ca = 1; ca <= 3; ca++) {
if(bits[ca] < min_bits) {
min_bits = bits[ca];
min_assignment = ca;
}
}
frame_header.channel_assignment = min_assignment;
if(!FLAC__frame_add_header(&frame_header, encoder->streamable_subset, is_last_frame, &encoder->guts->frame)) {
encoder->state = FLAC__ENCODER_FRAMING_ERROR;
return false;
}
switch(min_assignment) {
/* note that encoder_add_subframe_ sets the state for us in case of an error */
case FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT:
if(!encoder_add_subframe_(encoder, &frame_header, &encoder->guts->subframe_workspace [0][encoder->guts->best_subframe [0]], &encoder->guts->frame))
return false;
if(!encoder_add_subframe_(encoder, &frame_header, &encoder->guts->subframe_workspace [1][encoder->guts->best_subframe [1]], &encoder->guts->frame))
return false;
break;
case FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE:
if(!encoder_add_subframe_(encoder, &frame_header, &encoder->guts->subframe_workspace [0][encoder->guts->best_subframe [0]], &encoder->guts->frame))
return false;
if(!encoder_add_subframe_(encoder, &frame_header, &encoder->guts->subframe_workspace_mid_side[1][encoder->guts->best_subframe_mid_side[1]], &encoder->guts->frame))
return false;
break;
case FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE:
if(!encoder_add_subframe_(encoder, &frame_header, &encoder->guts->subframe_workspace_mid_side[1][encoder->guts->best_subframe_mid_side[1]], &encoder->guts->frame))
return false;
if(!encoder_add_subframe_(encoder, &frame_header, &encoder->guts->subframe_workspace [1][encoder->guts->best_subframe [1]], &encoder->guts->frame))
return false;
break;
case FLAC__CHANNEL_ASSIGNMENT_MID_SIDE:
if(!encoder_add_subframe_(encoder, &frame_header, &encoder->guts->subframe_workspace_mid_side[0][encoder->guts->best_subframe_mid_side[0]], &encoder->guts->frame))
return false;
if(!encoder_add_subframe_(encoder, &frame_header, &encoder->guts->subframe_workspace_mid_side[1][encoder->guts->best_subframe_mid_side[1]], &encoder->guts->frame))
return false;
break;
default:
assert(0);
}
}
else {
if(!FLAC__frame_add_header(&frame_header, encoder->streamable_subset, is_last_frame, &encoder->guts->frame)) {
encoder->state = FLAC__ENCODER_FRAMING_ERROR;
return false;
}
for(channel = 0; channel < encoder->channels; channel++) {
if(!encoder_add_subframe_(encoder, &frame_header, &encoder->guts->subframe_workspace[channel][encoder->guts->best_subframe[channel]], &encoder->guts->frame)) {
/* the above function sets the state for us in case of an error */
return false;
}
}
}
return true;
}
bool encoder_process_subframe_(FLAC__Encoder *encoder, unsigned max_partition_order, bool verbatim_only, const FLAC__FrameHeader *frame_header, const int32 integer_signal[], const real real_signal[], FLAC__Subframe *subframe[2], int32 *residual[2], unsigned *best_subframe, unsigned *best_bits)
{
real fixed_residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1];
real lpc_residual_bits_per_sample;
real autoc[FLAC__MAX_LPC_ORDER+1];
real lp_coeff[FLAC__MAX_LPC_ORDER][FLAC__MAX_LPC_ORDER];
real lpc_error[FLAC__MAX_LPC_ORDER];
unsigned min_lpc_order, max_lpc_order, lpc_order;
unsigned min_fixed_order, max_fixed_order, guess_fixed_order, fixed_order;
unsigned min_qlp_coeff_precision, max_qlp_coeff_precision, qlp_coeff_precision;
unsigned rice_parameter;
unsigned _candidate_bits, _best_bits;
unsigned _best_subframe;
/* verbatim subframe is the baseline against which we measure other compressed subframes */
_best_subframe = 0;
_best_bits = encoder_evaluate_verbatim_subframe_(integer_signal, frame_header->blocksize, frame_header->bits_per_sample, subframe[_best_subframe]);
if(!verbatim_only && frame_header->blocksize >= FLAC__MAX_FIXED_ORDER) {
/* check for constant subframe */
guess_fixed_order = FLAC__fixed_compute_best_predictor(integer_signal+FLAC__MAX_FIXED_ORDER, frame_header->blocksize-FLAC__MAX_FIXED_ORDER, fixed_residual_bits_per_sample);
if(fixed_residual_bits_per_sample[1] == 0.0) {
/* the above means integer_signal+FLAC__MAX_FIXED_ORDER is constant, now we just have to check the warmup samples */
unsigned i, signal_is_constant = true;
for(i = 1; i <= FLAC__MAX_FIXED_ORDER; i++) {
if(integer_signal[0] != integer_signal[i]) {
signal_is_constant = false;
break;
}
}
if(signal_is_constant) {
_candidate_bits = encoder_evaluate_constant_subframe_(integer_signal[0], frame_header->bits_per_sample, subframe[!_best_subframe]);
if(_candidate_bits < _best_bits) {
_best_subframe = !_best_subframe;
_best_bits = _candidate_bits;
}
}
}
else {
/* encode fixed */
if(encoder->do_exhaustive_model_search) {
min_fixed_order = 0;
max_fixed_order = FLAC__MAX_FIXED_ORDER;
}
else {
min_fixed_order = max_fixed_order = guess_fixed_order;
}
for(fixed_order = min_fixed_order; fixed_order <= max_fixed_order; fixed_order++) {
if(fixed_residual_bits_per_sample[fixed_order] >= (real)frame_header->bits_per_sample)
continue; /* don't even try */
/* 0.5 is for rounding, another 1.0 is to account for the signed->unsigned conversion during rice coding */
rice_parameter = (fixed_residual_bits_per_sample[fixed_order] > 0.0)? (unsigned)(fixed_residual_bits_per_sample[fixed_order]+1.5) : 0;
if(rice_parameter >= (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN))
rice_parameter = (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN) - 1;
_candidate_bits = encoder_evaluate_fixed_subframe_(integer_signal, residual[!_best_subframe], encoder->guts->abs_residual, frame_header->blocksize, frame_header->bits_per_sample, fixed_order, rice_parameter, max_partition_order, subframe[!_best_subframe]);
if(_candidate_bits < _best_bits) {
_best_subframe = !_best_subframe;
_best_bits = _candidate_bits;
}
}
/* encode lpc */
if(encoder->max_lpc_order > 0) {
if(encoder->max_lpc_order >= frame_header->blocksize)
max_lpc_order = frame_header->blocksize-1;
else
max_lpc_order = encoder->max_lpc_order;
if(max_lpc_order > 0) {
FLAC__lpc_compute_autocorrelation(real_signal, frame_header->blocksize, max_lpc_order+1, autoc);
FLAC__lpc_compute_lp_coefficients(autoc, max_lpc_order, lp_coeff, lpc_error);
if(encoder->do_exhaustive_model_search) {
min_lpc_order = 1;
}
else {
unsigned guess_lpc_order = FLAC__lpc_compute_best_order(lpc_error, max_lpc_order, frame_header->blocksize, frame_header->bits_per_sample);
min_lpc_order = max_lpc_order = guess_lpc_order;
}
if(encoder->do_qlp_coeff_prec_search) {
min_qlp_coeff_precision = FLAC__MIN_QLP_COEFF_PRECISION;
max_qlp_coeff_precision = 32 - frame_header->bits_per_sample - 1;
}
else {
min_qlp_coeff_precision = max_qlp_coeff_precision = encoder->qlp_coeff_precision;
}
for(lpc_order = min_lpc_order; lpc_order <= max_lpc_order; lpc_order++) {
lpc_residual_bits_per_sample = FLAC__lpc_compute_expected_bits_per_residual_sample(lpc_error[lpc_order-1], frame_header->blocksize);
if(lpc_residual_bits_per_sample >= (real)frame_header->bits_per_sample)
continue; /* don't even try */
/* 0.5 is for rounding, another 1.0 is to account for the signed->unsigned conversion during rice coding */
rice_parameter = (lpc_residual_bits_per_sample > 0.0)? (unsigned)(lpc_residual_bits_per_sample+1.5) : 0;
if(rice_parameter >= (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN))
rice_parameter = (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN) - 1;
for(qlp_coeff_precision = min_qlp_coeff_precision; qlp_coeff_precision <= max_qlp_coeff_precision; qlp_coeff_precision++) {
_candidate_bits = encoder_evaluate_lpc_subframe_(integer_signal, residual[!_best_subframe], encoder->guts->abs_residual, lp_coeff[lpc_order-1], frame_header->blocksize, frame_header->bits_per_sample, lpc_order, qlp_coeff_precision, rice_parameter, max_partition_order, subframe[!_best_subframe]);
if(_candidate_bits > 0) { /* if == 0, there was a problem quantizing the lpcoeffs */
if(_candidate_bits < _best_bits) {
_best_subframe = !_best_subframe;
_best_bits = _candidate_bits;
}
}
}
}
}
}
}
}
*best_subframe = _best_subframe;
*best_bits = _best_bits;
return true;
}
bool encoder_add_subframe_(FLAC__Encoder *encoder, const FLAC__FrameHeader *frame_header, const FLAC__Subframe *subframe, FLAC__BitBuffer *frame)
{
switch(subframe->type) {
case FLAC__SUBFRAME_TYPE_CONSTANT:
if(!FLAC__subframe_add_constant(&(subframe->data.constant), frame_header->bits_per_sample, frame)) {
encoder->state = FLAC__ENCODER_FATAL_ERROR_WHILE_ENCODING;
return false;
}
break;
case FLAC__SUBFRAME_TYPE_FIXED:
if(!FLAC__subframe_add_fixed(&(subframe->data.fixed), frame_header->blocksize - subframe->data.fixed.order, frame_header->bits_per_sample, frame)) {
encoder->state = FLAC__ENCODER_FATAL_ERROR_WHILE_ENCODING;
return false;
}
break;
case FLAC__SUBFRAME_TYPE_LPC:
if(!FLAC__subframe_add_lpc(&(subframe->data.lpc), frame_header->blocksize - subframe->data.lpc.order, frame_header->bits_per_sample, frame)) {
encoder->state = FLAC__ENCODER_FATAL_ERROR_WHILE_ENCODING;
return false;
}
break;
case FLAC__SUBFRAME_TYPE_VERBATIM:
if(!FLAC__subframe_add_verbatim(&(subframe->data.verbatim), frame_header->blocksize, frame_header->bits_per_sample, frame)) {
encoder->state = FLAC__ENCODER_FATAL_ERROR_WHILE_ENCODING;
return false;
}
break;
default:
assert(0);
}
return true;
}
unsigned encoder_evaluate_constant_subframe_(const int32 signal, unsigned bits_per_sample, FLAC__Subframe *subframe)
{
subframe->type = FLAC__SUBFRAME_TYPE_CONSTANT;
subframe->data.constant.value = signal;
return FLAC__SUBFRAME_TYPE_LEN + bits_per_sample;
}
unsigned encoder_evaluate_fixed_subframe_(const int32 signal[], int32 residual[], uint32 abs_residual[], unsigned blocksize, unsigned bits_per_sample, unsigned order, unsigned rice_parameter, unsigned max_partition_order, FLAC__Subframe *subframe)
{
unsigned i, residual_bits;
const unsigned residual_samples = blocksize - order;
FLAC__fixed_compute_residual(signal+order, residual_samples, order, residual);
subframe->type = FLAC__SUBFRAME_TYPE_FIXED;
subframe->data.fixed.entropy_coding_method.type = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE;
subframe->data.fixed.residual = residual;
residual_bits = encoder_find_best_partition_order_(residual, abs_residual, residual_samples, order, rice_parameter, max_partition_order, &subframe->data.fixed.entropy_coding_method.data.partitioned_rice.order, subframe->data.fixed.entropy_coding_method.data.partitioned_rice.parameters);
subframe->data.fixed.order = order;
for(i = 0; i < order; i++)
subframe->data.fixed.warmup[i] = signal[i];
return FLAC__SUBFRAME_TYPE_LEN + (order * bits_per_sample) + residual_bits;
}
unsigned encoder_evaluate_lpc_subframe_(const int32 signal[], int32 residual[], uint32 abs_residual[], const real lp_coeff[], unsigned blocksize, unsigned bits_per_sample, unsigned order, unsigned qlp_coeff_precision, unsigned rice_parameter, unsigned max_partition_order, FLAC__Subframe *subframe)
{
int32 qlp_coeff[FLAC__MAX_LPC_ORDER];
unsigned i, residual_bits;
int quantization, ret;
const unsigned residual_samples = blocksize - order;
ret = FLAC__lpc_quantize_coefficients(lp_coeff, order, qlp_coeff_precision, bits_per_sample, qlp_coeff, &quantization);
if(ret != 0)
return 0; /* this is a hack to indicate to the caller that we can't do lp at this order on this subframe */
FLAC__lpc_compute_residual_from_qlp_coefficients(signal+order, residual_samples, qlp_coeff, order, quantization, residual);
subframe->type = FLAC__SUBFRAME_TYPE_LPC;
subframe->data.lpc.entropy_coding_method.type = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE;
subframe->data.lpc.residual = residual;
residual_bits = encoder_find_best_partition_order_(residual, abs_residual, residual_samples, order, rice_parameter, max_partition_order, &subframe->data.lpc.entropy_coding_method.data.partitioned_rice.order, subframe->data.lpc.entropy_coding_method.data.partitioned_rice.parameters);
subframe->data.lpc.order = order;
subframe->data.lpc.qlp_coeff_precision = qlp_coeff_precision;
subframe->data.lpc.quantization_level = quantization;
memcpy(subframe->data.lpc.qlp_coeff, qlp_coeff, sizeof(int32)*FLAC__MAX_LPC_ORDER);
for(i = 0; i < order; i++)
subframe->data.lpc.warmup[i] = signal[i];
return FLAC__SUBFRAME_TYPE_LEN + FLAC__SUBFRAME_LPC_QLP_COEFF_PRECISION_LEN + FLAC__SUBFRAME_LPC_QLP_SHIFT_LEN + (order * (qlp_coeff_precision + bits_per_sample)) + residual_bits;
}
unsigned encoder_evaluate_verbatim_subframe_(const int32 signal[], unsigned blocksize, unsigned bits_per_sample, FLAC__Subframe *subframe)
{
subframe->type = FLAC__SUBFRAME_TYPE_VERBATIM;
subframe->data.verbatim.data = signal;
return FLAC__SUBFRAME_TYPE_LEN + (blocksize * bits_per_sample);
}
unsigned encoder_find_best_partition_order_(const int32 residual[], uint32 abs_residual[], unsigned residual_samples, unsigned predictor_order, unsigned rice_parameter, unsigned max_partition_order, unsigned *best_partition_order, unsigned best_parameters[])
{
unsigned residual_bits, best_residual_bits = 0;
unsigned i, partition_order;
unsigned best_parameters_index = 0, parameters[2][1 << FLAC__MAX_RICE_PARTITION_ORDER];
int32 r;
/* compute the abs(residual) for use later */
for(i = 0; i < residual_samples; i++) {
r = residual[i];
abs_residual[i] = (uint32)(r<0? -r : r);
}
for(partition_order = 0; partition_order <= max_partition_order; partition_order++) {
if(!encoder_set_partitioned_rice_(abs_residual, residual_samples, predictor_order, rice_parameter, partition_order, parameters[!best_parameters_index], &residual_bits)) {
assert(best_residual_bits != 0);
break;
}
if(best_residual_bits == 0 || residual_bits < best_residual_bits) {
best_residual_bits = residual_bits;
*best_partition_order = partition_order;
best_parameters_index = !best_parameters_index;
}
}
memcpy(best_parameters, parameters[best_parameters_index], sizeof(unsigned)*(1<<(*best_partition_order)));
return best_residual_bits;
}
#if 0
@@@
void encoder_promote_candidate_subframe_(FLAC__Encoder *encoder)
{
assert(encoder->state == FLAC__ENCODER_OK);
encoder->guts->best_subframe = encoder->guts->candidate_subframe;
encoder->guts->best_residual = !encoder->guts->best_residual;
}
#endif
#ifdef ESTIMATE_RICE_BITS
#undef ESTIMATE_RICE_BITS
#endif
#define ESTIMATE_RICE_BITS(value, parameter) ((value) >> (parameter))
bool encoder_set_partitioned_rice_(const uint32 abs_residual[], const unsigned residual_samples, const unsigned predictor_order, const unsigned rice_parameter, const unsigned partition_order, unsigned parameters[], unsigned *bits)
{
unsigned bits_ = FLAC__ENTROPY_CODING_METHOD_TYPE_LEN + FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN;
if(partition_order == 0) {
unsigned i;
#ifdef ESTIMATE_RICE_BITS
const unsigned rice_parameter_estimate = rice_parameter-1;
bits_ += (1+rice_parameter) * residual_samples;
#endif
parameters[0] = rice_parameter;
bits_ += FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN;
for(i = 0; i < residual_samples; i++)
#ifdef ESTIMATE_RICE_BITS
bits_ += ESTIMATE_RICE_BITS(abs_residual[i], rice_parameter_estimate);
#else
bits_ += FLAC__bitbuffer_rice_bits(residual[i], rice_parameter);
#endif
}
else {
unsigned i, j, k = 0, k_last = 0;
unsigned mean, parameter, partition_samples;
const unsigned max_parameter = (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN) - 1;
for(i = 0; i < (1u<<partition_order); i++) {
partition_samples = (residual_samples+predictor_order) >> partition_order;
if(i == 0) {
if(partition_samples <= predictor_order)
return false;
else
partition_samples -= predictor_order;
}
mean = partition_samples >> 1;
for(j = 0; j < partition_samples; j++, k++)
mean += abs_residual[k];
mean /= partition_samples;
/* calc parameter = floor(log2(mean)) + 1 */
parameter = 0;
while(mean) {
parameter++;
mean >>= 1;
}
if(parameter > max_parameter)
parameter = max_parameter;
parameters[i] = parameter;
bits_ += FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN;
#ifdef ESTIMATE_RICE_BITS
bits_ += (1+parameter) * partition_samples;
--parameter;
#endif
for(j = k_last; j < k; j++)
#ifdef ESTIMATE_RICE_BITS
bits_ += ESTIMATE_RICE_BITS(abs_residual[j], parameter);
#else
bits_ += FLAC__bitbuffer_rice_bits(residual[j], parameter);
#endif
k_last = k;
}
}
*bits = bits_;
return true;
}
#if 0
@@@
bool encoder_process_subframes_(FLAC__Encoder *encoder, bool is_last_frame, bool verbatim_only, const FLAC__FrameHeader *frame_header, unsigned channels, const int32 *integer_signal[], const real *real_signal[], FLAC__BitBuffer *frame)
{
real fixed_residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1];
@ -798,171 +1212,4 @@ bool encoder_process_subframes_(FLAC__Encoder *encoder, bool is_last_frame, bool
return true;
}
unsigned encoder_evaluate_constant_subframe_(const int32 signal, unsigned bits_per_sample, FLAC__Subframe *subframe)
{
subframe->type = FLAC__SUBFRAME_TYPE_CONSTANT;
subframe->data.constant.value = signal;
return FLAC__SUBFRAME_TYPE_LEN + bits_per_sample;
}
unsigned encoder_evaluate_fixed_subframe_(const int32 signal[], int32 residual[], uint32 abs_residual[], unsigned blocksize, unsigned bits_per_sample, unsigned order, unsigned rice_parameter, unsigned max_partition_order, FLAC__Subframe *subframe)
{
unsigned i, residual_bits;
const unsigned residual_samples = blocksize - order;
FLAC__fixed_compute_residual(signal+order, residual_samples, order, residual);
subframe->type = FLAC__SUBFRAME_TYPE_FIXED;
subframe->data.fixed.entropy_coding_method.type = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE;
residual_bits = encoder_find_best_partition_order_(residual, abs_residual, residual_samples, order, rice_parameter, max_partition_order, &subframe->data.fixed.entropy_coding_method.data.partitioned_rice.order, subframe->data.fixed.entropy_coding_method.data.partitioned_rice.parameters);
subframe->data.fixed.order = order;
for(i = 0; i < order; i++)
subframe->data.fixed.warmup[i] = signal[i];
return FLAC__SUBFRAME_TYPE_LEN + (order * bits_per_sample) + residual_bits;
}
unsigned encoder_evaluate_lpc_subframe_(const int32 signal[], int32 residual[], uint32 abs_residual[], const real lp_coeff[], unsigned blocksize, unsigned bits_per_sample, unsigned order, unsigned qlp_coeff_precision, unsigned rice_parameter, unsigned max_partition_order, FLAC__Subframe *subframe)
{
int32 qlp_coeff[FLAC__MAX_LPC_ORDER];
unsigned i, residual_bits;
int quantization, ret;
const unsigned residual_samples = blocksize - order;
ret = FLAC__lpc_quantize_coefficients(lp_coeff, order, qlp_coeff_precision, bits_per_sample, qlp_coeff, &quantization);
if(ret != 0)
return 0; /* this is a hack to indicate to the caller that we can't do lp at this order on this subframe */
FLAC__lpc_compute_residual_from_qlp_coefficients(signal+order, residual_samples, qlp_coeff, order, quantization, residual);
subframe->type = FLAC__SUBFRAME_TYPE_LPC;
subframe->data.lpc.entropy_coding_method.type = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE;
residual_bits = encoder_find_best_partition_order_(residual, abs_residual, residual_samples, order, rice_parameter, max_partition_order, &subframe->data.lpc.entropy_coding_method.data.partitioned_rice.order, subframe->data.lpc.entropy_coding_method.data.partitioned_rice.parameters);
subframe->data.lpc.order = order;
subframe->data.lpc.qlp_coeff_precision = qlp_coeff_precision;
subframe->data.lpc.quantization_level = quantization;
memcpy(subframe->data.lpc.qlp_coeff, qlp_coeff, sizeof(int32)*FLAC__MAX_LPC_ORDER);
for(i = 0; i < order; i++)
subframe->data.lpc.warmup[i] = signal[i];
return FLAC__SUBFRAME_TYPE_LEN + FLAC__SUBFRAME_LPC_QLP_COEFF_PRECISION_LEN + FLAC__SUBFRAME_LPC_QLP_SHIFT_LEN + (order * (qlp_coeff_precision + bits_per_sample)) + residual_bits;
}
unsigned encoder_evaluate_verbatim_subframe_(unsigned blocksize, unsigned bits_per_sample, FLAC__Subframe *subframe)
{
subframe->type = FLAC__SUBFRAME_TYPE_VERBATIM;
return FLAC__SUBFRAME_TYPE_LEN + (blocksize * bits_per_sample);
}
unsigned encoder_find_best_partition_order_(const int32 residual[], uint32 abs_residual[], unsigned residual_samples, unsigned predictor_order, unsigned rice_parameter, unsigned max_partition_order, unsigned *best_partition_order, unsigned best_parameters[])
{
unsigned residual_bits, best_residual_bits = 0;
unsigned i, partition_order;
unsigned best_parameters_index = 0, parameters[2][1 << FLAC__MAX_RICE_PARTITION_ORDER];
int32 r;
/* compute the abs(residual) for use later */
for(i = 0; i < residual_samples; i++) {
r = residual[i];
abs_residual[i] = (uint32)(r<0? -r : r);
}
for(partition_order = 0; partition_order <= max_partition_order; partition_order++) {
if(!encoder_set_partitioned_rice_(abs_residual, residual_samples, predictor_order, rice_parameter, partition_order, parameters[!best_parameters_index], &residual_bits)) {
assert(best_residual_bits != 0);
break;
}
if(best_residual_bits == 0 || residual_bits < best_residual_bits) {
best_residual_bits = residual_bits;
*best_partition_order = partition_order;
best_parameters_index = !best_parameters_index;
}
}
memcpy(best_parameters, parameters[best_parameters_index], sizeof(unsigned)*(1<<(*best_partition_order)));
return best_residual_bits;
}
void encoder_promote_candidate_subframe_(FLAC__Encoder *encoder)
{
assert(encoder->state == FLAC__ENCODER_OK);
encoder->guts->best_subframe = encoder->guts->candidate_subframe;
encoder->guts->best_residual = !encoder->guts->best_residual;
}
#ifdef ESTIMATE_RICE_BITS
#undef ESTIMATE_RICE_BITS
#endif
#define ESTIMATE_RICE_BITS(value, parameter) ((value) >> (parameter))
bool encoder_set_partitioned_rice_(const uint32 abs_residual[], const unsigned residual_samples, const unsigned predictor_order, const unsigned rice_parameter, const unsigned partition_order, unsigned parameters[], unsigned *bits)
{
unsigned bits_ = FLAC__ENTROPY_CODING_METHOD_TYPE_LEN + FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN;
if(partition_order == 0) {
unsigned i;
#ifdef ESTIMATE_RICE_BITS
const unsigned rice_parameter_estimate = rice_parameter-1;
bits_ += (1+rice_parameter) * residual_samples;
#endif
parameters[0] = rice_parameter;
bits_ += FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN;
for(i = 0; i < residual_samples; i++)
#ifdef ESTIMATE_RICE_BITS
bits_ += ESTIMATE_RICE_BITS(abs_residual[i], rice_parameter_estimate);
#else
bits_ += FLAC__bitbuffer_rice_bits(residual[i], rice_parameter);
#endif
}
else {
unsigned i, j, k = 0, k_last = 0;
unsigned mean, parameter, partition_samples;
const unsigned max_parameter = (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN) - 1;
for(i = 0; i < (1u<<partition_order); i++) {
partition_samples = (residual_samples+predictor_order) >> partition_order;
if(i == 0) {
if(partition_samples <= predictor_order)
return false;
else
partition_samples -= predictor_order;
}
mean = partition_samples >> 1;
for(j = 0; j < partition_samples; j++, k++)
mean += abs_residual[k];
mean /= partition_samples;
/* calc parameter = floor(log2(mean)) + 1 */
parameter = 0;
while(mean) {
parameter++;
mean >>= 1;
}
if(parameter > max_parameter)
parameter = max_parameter;
parameters[i] = parameter;
bits_ += FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN;
#ifdef ESTIMATE_RICE_BITS
bits_ += (1+parameter) * partition_samples;
--parameter;
#endif
for(j = k_last; j < k; j++)
#ifdef ESTIMATE_RICE_BITS
bits_ += ESTIMATE_RICE_BITS(abs_residual[j], parameter);
#else
bits_ += FLAC__bitbuffer_rice_bits(residual[j], parameter);
#endif
k_last = k;
}
}
*bits = bits_;
return true;
}