mirror of
https://github.com/fmtlib/fmt.git
synced 2024-12-02 06:20:09 +00:00
Refactor digit generation
This commit is contained in:
parent
b1f7cca89e
commit
4c66dad8c1
@ -467,10 +467,18 @@ inline round_direction get_round_direction(uint64_t divisor, uint64_t remainder,
|
||||
return unknown;
|
||||
}
|
||||
|
||||
namespace digits {
|
||||
enum result {
|
||||
more, // Generate more digits.
|
||||
done, // Done generating digits.
|
||||
error // Digit generation cancelled due to an error.
|
||||
};
|
||||
}
|
||||
|
||||
// Generates output using Grisu2 digit-gen algorithm.
|
||||
template <typename Handler>
|
||||
int grisu2_gen_digits(char* buf, fp value, uint64_t error, int& exp,
|
||||
Handler handler) {
|
||||
digits::result grisu2_gen_digits(fp value, uint64_t error, int& exp,
|
||||
Handler& handler) {
|
||||
fp one(1ull << -value.e, value.e);
|
||||
// The integral part of scaled value (p1 in Grisu) = value / one. It cannot be
|
||||
// zero because it contains a product of two 64-bit numbers with MSB set (due
|
||||
@ -481,11 +489,9 @@ int grisu2_gen_digits(char* buf, fp value, uint64_t error, int& exp,
|
||||
// The fractional part of scaled value (p2 in Grisu) c = value % one.
|
||||
uint64_t fractional = value.f & (one.f - 1);
|
||||
exp = count_digits(integral); // kappa in Grisu.
|
||||
int size = 0;
|
||||
if (handler.on_start(buf, size, data::POWERS_OF_10_64[exp] << -one.e, value.f,
|
||||
error, exp)) {
|
||||
return size;
|
||||
}
|
||||
auto result = handler.on_start(data::POWERS_OF_10_64[exp] << -one.e, value.f,
|
||||
error, exp);
|
||||
if (result != digits::more) return result;
|
||||
// Generate digits for the integral part. This can produce up to 10 digits.
|
||||
do {
|
||||
uint32_t digit = 0;
|
||||
@ -535,29 +541,31 @@ int grisu2_gen_digits(char* buf, fp value, uint64_t error, int& exp,
|
||||
default:
|
||||
FMT_ASSERT(false, "invalid number of digits");
|
||||
}
|
||||
buf[size++] = static_cast<char>('0' + digit);
|
||||
--exp;
|
||||
uint64_t remainder =
|
||||
(static_cast<uint64_t>(integral) << -one.e) + fractional;
|
||||
if (handler(buf, size, data::POWERS_OF_10_64[exp] << -one.e, remainder,
|
||||
error, exp, true)) {
|
||||
return size;
|
||||
}
|
||||
auto result = handler.on_digit(static_cast<char>('0' + digit),
|
||||
data::POWERS_OF_10_64[exp] << -one.e, remainder,
|
||||
error, exp, true);
|
||||
if (result != digits::more) return result;
|
||||
} while (exp > 0);
|
||||
// Generate digits for the fractional part.
|
||||
for (;;) {
|
||||
fractional *= 10;
|
||||
error *= 10;
|
||||
char digit = static_cast<char>(fractional >> -one.e);
|
||||
buf[size++] = static_cast<char>('0' + digit);
|
||||
char digit =
|
||||
static_cast<char>('0' + static_cast<char>(fractional >> -one.e));
|
||||
fractional &= one.f - 1;
|
||||
--exp;
|
||||
if (handler(buf, size, one.f, fractional, error, exp, false)) return size;
|
||||
auto result = handler.on_digit(digit, one.f, fractional, error, exp, false);
|
||||
if (result != digits::more) return result;
|
||||
}
|
||||
}
|
||||
|
||||
// The fixed precision digit handler.
|
||||
struct fixed_handler {
|
||||
char* buf;
|
||||
int size;
|
||||
int precision;
|
||||
int exp10;
|
||||
bool fixed;
|
||||
@ -566,74 +574,61 @@ struct fixed_handler {
|
||||
return full_exp <= 0 && -full_exp >= precision;
|
||||
}
|
||||
|
||||
bool on_start(char* buf, int& size, uint64_t divisor, uint64_t remainder,
|
||||
uint64_t error, int& exp) {
|
||||
if (!fixed) return false;
|
||||
digits::result on_start(uint64_t divisor, uint64_t remainder, uint64_t error,
|
||||
int& exp) {
|
||||
if (!fixed) return digits::more;
|
||||
int full_exp = exp + exp10;
|
||||
if (full_exp >= 0) precision += full_exp;
|
||||
if (!enough_precision(full_exp)) return false;
|
||||
switch (get_round_direction(divisor, remainder, error)) {
|
||||
case unknown:
|
||||
size = -1;
|
||||
break;
|
||||
case up:
|
||||
buf[size++] = '1';
|
||||
break;
|
||||
case down:
|
||||
break;
|
||||
}
|
||||
return true;
|
||||
if (!enough_precision(full_exp)) return digits::more;
|
||||
auto dir = get_round_direction(divisor, remainder, error);
|
||||
if (dir == up) buf[size++] = '1';
|
||||
return dir != unknown ? digits::done : digits::error;
|
||||
}
|
||||
|
||||
// TODO: test
|
||||
bool operator()(char* buf, int& size, uint64_t divisor, uint64_t remainder,
|
||||
uint64_t error, int& exp, bool integral) const {
|
||||
digits::result on_digit(char digit, uint64_t divisor, uint64_t remainder,
|
||||
uint64_t error, int& exp, bool integral) {
|
||||
assert(remainder < divisor);
|
||||
if (size != precision && !enough_precision(exp + exp10)) return false;
|
||||
buf[size++] = digit;
|
||||
if (size != precision && !enough_precision(exp + exp10))
|
||||
return digits::more;
|
||||
if (!integral) {
|
||||
// Check if error * 2 < divisor with overflow prevention.
|
||||
// The check is not needed for the integral part because error = 1
|
||||
// and divisor > (1 << 32) there.
|
||||
if (error >= divisor || error >= divisor - error) {
|
||||
size = -1;
|
||||
return true;
|
||||
}
|
||||
if (error >= divisor || error >= divisor - error)
|
||||
return digits::error;
|
||||
} else {
|
||||
assert(error == 1 && divisor > 2);
|
||||
}
|
||||
switch (get_round_direction(divisor, remainder, error)) {
|
||||
case unknown:
|
||||
size = -1;
|
||||
break;
|
||||
case up:
|
||||
++buf[size - 1];
|
||||
for (int i = size - 1; i > 0 && buf[i] > '9'; --i) {
|
||||
buf[i] = '0';
|
||||
++buf[i - 1];
|
||||
}
|
||||
if (buf[0] > '9') {
|
||||
buf[0] = '1';
|
||||
++exp;
|
||||
}
|
||||
break;
|
||||
case down:
|
||||
break;
|
||||
auto dir = get_round_direction(divisor, remainder, error);
|
||||
if (dir != up) return dir == down ? digits::done : digits::error;
|
||||
++buf[size - 1];
|
||||
for (int i = size - 1; i > 0 && buf[i] > '9'; --i) {
|
||||
buf[i] = '0';
|
||||
++buf[i - 1];
|
||||
}
|
||||
return true;
|
||||
if (buf[0] > '9') {
|
||||
buf[0] = '1';
|
||||
++exp;
|
||||
}
|
||||
return digits::done;
|
||||
}
|
||||
};
|
||||
|
||||
// The shortest representation digit handler.
|
||||
struct shortest_handler {
|
||||
char* buf;
|
||||
int size;
|
||||
fp diff; // wp_w in Grisu.
|
||||
|
||||
bool on_start(char*, int&, uint64_t, uint64_t, uint64_t, int&) {
|
||||
return false;
|
||||
digits::result on_start(uint64_t, uint64_t, uint64_t, int&) {
|
||||
return digits::more;
|
||||
}
|
||||
|
||||
bool operator()(char* buf, int& size, uint64_t divisor, uint64_t remainder,
|
||||
uint64_t error, int& exp, bool integral) {
|
||||
if (remainder > error) return false;
|
||||
digits::result on_digit(char digit, uint64_t divisor, uint64_t remainder,
|
||||
uint64_t error, int exp, bool integral) {
|
||||
buf[size++] = digit;
|
||||
if (remainder > error) return digits::more;
|
||||
uint64_t d = integral ? diff.f : diff.f * data::POWERS_OF_10_64[-exp];
|
||||
while (
|
||||
remainder < d && error - remainder >= divisor &&
|
||||
@ -641,7 +636,7 @@ struct shortest_handler {
|
||||
--buf[size - 1];
|
||||
remainder += divisor;
|
||||
}
|
||||
return true;
|
||||
return digits::done;
|
||||
}
|
||||
};
|
||||
|
||||
@ -670,11 +665,10 @@ grisu2_format(Double value, buffer& buf, int precision, bool fixed, int& exp) {
|
||||
auto cached_pow = get_cached_power(
|
||||
min_exp - (fp_value.e + fp::significand_size), cached_exp10);
|
||||
fp_value = fp_value * cached_pow;
|
||||
int size =
|
||||
grisu2_gen_digits(buf.data(), fp_value, 1, exp,
|
||||
fixed_handler{precision, -cached_exp10, fixed});
|
||||
if (size < 0) return false;
|
||||
buf.resize(to_unsigned(size));
|
||||
fixed_handler handler{buf.data(), 0, precision, -cached_exp10, fixed};
|
||||
if (grisu2_gen_digits(fp_value, 1, exp, handler) == digits::error)
|
||||
return false;
|
||||
buf.resize(to_unsigned(handler.size));
|
||||
} else {
|
||||
fp lower, upper; // w^- and w^+ in the Grisu paper.
|
||||
fp_value.compute_boundaries(lower, upper);
|
||||
@ -689,10 +683,10 @@ grisu2_format(Double value, buffer& buf, int precision, bool fixed, int& exp) {
|
||||
fp_value = fp_value * cached_pow;
|
||||
lower = lower * cached_pow; // \tilde{M}^- in Grisu.
|
||||
++lower.f; // \tilde{M}^- + 1 ulp -> M^-_{\uparrow}.
|
||||
int size = grisu2_gen_digits(buf.data(), upper, upper.f - lower.f, exp,
|
||||
shortest_handler{upper - fp_value});
|
||||
if (size < 0) return false;
|
||||
buf.resize(to_unsigned(size));
|
||||
shortest_handler handler{buf.data(), 0, upper - fp_value};
|
||||
auto result = grisu2_gen_digits(upper, upper.f - lower.f, exp, handler);
|
||||
if (result == digits::error) return false;
|
||||
buf.resize(to_unsigned(handler.size));
|
||||
}
|
||||
exp -= cached_exp10;
|
||||
return true;
|
||||
|
Loading…
Reference in New Issue
Block a user