mirror of
https://github.com/fmtlib/fmt.git
synced 2024-11-25 19:50:05 +00:00
Simplify integer checks
This commit is contained in:
parent
1882a7a2c1
commit
35a468ed38
@ -864,26 +864,27 @@ inline uint64_t umul128_upper64(uint64_t x, uint64_t y) FMT_NOEXCEPT {
|
||||
#endif
|
||||
}
|
||||
|
||||
// Computes upper 64 bits of multiplication of a 64-bit unsigned integer and a
|
||||
// Computes upper 128 bits of multiplication of a 64-bit unsigned integer and a
|
||||
// 128-bit unsigned integer.
|
||||
inline uint64_t umul192_upper64(uint64_t x, uint128_wrapper y) FMT_NOEXCEPT {
|
||||
uint128_wrapper g0 = umul128(x, y.high());
|
||||
g0 += umul128_upper64(x, y.low());
|
||||
return g0.high();
|
||||
inline uint128_wrapper umul192_upper128(uint64_t x,
|
||||
uint128_wrapper y) FMT_NOEXCEPT {
|
||||
uint128_wrapper r = umul128(x, y.high());
|
||||
r += umul128_upper64(x, y.low());
|
||||
return r;
|
||||
}
|
||||
|
||||
// Computes upper 32 bits of multiplication of a 32-bit unsigned integer and a
|
||||
// Computes upper 64 bits of multiplication of a 32-bit unsigned integer and a
|
||||
// 64-bit unsigned integer.
|
||||
inline uint32_t umul96_upper32(uint32_t x, uint64_t y) FMT_NOEXCEPT {
|
||||
return static_cast<uint32_t>(umul128_upper64(x, y));
|
||||
inline uint64_t umul96_upper64(uint32_t x, uint64_t y) FMT_NOEXCEPT {
|
||||
return umul128_upper64(uint64_t(x) << 32, y);
|
||||
}
|
||||
|
||||
// Computes middle 64 bits of multiplication of a 64-bit unsigned integer and a
|
||||
// Computes lower 128 bits of multiplication of a 64-bit unsigned integer and a
|
||||
// 128-bit unsigned integer.
|
||||
inline uint64_t umul192_middle64(uint64_t x, uint128_wrapper y) FMT_NOEXCEPT {
|
||||
uint64_t g01 = x * y.high();
|
||||
uint64_t g10 = umul128_upper64(x, y.low());
|
||||
return g01 + g10;
|
||||
inline uint64_t umul192_lower128(uint64_t x, uint128_wrapper y) FMT_NOEXCEPT {
|
||||
uint64_t high = x * y.high();
|
||||
uint128_wrapper high_low = umul128(x, y.low());
|
||||
return {high + high_low.high(), high_low.low()};
|
||||
}
|
||||
|
||||
// Computes lower 64 bits of multiplication of a 32-bit unsigned integer and a
|
||||
@ -1071,9 +1072,20 @@ template <> struct cache_accessor<float> {
|
||||
return pow10_significands[k - float_info<float>::min_k];
|
||||
}
|
||||
|
||||
static carrier_uint compute_mul(carrier_uint u,
|
||||
const cache_entry_type& cache) FMT_NOEXCEPT {
|
||||
return umul96_upper32(u, cache);
|
||||
struct compute_mul_result {
|
||||
carrier_uint result;
|
||||
bool is_integer;
|
||||
};
|
||||
struct compute_mul_parity_result {
|
||||
bool parity;
|
||||
bool is_integer;
|
||||
};
|
||||
|
||||
static compute_mul_result compute_mul(
|
||||
carrier_uint u, const cache_entry_type& cache) FMT_NOEXCEPT {
|
||||
auto r = umul96_upper64(u, cache);
|
||||
return {static_cast<carrier_uint>(r >> 32),
|
||||
static_cast<carrier_uint>(r) == 0};
|
||||
}
|
||||
|
||||
static uint32_t compute_delta(const cache_entry_type& cache,
|
||||
@ -1081,13 +1093,15 @@ template <> struct cache_accessor<float> {
|
||||
return static_cast<uint32_t>(cache >> (64 - 1 - beta_minus_1));
|
||||
}
|
||||
|
||||
static bool compute_mul_parity(carrier_uint two_f,
|
||||
const cache_entry_type& cache,
|
||||
int beta_minus_1) FMT_NOEXCEPT {
|
||||
static compute_mul_parity_result compute_mul_parity(
|
||||
carrier_uint two_f, const cache_entry_type& cache,
|
||||
int beta_minus_1) FMT_NOEXCEPT {
|
||||
FMT_ASSERT(beta_minus_1 >= 1, "");
|
||||
FMT_ASSERT(beta_minus_1 < 64, "");
|
||||
|
||||
return ((umul96_lower64(two_f, cache) >> (64 - beta_minus_1)) & 1) != 0;
|
||||
auto r = umul96_lower64(two_f, cache);
|
||||
return {((r >> (64 - beta_minus_1)) & 1) != 0,
|
||||
static_cast<uint32_t>(r >> (32 - beta_minus_1)) == 0};
|
||||
}
|
||||
|
||||
static carrier_uint compute_left_endpoint_for_shorter_interval_case(
|
||||
@ -1838,9 +1852,19 @@ template <> struct cache_accessor<double> {
|
||||
#endif
|
||||
}
|
||||
|
||||
static carrier_uint compute_mul(carrier_uint u,
|
||||
const cache_entry_type& cache) FMT_NOEXCEPT {
|
||||
return umul192_upper64(u, cache);
|
||||
struct compute_mul_result {
|
||||
carrier_uint result;
|
||||
bool is_integer;
|
||||
};
|
||||
struct compute_mul_parity_result {
|
||||
bool parity;
|
||||
bool is_integer;
|
||||
};
|
||||
|
||||
static compute_mul_result compute_mul(
|
||||
carrier_uint u, const cache_entry_type& cache) FMT_NOEXCEPT {
|
||||
auto r = umul192_upper128(u, cache);
|
||||
return {r.high(), r.low() == 0};
|
||||
}
|
||||
|
||||
static uint32_t compute_delta(cache_entry_type const& cache,
|
||||
@ -1848,13 +1872,16 @@ template <> struct cache_accessor<double> {
|
||||
return static_cast<uint32_t>(cache.high() >> (64 - 1 - beta_minus_1));
|
||||
}
|
||||
|
||||
static bool compute_mul_parity(carrier_uint two_f,
|
||||
const cache_entry_type& cache,
|
||||
int beta_minus_1) FMT_NOEXCEPT {
|
||||
static compute_mul_parity_result compute_mul_parity(
|
||||
carrier_uint two_f, const cache_entry_type& cache,
|
||||
int beta_minus_1) FMT_NOEXCEPT {
|
||||
FMT_ASSERT(beta_minus_1 >= 1, "");
|
||||
FMT_ASSERT(beta_minus_1 < 64, "");
|
||||
|
||||
return ((umul192_middle64(two_f, cache) >> (64 - beta_minus_1)) & 1) != 0;
|
||||
auto r = umul192_lower128(two_f, cache);
|
||||
return {
|
||||
((r.high() >> (64 - beta_minus_1)) & 1) != 0,
|
||||
((r.high() << beta_minus_1) | (r.low() >> (64 - beta_minus_1))) == 0};
|
||||
}
|
||||
|
||||
static carrier_uint compute_left_endpoint_for_shorter_interval_case(
|
||||
@ -2114,38 +2141,49 @@ template <typename T> decimal_fp<T> to_decimal(T x) FMT_NOEXCEPT {
|
||||
// 10^kappa <= deltai < 10^(kappa + 1)
|
||||
const uint32_t deltai = cache_accessor<T>::compute_delta(cache, beta_minus_1);
|
||||
const carrier_uint two_fc = significand << 1;
|
||||
const carrier_uint two_fr = two_fc | 1;
|
||||
const carrier_uint zi =
|
||||
cache_accessor<T>::compute_mul(two_fr << beta_minus_1, cache);
|
||||
const typename cache_accessor<T>::compute_mul_result z_mul =
|
||||
cache_accessor<T>::compute_mul((two_fc | 1) << beta_minus_1, cache);
|
||||
|
||||
// Step 2: Try larger divisor; remove trailing zeros if necessary.
|
||||
|
||||
// Using an upper bound on zi, we might be able to optimize the division
|
||||
// better than the compiler; we are computing zi / big_divisor here.
|
||||
decimal_fp<T> ret_value;
|
||||
ret_value.significand = divide_by_10_to_kappa_plus_1(zi);
|
||||
uint32_t r = static_cast<uint32_t>(zi - float_info<T>::big_divisor *
|
||||
ret_value.significand);
|
||||
ret_value.significand = divide_by_10_to_kappa_plus_1(z_mul.result);
|
||||
const uint32_t r = static_cast<uint32_t>(
|
||||
z_mul.result - float_info<T>::big_divisor * ret_value.significand);
|
||||
|
||||
if (r > deltai) {
|
||||
goto small_divisor_case_label;
|
||||
} else if (r < deltai) {
|
||||
// Exclude the right endpoint if necessary.
|
||||
if (r == 0 && !include_right_endpoint &&
|
||||
is_endpoint_integer<T>(two_fr, exponent, minus_k)) {
|
||||
if (r == 0 && z_mul.is_integer && !include_right_endpoint) {
|
||||
--ret_value.significand;
|
||||
r = float_info<T>::big_divisor;
|
||||
goto small_divisor_case_label;
|
||||
}
|
||||
} else {
|
||||
// r == deltai; compare fractional parts
|
||||
// Check conditions in the order different from the paper
|
||||
// to take advantage of short-circuiting.
|
||||
// r == deltai; compare fractional parts.
|
||||
const carrier_uint two_fl = two_fc - 1;
|
||||
if ((!include_left_endpoint ||
|
||||
!is_endpoint_integer<T>(two_fl, exponent, minus_k)) &&
|
||||
!cache_accessor<T>::compute_mul_parity(two_fl, cache, beta_minus_1)) {
|
||||
goto small_divisor_case_label;
|
||||
|
||||
if (!include_left_endpoint ||
|
||||
exponent < float_info<T>::case_fc_pm_half_lower_threshold ||
|
||||
exponent > float_info<T>::divisibility_check_by_5_threshold) {
|
||||
// If the left endpoint is not included, the condition for
|
||||
// success is z^(f) < delta^(f) (odd parity).
|
||||
// Otherwise, the inequalities on exponent ensure that
|
||||
// x is not an integer, so if z^(f) >= delta^(f) (even parity), we in fact
|
||||
// have strict inequality.
|
||||
if (!cache_accessor<T>::compute_mul_parity(two_fl, cache, beta_minus_1)
|
||||
.parity) {
|
||||
goto small_divisor_case_label;
|
||||
}
|
||||
} else {
|
||||
const typename cache_accessor<T>::compute_mul_parity_result x_mul = =
|
||||
compute_mul_parity(two_fl, cache, beta_minus_1);
|
||||
if (!x_mul.parity && !x_mul.is_integer) {
|
||||
goto small_divisor_case_label;
|
||||
}
|
||||
}
|
||||
}
|
||||
ret_value.exponent = minus_k + float_info<T>::kappa + 1;
|
||||
@ -2160,37 +2198,40 @@ small_divisor_case_label:
|
||||
ret_value.significand *= 10;
|
||||
ret_value.exponent = minus_k + float_info<T>::kappa;
|
||||
|
||||
auto dist = r - (deltai / 2) + (float_info<T>::small_divisor / 2);
|
||||
bool const approx_y_parity = ((dist ^ (small_divisor / 2)) & 1) != 0;
|
||||
uint32_t dist = r - (deltai / 2) + (float_info<T>::small_divisor / 2);
|
||||
const bool approx_y_parity =
|
||||
((dist ^ (float_info<T>::small_divisor / 2)) & 1) != 0;
|
||||
|
||||
// Is dist divisible by 10^kappa?
|
||||
bool divisible_by_10_to_the_kappa =
|
||||
const bool divisible_by_small_divisor =
|
||||
check_divisibility_and_divide_by_pow10<float_info<T>::kappa>(dist);
|
||||
|
||||
// Add dist / 10^kappa to the significand.
|
||||
ret_value.significand += dist;
|
||||
|
||||
if (divisible_by_10_to_the_kappa) {
|
||||
if (divisible_by_small_divisor) {
|
||||
// Check z^(f) >= epsilon^(f).
|
||||
// We have either yi == zi - epsiloni or yi == (zi - epsiloni) - 1,
|
||||
// where yi == zi - epsiloni if and only if z^(f) >= epsilon^(f)
|
||||
// Since there are only 2 possibilities, we only need to care about the
|
||||
// parity. Also, zi and r should have the same parity since the divisor
|
||||
// is an even number.
|
||||
if (cache_accessor<T>::compute_mul_parity(two_fc, cache, beta_minus_1) !=
|
||||
approx_y_parity) {
|
||||
const typename cache_accessor<T>::compute_mul_parity_result y_mul = =
|
||||
compute_mul_parity(two_fc, cache, beta_minus_1);
|
||||
|
||||
if (y_mul.parity != approx_y_parity) {
|
||||
--ret_value.significand;
|
||||
} else {
|
||||
// If z^(f) >= epsilon^(f), we might have a tie
|
||||
// when z^(f) == epsilon^(f), or equivalently, when y is an integer
|
||||
if (is_center_integer<T>(two_fc, exponent, minus_k)) {
|
||||
if (y_mul.is_integer) {
|
||||
ret_value.significand = ret_value.significand % 2 == 0
|
||||
? ret_value.significand
|
||||
: ret_value.significand - 1;
|
||||
}
|
||||
}
|
||||
return ret_value;
|
||||
}
|
||||
return ret_value;
|
||||
}
|
||||
} // namespace dragonbox
|
||||
|
||||
// Formats a floating-point number using a variation of the Fixed-Precision
|
||||
|
Loading…
Reference in New Issue
Block a user