mirror of
https://github.com/fmtlib/fmt.git
synced 2024-12-04 15:20:06 +00:00
53ca0cbe75
* all GTest/GMock files moved to `test/gtest` directory * `CMakeLists.txt` created in `test/gtest` from `CMakeLists.txt` in `test` * GTest/GMock target in CMake renamed to `gtest` (was `gmock`) * CMake `gtest` target updated to export includes as "gtest/gtest.h" or "gmock/gmock.h" only * includes in tests updated: "gtest.h" -> "gtest/gtest.h", "gmock.h" -> "gmock/gmock.h" * removed duplications of `target_include_directories` for GTest/GMock directories (CMake manages them)
11646 lines
444 KiB
C++
11646 lines
444 KiB
C++
// Copyright 2007, Google Inc.
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
// Google Mock - a framework for writing C++ mock classes.
|
|
//
|
|
// This is the main header file a user should include.
|
|
|
|
// GOOGLETEST_CM0002 DO NOT DELETE
|
|
|
|
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_H_
|
|
#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_H_
|
|
|
|
// This file implements the following syntax:
|
|
//
|
|
// ON_CALL(mock_object, Method(...))
|
|
// .With(...) ?
|
|
// .WillByDefault(...);
|
|
//
|
|
// where With() is optional and WillByDefault() must appear exactly
|
|
// once.
|
|
//
|
|
// EXPECT_CALL(mock_object, Method(...))
|
|
// .With(...) ?
|
|
// .Times(...) ?
|
|
// .InSequence(...) *
|
|
// .WillOnce(...) *
|
|
// .WillRepeatedly(...) ?
|
|
// .RetiresOnSaturation() ? ;
|
|
//
|
|
// where all clauses are optional and WillOnce() can be repeated.
|
|
|
|
// Copyright 2007, Google Inc.
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
// Google Mock - a framework for writing C++ mock classes.
|
|
//
|
|
// The ACTION* family of macros can be used in a namespace scope to
|
|
// define custom actions easily. The syntax:
|
|
//
|
|
// ACTION(name) { statements; }
|
|
//
|
|
// will define an action with the given name that executes the
|
|
// statements. The value returned by the statements will be used as
|
|
// the return value of the action. Inside the statements, you can
|
|
// refer to the K-th (0-based) argument of the mock function by
|
|
// 'argK', and refer to its type by 'argK_type'. For example:
|
|
//
|
|
// ACTION(IncrementArg1) {
|
|
// arg1_type temp = arg1;
|
|
// return ++(*temp);
|
|
// }
|
|
//
|
|
// allows you to write
|
|
//
|
|
// ...WillOnce(IncrementArg1());
|
|
//
|
|
// You can also refer to the entire argument tuple and its type by
|
|
// 'args' and 'args_type', and refer to the mock function type and its
|
|
// return type by 'function_type' and 'return_type'.
|
|
//
|
|
// Note that you don't need to specify the types of the mock function
|
|
// arguments. However rest assured that your code is still type-safe:
|
|
// you'll get a compiler error if *arg1 doesn't support the ++
|
|
// operator, or if the type of ++(*arg1) isn't compatible with the
|
|
// mock function's return type, for example.
|
|
//
|
|
// Sometimes you'll want to parameterize the action. For that you can use
|
|
// another macro:
|
|
//
|
|
// ACTION_P(name, param_name) { statements; }
|
|
//
|
|
// For example:
|
|
//
|
|
// ACTION_P(Add, n) { return arg0 + n; }
|
|
//
|
|
// will allow you to write:
|
|
//
|
|
// ...WillOnce(Add(5));
|
|
//
|
|
// Note that you don't need to provide the type of the parameter
|
|
// either. If you need to reference the type of a parameter named
|
|
// 'foo', you can write 'foo_type'. For example, in the body of
|
|
// ACTION_P(Add, n) above, you can write 'n_type' to refer to the type
|
|
// of 'n'.
|
|
//
|
|
// We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P10 to support
|
|
// multi-parameter actions.
|
|
//
|
|
// For the purpose of typing, you can view
|
|
//
|
|
// ACTION_Pk(Foo, p1, ..., pk) { ... }
|
|
//
|
|
// as shorthand for
|
|
//
|
|
// template <typename p1_type, ..., typename pk_type>
|
|
// FooActionPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... }
|
|
//
|
|
// In particular, you can provide the template type arguments
|
|
// explicitly when invoking Foo(), as in Foo<long, bool>(5, false);
|
|
// although usually you can rely on the compiler to infer the types
|
|
// for you automatically. You can assign the result of expression
|
|
// Foo(p1, ..., pk) to a variable of type FooActionPk<p1_type, ...,
|
|
// pk_type>. This can be useful when composing actions.
|
|
//
|
|
// You can also overload actions with different numbers of parameters:
|
|
//
|
|
// ACTION_P(Plus, a) { ... }
|
|
// ACTION_P2(Plus, a, b) { ... }
|
|
//
|
|
// While it's tempting to always use the ACTION* macros when defining
|
|
// a new action, you should also consider implementing ActionInterface
|
|
// or using MakePolymorphicAction() instead, especially if you need to
|
|
// use the action a lot. While these approaches require more work,
|
|
// they give you more control on the types of the mock function
|
|
// arguments and the action parameters, which in general leads to
|
|
// better compiler error messages that pay off in the long run. They
|
|
// also allow overloading actions based on parameter types (as opposed
|
|
// to just based on the number of parameters).
|
|
//
|
|
// CAVEAT:
|
|
//
|
|
// ACTION*() can only be used in a namespace scope as templates cannot be
|
|
// declared inside of a local class.
|
|
// Users can, however, define any local functors (e.g. a lambda) that
|
|
// can be used as actions.
|
|
//
|
|
// MORE INFORMATION:
|
|
//
|
|
// To learn more about using these macros, please search for 'ACTION' on
|
|
// https://github.com/google/googletest/blob/master/docs/gmock_cook_book.md
|
|
|
|
// GOOGLETEST_CM0002 DO NOT DELETE
|
|
|
|
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
|
|
#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
|
|
|
|
#ifndef _WIN32_WCE
|
|
# include <errno.h>
|
|
#endif
|
|
|
|
#include <algorithm>
|
|
#include <functional>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <tuple>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
|
|
// Copyright 2007, Google Inc.
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
// Google Mock - a framework for writing C++ mock classes.
|
|
//
|
|
// This file defines some utilities useful for implementing Google
|
|
// Mock. They are subject to change without notice, so please DO NOT
|
|
// USE THEM IN USER CODE.
|
|
|
|
// GOOGLETEST_CM0002 DO NOT DELETE
|
|
|
|
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_
|
|
#define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_
|
|
|
|
#include <stdio.h>
|
|
#include <ostream> // NOLINT
|
|
#include <string>
|
|
#include <type_traits>
|
|
// Copyright 2008, Google Inc.
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
//
|
|
// Low-level types and utilities for porting Google Mock to various
|
|
// platforms. All macros ending with _ and symbols defined in an
|
|
// internal namespace are subject to change without notice. Code
|
|
// outside Google Mock MUST NOT USE THEM DIRECTLY. Macros that don't
|
|
// end with _ are part of Google Mock's public API and can be used by
|
|
// code outside Google Mock.
|
|
|
|
// GOOGLETEST_CM0002 DO NOT DELETE
|
|
|
|
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_
|
|
#define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_
|
|
|
|
#include <assert.h>
|
|
#include <stdlib.h>
|
|
#include <cstdint>
|
|
#include <iostream>
|
|
|
|
// Most of the utilities needed for porting Google Mock are also
|
|
// required for Google Test and are defined in gtest-port.h.
|
|
//
|
|
// Note to maintainers: to reduce code duplication, prefer adding
|
|
// portability utilities to Google Test's gtest-port.h instead of
|
|
// here, as Google Mock depends on Google Test. Only add a utility
|
|
// here if it's truly specific to Google Mock.
|
|
|
|
#include "gtest/gtest.h"
|
|
// Copyright 2015, Google Inc.
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Injection point for custom user configurations. See README for details
|
|
//
|
|
// ** Custom implementation starts here **
|
|
|
|
// GOOGLETEST_CM0002 DO NOT DELETE
|
|
|
|
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_PORT_H_
|
|
#define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_PORT_H_
|
|
|
|
#endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_PORT_H_
|
|
|
|
// For MS Visual C++, check the compiler version. At least VS 2015 is
|
|
// required to compile Google Mock.
|
|
#if defined(_MSC_VER) && _MSC_VER < 1900
|
|
# error "At least Visual C++ 2015 (14.0) is required to compile Google Mock."
|
|
#endif
|
|
|
|
// Macro for referencing flags. This is public as we want the user to
|
|
// use this syntax to reference Google Mock flags.
|
|
#define GMOCK_FLAG(name) FLAGS_gmock_##name
|
|
|
|
#if !defined(GMOCK_DECLARE_bool_)
|
|
|
|
// Macros for declaring flags.
|
|
# define GMOCK_DECLARE_bool_(name) extern GTEST_API_ bool GMOCK_FLAG(name)
|
|
# define GMOCK_DECLARE_int32_(name) extern GTEST_API_ int32_t GMOCK_FLAG(name)
|
|
# define GMOCK_DECLARE_string_(name) \
|
|
extern GTEST_API_ ::std::string GMOCK_FLAG(name)
|
|
|
|
// Macros for defining flags.
|
|
# define GMOCK_DEFINE_bool_(name, default_val, doc) \
|
|
GTEST_API_ bool GMOCK_FLAG(name) = (default_val)
|
|
# define GMOCK_DEFINE_int32_(name, default_val, doc) \
|
|
GTEST_API_ int32_t GMOCK_FLAG(name) = (default_val)
|
|
# define GMOCK_DEFINE_string_(name, default_val, doc) \
|
|
GTEST_API_ ::std::string GMOCK_FLAG(name) = (default_val)
|
|
|
|
#endif // !defined(GMOCK_DECLARE_bool_)
|
|
|
|
#endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_
|
|
|
|
namespace testing {
|
|
|
|
template <typename>
|
|
class Matcher;
|
|
|
|
namespace internal {
|
|
|
|
// Silence MSVC C4100 (unreferenced formal parameter) and
|
|
// C4805('==': unsafe mix of type 'const int' and type 'const bool')
|
|
#ifdef _MSC_VER
|
|
# pragma warning(push)
|
|
# pragma warning(disable:4100)
|
|
# pragma warning(disable:4805)
|
|
#endif
|
|
|
|
// Joins a vector of strings as if they are fields of a tuple; returns
|
|
// the joined string.
|
|
GTEST_API_ std::string JoinAsTuple(const Strings& fields);
|
|
|
|
// Converts an identifier name to a space-separated list of lower-case
|
|
// words. Each maximum substring of the form [A-Za-z][a-z]*|\d+ is
|
|
// treated as one word. For example, both "FooBar123" and
|
|
// "foo_bar_123" are converted to "foo bar 123".
|
|
GTEST_API_ std::string ConvertIdentifierNameToWords(const char* id_name);
|
|
|
|
// GetRawPointer(p) returns the raw pointer underlying p when p is a
|
|
// smart pointer, or returns p itself when p is already a raw pointer.
|
|
// The following default implementation is for the smart pointer case.
|
|
template <typename Pointer>
|
|
inline const typename Pointer::element_type* GetRawPointer(const Pointer& p) {
|
|
return p.get();
|
|
}
|
|
// This overloaded version is for the raw pointer case.
|
|
template <typename Element>
|
|
inline Element* GetRawPointer(Element* p) { return p; }
|
|
|
|
// MSVC treats wchar_t as a native type usually, but treats it as the
|
|
// same as unsigned short when the compiler option /Zc:wchar_t- is
|
|
// specified. It defines _NATIVE_WCHAR_T_DEFINED symbol when wchar_t
|
|
// is a native type.
|
|
#if defined(_MSC_VER) && !defined(_NATIVE_WCHAR_T_DEFINED)
|
|
// wchar_t is a typedef.
|
|
#else
|
|
# define GMOCK_WCHAR_T_IS_NATIVE_ 1
|
|
#endif
|
|
|
|
// In what follows, we use the term "kind" to indicate whether a type
|
|
// is bool, an integer type (excluding bool), a floating-point type,
|
|
// or none of them. This categorization is useful for determining
|
|
// when a matcher argument type can be safely converted to another
|
|
// type in the implementation of SafeMatcherCast.
|
|
enum TypeKind {
|
|
kBool, kInteger, kFloatingPoint, kOther
|
|
};
|
|
|
|
// KindOf<T>::value is the kind of type T.
|
|
template <typename T> struct KindOf {
|
|
enum { value = kOther }; // The default kind.
|
|
};
|
|
|
|
// This macro declares that the kind of 'type' is 'kind'.
|
|
#define GMOCK_DECLARE_KIND_(type, kind) \
|
|
template <> struct KindOf<type> { enum { value = kind }; }
|
|
|
|
GMOCK_DECLARE_KIND_(bool, kBool);
|
|
|
|
// All standard integer types.
|
|
GMOCK_DECLARE_KIND_(char, kInteger);
|
|
GMOCK_DECLARE_KIND_(signed char, kInteger);
|
|
GMOCK_DECLARE_KIND_(unsigned char, kInteger);
|
|
GMOCK_DECLARE_KIND_(short, kInteger); // NOLINT
|
|
GMOCK_DECLARE_KIND_(unsigned short, kInteger); // NOLINT
|
|
GMOCK_DECLARE_KIND_(int, kInteger);
|
|
GMOCK_DECLARE_KIND_(unsigned int, kInteger);
|
|
GMOCK_DECLARE_KIND_(long, kInteger); // NOLINT
|
|
GMOCK_DECLARE_KIND_(unsigned long, kInteger); // NOLINT
|
|
GMOCK_DECLARE_KIND_(long long, kInteger); // NOLINT
|
|
GMOCK_DECLARE_KIND_(unsigned long long, kInteger); // NOLINT
|
|
|
|
#if GMOCK_WCHAR_T_IS_NATIVE_
|
|
GMOCK_DECLARE_KIND_(wchar_t, kInteger);
|
|
#endif
|
|
|
|
// All standard floating-point types.
|
|
GMOCK_DECLARE_KIND_(float, kFloatingPoint);
|
|
GMOCK_DECLARE_KIND_(double, kFloatingPoint);
|
|
GMOCK_DECLARE_KIND_(long double, kFloatingPoint);
|
|
|
|
#undef GMOCK_DECLARE_KIND_
|
|
|
|
// Evaluates to the kind of 'type'.
|
|
#define GMOCK_KIND_OF_(type) \
|
|
static_cast< ::testing::internal::TypeKind>( \
|
|
::testing::internal::KindOf<type>::value)
|
|
|
|
// LosslessArithmeticConvertibleImpl<kFromKind, From, kToKind, To>::value
|
|
// is true if and only if arithmetic type From can be losslessly converted to
|
|
// arithmetic type To.
|
|
//
|
|
// It's the user's responsibility to ensure that both From and To are
|
|
// raw (i.e. has no CV modifier, is not a pointer, and is not a
|
|
// reference) built-in arithmetic types, kFromKind is the kind of
|
|
// From, and kToKind is the kind of To; the value is
|
|
// implementation-defined when the above pre-condition is violated.
|
|
template <TypeKind kFromKind, typename From, TypeKind kToKind, typename To>
|
|
using LosslessArithmeticConvertibleImpl = std::integral_constant<
|
|
bool,
|
|
// clang-format off
|
|
// Converting from bool is always lossless
|
|
(kFromKind == kBool) ? true
|
|
// Converting between any other type kinds will be lossy if the type
|
|
// kinds are not the same.
|
|
: (kFromKind != kToKind) ? false
|
|
: (kFromKind == kInteger &&
|
|
// Converting between integers of different widths is allowed so long
|
|
// as the conversion does not go from signed to unsigned.
|
|
(((sizeof(From) < sizeof(To)) &&
|
|
!(std::is_signed<From>::value && !std::is_signed<To>::value)) ||
|
|
// Converting between integers of the same width only requires the
|
|
// two types to have the same signedness.
|
|
((sizeof(From) == sizeof(To)) &&
|
|
(std::is_signed<From>::value == std::is_signed<To>::value)))
|
|
) ? true
|
|
// Floating point conversions are lossless if and only if `To` is at least
|
|
// as wide as `From`.
|
|
: (kFromKind == kFloatingPoint && (sizeof(From) <= sizeof(To))) ? true
|
|
: false
|
|
// clang-format on
|
|
>;
|
|
|
|
// LosslessArithmeticConvertible<From, To>::value is true if and only if
|
|
// arithmetic type From can be losslessly converted to arithmetic type To.
|
|
//
|
|
// It's the user's responsibility to ensure that both From and To are
|
|
// raw (i.e. has no CV modifier, is not a pointer, and is not a
|
|
// reference) built-in arithmetic types; the value is
|
|
// implementation-defined when the above pre-condition is violated.
|
|
template <typename From, typename To>
|
|
using LosslessArithmeticConvertible =
|
|
LosslessArithmeticConvertibleImpl<GMOCK_KIND_OF_(From), From,
|
|
GMOCK_KIND_OF_(To), To>;
|
|
|
|
// This interface knows how to report a Google Mock failure (either
|
|
// non-fatal or fatal).
|
|
class FailureReporterInterface {
|
|
public:
|
|
// The type of a failure (either non-fatal or fatal).
|
|
enum FailureType {
|
|
kNonfatal, kFatal
|
|
};
|
|
|
|
virtual ~FailureReporterInterface() {}
|
|
|
|
// Reports a failure that occurred at the given source file location.
|
|
virtual void ReportFailure(FailureType type, const char* file, int line,
|
|
const std::string& message) = 0;
|
|
};
|
|
|
|
// Returns the failure reporter used by Google Mock.
|
|
GTEST_API_ FailureReporterInterface* GetFailureReporter();
|
|
|
|
// Asserts that condition is true; aborts the process with the given
|
|
// message if condition is false. We cannot use LOG(FATAL) or CHECK()
|
|
// as Google Mock might be used to mock the log sink itself. We
|
|
// inline this function to prevent it from showing up in the stack
|
|
// trace.
|
|
inline void Assert(bool condition, const char* file, int line,
|
|
const std::string& msg) {
|
|
if (!condition) {
|
|
GetFailureReporter()->ReportFailure(FailureReporterInterface::kFatal,
|
|
file, line, msg);
|
|
}
|
|
}
|
|
inline void Assert(bool condition, const char* file, int line) {
|
|
Assert(condition, file, line, "Assertion failed.");
|
|
}
|
|
|
|
// Verifies that condition is true; generates a non-fatal failure if
|
|
// condition is false.
|
|
inline void Expect(bool condition, const char* file, int line,
|
|
const std::string& msg) {
|
|
if (!condition) {
|
|
GetFailureReporter()->ReportFailure(FailureReporterInterface::kNonfatal,
|
|
file, line, msg);
|
|
}
|
|
}
|
|
inline void Expect(bool condition, const char* file, int line) {
|
|
Expect(condition, file, line, "Expectation failed.");
|
|
}
|
|
|
|
// Severity level of a log.
|
|
enum LogSeverity {
|
|
kInfo = 0,
|
|
kWarning = 1
|
|
};
|
|
|
|
// Valid values for the --gmock_verbose flag.
|
|
|
|
// All logs (informational and warnings) are printed.
|
|
const char kInfoVerbosity[] = "info";
|
|
// Only warnings are printed.
|
|
const char kWarningVerbosity[] = "warning";
|
|
// No logs are printed.
|
|
const char kErrorVerbosity[] = "error";
|
|
|
|
// Returns true if and only if a log with the given severity is visible
|
|
// according to the --gmock_verbose flag.
|
|
GTEST_API_ bool LogIsVisible(LogSeverity severity);
|
|
|
|
// Prints the given message to stdout if and only if 'severity' >= the level
|
|
// specified by the --gmock_verbose flag. If stack_frames_to_skip >=
|
|
// 0, also prints the stack trace excluding the top
|
|
// stack_frames_to_skip frames. In opt mode, any positive
|
|
// stack_frames_to_skip is treated as 0, since we don't know which
|
|
// function calls will be inlined by the compiler and need to be
|
|
// conservative.
|
|
GTEST_API_ void Log(LogSeverity severity, const std::string& message,
|
|
int stack_frames_to_skip);
|
|
|
|
// A marker class that is used to resolve parameterless expectations to the
|
|
// correct overload. This must not be instantiable, to prevent client code from
|
|
// accidentally resolving to the overload; for example:
|
|
//
|
|
// ON_CALL(mock, Method({}, nullptr))...
|
|
//
|
|
class WithoutMatchers {
|
|
private:
|
|
WithoutMatchers() {}
|
|
friend GTEST_API_ WithoutMatchers GetWithoutMatchers();
|
|
};
|
|
|
|
// Internal use only: access the singleton instance of WithoutMatchers.
|
|
GTEST_API_ WithoutMatchers GetWithoutMatchers();
|
|
|
|
// Disable MSVC warnings for infinite recursion, since in this case the
|
|
// the recursion is unreachable.
|
|
#ifdef _MSC_VER
|
|
# pragma warning(push)
|
|
# pragma warning(disable:4717)
|
|
#endif
|
|
|
|
// Invalid<T>() is usable as an expression of type T, but will terminate
|
|
// the program with an assertion failure if actually run. This is useful
|
|
// when a value of type T is needed for compilation, but the statement
|
|
// will not really be executed (or we don't care if the statement
|
|
// crashes).
|
|
template <typename T>
|
|
inline T Invalid() {
|
|
Assert(false, "", -1, "Internal error: attempt to return invalid value");
|
|
// This statement is unreachable, and would never terminate even if it
|
|
// could be reached. It is provided only to placate compiler warnings
|
|
// about missing return statements.
|
|
return Invalid<T>();
|
|
}
|
|
|
|
#ifdef _MSC_VER
|
|
# pragma warning(pop)
|
|
#endif
|
|
|
|
// Given a raw type (i.e. having no top-level reference or const
|
|
// modifier) RawContainer that's either an STL-style container or a
|
|
// native array, class StlContainerView<RawContainer> has the
|
|
// following members:
|
|
//
|
|
// - type is a type that provides an STL-style container view to
|
|
// (i.e. implements the STL container concept for) RawContainer;
|
|
// - const_reference is a type that provides a reference to a const
|
|
// RawContainer;
|
|
// - ConstReference(raw_container) returns a const reference to an STL-style
|
|
// container view to raw_container, which is a RawContainer.
|
|
// - Copy(raw_container) returns an STL-style container view of a
|
|
// copy of raw_container, which is a RawContainer.
|
|
//
|
|
// This generic version is used when RawContainer itself is already an
|
|
// STL-style container.
|
|
template <class RawContainer>
|
|
class StlContainerView {
|
|
public:
|
|
typedef RawContainer type;
|
|
typedef const type& const_reference;
|
|
|
|
static const_reference ConstReference(const RawContainer& container) {
|
|
static_assert(!std::is_const<RawContainer>::value,
|
|
"RawContainer type must not be const");
|
|
return container;
|
|
}
|
|
static type Copy(const RawContainer& container) { return container; }
|
|
};
|
|
|
|
// This specialization is used when RawContainer is a native array type.
|
|
template <typename Element, size_t N>
|
|
class StlContainerView<Element[N]> {
|
|
public:
|
|
typedef typename std::remove_const<Element>::type RawElement;
|
|
typedef internal::NativeArray<RawElement> type;
|
|
// NativeArray<T> can represent a native array either by value or by
|
|
// reference (selected by a constructor argument), so 'const type'
|
|
// can be used to reference a const native array. We cannot
|
|
// 'typedef const type& const_reference' here, as that would mean
|
|
// ConstReference() has to return a reference to a local variable.
|
|
typedef const type const_reference;
|
|
|
|
static const_reference ConstReference(const Element (&array)[N]) {
|
|
static_assert(std::is_same<Element, RawElement>::value,
|
|
"Element type must not be const");
|
|
return type(array, N, RelationToSourceReference());
|
|
}
|
|
static type Copy(const Element (&array)[N]) {
|
|
return type(array, N, RelationToSourceCopy());
|
|
}
|
|
};
|
|
|
|
// This specialization is used when RawContainer is a native array
|
|
// represented as a (pointer, size) tuple.
|
|
template <typename ElementPointer, typename Size>
|
|
class StlContainerView< ::std::tuple<ElementPointer, Size> > {
|
|
public:
|
|
typedef typename std::remove_const<
|
|
typename std::pointer_traits<ElementPointer>::element_type>::type
|
|
RawElement;
|
|
typedef internal::NativeArray<RawElement> type;
|
|
typedef const type const_reference;
|
|
|
|
static const_reference ConstReference(
|
|
const ::std::tuple<ElementPointer, Size>& array) {
|
|
return type(std::get<0>(array), std::get<1>(array),
|
|
RelationToSourceReference());
|
|
}
|
|
static type Copy(const ::std::tuple<ElementPointer, Size>& array) {
|
|
return type(std::get<0>(array), std::get<1>(array), RelationToSourceCopy());
|
|
}
|
|
};
|
|
|
|
// The following specialization prevents the user from instantiating
|
|
// StlContainer with a reference type.
|
|
template <typename T> class StlContainerView<T&>;
|
|
|
|
// A type transform to remove constness from the first part of a pair.
|
|
// Pairs like that are used as the value_type of associative containers,
|
|
// and this transform produces a similar but assignable pair.
|
|
template <typename T>
|
|
struct RemoveConstFromKey {
|
|
typedef T type;
|
|
};
|
|
|
|
// Partially specialized to remove constness from std::pair<const K, V>.
|
|
template <typename K, typename V>
|
|
struct RemoveConstFromKey<std::pair<const K, V> > {
|
|
typedef std::pair<K, V> type;
|
|
};
|
|
|
|
// Emit an assertion failure due to incorrect DoDefault() usage. Out-of-lined to
|
|
// reduce code size.
|
|
GTEST_API_ void IllegalDoDefault(const char* file, int line);
|
|
|
|
template <typename F, typename Tuple, size_t... Idx>
|
|
auto ApplyImpl(F&& f, Tuple&& args, IndexSequence<Idx...>) -> decltype(
|
|
std::forward<F>(f)(std::get<Idx>(std::forward<Tuple>(args))...)) {
|
|
return std::forward<F>(f)(std::get<Idx>(std::forward<Tuple>(args))...);
|
|
}
|
|
|
|
// Apply the function to a tuple of arguments.
|
|
template <typename F, typename Tuple>
|
|
auto Apply(F&& f, Tuple&& args) -> decltype(
|
|
ApplyImpl(std::forward<F>(f), std::forward<Tuple>(args),
|
|
MakeIndexSequence<std::tuple_size<
|
|
typename std::remove_reference<Tuple>::type>::value>())) {
|
|
return ApplyImpl(std::forward<F>(f), std::forward<Tuple>(args),
|
|
MakeIndexSequence<std::tuple_size<
|
|
typename std::remove_reference<Tuple>::type>::value>());
|
|
}
|
|
|
|
// Template struct Function<F>, where F must be a function type, contains
|
|
// the following typedefs:
|
|
//
|
|
// Result: the function's return type.
|
|
// Arg<N>: the type of the N-th argument, where N starts with 0.
|
|
// ArgumentTuple: the tuple type consisting of all parameters of F.
|
|
// ArgumentMatcherTuple: the tuple type consisting of Matchers for all
|
|
// parameters of F.
|
|
// MakeResultVoid: the function type obtained by substituting void
|
|
// for the return type of F.
|
|
// MakeResultIgnoredValue:
|
|
// the function type obtained by substituting Something
|
|
// for the return type of F.
|
|
template <typename T>
|
|
struct Function;
|
|
|
|
template <typename R, typename... Args>
|
|
struct Function<R(Args...)> {
|
|
using Result = R;
|
|
static constexpr size_t ArgumentCount = sizeof...(Args);
|
|
template <size_t I>
|
|
using Arg = ElemFromList<I, Args...>;
|
|
using ArgumentTuple = std::tuple<Args...>;
|
|
using ArgumentMatcherTuple = std::tuple<Matcher<Args>...>;
|
|
using MakeResultVoid = void(Args...);
|
|
using MakeResultIgnoredValue = IgnoredValue(Args...);
|
|
};
|
|
|
|
template <typename R, typename... Args>
|
|
constexpr size_t Function<R(Args...)>::ArgumentCount;
|
|
|
|
#ifdef _MSC_VER
|
|
# pragma warning(pop)
|
|
#endif
|
|
|
|
} // namespace internal
|
|
} // namespace testing
|
|
|
|
#endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_
|
|
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PP_H_
|
|
#define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PP_H_
|
|
|
|
// Expands and concatenates the arguments. Constructed macros reevaluate.
|
|
#define GMOCK_PP_CAT(_1, _2) GMOCK_PP_INTERNAL_CAT(_1, _2)
|
|
|
|
// Expands and stringifies the only argument.
|
|
#define GMOCK_PP_STRINGIZE(...) GMOCK_PP_INTERNAL_STRINGIZE(__VA_ARGS__)
|
|
|
|
// Returns empty. Given a variadic number of arguments.
|
|
#define GMOCK_PP_EMPTY(...)
|
|
|
|
// Returns a comma. Given a variadic number of arguments.
|
|
#define GMOCK_PP_COMMA(...) ,
|
|
|
|
// Returns the only argument.
|
|
#define GMOCK_PP_IDENTITY(_1) _1
|
|
|
|
// Evaluates to the number of arguments after expansion.
|
|
//
|
|
// #define PAIR x, y
|
|
//
|
|
// GMOCK_PP_NARG() => 1
|
|
// GMOCK_PP_NARG(x) => 1
|
|
// GMOCK_PP_NARG(x, y) => 2
|
|
// GMOCK_PP_NARG(PAIR) => 2
|
|
//
|
|
// Requires: the number of arguments after expansion is at most 15.
|
|
#define GMOCK_PP_NARG(...) \
|
|
GMOCK_PP_INTERNAL_16TH( \
|
|
(__VA_ARGS__, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0))
|
|
|
|
// Returns 1 if the expansion of arguments has an unprotected comma. Otherwise
|
|
// returns 0. Requires no more than 15 unprotected commas.
|
|
#define GMOCK_PP_HAS_COMMA(...) \
|
|
GMOCK_PP_INTERNAL_16TH( \
|
|
(__VA_ARGS__, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0))
|
|
|
|
// Returns the first argument.
|
|
#define GMOCK_PP_HEAD(...) GMOCK_PP_INTERNAL_HEAD((__VA_ARGS__, unusedArg))
|
|
|
|
// Returns the tail. A variadic list of all arguments minus the first. Requires
|
|
// at least one argument.
|
|
#define GMOCK_PP_TAIL(...) GMOCK_PP_INTERNAL_TAIL((__VA_ARGS__))
|
|
|
|
// Calls CAT(_Macro, NARG(__VA_ARGS__))(__VA_ARGS__)
|
|
#define GMOCK_PP_VARIADIC_CALL(_Macro, ...) \
|
|
GMOCK_PP_IDENTITY( \
|
|
GMOCK_PP_CAT(_Macro, GMOCK_PP_NARG(__VA_ARGS__))(__VA_ARGS__))
|
|
|
|
// If the arguments after expansion have no tokens, evaluates to `1`. Otherwise
|
|
// evaluates to `0`.
|
|
//
|
|
// Requires: * the number of arguments after expansion is at most 15.
|
|
// * If the argument is a macro, it must be able to be called with one
|
|
// argument.
|
|
//
|
|
// Implementation details:
|
|
//
|
|
// There is one case when it generates a compile error: if the argument is macro
|
|
// that cannot be called with one argument.
|
|
//
|
|
// #define M(a, b) // it doesn't matter what it expands to
|
|
//
|
|
// // Expected: expands to `0`.
|
|
// // Actual: compile error.
|
|
// GMOCK_PP_IS_EMPTY(M)
|
|
//
|
|
// There are 4 cases tested:
|
|
//
|
|
// * __VA_ARGS__ possible expansion has no unparen'd commas. Expected 0.
|
|
// * __VA_ARGS__ possible expansion is not enclosed in parenthesis. Expected 0.
|
|
// * __VA_ARGS__ possible expansion is not a macro that ()-evaluates to a comma.
|
|
// Expected 0
|
|
// * __VA_ARGS__ is empty, or has unparen'd commas, or is enclosed in
|
|
// parenthesis, or is a macro that ()-evaluates to comma. Expected 1.
|
|
//
|
|
// We trigger detection on '0001', i.e. on empty.
|
|
#define GMOCK_PP_IS_EMPTY(...) \
|
|
GMOCK_PP_INTERNAL_IS_EMPTY(GMOCK_PP_HAS_COMMA(__VA_ARGS__), \
|
|
GMOCK_PP_HAS_COMMA(GMOCK_PP_COMMA __VA_ARGS__), \
|
|
GMOCK_PP_HAS_COMMA(__VA_ARGS__()), \
|
|
GMOCK_PP_HAS_COMMA(GMOCK_PP_COMMA __VA_ARGS__()))
|
|
|
|
// Evaluates to _Then if _Cond is 1 and _Else if _Cond is 0.
|
|
#define GMOCK_PP_IF(_Cond, _Then, _Else) \
|
|
GMOCK_PP_CAT(GMOCK_PP_INTERNAL_IF_, _Cond)(_Then, _Else)
|
|
|
|
// Similar to GMOCK_PP_IF but takes _Then and _Else in parentheses.
|
|
//
|
|
// GMOCK_PP_GENERIC_IF(1, (a, b, c), (d, e, f)) => a, b, c
|
|
// GMOCK_PP_GENERIC_IF(0, (a, b, c), (d, e, f)) => d, e, f
|
|
//
|
|
#define GMOCK_PP_GENERIC_IF(_Cond, _Then, _Else) \
|
|
GMOCK_PP_REMOVE_PARENS(GMOCK_PP_IF(_Cond, _Then, _Else))
|
|
|
|
// Evaluates to the number of arguments after expansion. Identifies 'empty' as
|
|
// 0.
|
|
//
|
|
// #define PAIR x, y
|
|
//
|
|
// GMOCK_PP_NARG0() => 0
|
|
// GMOCK_PP_NARG0(x) => 1
|
|
// GMOCK_PP_NARG0(x, y) => 2
|
|
// GMOCK_PP_NARG0(PAIR) => 2
|
|
//
|
|
// Requires: * the number of arguments after expansion is at most 15.
|
|
// * If the argument is a macro, it must be able to be called with one
|
|
// argument.
|
|
#define GMOCK_PP_NARG0(...) \
|
|
GMOCK_PP_IF(GMOCK_PP_IS_EMPTY(__VA_ARGS__), 0, GMOCK_PP_NARG(__VA_ARGS__))
|
|
|
|
// Expands to 1 if the first argument starts with something in parentheses,
|
|
// otherwise to 0.
|
|
#define GMOCK_PP_IS_BEGIN_PARENS(...) \
|
|
GMOCK_PP_HEAD(GMOCK_PP_CAT(GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_R_, \
|
|
GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_C __VA_ARGS__))
|
|
|
|
// Expands to 1 is there is only one argument and it is enclosed in parentheses.
|
|
#define GMOCK_PP_IS_ENCLOSED_PARENS(...) \
|
|
GMOCK_PP_IF(GMOCK_PP_IS_BEGIN_PARENS(__VA_ARGS__), \
|
|
GMOCK_PP_IS_EMPTY(GMOCK_PP_EMPTY __VA_ARGS__), 0)
|
|
|
|
// Remove the parens, requires GMOCK_PP_IS_ENCLOSED_PARENS(args) => 1.
|
|
#define GMOCK_PP_REMOVE_PARENS(...) GMOCK_PP_INTERNAL_REMOVE_PARENS __VA_ARGS__
|
|
|
|
// Expands to _Macro(0, _Data, e1) _Macro(1, _Data, e2) ... _Macro(K -1, _Data,
|
|
// eK) as many of GMOCK_INTERNAL_NARG0 _Tuple.
|
|
// Requires: * |_Macro| can be called with 3 arguments.
|
|
// * |_Tuple| expansion has no more than 15 elements.
|
|
#define GMOCK_PP_FOR_EACH(_Macro, _Data, _Tuple) \
|
|
GMOCK_PP_CAT(GMOCK_PP_INTERNAL_FOR_EACH_IMPL_, GMOCK_PP_NARG0 _Tuple) \
|
|
(0, _Macro, _Data, _Tuple)
|
|
|
|
// Expands to _Macro(0, _Data, ) _Macro(1, _Data, ) ... _Macro(K - 1, _Data, )
|
|
// Empty if _K = 0.
|
|
// Requires: * |_Macro| can be called with 3 arguments.
|
|
// * |_K| literal between 0 and 15
|
|
#define GMOCK_PP_REPEAT(_Macro, _Data, _N) \
|
|
GMOCK_PP_CAT(GMOCK_PP_INTERNAL_FOR_EACH_IMPL_, _N) \
|
|
(0, _Macro, _Data, GMOCK_PP_INTENRAL_EMPTY_TUPLE)
|
|
|
|
// Increments the argument, requires the argument to be between 0 and 15.
|
|
#define GMOCK_PP_INC(_i) GMOCK_PP_CAT(GMOCK_PP_INTERNAL_INC_, _i)
|
|
|
|
// Returns comma if _i != 0. Requires _i to be between 0 and 15.
|
|
#define GMOCK_PP_COMMA_IF(_i) GMOCK_PP_CAT(GMOCK_PP_INTERNAL_COMMA_IF_, _i)
|
|
|
|
// Internal details follow. Do not use any of these symbols outside of this
|
|
// file or we will break your code.
|
|
#define GMOCK_PP_INTENRAL_EMPTY_TUPLE (, , , , , , , , , , , , , , , )
|
|
#define GMOCK_PP_INTERNAL_CAT(_1, _2) _1##_2
|
|
#define GMOCK_PP_INTERNAL_STRINGIZE(...) #__VA_ARGS__
|
|
#define GMOCK_PP_INTERNAL_CAT_5(_1, _2, _3, _4, _5) _1##_2##_3##_4##_5
|
|
#define GMOCK_PP_INTERNAL_IS_EMPTY(_1, _2, _3, _4) \
|
|
GMOCK_PP_HAS_COMMA(GMOCK_PP_INTERNAL_CAT_5(GMOCK_PP_INTERNAL_IS_EMPTY_CASE_, \
|
|
_1, _2, _3, _4))
|
|
#define GMOCK_PP_INTERNAL_IS_EMPTY_CASE_0001 ,
|
|
#define GMOCK_PP_INTERNAL_IF_1(_Then, _Else) _Then
|
|
#define GMOCK_PP_INTERNAL_IF_0(_Then, _Else) _Else
|
|
|
|
// Because of MSVC treating a token with a comma in it as a single token when
|
|
// passed to another macro, we need to force it to evaluate it as multiple
|
|
// tokens. We do that by using a "IDENTITY(MACRO PARENTHESIZED_ARGS)" macro. We
|
|
// define one per possible macro that relies on this behavior. Note "_Args" must
|
|
// be parenthesized.
|
|
#define GMOCK_PP_INTERNAL_INTERNAL_16TH(_1, _2, _3, _4, _5, _6, _7, _8, _9, \
|
|
_10, _11, _12, _13, _14, _15, _16, \
|
|
...) \
|
|
_16
|
|
#define GMOCK_PP_INTERNAL_16TH(_Args) \
|
|
GMOCK_PP_IDENTITY(GMOCK_PP_INTERNAL_INTERNAL_16TH _Args)
|
|
#define GMOCK_PP_INTERNAL_INTERNAL_HEAD(_1, ...) _1
|
|
#define GMOCK_PP_INTERNAL_HEAD(_Args) \
|
|
GMOCK_PP_IDENTITY(GMOCK_PP_INTERNAL_INTERNAL_HEAD _Args)
|
|
#define GMOCK_PP_INTERNAL_INTERNAL_TAIL(_1, ...) __VA_ARGS__
|
|
#define GMOCK_PP_INTERNAL_TAIL(_Args) \
|
|
GMOCK_PP_IDENTITY(GMOCK_PP_INTERNAL_INTERNAL_TAIL _Args)
|
|
|
|
#define GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_C(...) 1 _
|
|
#define GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_R_1 1,
|
|
#define GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_R_GMOCK_PP_INTERNAL_IBP_IS_VARIADIC_C \
|
|
0,
|
|
#define GMOCK_PP_INTERNAL_REMOVE_PARENS(...) __VA_ARGS__
|
|
#define GMOCK_PP_INTERNAL_INC_0 1
|
|
#define GMOCK_PP_INTERNAL_INC_1 2
|
|
#define GMOCK_PP_INTERNAL_INC_2 3
|
|
#define GMOCK_PP_INTERNAL_INC_3 4
|
|
#define GMOCK_PP_INTERNAL_INC_4 5
|
|
#define GMOCK_PP_INTERNAL_INC_5 6
|
|
#define GMOCK_PP_INTERNAL_INC_6 7
|
|
#define GMOCK_PP_INTERNAL_INC_7 8
|
|
#define GMOCK_PP_INTERNAL_INC_8 9
|
|
#define GMOCK_PP_INTERNAL_INC_9 10
|
|
#define GMOCK_PP_INTERNAL_INC_10 11
|
|
#define GMOCK_PP_INTERNAL_INC_11 12
|
|
#define GMOCK_PP_INTERNAL_INC_12 13
|
|
#define GMOCK_PP_INTERNAL_INC_13 14
|
|
#define GMOCK_PP_INTERNAL_INC_14 15
|
|
#define GMOCK_PP_INTERNAL_INC_15 16
|
|
#define GMOCK_PP_INTERNAL_COMMA_IF_0
|
|
#define GMOCK_PP_INTERNAL_COMMA_IF_1 ,
|
|
#define GMOCK_PP_INTERNAL_COMMA_IF_2 ,
|
|
#define GMOCK_PP_INTERNAL_COMMA_IF_3 ,
|
|
#define GMOCK_PP_INTERNAL_COMMA_IF_4 ,
|
|
#define GMOCK_PP_INTERNAL_COMMA_IF_5 ,
|
|
#define GMOCK_PP_INTERNAL_COMMA_IF_6 ,
|
|
#define GMOCK_PP_INTERNAL_COMMA_IF_7 ,
|
|
#define GMOCK_PP_INTERNAL_COMMA_IF_8 ,
|
|
#define GMOCK_PP_INTERNAL_COMMA_IF_9 ,
|
|
#define GMOCK_PP_INTERNAL_COMMA_IF_10 ,
|
|
#define GMOCK_PP_INTERNAL_COMMA_IF_11 ,
|
|
#define GMOCK_PP_INTERNAL_COMMA_IF_12 ,
|
|
#define GMOCK_PP_INTERNAL_COMMA_IF_13 ,
|
|
#define GMOCK_PP_INTERNAL_COMMA_IF_14 ,
|
|
#define GMOCK_PP_INTERNAL_COMMA_IF_15 ,
|
|
#define GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, _element) \
|
|
_Macro(_i, _Data, _element)
|
|
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_0(_i, _Macro, _Data, _Tuple)
|
|
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_1(_i, _Macro, _Data, _Tuple) \
|
|
GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple)
|
|
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_2(_i, _Macro, _Data, _Tuple) \
|
|
GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
|
|
GMOCK_PP_INTERNAL_FOR_EACH_IMPL_1(GMOCK_PP_INC(_i), _Macro, _Data, \
|
|
(GMOCK_PP_TAIL _Tuple))
|
|
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_3(_i, _Macro, _Data, _Tuple) \
|
|
GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
|
|
GMOCK_PP_INTERNAL_FOR_EACH_IMPL_2(GMOCK_PP_INC(_i), _Macro, _Data, \
|
|
(GMOCK_PP_TAIL _Tuple))
|
|
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_4(_i, _Macro, _Data, _Tuple) \
|
|
GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
|
|
GMOCK_PP_INTERNAL_FOR_EACH_IMPL_3(GMOCK_PP_INC(_i), _Macro, _Data, \
|
|
(GMOCK_PP_TAIL _Tuple))
|
|
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_5(_i, _Macro, _Data, _Tuple) \
|
|
GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
|
|
GMOCK_PP_INTERNAL_FOR_EACH_IMPL_4(GMOCK_PP_INC(_i), _Macro, _Data, \
|
|
(GMOCK_PP_TAIL _Tuple))
|
|
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_6(_i, _Macro, _Data, _Tuple) \
|
|
GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
|
|
GMOCK_PP_INTERNAL_FOR_EACH_IMPL_5(GMOCK_PP_INC(_i), _Macro, _Data, \
|
|
(GMOCK_PP_TAIL _Tuple))
|
|
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_7(_i, _Macro, _Data, _Tuple) \
|
|
GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
|
|
GMOCK_PP_INTERNAL_FOR_EACH_IMPL_6(GMOCK_PP_INC(_i), _Macro, _Data, \
|
|
(GMOCK_PP_TAIL _Tuple))
|
|
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_8(_i, _Macro, _Data, _Tuple) \
|
|
GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
|
|
GMOCK_PP_INTERNAL_FOR_EACH_IMPL_7(GMOCK_PP_INC(_i), _Macro, _Data, \
|
|
(GMOCK_PP_TAIL _Tuple))
|
|
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_9(_i, _Macro, _Data, _Tuple) \
|
|
GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
|
|
GMOCK_PP_INTERNAL_FOR_EACH_IMPL_8(GMOCK_PP_INC(_i), _Macro, _Data, \
|
|
(GMOCK_PP_TAIL _Tuple))
|
|
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_10(_i, _Macro, _Data, _Tuple) \
|
|
GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
|
|
GMOCK_PP_INTERNAL_FOR_EACH_IMPL_9(GMOCK_PP_INC(_i), _Macro, _Data, \
|
|
(GMOCK_PP_TAIL _Tuple))
|
|
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_11(_i, _Macro, _Data, _Tuple) \
|
|
GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
|
|
GMOCK_PP_INTERNAL_FOR_EACH_IMPL_10(GMOCK_PP_INC(_i), _Macro, _Data, \
|
|
(GMOCK_PP_TAIL _Tuple))
|
|
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_12(_i, _Macro, _Data, _Tuple) \
|
|
GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
|
|
GMOCK_PP_INTERNAL_FOR_EACH_IMPL_11(GMOCK_PP_INC(_i), _Macro, _Data, \
|
|
(GMOCK_PP_TAIL _Tuple))
|
|
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_13(_i, _Macro, _Data, _Tuple) \
|
|
GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
|
|
GMOCK_PP_INTERNAL_FOR_EACH_IMPL_12(GMOCK_PP_INC(_i), _Macro, _Data, \
|
|
(GMOCK_PP_TAIL _Tuple))
|
|
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_14(_i, _Macro, _Data, _Tuple) \
|
|
GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
|
|
GMOCK_PP_INTERNAL_FOR_EACH_IMPL_13(GMOCK_PP_INC(_i), _Macro, _Data, \
|
|
(GMOCK_PP_TAIL _Tuple))
|
|
#define GMOCK_PP_INTERNAL_FOR_EACH_IMPL_15(_i, _Macro, _Data, _Tuple) \
|
|
GMOCK_PP_INTERNAL_CALL_MACRO(_Macro, _i, _Data, GMOCK_PP_HEAD _Tuple) \
|
|
GMOCK_PP_INTERNAL_FOR_EACH_IMPL_14(GMOCK_PP_INC(_i), _Macro, _Data, \
|
|
(GMOCK_PP_TAIL _Tuple))
|
|
|
|
#endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PP_H_
|
|
|
|
#ifdef _MSC_VER
|
|
# pragma warning(push)
|
|
# pragma warning(disable:4100)
|
|
#endif
|
|
|
|
namespace testing {
|
|
|
|
// To implement an action Foo, define:
|
|
// 1. a class FooAction that implements the ActionInterface interface, and
|
|
// 2. a factory function that creates an Action object from a
|
|
// const FooAction*.
|
|
//
|
|
// The two-level delegation design follows that of Matcher, providing
|
|
// consistency for extension developers. It also eases ownership
|
|
// management as Action objects can now be copied like plain values.
|
|
|
|
namespace internal {
|
|
|
|
// BuiltInDefaultValueGetter<T, true>::Get() returns a
|
|
// default-constructed T value. BuiltInDefaultValueGetter<T,
|
|
// false>::Get() crashes with an error.
|
|
//
|
|
// This primary template is used when kDefaultConstructible is true.
|
|
template <typename T, bool kDefaultConstructible>
|
|
struct BuiltInDefaultValueGetter {
|
|
static T Get() { return T(); }
|
|
};
|
|
template <typename T>
|
|
struct BuiltInDefaultValueGetter<T, false> {
|
|
static T Get() {
|
|
Assert(false, __FILE__, __LINE__,
|
|
"Default action undefined for the function return type.");
|
|
return internal::Invalid<T>();
|
|
// The above statement will never be reached, but is required in
|
|
// order for this function to compile.
|
|
}
|
|
};
|
|
|
|
// BuiltInDefaultValue<T>::Get() returns the "built-in" default value
|
|
// for type T, which is NULL when T is a raw pointer type, 0 when T is
|
|
// a numeric type, false when T is bool, or "" when T is string or
|
|
// std::string. In addition, in C++11 and above, it turns a
|
|
// default-constructed T value if T is default constructible. For any
|
|
// other type T, the built-in default T value is undefined, and the
|
|
// function will abort the process.
|
|
template <typename T>
|
|
class BuiltInDefaultValue {
|
|
public:
|
|
// This function returns true if and only if type T has a built-in default
|
|
// value.
|
|
static bool Exists() {
|
|
return ::std::is_default_constructible<T>::value;
|
|
}
|
|
|
|
static T Get() {
|
|
return BuiltInDefaultValueGetter<
|
|
T, ::std::is_default_constructible<T>::value>::Get();
|
|
}
|
|
};
|
|
|
|
// This partial specialization says that we use the same built-in
|
|
// default value for T and const T.
|
|
template <typename T>
|
|
class BuiltInDefaultValue<const T> {
|
|
public:
|
|
static bool Exists() { return BuiltInDefaultValue<T>::Exists(); }
|
|
static T Get() { return BuiltInDefaultValue<T>::Get(); }
|
|
};
|
|
|
|
// This partial specialization defines the default values for pointer
|
|
// types.
|
|
template <typename T>
|
|
class BuiltInDefaultValue<T*> {
|
|
public:
|
|
static bool Exists() { return true; }
|
|
static T* Get() { return nullptr; }
|
|
};
|
|
|
|
// The following specializations define the default values for
|
|
// specific types we care about.
|
|
#define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
|
|
template <> \
|
|
class BuiltInDefaultValue<type> { \
|
|
public: \
|
|
static bool Exists() { return true; } \
|
|
static type Get() { return value; } \
|
|
}
|
|
|
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, ); // NOLINT
|
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, "");
|
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false);
|
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0');
|
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0');
|
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');
|
|
|
|
// There's no need for a default action for signed wchar_t, as that
|
|
// type is the same as wchar_t for gcc, and invalid for MSVC.
|
|
//
|
|
// There's also no need for a default action for unsigned wchar_t, as
|
|
// that type is the same as unsigned int for gcc, and invalid for
|
|
// MSVC.
|
|
#if GMOCK_WCHAR_T_IS_NATIVE_
|
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT
|
|
#endif
|
|
|
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT
|
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT
|
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
|
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
|
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT
|
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT
|
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long long, 0); // NOLINT
|
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long long, 0); // NOLINT
|
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
|
|
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);
|
|
|
|
#undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
|
|
|
|
// Simple two-arg form of std::disjunction.
|
|
template <typename P, typename Q>
|
|
using disjunction = typename ::std::conditional<P::value, P, Q>::type;
|
|
|
|
} // namespace internal
|
|
|
|
// When an unexpected function call is encountered, Google Mock will
|
|
// let it return a default value if the user has specified one for its
|
|
// return type, or if the return type has a built-in default value;
|
|
// otherwise Google Mock won't know what value to return and will have
|
|
// to abort the process.
|
|
//
|
|
// The DefaultValue<T> class allows a user to specify the
|
|
// default value for a type T that is both copyable and publicly
|
|
// destructible (i.e. anything that can be used as a function return
|
|
// type). The usage is:
|
|
//
|
|
// // Sets the default value for type T to be foo.
|
|
// DefaultValue<T>::Set(foo);
|
|
template <typename T>
|
|
class DefaultValue {
|
|
public:
|
|
// Sets the default value for type T; requires T to be
|
|
// copy-constructable and have a public destructor.
|
|
static void Set(T x) {
|
|
delete producer_;
|
|
producer_ = new FixedValueProducer(x);
|
|
}
|
|
|
|
// Provides a factory function to be called to generate the default value.
|
|
// This method can be used even if T is only move-constructible, but it is not
|
|
// limited to that case.
|
|
typedef T (*FactoryFunction)();
|
|
static void SetFactory(FactoryFunction factory) {
|
|
delete producer_;
|
|
producer_ = new FactoryValueProducer(factory);
|
|
}
|
|
|
|
// Unsets the default value for type T.
|
|
static void Clear() {
|
|
delete producer_;
|
|
producer_ = nullptr;
|
|
}
|
|
|
|
// Returns true if and only if the user has set the default value for type T.
|
|
static bool IsSet() { return producer_ != nullptr; }
|
|
|
|
// Returns true if T has a default return value set by the user or there
|
|
// exists a built-in default value.
|
|
static bool Exists() {
|
|
return IsSet() || internal::BuiltInDefaultValue<T>::Exists();
|
|
}
|
|
|
|
// Returns the default value for type T if the user has set one;
|
|
// otherwise returns the built-in default value. Requires that Exists()
|
|
// is true, which ensures that the return value is well-defined.
|
|
static T Get() {
|
|
return producer_ == nullptr ? internal::BuiltInDefaultValue<T>::Get()
|
|
: producer_->Produce();
|
|
}
|
|
|
|
private:
|
|
class ValueProducer {
|
|
public:
|
|
virtual ~ValueProducer() {}
|
|
virtual T Produce() = 0;
|
|
};
|
|
|
|
class FixedValueProducer : public ValueProducer {
|
|
public:
|
|
explicit FixedValueProducer(T value) : value_(value) {}
|
|
T Produce() override { return value_; }
|
|
|
|
private:
|
|
const T value_;
|
|
GTEST_DISALLOW_COPY_AND_ASSIGN_(FixedValueProducer);
|
|
};
|
|
|
|
class FactoryValueProducer : public ValueProducer {
|
|
public:
|
|
explicit FactoryValueProducer(FactoryFunction factory)
|
|
: factory_(factory) {}
|
|
T Produce() override { return factory_(); }
|
|
|
|
private:
|
|
const FactoryFunction factory_;
|
|
GTEST_DISALLOW_COPY_AND_ASSIGN_(FactoryValueProducer);
|
|
};
|
|
|
|
static ValueProducer* producer_;
|
|
};
|
|
|
|
// This partial specialization allows a user to set default values for
|
|
// reference types.
|
|
template <typename T>
|
|
class DefaultValue<T&> {
|
|
public:
|
|
// Sets the default value for type T&.
|
|
static void Set(T& x) { // NOLINT
|
|
address_ = &x;
|
|
}
|
|
|
|
// Unsets the default value for type T&.
|
|
static void Clear() { address_ = nullptr; }
|
|
|
|
// Returns true if and only if the user has set the default value for type T&.
|
|
static bool IsSet() { return address_ != nullptr; }
|
|
|
|
// Returns true if T has a default return value set by the user or there
|
|
// exists a built-in default value.
|
|
static bool Exists() {
|
|
return IsSet() || internal::BuiltInDefaultValue<T&>::Exists();
|
|
}
|
|
|
|
// Returns the default value for type T& if the user has set one;
|
|
// otherwise returns the built-in default value if there is one;
|
|
// otherwise aborts the process.
|
|
static T& Get() {
|
|
return address_ == nullptr ? internal::BuiltInDefaultValue<T&>::Get()
|
|
: *address_;
|
|
}
|
|
|
|
private:
|
|
static T* address_;
|
|
};
|
|
|
|
// This specialization allows DefaultValue<void>::Get() to
|
|
// compile.
|
|
template <>
|
|
class DefaultValue<void> {
|
|
public:
|
|
static bool Exists() { return true; }
|
|
static void Get() {}
|
|
};
|
|
|
|
// Points to the user-set default value for type T.
|
|
template <typename T>
|
|
typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = nullptr;
|
|
|
|
// Points to the user-set default value for type T&.
|
|
template <typename T>
|
|
T* DefaultValue<T&>::address_ = nullptr;
|
|
|
|
// Implement this interface to define an action for function type F.
|
|
template <typename F>
|
|
class ActionInterface {
|
|
public:
|
|
typedef typename internal::Function<F>::Result Result;
|
|
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
|
|
|
|
ActionInterface() {}
|
|
virtual ~ActionInterface() {}
|
|
|
|
// Performs the action. This method is not const, as in general an
|
|
// action can have side effects and be stateful. For example, a
|
|
// get-the-next-element-from-the-collection action will need to
|
|
// remember the current element.
|
|
virtual Result Perform(const ArgumentTuple& args) = 0;
|
|
|
|
private:
|
|
GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface);
|
|
};
|
|
|
|
// An Action<F> is a copyable and IMMUTABLE (except by assignment)
|
|
// object that represents an action to be taken when a mock function
|
|
// of type F is called. The implementation of Action<T> is just a
|
|
// std::shared_ptr to const ActionInterface<T>. Don't inherit from Action!
|
|
// You can view an object implementing ActionInterface<F> as a
|
|
// concrete action (including its current state), and an Action<F>
|
|
// object as a handle to it.
|
|
template <typename F>
|
|
class Action {
|
|
// Adapter class to allow constructing Action from a legacy ActionInterface.
|
|
// New code should create Actions from functors instead.
|
|
struct ActionAdapter {
|
|
// Adapter must be copyable to satisfy std::function requirements.
|
|
::std::shared_ptr<ActionInterface<F>> impl_;
|
|
|
|
template <typename... Args>
|
|
typename internal::Function<F>::Result operator()(Args&&... args) {
|
|
return impl_->Perform(
|
|
::std::forward_as_tuple(::std::forward<Args>(args)...));
|
|
}
|
|
};
|
|
|
|
template <typename G>
|
|
using IsCompatibleFunctor = std::is_constructible<std::function<F>, G>;
|
|
|
|
public:
|
|
typedef typename internal::Function<F>::Result Result;
|
|
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
|
|
|
|
// Constructs a null Action. Needed for storing Action objects in
|
|
// STL containers.
|
|
Action() {}
|
|
|
|
// Construct an Action from a specified callable.
|
|
// This cannot take std::function directly, because then Action would not be
|
|
// directly constructible from lambda (it would require two conversions).
|
|
template <
|
|
typename G,
|
|
typename = typename std::enable_if<internal::disjunction<
|
|
IsCompatibleFunctor<G>, std::is_constructible<std::function<Result()>,
|
|
G>>::value>::type>
|
|
Action(G&& fun) { // NOLINT
|
|
Init(::std::forward<G>(fun), IsCompatibleFunctor<G>());
|
|
}
|
|
|
|
// Constructs an Action from its implementation.
|
|
explicit Action(ActionInterface<F>* impl)
|
|
: fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {}
|
|
|
|
// This constructor allows us to turn an Action<Func> object into an
|
|
// Action<F>, as long as F's arguments can be implicitly converted
|
|
// to Func's and Func's return type can be implicitly converted to F's.
|
|
template <typename Func>
|
|
explicit Action(const Action<Func>& action) : fun_(action.fun_) {}
|
|
|
|
// Returns true if and only if this is the DoDefault() action.
|
|
bool IsDoDefault() const { return fun_ == nullptr; }
|
|
|
|
// Performs the action. Note that this method is const even though
|
|
// the corresponding method in ActionInterface is not. The reason
|
|
// is that a const Action<F> means that it cannot be re-bound to
|
|
// another concrete action, not that the concrete action it binds to
|
|
// cannot change state. (Think of the difference between a const
|
|
// pointer and a pointer to const.)
|
|
Result Perform(ArgumentTuple args) const {
|
|
if (IsDoDefault()) {
|
|
internal::IllegalDoDefault(__FILE__, __LINE__);
|
|
}
|
|
return internal::Apply(fun_, ::std::move(args));
|
|
}
|
|
|
|
private:
|
|
template <typename G>
|
|
friend class Action;
|
|
|
|
template <typename G>
|
|
void Init(G&& g, ::std::true_type) {
|
|
fun_ = ::std::forward<G>(g);
|
|
}
|
|
|
|
template <typename G>
|
|
void Init(G&& g, ::std::false_type) {
|
|
fun_ = IgnoreArgs<typename ::std::decay<G>::type>{::std::forward<G>(g)};
|
|
}
|
|
|
|
template <typename FunctionImpl>
|
|
struct IgnoreArgs {
|
|
template <typename... Args>
|
|
Result operator()(const Args&...) const {
|
|
return function_impl();
|
|
}
|
|
|
|
FunctionImpl function_impl;
|
|
};
|
|
|
|
// fun_ is an empty function if and only if this is the DoDefault() action.
|
|
::std::function<F> fun_;
|
|
};
|
|
|
|
// The PolymorphicAction class template makes it easy to implement a
|
|
// polymorphic action (i.e. an action that can be used in mock
|
|
// functions of than one type, e.g. Return()).
|
|
//
|
|
// To define a polymorphic action, a user first provides a COPYABLE
|
|
// implementation class that has a Perform() method template:
|
|
//
|
|
// class FooAction {
|
|
// public:
|
|
// template <typename Result, typename ArgumentTuple>
|
|
// Result Perform(const ArgumentTuple& args) const {
|
|
// // Processes the arguments and returns a result, using
|
|
// // std::get<N>(args) to get the N-th (0-based) argument in the tuple.
|
|
// }
|
|
// ...
|
|
// };
|
|
//
|
|
// Then the user creates the polymorphic action using
|
|
// MakePolymorphicAction(object) where object has type FooAction. See
|
|
// the definition of Return(void) and SetArgumentPointee<N>(value) for
|
|
// complete examples.
|
|
template <typename Impl>
|
|
class PolymorphicAction {
|
|
public:
|
|
explicit PolymorphicAction(const Impl& impl) : impl_(impl) {}
|
|
|
|
template <typename F>
|
|
operator Action<F>() const {
|
|
return Action<F>(new MonomorphicImpl<F>(impl_));
|
|
}
|
|
|
|
private:
|
|
template <typename F>
|
|
class MonomorphicImpl : public ActionInterface<F> {
|
|
public:
|
|
typedef typename internal::Function<F>::Result Result;
|
|
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
|
|
|
|
explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
|
|
|
|
Result Perform(const ArgumentTuple& args) override {
|
|
return impl_.template Perform<Result>(args);
|
|
}
|
|
|
|
private:
|
|
Impl impl_;
|
|
};
|
|
|
|
Impl impl_;
|
|
};
|
|
|
|
// Creates an Action from its implementation and returns it. The
|
|
// created Action object owns the implementation.
|
|
template <typename F>
|
|
Action<F> MakeAction(ActionInterface<F>* impl) {
|
|
return Action<F>(impl);
|
|
}
|
|
|
|
// Creates a polymorphic action from its implementation. This is
|
|
// easier to use than the PolymorphicAction<Impl> constructor as it
|
|
// doesn't require you to explicitly write the template argument, e.g.
|
|
//
|
|
// MakePolymorphicAction(foo);
|
|
// vs
|
|
// PolymorphicAction<TypeOfFoo>(foo);
|
|
template <typename Impl>
|
|
inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) {
|
|
return PolymorphicAction<Impl>(impl);
|
|
}
|
|
|
|
namespace internal {
|
|
|
|
// Helper struct to specialize ReturnAction to execute a move instead of a copy
|
|
// on return. Useful for move-only types, but could be used on any type.
|
|
template <typename T>
|
|
struct ByMoveWrapper {
|
|
explicit ByMoveWrapper(T value) : payload(std::move(value)) {}
|
|
T payload;
|
|
};
|
|
|
|
// Implements the polymorphic Return(x) action, which can be used in
|
|
// any function that returns the type of x, regardless of the argument
|
|
// types.
|
|
//
|
|
// Note: The value passed into Return must be converted into
|
|
// Function<F>::Result when this action is cast to Action<F> rather than
|
|
// when that action is performed. This is important in scenarios like
|
|
//
|
|
// MOCK_METHOD1(Method, T(U));
|
|
// ...
|
|
// {
|
|
// Foo foo;
|
|
// X x(&foo);
|
|
// EXPECT_CALL(mock, Method(_)).WillOnce(Return(x));
|
|
// }
|
|
//
|
|
// In the example above the variable x holds reference to foo which leaves
|
|
// scope and gets destroyed. If copying X just copies a reference to foo,
|
|
// that copy will be left with a hanging reference. If conversion to T
|
|
// makes a copy of foo, the above code is safe. To support that scenario, we
|
|
// need to make sure that the type conversion happens inside the EXPECT_CALL
|
|
// statement, and conversion of the result of Return to Action<T(U)> is a
|
|
// good place for that.
|
|
//
|
|
// The real life example of the above scenario happens when an invocation
|
|
// of gtl::Container() is passed into Return.
|
|
//
|
|
template <typename R>
|
|
class ReturnAction {
|
|
public:
|
|
// Constructs a ReturnAction object from the value to be returned.
|
|
// 'value' is passed by value instead of by const reference in order
|
|
// to allow Return("string literal") to compile.
|
|
explicit ReturnAction(R value) : value_(new R(std::move(value))) {}
|
|
|
|
// This template type conversion operator allows Return(x) to be
|
|
// used in ANY function that returns x's type.
|
|
template <typename F>
|
|
operator Action<F>() const { // NOLINT
|
|
// Assert statement belongs here because this is the best place to verify
|
|
// conditions on F. It produces the clearest error messages
|
|
// in most compilers.
|
|
// Impl really belongs in this scope as a local class but can't
|
|
// because MSVC produces duplicate symbols in different translation units
|
|
// in this case. Until MS fixes that bug we put Impl into the class scope
|
|
// and put the typedef both here (for use in assert statement) and
|
|
// in the Impl class. But both definitions must be the same.
|
|
typedef typename Function<F>::Result Result;
|
|
GTEST_COMPILE_ASSERT_(
|
|
!std::is_reference<Result>::value,
|
|
use_ReturnRef_instead_of_Return_to_return_a_reference);
|
|
static_assert(!std::is_void<Result>::value,
|
|
"Can't use Return() on an action expected to return `void`.");
|
|
return Action<F>(new Impl<R, F>(value_));
|
|
}
|
|
|
|
private:
|
|
// Implements the Return(x) action for a particular function type F.
|
|
template <typename R_, typename F>
|
|
class Impl : public ActionInterface<F> {
|
|
public:
|
|
typedef typename Function<F>::Result Result;
|
|
typedef typename Function<F>::ArgumentTuple ArgumentTuple;
|
|
|
|
// The implicit cast is necessary when Result has more than one
|
|
// single-argument constructor (e.g. Result is std::vector<int>) and R
|
|
// has a type conversion operator template. In that case, value_(value)
|
|
// won't compile as the compiler doesn't known which constructor of
|
|
// Result to call. ImplicitCast_ forces the compiler to convert R to
|
|
// Result without considering explicit constructors, thus resolving the
|
|
// ambiguity. value_ is then initialized using its copy constructor.
|
|
explicit Impl(const std::shared_ptr<R>& value)
|
|
: value_before_cast_(*value),
|
|
value_(ImplicitCast_<Result>(value_before_cast_)) {}
|
|
|
|
Result Perform(const ArgumentTuple&) override { return value_; }
|
|
|
|
private:
|
|
GTEST_COMPILE_ASSERT_(!std::is_reference<Result>::value,
|
|
Result_cannot_be_a_reference_type);
|
|
// We save the value before casting just in case it is being cast to a
|
|
// wrapper type.
|
|
R value_before_cast_;
|
|
Result value_;
|
|
|
|
GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl);
|
|
};
|
|
|
|
// Partially specialize for ByMoveWrapper. This version of ReturnAction will
|
|
// move its contents instead.
|
|
template <typename R_, typename F>
|
|
class Impl<ByMoveWrapper<R_>, F> : public ActionInterface<F> {
|
|
public:
|
|
typedef typename Function<F>::Result Result;
|
|
typedef typename Function<F>::ArgumentTuple ArgumentTuple;
|
|
|
|
explicit Impl(const std::shared_ptr<R>& wrapper)
|
|
: performed_(false), wrapper_(wrapper) {}
|
|
|
|
Result Perform(const ArgumentTuple&) override {
|
|
GTEST_CHECK_(!performed_)
|
|
<< "A ByMove() action should only be performed once.";
|
|
performed_ = true;
|
|
return std::move(wrapper_->payload);
|
|
}
|
|
|
|
private:
|
|
bool performed_;
|
|
const std::shared_ptr<R> wrapper_;
|
|
};
|
|
|
|
const std::shared_ptr<R> value_;
|
|
};
|
|
|
|
// Implements the ReturnNull() action.
|
|
class ReturnNullAction {
|
|
public:
|
|
// Allows ReturnNull() to be used in any pointer-returning function. In C++11
|
|
// this is enforced by returning nullptr, and in non-C++11 by asserting a
|
|
// pointer type on compile time.
|
|
template <typename Result, typename ArgumentTuple>
|
|
static Result Perform(const ArgumentTuple&) {
|
|
return nullptr;
|
|
}
|
|
};
|
|
|
|
// Implements the Return() action.
|
|
class ReturnVoidAction {
|
|
public:
|
|
// Allows Return() to be used in any void-returning function.
|
|
template <typename Result, typename ArgumentTuple>
|
|
static void Perform(const ArgumentTuple&) {
|
|
static_assert(std::is_void<Result>::value, "Result should be void.");
|
|
}
|
|
};
|
|
|
|
// Implements the polymorphic ReturnRef(x) action, which can be used
|
|
// in any function that returns a reference to the type of x,
|
|
// regardless of the argument types.
|
|
template <typename T>
|
|
class ReturnRefAction {
|
|
public:
|
|
// Constructs a ReturnRefAction object from the reference to be returned.
|
|
explicit ReturnRefAction(T& ref) : ref_(ref) {} // NOLINT
|
|
|
|
// This template type conversion operator allows ReturnRef(x) to be
|
|
// used in ANY function that returns a reference to x's type.
|
|
template <typename F>
|
|
operator Action<F>() const {
|
|
typedef typename Function<F>::Result Result;
|
|
// Asserts that the function return type is a reference. This
|
|
// catches the user error of using ReturnRef(x) when Return(x)
|
|
// should be used, and generates some helpful error message.
|
|
GTEST_COMPILE_ASSERT_(std::is_reference<Result>::value,
|
|
use_Return_instead_of_ReturnRef_to_return_a_value);
|
|
return Action<F>(new Impl<F>(ref_));
|
|
}
|
|
|
|
private:
|
|
// Implements the ReturnRef(x) action for a particular function type F.
|
|
template <typename F>
|
|
class Impl : public ActionInterface<F> {
|
|
public:
|
|
typedef typename Function<F>::Result Result;
|
|
typedef typename Function<F>::ArgumentTuple ArgumentTuple;
|
|
|
|
explicit Impl(T& ref) : ref_(ref) {} // NOLINT
|
|
|
|
Result Perform(const ArgumentTuple&) override { return ref_; }
|
|
|
|
private:
|
|
T& ref_;
|
|
};
|
|
|
|
T& ref_;
|
|
};
|
|
|
|
// Implements the polymorphic ReturnRefOfCopy(x) action, which can be
|
|
// used in any function that returns a reference to the type of x,
|
|
// regardless of the argument types.
|
|
template <typename T>
|
|
class ReturnRefOfCopyAction {
|
|
public:
|
|
// Constructs a ReturnRefOfCopyAction object from the reference to
|
|
// be returned.
|
|
explicit ReturnRefOfCopyAction(const T& value) : value_(value) {} // NOLINT
|
|
|
|
// This template type conversion operator allows ReturnRefOfCopy(x) to be
|
|
// used in ANY function that returns a reference to x's type.
|
|
template <typename F>
|
|
operator Action<F>() const {
|
|
typedef typename Function<F>::Result Result;
|
|
// Asserts that the function return type is a reference. This
|
|
// catches the user error of using ReturnRefOfCopy(x) when Return(x)
|
|
// should be used, and generates some helpful error message.
|
|
GTEST_COMPILE_ASSERT_(
|
|
std::is_reference<Result>::value,
|
|
use_Return_instead_of_ReturnRefOfCopy_to_return_a_value);
|
|
return Action<F>(new Impl<F>(value_));
|
|
}
|
|
|
|
private:
|
|
// Implements the ReturnRefOfCopy(x) action for a particular function type F.
|
|
template <typename F>
|
|
class Impl : public ActionInterface<F> {
|
|
public:
|
|
typedef typename Function<F>::Result Result;
|
|
typedef typename Function<F>::ArgumentTuple ArgumentTuple;
|
|
|
|
explicit Impl(const T& value) : value_(value) {} // NOLINT
|
|
|
|
Result Perform(const ArgumentTuple&) override { return value_; }
|
|
|
|
private:
|
|
T value_;
|
|
};
|
|
|
|
const T value_;
|
|
};
|
|
|
|
// Implements the polymorphic ReturnRoundRobin(v) action, which can be
|
|
// used in any function that returns the element_type of v.
|
|
template <typename T>
|
|
class ReturnRoundRobinAction {
|
|
public:
|
|
explicit ReturnRoundRobinAction(std::vector<T> values) {
|
|
GTEST_CHECK_(!values.empty())
|
|
<< "ReturnRoundRobin requires at least one element.";
|
|
state_->values = std::move(values);
|
|
}
|
|
|
|
template <typename... Args>
|
|
T operator()(Args&&...) const {
|
|
return state_->Next();
|
|
}
|
|
|
|
private:
|
|
struct State {
|
|
T Next() {
|
|
T ret_val = values[i++];
|
|
if (i == values.size()) i = 0;
|
|
return ret_val;
|
|
}
|
|
|
|
std::vector<T> values;
|
|
size_t i = 0;
|
|
};
|
|
std::shared_ptr<State> state_ = std::make_shared<State>();
|
|
};
|
|
|
|
// Implements the polymorphic DoDefault() action.
|
|
class DoDefaultAction {
|
|
public:
|
|
// This template type conversion operator allows DoDefault() to be
|
|
// used in any function.
|
|
template <typename F>
|
|
operator Action<F>() const { return Action<F>(); } // NOLINT
|
|
};
|
|
|
|
// Implements the Assign action to set a given pointer referent to a
|
|
// particular value.
|
|
template <typename T1, typename T2>
|
|
class AssignAction {
|
|
public:
|
|
AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}
|
|
|
|
template <typename Result, typename ArgumentTuple>
|
|
void Perform(const ArgumentTuple& /* args */) const {
|
|
*ptr_ = value_;
|
|
}
|
|
|
|
private:
|
|
T1* const ptr_;
|
|
const T2 value_;
|
|
};
|
|
|
|
#if !GTEST_OS_WINDOWS_MOBILE
|
|
|
|
// Implements the SetErrnoAndReturn action to simulate return from
|
|
// various system calls and libc functions.
|
|
template <typename T>
|
|
class SetErrnoAndReturnAction {
|
|
public:
|
|
SetErrnoAndReturnAction(int errno_value, T result)
|
|
: errno_(errno_value),
|
|
result_(result) {}
|
|
template <typename Result, typename ArgumentTuple>
|
|
Result Perform(const ArgumentTuple& /* args */) const {
|
|
errno = errno_;
|
|
return result_;
|
|
}
|
|
|
|
private:
|
|
const int errno_;
|
|
const T result_;
|
|
};
|
|
|
|
#endif // !GTEST_OS_WINDOWS_MOBILE
|
|
|
|
// Implements the SetArgumentPointee<N>(x) action for any function
|
|
// whose N-th argument (0-based) is a pointer to x's type.
|
|
template <size_t N, typename A, typename = void>
|
|
struct SetArgumentPointeeAction {
|
|
A value;
|
|
|
|
template <typename... Args>
|
|
void operator()(const Args&... args) const {
|
|
*::std::get<N>(std::tie(args...)) = value;
|
|
}
|
|
};
|
|
|
|
// Implements the Invoke(object_ptr, &Class::Method) action.
|
|
template <class Class, typename MethodPtr>
|
|
struct InvokeMethodAction {
|
|
Class* const obj_ptr;
|
|
const MethodPtr method_ptr;
|
|
|
|
template <typename... Args>
|
|
auto operator()(Args&&... args) const
|
|
-> decltype((obj_ptr->*method_ptr)(std::forward<Args>(args)...)) {
|
|
return (obj_ptr->*method_ptr)(std::forward<Args>(args)...);
|
|
}
|
|
};
|
|
|
|
// Implements the InvokeWithoutArgs(f) action. The template argument
|
|
// FunctionImpl is the implementation type of f, which can be either a
|
|
// function pointer or a functor. InvokeWithoutArgs(f) can be used as an
|
|
// Action<F> as long as f's type is compatible with F.
|
|
template <typename FunctionImpl>
|
|
struct InvokeWithoutArgsAction {
|
|
FunctionImpl function_impl;
|
|
|
|
// Allows InvokeWithoutArgs(f) to be used as any action whose type is
|
|
// compatible with f.
|
|
template <typename... Args>
|
|
auto operator()(const Args&...) -> decltype(function_impl()) {
|
|
return function_impl();
|
|
}
|
|
};
|
|
|
|
// Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
|
|
template <class Class, typename MethodPtr>
|
|
struct InvokeMethodWithoutArgsAction {
|
|
Class* const obj_ptr;
|
|
const MethodPtr method_ptr;
|
|
|
|
using ReturnType =
|
|
decltype((std::declval<Class*>()->*std::declval<MethodPtr>())());
|
|
|
|
template <typename... Args>
|
|
ReturnType operator()(const Args&...) const {
|
|
return (obj_ptr->*method_ptr)();
|
|
}
|
|
};
|
|
|
|
// Implements the IgnoreResult(action) action.
|
|
template <typename A>
|
|
class IgnoreResultAction {
|
|
public:
|
|
explicit IgnoreResultAction(const A& action) : action_(action) {}
|
|
|
|
template <typename F>
|
|
operator Action<F>() const {
|
|
// Assert statement belongs here because this is the best place to verify
|
|
// conditions on F. It produces the clearest error messages
|
|
// in most compilers.
|
|
// Impl really belongs in this scope as a local class but can't
|
|
// because MSVC produces duplicate symbols in different translation units
|
|
// in this case. Until MS fixes that bug we put Impl into the class scope
|
|
// and put the typedef both here (for use in assert statement) and
|
|
// in the Impl class. But both definitions must be the same.
|
|
typedef typename internal::Function<F>::Result Result;
|
|
|
|
// Asserts at compile time that F returns void.
|
|
static_assert(std::is_void<Result>::value, "Result type should be void.");
|
|
|
|
return Action<F>(new Impl<F>(action_));
|
|
}
|
|
|
|
private:
|
|
template <typename F>
|
|
class Impl : public ActionInterface<F> {
|
|
public:
|
|
typedef typename internal::Function<F>::Result Result;
|
|
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
|
|
|
|
explicit Impl(const A& action) : action_(action) {}
|
|
|
|
void Perform(const ArgumentTuple& args) override {
|
|
// Performs the action and ignores its result.
|
|
action_.Perform(args);
|
|
}
|
|
|
|
private:
|
|
// Type OriginalFunction is the same as F except that its return
|
|
// type is IgnoredValue.
|
|
typedef typename internal::Function<F>::MakeResultIgnoredValue
|
|
OriginalFunction;
|
|
|
|
const Action<OriginalFunction> action_;
|
|
};
|
|
|
|
const A action_;
|
|
};
|
|
|
|
template <typename InnerAction, size_t... I>
|
|
struct WithArgsAction {
|
|
InnerAction action;
|
|
|
|
// The inner action could be anything convertible to Action<X>.
|
|
// We use the conversion operator to detect the signature of the inner Action.
|
|
template <typename R, typename... Args>
|
|
operator Action<R(Args...)>() const { // NOLINT
|
|
using TupleType = std::tuple<Args...>;
|
|
Action<R(typename std::tuple_element<I, TupleType>::type...)>
|
|
converted(action);
|
|
|
|
return [converted](Args... args) -> R {
|
|
return converted.Perform(std::forward_as_tuple(
|
|
std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...));
|
|
};
|
|
}
|
|
};
|
|
|
|
template <typename... Actions>
|
|
struct DoAllAction {
|
|
private:
|
|
template <typename T>
|
|
using NonFinalType =
|
|
typename std::conditional<std::is_scalar<T>::value, T, const T&>::type;
|
|
|
|
template <typename ActionT, size_t... I>
|
|
std::vector<ActionT> Convert(IndexSequence<I...>) const {
|
|
return {ActionT(std::get<I>(actions))...};
|
|
}
|
|
|
|
public:
|
|
std::tuple<Actions...> actions;
|
|
|
|
template <typename R, typename... Args>
|
|
operator Action<R(Args...)>() const { // NOLINT
|
|
struct Op {
|
|
std::vector<Action<void(NonFinalType<Args>...)>> converted;
|
|
Action<R(Args...)> last;
|
|
R operator()(Args... args) const {
|
|
auto tuple_args = std::forward_as_tuple(std::forward<Args>(args)...);
|
|
for (auto& a : converted) {
|
|
a.Perform(tuple_args);
|
|
}
|
|
return last.Perform(std::move(tuple_args));
|
|
}
|
|
};
|
|
return Op{Convert<Action<void(NonFinalType<Args>...)>>(
|
|
MakeIndexSequence<sizeof...(Actions) - 1>()),
|
|
std::get<sizeof...(Actions) - 1>(actions)};
|
|
}
|
|
};
|
|
|
|
template <typename T, typename... Params>
|
|
struct ReturnNewAction {
|
|
T* operator()() const {
|
|
return internal::Apply(
|
|
[](const Params&... unpacked_params) {
|
|
return new T(unpacked_params...);
|
|
},
|
|
params);
|
|
}
|
|
std::tuple<Params...> params;
|
|
};
|
|
|
|
template <size_t k>
|
|
struct ReturnArgAction {
|
|
template <typename... Args>
|
|
auto operator()(const Args&... args) const ->
|
|
typename std::tuple_element<k, std::tuple<Args...>>::type {
|
|
return std::get<k>(std::tie(args...));
|
|
}
|
|
};
|
|
|
|
template <size_t k, typename Ptr>
|
|
struct SaveArgAction {
|
|
Ptr pointer;
|
|
|
|
template <typename... Args>
|
|
void operator()(const Args&... args) const {
|
|
*pointer = std::get<k>(std::tie(args...));
|
|
}
|
|
};
|
|
|
|
template <size_t k, typename Ptr>
|
|
struct SaveArgPointeeAction {
|
|
Ptr pointer;
|
|
|
|
template <typename... Args>
|
|
void operator()(const Args&... args) const {
|
|
*pointer = *std::get<k>(std::tie(args...));
|
|
}
|
|
};
|
|
|
|
template <size_t k, typename T>
|
|
struct SetArgRefereeAction {
|
|
T value;
|
|
|
|
template <typename... Args>
|
|
void operator()(Args&&... args) const {
|
|
using argk_type =
|
|
typename ::std::tuple_element<k, std::tuple<Args...>>::type;
|
|
static_assert(std::is_lvalue_reference<argk_type>::value,
|
|
"Argument must be a reference type.");
|
|
std::get<k>(std::tie(args...)) = value;
|
|
}
|
|
};
|
|
|
|
template <size_t k, typename I1, typename I2>
|
|
struct SetArrayArgumentAction {
|
|
I1 first;
|
|
I2 last;
|
|
|
|
template <typename... Args>
|
|
void operator()(const Args&... args) const {
|
|
auto value = std::get<k>(std::tie(args...));
|
|
for (auto it = first; it != last; ++it, (void)++value) {
|
|
*value = *it;
|
|
}
|
|
}
|
|
};
|
|
|
|
template <size_t k>
|
|
struct DeleteArgAction {
|
|
template <typename... Args>
|
|
void operator()(const Args&... args) const {
|
|
delete std::get<k>(std::tie(args...));
|
|
}
|
|
};
|
|
|
|
template <typename Ptr>
|
|
struct ReturnPointeeAction {
|
|
Ptr pointer;
|
|
template <typename... Args>
|
|
auto operator()(const Args&...) const -> decltype(*pointer) {
|
|
return *pointer;
|
|
}
|
|
};
|
|
|
|
#if GTEST_HAS_EXCEPTIONS
|
|
template <typename T>
|
|
struct ThrowAction {
|
|
T exception;
|
|
// We use a conversion operator to adapt to any return type.
|
|
template <typename R, typename... Args>
|
|
operator Action<R(Args...)>() const { // NOLINT
|
|
T copy = exception;
|
|
return [copy](Args...) -> R { throw copy; };
|
|
}
|
|
};
|
|
#endif // GTEST_HAS_EXCEPTIONS
|
|
|
|
} // namespace internal
|
|
|
|
// An Unused object can be implicitly constructed from ANY value.
|
|
// This is handy when defining actions that ignore some or all of the
|
|
// mock function arguments. For example, given
|
|
//
|
|
// MOCK_METHOD3(Foo, double(const string& label, double x, double y));
|
|
// MOCK_METHOD3(Bar, double(int index, double x, double y));
|
|
//
|
|
// instead of
|
|
//
|
|
// double DistanceToOriginWithLabel(const string& label, double x, double y) {
|
|
// return sqrt(x*x + y*y);
|
|
// }
|
|
// double DistanceToOriginWithIndex(int index, double x, double y) {
|
|
// return sqrt(x*x + y*y);
|
|
// }
|
|
// ...
|
|
// EXPECT_CALL(mock, Foo("abc", _, _))
|
|
// .WillOnce(Invoke(DistanceToOriginWithLabel));
|
|
// EXPECT_CALL(mock, Bar(5, _, _))
|
|
// .WillOnce(Invoke(DistanceToOriginWithIndex));
|
|
//
|
|
// you could write
|
|
//
|
|
// // We can declare any uninteresting argument as Unused.
|
|
// double DistanceToOrigin(Unused, double x, double y) {
|
|
// return sqrt(x*x + y*y);
|
|
// }
|
|
// ...
|
|
// EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
|
|
// EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
|
|
typedef internal::IgnoredValue Unused;
|
|
|
|
// Creates an action that does actions a1, a2, ..., sequentially in
|
|
// each invocation. All but the last action will have a readonly view of the
|
|
// arguments.
|
|
template <typename... Action>
|
|
internal::DoAllAction<typename std::decay<Action>::type...> DoAll(
|
|
Action&&... action) {
|
|
return {std::forward_as_tuple(std::forward<Action>(action)...)};
|
|
}
|
|
|
|
// WithArg<k>(an_action) creates an action that passes the k-th
|
|
// (0-based) argument of the mock function to an_action and performs
|
|
// it. It adapts an action accepting one argument to one that accepts
|
|
// multiple arguments. For convenience, we also provide
|
|
// WithArgs<k>(an_action) (defined below) as a synonym.
|
|
template <size_t k, typename InnerAction>
|
|
internal::WithArgsAction<typename std::decay<InnerAction>::type, k>
|
|
WithArg(InnerAction&& action) {
|
|
return {std::forward<InnerAction>(action)};
|
|
}
|
|
|
|
// WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes
|
|
// the selected arguments of the mock function to an_action and
|
|
// performs it. It serves as an adaptor between actions with
|
|
// different argument lists.
|
|
template <size_t k, size_t... ks, typename InnerAction>
|
|
internal::WithArgsAction<typename std::decay<InnerAction>::type, k, ks...>
|
|
WithArgs(InnerAction&& action) {
|
|
return {std::forward<InnerAction>(action)};
|
|
}
|
|
|
|
// WithoutArgs(inner_action) can be used in a mock function with a
|
|
// non-empty argument list to perform inner_action, which takes no
|
|
// argument. In other words, it adapts an action accepting no
|
|
// argument to one that accepts (and ignores) arguments.
|
|
template <typename InnerAction>
|
|
internal::WithArgsAction<typename std::decay<InnerAction>::type>
|
|
WithoutArgs(InnerAction&& action) {
|
|
return {std::forward<InnerAction>(action)};
|
|
}
|
|
|
|
// Creates an action that returns 'value'. 'value' is passed by value
|
|
// instead of const reference - otherwise Return("string literal")
|
|
// will trigger a compiler error about using array as initializer.
|
|
template <typename R>
|
|
internal::ReturnAction<R> Return(R value) {
|
|
return internal::ReturnAction<R>(std::move(value));
|
|
}
|
|
|
|
// Creates an action that returns NULL.
|
|
inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() {
|
|
return MakePolymorphicAction(internal::ReturnNullAction());
|
|
}
|
|
|
|
// Creates an action that returns from a void function.
|
|
inline PolymorphicAction<internal::ReturnVoidAction> Return() {
|
|
return MakePolymorphicAction(internal::ReturnVoidAction());
|
|
}
|
|
|
|
// Creates an action that returns the reference to a variable.
|
|
template <typename R>
|
|
inline internal::ReturnRefAction<R> ReturnRef(R& x) { // NOLINT
|
|
return internal::ReturnRefAction<R>(x);
|
|
}
|
|
|
|
// Prevent using ReturnRef on reference to temporary.
|
|
template <typename R, R* = nullptr>
|
|
internal::ReturnRefAction<R> ReturnRef(R&&) = delete;
|
|
|
|
// Creates an action that returns the reference to a copy of the
|
|
// argument. The copy is created when the action is constructed and
|
|
// lives as long as the action.
|
|
template <typename R>
|
|
inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) {
|
|
return internal::ReturnRefOfCopyAction<R>(x);
|
|
}
|
|
|
|
// Modifies the parent action (a Return() action) to perform a move of the
|
|
// argument instead of a copy.
|
|
// Return(ByMove()) actions can only be executed once and will assert this
|
|
// invariant.
|
|
template <typename R>
|
|
internal::ByMoveWrapper<R> ByMove(R x) {
|
|
return internal::ByMoveWrapper<R>(std::move(x));
|
|
}
|
|
|
|
// Creates an action that returns an element of `vals`. Calling this action will
|
|
// repeatedly return the next value from `vals` until it reaches the end and
|
|
// will restart from the beginning.
|
|
template <typename T>
|
|
internal::ReturnRoundRobinAction<T> ReturnRoundRobin(std::vector<T> vals) {
|
|
return internal::ReturnRoundRobinAction<T>(std::move(vals));
|
|
}
|
|
|
|
// Creates an action that returns an element of `vals`. Calling this action will
|
|
// repeatedly return the next value from `vals` until it reaches the end and
|
|
// will restart from the beginning.
|
|
template <typename T>
|
|
internal::ReturnRoundRobinAction<T> ReturnRoundRobin(
|
|
std::initializer_list<T> vals) {
|
|
return internal::ReturnRoundRobinAction<T>(std::vector<T>(vals));
|
|
}
|
|
|
|
// Creates an action that does the default action for the give mock function.
|
|
inline internal::DoDefaultAction DoDefault() {
|
|
return internal::DoDefaultAction();
|
|
}
|
|
|
|
// Creates an action that sets the variable pointed by the N-th
|
|
// (0-based) function argument to 'value'.
|
|
template <size_t N, typename T>
|
|
internal::SetArgumentPointeeAction<N, T> SetArgPointee(T value) {
|
|
return {std::move(value)};
|
|
}
|
|
|
|
// The following version is DEPRECATED.
|
|
template <size_t N, typename T>
|
|
internal::SetArgumentPointeeAction<N, T> SetArgumentPointee(T value) {
|
|
return {std::move(value)};
|
|
}
|
|
|
|
// Creates an action that sets a pointer referent to a given value.
|
|
template <typename T1, typename T2>
|
|
PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) {
|
|
return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val));
|
|
}
|
|
|
|
#if !GTEST_OS_WINDOWS_MOBILE
|
|
|
|
// Creates an action that sets errno and returns the appropriate error.
|
|
template <typename T>
|
|
PolymorphicAction<internal::SetErrnoAndReturnAction<T> >
|
|
SetErrnoAndReturn(int errval, T result) {
|
|
return MakePolymorphicAction(
|
|
internal::SetErrnoAndReturnAction<T>(errval, result));
|
|
}
|
|
|
|
#endif // !GTEST_OS_WINDOWS_MOBILE
|
|
|
|
// Various overloads for Invoke().
|
|
|
|
// Legacy function.
|
|
// Actions can now be implicitly constructed from callables. No need to create
|
|
// wrapper objects.
|
|
// This function exists for backwards compatibility.
|
|
template <typename FunctionImpl>
|
|
typename std::decay<FunctionImpl>::type Invoke(FunctionImpl&& function_impl) {
|
|
return std::forward<FunctionImpl>(function_impl);
|
|
}
|
|
|
|
// Creates an action that invokes the given method on the given object
|
|
// with the mock function's arguments.
|
|
template <class Class, typename MethodPtr>
|
|
internal::InvokeMethodAction<Class, MethodPtr> Invoke(Class* obj_ptr,
|
|
MethodPtr method_ptr) {
|
|
return {obj_ptr, method_ptr};
|
|
}
|
|
|
|
// Creates an action that invokes 'function_impl' with no argument.
|
|
template <typename FunctionImpl>
|
|
internal::InvokeWithoutArgsAction<typename std::decay<FunctionImpl>::type>
|
|
InvokeWithoutArgs(FunctionImpl function_impl) {
|
|
return {std::move(function_impl)};
|
|
}
|
|
|
|
// Creates an action that invokes the given method on the given object
|
|
// with no argument.
|
|
template <class Class, typename MethodPtr>
|
|
internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> InvokeWithoutArgs(
|
|
Class* obj_ptr, MethodPtr method_ptr) {
|
|
return {obj_ptr, method_ptr};
|
|
}
|
|
|
|
// Creates an action that performs an_action and throws away its
|
|
// result. In other words, it changes the return type of an_action to
|
|
// void. an_action MUST NOT return void, or the code won't compile.
|
|
template <typename A>
|
|
inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) {
|
|
return internal::IgnoreResultAction<A>(an_action);
|
|
}
|
|
|
|
// Creates a reference wrapper for the given L-value. If necessary,
|
|
// you can explicitly specify the type of the reference. For example,
|
|
// suppose 'derived' is an object of type Derived, ByRef(derived)
|
|
// would wrap a Derived&. If you want to wrap a const Base& instead,
|
|
// where Base is a base class of Derived, just write:
|
|
//
|
|
// ByRef<const Base>(derived)
|
|
//
|
|
// N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper.
|
|
// However, it may still be used for consistency with ByMove().
|
|
template <typename T>
|
|
inline ::std::reference_wrapper<T> ByRef(T& l_value) { // NOLINT
|
|
return ::std::reference_wrapper<T>(l_value);
|
|
}
|
|
|
|
// The ReturnNew<T>(a1, a2, ..., a_k) action returns a pointer to a new
|
|
// instance of type T, constructed on the heap with constructor arguments
|
|
// a1, a2, ..., and a_k. The caller assumes ownership of the returned value.
|
|
template <typename T, typename... Params>
|
|
internal::ReturnNewAction<T, typename std::decay<Params>::type...> ReturnNew(
|
|
Params&&... params) {
|
|
return {std::forward_as_tuple(std::forward<Params>(params)...)};
|
|
}
|
|
|
|
// Action ReturnArg<k>() returns the k-th argument of the mock function.
|
|
template <size_t k>
|
|
internal::ReturnArgAction<k> ReturnArg() {
|
|
return {};
|
|
}
|
|
|
|
// Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the
|
|
// mock function to *pointer.
|
|
template <size_t k, typename Ptr>
|
|
internal::SaveArgAction<k, Ptr> SaveArg(Ptr pointer) {
|
|
return {pointer};
|
|
}
|
|
|
|
// Action SaveArgPointee<k>(pointer) saves the value pointed to
|
|
// by the k-th (0-based) argument of the mock function to *pointer.
|
|
template <size_t k, typename Ptr>
|
|
internal::SaveArgPointeeAction<k, Ptr> SaveArgPointee(Ptr pointer) {
|
|
return {pointer};
|
|
}
|
|
|
|
// Action SetArgReferee<k>(value) assigns 'value' to the variable
|
|
// referenced by the k-th (0-based) argument of the mock function.
|
|
template <size_t k, typename T>
|
|
internal::SetArgRefereeAction<k, typename std::decay<T>::type> SetArgReferee(
|
|
T&& value) {
|
|
return {std::forward<T>(value)};
|
|
}
|
|
|
|
// Action SetArrayArgument<k>(first, last) copies the elements in
|
|
// source range [first, last) to the array pointed to by the k-th
|
|
// (0-based) argument, which can be either a pointer or an
|
|
// iterator. The action does not take ownership of the elements in the
|
|
// source range.
|
|
template <size_t k, typename I1, typename I2>
|
|
internal::SetArrayArgumentAction<k, I1, I2> SetArrayArgument(I1 first,
|
|
I2 last) {
|
|
return {first, last};
|
|
}
|
|
|
|
// Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock
|
|
// function.
|
|
template <size_t k>
|
|
internal::DeleteArgAction<k> DeleteArg() {
|
|
return {};
|
|
}
|
|
|
|
// This action returns the value pointed to by 'pointer'.
|
|
template <typename Ptr>
|
|
internal::ReturnPointeeAction<Ptr> ReturnPointee(Ptr pointer) {
|
|
return {pointer};
|
|
}
|
|
|
|
// Action Throw(exception) can be used in a mock function of any type
|
|
// to throw the given exception. Any copyable value can be thrown.
|
|
#if GTEST_HAS_EXCEPTIONS
|
|
template <typename T>
|
|
internal::ThrowAction<typename std::decay<T>::type> Throw(T&& exception) {
|
|
return {std::forward<T>(exception)};
|
|
}
|
|
#endif // GTEST_HAS_EXCEPTIONS
|
|
|
|
namespace internal {
|
|
|
|
// A macro from the ACTION* family (defined later in gmock-generated-actions.h)
|
|
// defines an action that can be used in a mock function. Typically,
|
|
// these actions only care about a subset of the arguments of the mock
|
|
// function. For example, if such an action only uses the second
|
|
// argument, it can be used in any mock function that takes >= 2
|
|
// arguments where the type of the second argument is compatible.
|
|
//
|
|
// Therefore, the action implementation must be prepared to take more
|
|
// arguments than it needs. The ExcessiveArg type is used to
|
|
// represent those excessive arguments. In order to keep the compiler
|
|
// error messages tractable, we define it in the testing namespace
|
|
// instead of testing::internal. However, this is an INTERNAL TYPE
|
|
// and subject to change without notice, so a user MUST NOT USE THIS
|
|
// TYPE DIRECTLY.
|
|
struct ExcessiveArg {};
|
|
|
|
// Builds an implementation of an Action<> for some particular signature, using
|
|
// a class defined by an ACTION* macro.
|
|
template <typename F, typename Impl> struct ActionImpl;
|
|
|
|
template <typename Impl>
|
|
struct ImplBase {
|
|
struct Holder {
|
|
// Allows each copy of the Action<> to get to the Impl.
|
|
explicit operator const Impl&() const { return *ptr; }
|
|
std::shared_ptr<Impl> ptr;
|
|
};
|
|
using type = typename std::conditional<std::is_constructible<Impl>::value,
|
|
Impl, Holder>::type;
|
|
};
|
|
|
|
template <typename R, typename... Args, typename Impl>
|
|
struct ActionImpl<R(Args...), Impl> : ImplBase<Impl>::type {
|
|
using Base = typename ImplBase<Impl>::type;
|
|
using function_type = R(Args...);
|
|
using args_type = std::tuple<Args...>;
|
|
|
|
ActionImpl() = default; // Only defined if appropriate for Base.
|
|
explicit ActionImpl(std::shared_ptr<Impl> impl) : Base{std::move(impl)} { }
|
|
|
|
R operator()(Args&&... arg) const {
|
|
static constexpr size_t kMaxArgs =
|
|
sizeof...(Args) <= 10 ? sizeof...(Args) : 10;
|
|
return Apply(MakeIndexSequence<kMaxArgs>{},
|
|
MakeIndexSequence<10 - kMaxArgs>{},
|
|
args_type{std::forward<Args>(arg)...});
|
|
}
|
|
|
|
template <std::size_t... arg_id, std::size_t... excess_id>
|
|
R Apply(IndexSequence<arg_id...>, IndexSequence<excess_id...>,
|
|
const args_type& args) const {
|
|
// Impl need not be specific to the signature of action being implemented;
|
|
// only the implementing function body needs to have all of the specific
|
|
// types instantiated. Up to 10 of the args that are provided by the
|
|
// args_type get passed, followed by a dummy of unspecified type for the
|
|
// remainder up to 10 explicit args.
|
|
static constexpr ExcessiveArg kExcessArg{};
|
|
return static_cast<const Impl&>(*this).template gmock_PerformImpl<
|
|
/*function_type=*/function_type, /*return_type=*/R,
|
|
/*args_type=*/args_type,
|
|
/*argN_type=*/typename std::tuple_element<arg_id, args_type>::type...>(
|
|
/*args=*/args, std::get<arg_id>(args)...,
|
|
((void)excess_id, kExcessArg)...);
|
|
}
|
|
};
|
|
|
|
// Stores a default-constructed Impl as part of the Action<>'s
|
|
// std::function<>. The Impl should be trivial to copy.
|
|
template <typename F, typename Impl>
|
|
::testing::Action<F> MakeAction() {
|
|
return ::testing::Action<F>(ActionImpl<F, Impl>());
|
|
}
|
|
|
|
// Stores just the one given instance of Impl.
|
|
template <typename F, typename Impl>
|
|
::testing::Action<F> MakeAction(std::shared_ptr<Impl> impl) {
|
|
return ::testing::Action<F>(ActionImpl<F, Impl>(std::move(impl)));
|
|
}
|
|
|
|
#define GMOCK_INTERNAL_ARG_UNUSED(i, data, el) \
|
|
, const arg##i##_type& arg##i GTEST_ATTRIBUTE_UNUSED_
|
|
#define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_ \
|
|
const args_type& args GTEST_ATTRIBUTE_UNUSED_ GMOCK_PP_REPEAT( \
|
|
GMOCK_INTERNAL_ARG_UNUSED, , 10)
|
|
|
|
#define GMOCK_INTERNAL_ARG(i, data, el) , const arg##i##_type& arg##i
|
|
#define GMOCK_ACTION_ARG_TYPES_AND_NAMES_ \
|
|
const args_type& args GMOCK_PP_REPEAT(GMOCK_INTERNAL_ARG, , 10)
|
|
|
|
#define GMOCK_INTERNAL_TEMPLATE_ARG(i, data, el) , typename arg##i##_type
|
|
#define GMOCK_ACTION_TEMPLATE_ARGS_NAMES_ \
|
|
GMOCK_PP_TAIL(GMOCK_PP_REPEAT(GMOCK_INTERNAL_TEMPLATE_ARG, , 10))
|
|
|
|
#define GMOCK_INTERNAL_TYPENAME_PARAM(i, data, param) , typename param##_type
|
|
#define GMOCK_ACTION_TYPENAME_PARAMS_(params) \
|
|
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPENAME_PARAM, , params))
|
|
|
|
#define GMOCK_INTERNAL_TYPE_PARAM(i, data, param) , param##_type
|
|
#define GMOCK_ACTION_TYPE_PARAMS_(params) \
|
|
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_PARAM, , params))
|
|
|
|
#define GMOCK_INTERNAL_TYPE_GVALUE_PARAM(i, data, param) \
|
|
, param##_type gmock_p##i
|
|
#define GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params) \
|
|
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_GVALUE_PARAM, , params))
|
|
|
|
#define GMOCK_INTERNAL_GVALUE_PARAM(i, data, param) \
|
|
, std::forward<param##_type>(gmock_p##i)
|
|
#define GMOCK_ACTION_GVALUE_PARAMS_(params) \
|
|
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GVALUE_PARAM, , params))
|
|
|
|
#define GMOCK_INTERNAL_INIT_PARAM(i, data, param) \
|
|
, param(::std::forward<param##_type>(gmock_p##i))
|
|
#define GMOCK_ACTION_INIT_PARAMS_(params) \
|
|
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_INIT_PARAM, , params))
|
|
|
|
#define GMOCK_INTERNAL_FIELD_PARAM(i, data, param) param##_type param;
|
|
#define GMOCK_ACTION_FIELD_PARAMS_(params) \
|
|
GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_FIELD_PARAM, , params)
|
|
|
|
#define GMOCK_INTERNAL_ACTION(name, full_name, params) \
|
|
template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
|
|
class full_name { \
|
|
public: \
|
|
explicit full_name(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \
|
|
: impl_(std::make_shared<gmock_Impl>( \
|
|
GMOCK_ACTION_GVALUE_PARAMS_(params))) { } \
|
|
full_name(const full_name&) = default; \
|
|
full_name(full_name&&) noexcept = default; \
|
|
template <typename F> \
|
|
operator ::testing::Action<F>() const { \
|
|
return ::testing::internal::MakeAction<F>(impl_); \
|
|
} \
|
|
private: \
|
|
class gmock_Impl { \
|
|
public: \
|
|
explicit gmock_Impl(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \
|
|
: GMOCK_ACTION_INIT_PARAMS_(params) {} \
|
|
template <typename function_type, typename return_type, \
|
|
typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
|
|
return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \
|
|
GMOCK_ACTION_FIELD_PARAMS_(params) \
|
|
}; \
|
|
std::shared_ptr<const gmock_Impl> impl_; \
|
|
}; \
|
|
template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
|
|
inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \
|
|
GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) { \
|
|
return full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>( \
|
|
GMOCK_ACTION_GVALUE_PARAMS_(params)); \
|
|
} \
|
|
template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
|
|
template <typename function_type, typename return_type, typename args_type, \
|
|
GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
|
|
return_type full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>::gmock_Impl:: \
|
|
gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
|
|
|
|
} // namespace internal
|
|
|
|
// Similar to GMOCK_INTERNAL_ACTION, but no bound parameters are stored.
|
|
#define ACTION(name) \
|
|
class name##Action { \
|
|
public: \
|
|
explicit name##Action() noexcept {} \
|
|
name##Action(const name##Action&) noexcept {} \
|
|
template <typename F> \
|
|
operator ::testing::Action<F>() const { \
|
|
return ::testing::internal::MakeAction<F, gmock_Impl>(); \
|
|
} \
|
|
private: \
|
|
class gmock_Impl { \
|
|
public: \
|
|
template <typename function_type, typename return_type, \
|
|
typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
|
|
return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \
|
|
}; \
|
|
}; \
|
|
inline name##Action name() GTEST_MUST_USE_RESULT_; \
|
|
inline name##Action name() { return name##Action(); } \
|
|
template <typename function_type, typename return_type, typename args_type, \
|
|
GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
|
|
return_type name##Action::gmock_Impl::gmock_PerformImpl( \
|
|
GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
|
|
|
|
#define ACTION_P(name, ...) \
|
|
GMOCK_INTERNAL_ACTION(name, name##ActionP, (__VA_ARGS__))
|
|
|
|
#define ACTION_P2(name, ...) \
|
|
GMOCK_INTERNAL_ACTION(name, name##ActionP2, (__VA_ARGS__))
|
|
|
|
#define ACTION_P3(name, ...) \
|
|
GMOCK_INTERNAL_ACTION(name, name##ActionP3, (__VA_ARGS__))
|
|
|
|
#define ACTION_P4(name, ...) \
|
|
GMOCK_INTERNAL_ACTION(name, name##ActionP4, (__VA_ARGS__))
|
|
|
|
#define ACTION_P5(name, ...) \
|
|
GMOCK_INTERNAL_ACTION(name, name##ActionP5, (__VA_ARGS__))
|
|
|
|
#define ACTION_P6(name, ...) \
|
|
GMOCK_INTERNAL_ACTION(name, name##ActionP6, (__VA_ARGS__))
|
|
|
|
#define ACTION_P7(name, ...) \
|
|
GMOCK_INTERNAL_ACTION(name, name##ActionP7, (__VA_ARGS__))
|
|
|
|
#define ACTION_P8(name, ...) \
|
|
GMOCK_INTERNAL_ACTION(name, name##ActionP8, (__VA_ARGS__))
|
|
|
|
#define ACTION_P9(name, ...) \
|
|
GMOCK_INTERNAL_ACTION(name, name##ActionP9, (__VA_ARGS__))
|
|
|
|
#define ACTION_P10(name, ...) \
|
|
GMOCK_INTERNAL_ACTION(name, name##ActionP10, (__VA_ARGS__))
|
|
|
|
} // namespace testing
|
|
|
|
#ifdef _MSC_VER
|
|
# pragma warning(pop)
|
|
#endif
|
|
|
|
#endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
|
|
// Copyright 2007, Google Inc.
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
// Google Mock - a framework for writing C++ mock classes.
|
|
//
|
|
// This file implements some commonly used cardinalities. More
|
|
// cardinalities can be defined by the user implementing the
|
|
// CardinalityInterface interface if necessary.
|
|
|
|
// GOOGLETEST_CM0002 DO NOT DELETE
|
|
|
|
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_
|
|
#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_
|
|
|
|
#include <limits.h>
|
|
#include <memory>
|
|
#include <ostream> // NOLINT
|
|
|
|
GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \
|
|
/* class A needs to have dll-interface to be used by clients of class B */)
|
|
|
|
namespace testing {
|
|
|
|
// To implement a cardinality Foo, define:
|
|
// 1. a class FooCardinality that implements the
|
|
// CardinalityInterface interface, and
|
|
// 2. a factory function that creates a Cardinality object from a
|
|
// const FooCardinality*.
|
|
//
|
|
// The two-level delegation design follows that of Matcher, providing
|
|
// consistency for extension developers. It also eases ownership
|
|
// management as Cardinality objects can now be copied like plain values.
|
|
|
|
// The implementation of a cardinality.
|
|
class CardinalityInterface {
|
|
public:
|
|
virtual ~CardinalityInterface() {}
|
|
|
|
// Conservative estimate on the lower/upper bound of the number of
|
|
// calls allowed.
|
|
virtual int ConservativeLowerBound() const { return 0; }
|
|
virtual int ConservativeUpperBound() const { return INT_MAX; }
|
|
|
|
// Returns true if and only if call_count calls will satisfy this
|
|
// cardinality.
|
|
virtual bool IsSatisfiedByCallCount(int call_count) const = 0;
|
|
|
|
// Returns true if and only if call_count calls will saturate this
|
|
// cardinality.
|
|
virtual bool IsSaturatedByCallCount(int call_count) const = 0;
|
|
|
|
// Describes self to an ostream.
|
|
virtual void DescribeTo(::std::ostream* os) const = 0;
|
|
};
|
|
|
|
// A Cardinality is a copyable and IMMUTABLE (except by assignment)
|
|
// object that specifies how many times a mock function is expected to
|
|
// be called. The implementation of Cardinality is just a std::shared_ptr
|
|
// to const CardinalityInterface. Don't inherit from Cardinality!
|
|
class GTEST_API_ Cardinality {
|
|
public:
|
|
// Constructs a null cardinality. Needed for storing Cardinality
|
|
// objects in STL containers.
|
|
Cardinality() {}
|
|
|
|
// Constructs a Cardinality from its implementation.
|
|
explicit Cardinality(const CardinalityInterface* impl) : impl_(impl) {}
|
|
|
|
// Conservative estimate on the lower/upper bound of the number of
|
|
// calls allowed.
|
|
int ConservativeLowerBound() const { return impl_->ConservativeLowerBound(); }
|
|
int ConservativeUpperBound() const { return impl_->ConservativeUpperBound(); }
|
|
|
|
// Returns true if and only if call_count calls will satisfy this
|
|
// cardinality.
|
|
bool IsSatisfiedByCallCount(int call_count) const {
|
|
return impl_->IsSatisfiedByCallCount(call_count);
|
|
}
|
|
|
|
// Returns true if and only if call_count calls will saturate this
|
|
// cardinality.
|
|
bool IsSaturatedByCallCount(int call_count) const {
|
|
return impl_->IsSaturatedByCallCount(call_count);
|
|
}
|
|
|
|
// Returns true if and only if call_count calls will over-saturate this
|
|
// cardinality, i.e. exceed the maximum number of allowed calls.
|
|
bool IsOverSaturatedByCallCount(int call_count) const {
|
|
return impl_->IsSaturatedByCallCount(call_count) &&
|
|
!impl_->IsSatisfiedByCallCount(call_count);
|
|
}
|
|
|
|
// Describes self to an ostream
|
|
void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); }
|
|
|
|
// Describes the given actual call count to an ostream.
|
|
static void DescribeActualCallCountTo(int actual_call_count,
|
|
::std::ostream* os);
|
|
|
|
private:
|
|
std::shared_ptr<const CardinalityInterface> impl_;
|
|
};
|
|
|
|
// Creates a cardinality that allows at least n calls.
|
|
GTEST_API_ Cardinality AtLeast(int n);
|
|
|
|
// Creates a cardinality that allows at most n calls.
|
|
GTEST_API_ Cardinality AtMost(int n);
|
|
|
|
// Creates a cardinality that allows any number of calls.
|
|
GTEST_API_ Cardinality AnyNumber();
|
|
|
|
// Creates a cardinality that allows between min and max calls.
|
|
GTEST_API_ Cardinality Between(int min, int max);
|
|
|
|
// Creates a cardinality that allows exactly n calls.
|
|
GTEST_API_ Cardinality Exactly(int n);
|
|
|
|
// Creates a cardinality from its implementation.
|
|
inline Cardinality MakeCardinality(const CardinalityInterface* c) {
|
|
return Cardinality(c);
|
|
}
|
|
|
|
} // namespace testing
|
|
|
|
GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251
|
|
|
|
#endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_
|
|
// Copyright 2007, Google Inc.
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
// Google Mock - a framework for writing C++ mock classes.
|
|
//
|
|
// This file implements MOCK_METHOD.
|
|
|
|
// GOOGLETEST_CM0002 DO NOT DELETE
|
|
|
|
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_FUNCTION_MOCKER_H_ // NOLINT
|
|
#define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_FUNCTION_MOCKER_H_ // NOLINT
|
|
|
|
#include <type_traits> // IWYU pragma: keep
|
|
#include <utility> // IWYU pragma: keep
|
|
|
|
// Copyright 2007, Google Inc.
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
// Google Mock - a framework for writing C++ mock classes.
|
|
//
|
|
// This file implements the ON_CALL() and EXPECT_CALL() macros.
|
|
//
|
|
// A user can use the ON_CALL() macro to specify the default action of
|
|
// a mock method. The syntax is:
|
|
//
|
|
// ON_CALL(mock_object, Method(argument-matchers))
|
|
// .With(multi-argument-matcher)
|
|
// .WillByDefault(action);
|
|
//
|
|
// where the .With() clause is optional.
|
|
//
|
|
// A user can use the EXPECT_CALL() macro to specify an expectation on
|
|
// a mock method. The syntax is:
|
|
//
|
|
// EXPECT_CALL(mock_object, Method(argument-matchers))
|
|
// .With(multi-argument-matchers)
|
|
// .Times(cardinality)
|
|
// .InSequence(sequences)
|
|
// .After(expectations)
|
|
// .WillOnce(action)
|
|
// .WillRepeatedly(action)
|
|
// .RetiresOnSaturation();
|
|
//
|
|
// where all clauses are optional, and .InSequence()/.After()/
|
|
// .WillOnce() can appear any number of times.
|
|
|
|
// GOOGLETEST_CM0002 DO NOT DELETE
|
|
|
|
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_
|
|
#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_
|
|
|
|
#include <functional>
|
|
#include <map>
|
|
#include <memory>
|
|
#include <set>
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
#include <vector>
|
|
// Copyright 2007, Google Inc.
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
// Google Mock - a framework for writing C++ mock classes.
|
|
//
|
|
// The MATCHER* family of macros can be used in a namespace scope to
|
|
// define custom matchers easily.
|
|
//
|
|
// Basic Usage
|
|
// ===========
|
|
//
|
|
// The syntax
|
|
//
|
|
// MATCHER(name, description_string) { statements; }
|
|
//
|
|
// defines a matcher with the given name that executes the statements,
|
|
// which must return a bool to indicate if the match succeeds. Inside
|
|
// the statements, you can refer to the value being matched by 'arg',
|
|
// and refer to its type by 'arg_type'.
|
|
//
|
|
// The description string documents what the matcher does, and is used
|
|
// to generate the failure message when the match fails. Since a
|
|
// MATCHER() is usually defined in a header file shared by multiple
|
|
// C++ source files, we require the description to be a C-string
|
|
// literal to avoid possible side effects. It can be empty, in which
|
|
// case we'll use the sequence of words in the matcher name as the
|
|
// description.
|
|
//
|
|
// For example:
|
|
//
|
|
// MATCHER(IsEven, "") { return (arg % 2) == 0; }
|
|
//
|
|
// allows you to write
|
|
//
|
|
// // Expects mock_foo.Bar(n) to be called where n is even.
|
|
// EXPECT_CALL(mock_foo, Bar(IsEven()));
|
|
//
|
|
// or,
|
|
//
|
|
// // Verifies that the value of some_expression is even.
|
|
// EXPECT_THAT(some_expression, IsEven());
|
|
//
|
|
// If the above assertion fails, it will print something like:
|
|
//
|
|
// Value of: some_expression
|
|
// Expected: is even
|
|
// Actual: 7
|
|
//
|
|
// where the description "is even" is automatically calculated from the
|
|
// matcher name IsEven.
|
|
//
|
|
// Argument Type
|
|
// =============
|
|
//
|
|
// Note that the type of the value being matched (arg_type) is
|
|
// determined by the context in which you use the matcher and is
|
|
// supplied to you by the compiler, so you don't need to worry about
|
|
// declaring it (nor can you). This allows the matcher to be
|
|
// polymorphic. For example, IsEven() can be used to match any type
|
|
// where the value of "(arg % 2) == 0" can be implicitly converted to
|
|
// a bool. In the "Bar(IsEven())" example above, if method Bar()
|
|
// takes an int, 'arg_type' will be int; if it takes an unsigned long,
|
|
// 'arg_type' will be unsigned long; and so on.
|
|
//
|
|
// Parameterizing Matchers
|
|
// =======================
|
|
//
|
|
// Sometimes you'll want to parameterize the matcher. For that you
|
|
// can use another macro:
|
|
//
|
|
// MATCHER_P(name, param_name, description_string) { statements; }
|
|
//
|
|
// For example:
|
|
//
|
|
// MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; }
|
|
//
|
|
// will allow you to write:
|
|
//
|
|
// EXPECT_THAT(Blah("a"), HasAbsoluteValue(n));
|
|
//
|
|
// which may lead to this message (assuming n is 10):
|
|
//
|
|
// Value of: Blah("a")
|
|
// Expected: has absolute value 10
|
|
// Actual: -9
|
|
//
|
|
// Note that both the matcher description and its parameter are
|
|
// printed, making the message human-friendly.
|
|
//
|
|
// In the matcher definition body, you can write 'foo_type' to
|
|
// reference the type of a parameter named 'foo'. For example, in the
|
|
// body of MATCHER_P(HasAbsoluteValue, value) above, you can write
|
|
// 'value_type' to refer to the type of 'value'.
|
|
//
|
|
// We also provide MATCHER_P2, MATCHER_P3, ..., up to MATCHER_P$n to
|
|
// support multi-parameter matchers.
|
|
//
|
|
// Describing Parameterized Matchers
|
|
// =================================
|
|
//
|
|
// The last argument to MATCHER*() is a string-typed expression. The
|
|
// expression can reference all of the matcher's parameters and a
|
|
// special bool-typed variable named 'negation'. When 'negation' is
|
|
// false, the expression should evaluate to the matcher's description;
|
|
// otherwise it should evaluate to the description of the negation of
|
|
// the matcher. For example,
|
|
//
|
|
// using testing::PrintToString;
|
|
//
|
|
// MATCHER_P2(InClosedRange, low, hi,
|
|
// std::string(negation ? "is not" : "is") + " in range [" +
|
|
// PrintToString(low) + ", " + PrintToString(hi) + "]") {
|
|
// return low <= arg && arg <= hi;
|
|
// }
|
|
// ...
|
|
// EXPECT_THAT(3, InClosedRange(4, 6));
|
|
// EXPECT_THAT(3, Not(InClosedRange(2, 4)));
|
|
//
|
|
// would generate two failures that contain the text:
|
|
//
|
|
// Expected: is in range [4, 6]
|
|
// ...
|
|
// Expected: is not in range [2, 4]
|
|
//
|
|
// If you specify "" as the description, the failure message will
|
|
// contain the sequence of words in the matcher name followed by the
|
|
// parameter values printed as a tuple. For example,
|
|
//
|
|
// MATCHER_P2(InClosedRange, low, hi, "") { ... }
|
|
// ...
|
|
// EXPECT_THAT(3, InClosedRange(4, 6));
|
|
// EXPECT_THAT(3, Not(InClosedRange(2, 4)));
|
|
//
|
|
// would generate two failures that contain the text:
|
|
//
|
|
// Expected: in closed range (4, 6)
|
|
// ...
|
|
// Expected: not (in closed range (2, 4))
|
|
//
|
|
// Types of Matcher Parameters
|
|
// ===========================
|
|
//
|
|
// For the purpose of typing, you can view
|
|
//
|
|
// MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... }
|
|
//
|
|
// as shorthand for
|
|
//
|
|
// template <typename p1_type, ..., typename pk_type>
|
|
// FooMatcherPk<p1_type, ..., pk_type>
|
|
// Foo(p1_type p1, ..., pk_type pk) { ... }
|
|
//
|
|
// When you write Foo(v1, ..., vk), the compiler infers the types of
|
|
// the parameters v1, ..., and vk for you. If you are not happy with
|
|
// the result of the type inference, you can specify the types by
|
|
// explicitly instantiating the template, as in Foo<long, bool>(5,
|
|
// false). As said earlier, you don't get to (or need to) specify
|
|
// 'arg_type' as that's determined by the context in which the matcher
|
|
// is used. You can assign the result of expression Foo(p1, ..., pk)
|
|
// to a variable of type FooMatcherPk<p1_type, ..., pk_type>. This
|
|
// can be useful when composing matchers.
|
|
//
|
|
// While you can instantiate a matcher template with reference types,
|
|
// passing the parameters by pointer usually makes your code more
|
|
// readable. If, however, you still want to pass a parameter by
|
|
// reference, be aware that in the failure message generated by the
|
|
// matcher you will see the value of the referenced object but not its
|
|
// address.
|
|
//
|
|
// Explaining Match Results
|
|
// ========================
|
|
//
|
|
// Sometimes the matcher description alone isn't enough to explain why
|
|
// the match has failed or succeeded. For example, when expecting a
|
|
// long string, it can be very helpful to also print the diff between
|
|
// the expected string and the actual one. To achieve that, you can
|
|
// optionally stream additional information to a special variable
|
|
// named result_listener, whose type is a pointer to class
|
|
// MatchResultListener:
|
|
//
|
|
// MATCHER_P(EqualsLongString, str, "") {
|
|
// if (arg == str) return true;
|
|
//
|
|
// *result_listener << "the difference: "
|
|
/// << DiffStrings(str, arg);
|
|
// return false;
|
|
// }
|
|
//
|
|
// Overloading Matchers
|
|
// ====================
|
|
//
|
|
// You can overload matchers with different numbers of parameters:
|
|
//
|
|
// MATCHER_P(Blah, a, description_string1) { ... }
|
|
// MATCHER_P2(Blah, a, b, description_string2) { ... }
|
|
//
|
|
// Caveats
|
|
// =======
|
|
//
|
|
// When defining a new matcher, you should also consider implementing
|
|
// MatcherInterface or using MakePolymorphicMatcher(). These
|
|
// approaches require more work than the MATCHER* macros, but also
|
|
// give you more control on the types of the value being matched and
|
|
// the matcher parameters, which may leads to better compiler error
|
|
// messages when the matcher is used wrong. They also allow
|
|
// overloading matchers based on parameter types (as opposed to just
|
|
// based on the number of parameters).
|
|
//
|
|
// MATCHER*() can only be used in a namespace scope as templates cannot be
|
|
// declared inside of a local class.
|
|
//
|
|
// More Information
|
|
// ================
|
|
//
|
|
// To learn more about using these macros, please search for 'MATCHER'
|
|
// on
|
|
// https://github.com/google/googletest/blob/master/docs/gmock_cook_book.md
|
|
//
|
|
// This file also implements some commonly used argument matchers. More
|
|
// matchers can be defined by the user implementing the
|
|
// MatcherInterface<T> interface if necessary.
|
|
//
|
|
// See googletest/include/gtest/gtest-matchers.h for the definition of class
|
|
// Matcher, class MatcherInterface, and others.
|
|
|
|
// GOOGLETEST_CM0002 DO NOT DELETE
|
|
|
|
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
|
|
#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <initializer_list>
|
|
#include <iterator>
|
|
#include <limits>
|
|
#include <memory>
|
|
#include <ostream> // NOLINT
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
|
|
// MSVC warning C5046 is new as of VS2017 version 15.8.
|
|
#if defined(_MSC_VER) && _MSC_VER >= 1915
|
|
#define GMOCK_MAYBE_5046_ 5046
|
|
#else
|
|
#define GMOCK_MAYBE_5046_
|
|
#endif
|
|
|
|
GTEST_DISABLE_MSC_WARNINGS_PUSH_(
|
|
4251 GMOCK_MAYBE_5046_ /* class A needs to have dll-interface to be used by
|
|
clients of class B */
|
|
/* Symbol involving type with internal linkage not defined */)
|
|
|
|
namespace testing {
|
|
|
|
// To implement a matcher Foo for type T, define:
|
|
// 1. a class FooMatcherImpl that implements the
|
|
// MatcherInterface<T> interface, and
|
|
// 2. a factory function that creates a Matcher<T> object from a
|
|
// FooMatcherImpl*.
|
|
//
|
|
// The two-level delegation design makes it possible to allow a user
|
|
// to write "v" instead of "Eq(v)" where a Matcher is expected, which
|
|
// is impossible if we pass matchers by pointers. It also eases
|
|
// ownership management as Matcher objects can now be copied like
|
|
// plain values.
|
|
|
|
// A match result listener that stores the explanation in a string.
|
|
class StringMatchResultListener : public MatchResultListener {
|
|
public:
|
|
StringMatchResultListener() : MatchResultListener(&ss_) {}
|
|
|
|
// Returns the explanation accumulated so far.
|
|
std::string str() const { return ss_.str(); }
|
|
|
|
// Clears the explanation accumulated so far.
|
|
void Clear() { ss_.str(""); }
|
|
|
|
private:
|
|
::std::stringstream ss_;
|
|
|
|
GTEST_DISALLOW_COPY_AND_ASSIGN_(StringMatchResultListener);
|
|
};
|
|
|
|
// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
|
|
// and MUST NOT BE USED IN USER CODE!!!
|
|
namespace internal {
|
|
|
|
// The MatcherCastImpl class template is a helper for implementing
|
|
// MatcherCast(). We need this helper in order to partially
|
|
// specialize the implementation of MatcherCast() (C++ allows
|
|
// class/struct templates to be partially specialized, but not
|
|
// function templates.).
|
|
|
|
// This general version is used when MatcherCast()'s argument is a
|
|
// polymorphic matcher (i.e. something that can be converted to a
|
|
// Matcher but is not one yet; for example, Eq(value)) or a value (for
|
|
// example, "hello").
|
|
template <typename T, typename M>
|
|
class MatcherCastImpl {
|
|
public:
|
|
static Matcher<T> Cast(const M& polymorphic_matcher_or_value) {
|
|
// M can be a polymorphic matcher, in which case we want to use
|
|
// its conversion operator to create Matcher<T>. Or it can be a value
|
|
// that should be passed to the Matcher<T>'s constructor.
|
|
//
|
|
// We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a
|
|
// polymorphic matcher because it'll be ambiguous if T has an implicit
|
|
// constructor from M (this usually happens when T has an implicit
|
|
// constructor from any type).
|
|
//
|
|
// It won't work to unconditionally implicit_cast
|
|
// polymorphic_matcher_or_value to Matcher<T> because it won't trigger
|
|
// a user-defined conversion from M to T if one exists (assuming M is
|
|
// a value).
|
|
return CastImpl(polymorphic_matcher_or_value,
|
|
std::is_convertible<M, Matcher<T>>{},
|
|
std::is_convertible<M, T>{});
|
|
}
|
|
|
|
private:
|
|
template <bool Ignore>
|
|
static Matcher<T> CastImpl(const M& polymorphic_matcher_or_value,
|
|
std::true_type /* convertible_to_matcher */,
|
|
std::integral_constant<bool, Ignore>) {
|
|
// M is implicitly convertible to Matcher<T>, which means that either
|
|
// M is a polymorphic matcher or Matcher<T> has an implicit constructor
|
|
// from M. In both cases using the implicit conversion will produce a
|
|
// matcher.
|
|
//
|
|
// Even if T has an implicit constructor from M, it won't be called because
|
|
// creating Matcher<T> would require a chain of two user-defined conversions
|
|
// (first to create T from M and then to create Matcher<T> from T).
|
|
return polymorphic_matcher_or_value;
|
|
}
|
|
|
|
// M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic
|
|
// matcher. It's a value of a type implicitly convertible to T. Use direct
|
|
// initialization to create a matcher.
|
|
static Matcher<T> CastImpl(const M& value,
|
|
std::false_type /* convertible_to_matcher */,
|
|
std::true_type /* convertible_to_T */) {
|
|
return Matcher<T>(ImplicitCast_<T>(value));
|
|
}
|
|
|
|
// M can't be implicitly converted to either Matcher<T> or T. Attempt to use
|
|
// polymorphic matcher Eq(value) in this case.
|
|
//
|
|
// Note that we first attempt to perform an implicit cast on the value and
|
|
// only fall back to the polymorphic Eq() matcher afterwards because the
|
|
// latter calls bool operator==(const Lhs& lhs, const Rhs& rhs) in the end
|
|
// which might be undefined even when Rhs is implicitly convertible to Lhs
|
|
// (e.g. std::pair<const int, int> vs. std::pair<int, int>).
|
|
//
|
|
// We don't define this method inline as we need the declaration of Eq().
|
|
static Matcher<T> CastImpl(const M& value,
|
|
std::false_type /* convertible_to_matcher */,
|
|
std::false_type /* convertible_to_T */);
|
|
};
|
|
|
|
// This more specialized version is used when MatcherCast()'s argument
|
|
// is already a Matcher. This only compiles when type T can be
|
|
// statically converted to type U.
|
|
template <typename T, typename U>
|
|
class MatcherCastImpl<T, Matcher<U> > {
|
|
public:
|
|
static Matcher<T> Cast(const Matcher<U>& source_matcher) {
|
|
return Matcher<T>(new Impl(source_matcher));
|
|
}
|
|
|
|
private:
|
|
class Impl : public MatcherInterface<T> {
|
|
public:
|
|
explicit Impl(const Matcher<U>& source_matcher)
|
|
: source_matcher_(source_matcher) {}
|
|
|
|
// We delegate the matching logic to the source matcher.
|
|
bool MatchAndExplain(T x, MatchResultListener* listener) const override {
|
|
using FromType = typename std::remove_cv<typename std::remove_pointer<
|
|
typename std::remove_reference<T>::type>::type>::type;
|
|
using ToType = typename std::remove_cv<typename std::remove_pointer<
|
|
typename std::remove_reference<U>::type>::type>::type;
|
|
// Do not allow implicitly converting base*/& to derived*/&.
|
|
static_assert(
|
|
// Do not trigger if only one of them is a pointer. That implies a
|
|
// regular conversion and not a down_cast.
|
|
(std::is_pointer<typename std::remove_reference<T>::type>::value !=
|
|
std::is_pointer<typename std::remove_reference<U>::type>::value) ||
|
|
std::is_same<FromType, ToType>::value ||
|
|
!std::is_base_of<FromType, ToType>::value,
|
|
"Can't implicitly convert from <base> to <derived>");
|
|
|
|
// Do the cast to `U` explicitly if necessary.
|
|
// Otherwise, let implicit conversions do the trick.
|
|
using CastType =
|
|
typename std::conditional<std::is_convertible<T&, const U&>::value,
|
|
T&, U>::type;
|
|
|
|
return source_matcher_.MatchAndExplain(static_cast<CastType>(x),
|
|
listener);
|
|
}
|
|
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
source_matcher_.DescribeTo(os);
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
source_matcher_.DescribeNegationTo(os);
|
|
}
|
|
|
|
private:
|
|
const Matcher<U> source_matcher_;
|
|
};
|
|
};
|
|
|
|
// This even more specialized version is used for efficiently casting
|
|
// a matcher to its own type.
|
|
template <typename T>
|
|
class MatcherCastImpl<T, Matcher<T> > {
|
|
public:
|
|
static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; }
|
|
};
|
|
|
|
// Template specialization for parameterless Matcher.
|
|
template <typename Derived>
|
|
class MatcherBaseImpl {
|
|
public:
|
|
MatcherBaseImpl() = default;
|
|
|
|
template <typename T>
|
|
operator ::testing::Matcher<T>() const { // NOLINT(runtime/explicit)
|
|
return ::testing::Matcher<T>(new
|
|
typename Derived::template gmock_Impl<T>());
|
|
}
|
|
};
|
|
|
|
// Template specialization for Matcher with parameters.
|
|
template <template <typename...> class Derived, typename... Ts>
|
|
class MatcherBaseImpl<Derived<Ts...>> {
|
|
public:
|
|
// Mark the constructor explicit for single argument T to avoid implicit
|
|
// conversions.
|
|
template <typename E = std::enable_if<sizeof...(Ts) == 1>,
|
|
typename E::type* = nullptr>
|
|
explicit MatcherBaseImpl(Ts... params)
|
|
: params_(std::forward<Ts>(params)...) {}
|
|
template <typename E = std::enable_if<sizeof...(Ts) != 1>,
|
|
typename = typename E::type>
|
|
MatcherBaseImpl(Ts... params) // NOLINT
|
|
: params_(std::forward<Ts>(params)...) {}
|
|
|
|
template <typename F>
|
|
operator ::testing::Matcher<F>() const { // NOLINT(runtime/explicit)
|
|
return Apply<F>(MakeIndexSequence<sizeof...(Ts)>{});
|
|
}
|
|
|
|
private:
|
|
template <typename F, std::size_t... tuple_ids>
|
|
::testing::Matcher<F> Apply(IndexSequence<tuple_ids...>) const {
|
|
return ::testing::Matcher<F>(
|
|
new typename Derived<Ts...>::template gmock_Impl<F>(
|
|
std::get<tuple_ids>(params_)...));
|
|
}
|
|
|
|
const std::tuple<Ts...> params_;
|
|
};
|
|
|
|
} // namespace internal
|
|
|
|
// In order to be safe and clear, casting between different matcher
|
|
// types is done explicitly via MatcherCast<T>(m), which takes a
|
|
// matcher m and returns a Matcher<T>. It compiles only when T can be
|
|
// statically converted to the argument type of m.
|
|
template <typename T, typename M>
|
|
inline Matcher<T> MatcherCast(const M& matcher) {
|
|
return internal::MatcherCastImpl<T, M>::Cast(matcher);
|
|
}
|
|
|
|
// This overload handles polymorphic matchers and values only since
|
|
// monomorphic matchers are handled by the next one.
|
|
template <typename T, typename M>
|
|
inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher_or_value) {
|
|
return MatcherCast<T>(polymorphic_matcher_or_value);
|
|
}
|
|
|
|
// This overload handles monomorphic matchers.
|
|
//
|
|
// In general, if type T can be implicitly converted to type U, we can
|
|
// safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is
|
|
// contravariant): just keep a copy of the original Matcher<U>, convert the
|
|
// argument from type T to U, and then pass it to the underlying Matcher<U>.
|
|
// The only exception is when U is a reference and T is not, as the
|
|
// underlying Matcher<U> may be interested in the argument's address, which
|
|
// is not preserved in the conversion from T to U.
|
|
template <typename T, typename U>
|
|
inline Matcher<T> SafeMatcherCast(const Matcher<U>& matcher) {
|
|
// Enforce that T can be implicitly converted to U.
|
|
static_assert(std::is_convertible<const T&, const U&>::value,
|
|
"T must be implicitly convertible to U");
|
|
// Enforce that we are not converting a non-reference type T to a reference
|
|
// type U.
|
|
GTEST_COMPILE_ASSERT_(
|
|
std::is_reference<T>::value || !std::is_reference<U>::value,
|
|
cannot_convert_non_reference_arg_to_reference);
|
|
// In case both T and U are arithmetic types, enforce that the
|
|
// conversion is not lossy.
|
|
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT;
|
|
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU;
|
|
constexpr bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther;
|
|
constexpr bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther;
|
|
GTEST_COMPILE_ASSERT_(
|
|
kTIsOther || kUIsOther ||
|
|
(internal::LosslessArithmeticConvertible<RawT, RawU>::value),
|
|
conversion_of_arithmetic_types_must_be_lossless);
|
|
return MatcherCast<T>(matcher);
|
|
}
|
|
|
|
// A<T>() returns a matcher that matches any value of type T.
|
|
template <typename T>
|
|
Matcher<T> A();
|
|
|
|
// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
|
|
// and MUST NOT BE USED IN USER CODE!!!
|
|
namespace internal {
|
|
|
|
// If the explanation is not empty, prints it to the ostream.
|
|
inline void PrintIfNotEmpty(const std::string& explanation,
|
|
::std::ostream* os) {
|
|
if (explanation != "" && os != nullptr) {
|
|
*os << ", " << explanation;
|
|
}
|
|
}
|
|
|
|
// Returns true if the given type name is easy to read by a human.
|
|
// This is used to decide whether printing the type of a value might
|
|
// be helpful.
|
|
inline bool IsReadableTypeName(const std::string& type_name) {
|
|
// We consider a type name readable if it's short or doesn't contain
|
|
// a template or function type.
|
|
return (type_name.length() <= 20 ||
|
|
type_name.find_first_of("<(") == std::string::npos);
|
|
}
|
|
|
|
// Matches the value against the given matcher, prints the value and explains
|
|
// the match result to the listener. Returns the match result.
|
|
// 'listener' must not be NULL.
|
|
// Value cannot be passed by const reference, because some matchers take a
|
|
// non-const argument.
|
|
template <typename Value, typename T>
|
|
bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher,
|
|
MatchResultListener* listener) {
|
|
if (!listener->IsInterested()) {
|
|
// If the listener is not interested, we do not need to construct the
|
|
// inner explanation.
|
|
return matcher.Matches(value);
|
|
}
|
|
|
|
StringMatchResultListener inner_listener;
|
|
const bool match = matcher.MatchAndExplain(value, &inner_listener);
|
|
|
|
UniversalPrint(value, listener->stream());
|
|
#if GTEST_HAS_RTTI
|
|
const std::string& type_name = GetTypeName<Value>();
|
|
if (IsReadableTypeName(type_name))
|
|
*listener->stream() << " (of type " << type_name << ")";
|
|
#endif
|
|
PrintIfNotEmpty(inner_listener.str(), listener->stream());
|
|
|
|
return match;
|
|
}
|
|
|
|
// An internal helper class for doing compile-time loop on a tuple's
|
|
// fields.
|
|
template <size_t N>
|
|
class TuplePrefix {
|
|
public:
|
|
// TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true
|
|
// if and only if the first N fields of matcher_tuple matches
|
|
// the first N fields of value_tuple, respectively.
|
|
template <typename MatcherTuple, typename ValueTuple>
|
|
static bool Matches(const MatcherTuple& matcher_tuple,
|
|
const ValueTuple& value_tuple) {
|
|
return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple) &&
|
|
std::get<N - 1>(matcher_tuple).Matches(std::get<N - 1>(value_tuple));
|
|
}
|
|
|
|
// TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os)
|
|
// describes failures in matching the first N fields of matchers
|
|
// against the first N fields of values. If there is no failure,
|
|
// nothing will be streamed to os.
|
|
template <typename MatcherTuple, typename ValueTuple>
|
|
static void ExplainMatchFailuresTo(const MatcherTuple& matchers,
|
|
const ValueTuple& values,
|
|
::std::ostream* os) {
|
|
// First, describes failures in the first N - 1 fields.
|
|
TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os);
|
|
|
|
// Then describes the failure (if any) in the (N - 1)-th (0-based)
|
|
// field.
|
|
typename std::tuple_element<N - 1, MatcherTuple>::type matcher =
|
|
std::get<N - 1>(matchers);
|
|
typedef typename std::tuple_element<N - 1, ValueTuple>::type Value;
|
|
const Value& value = std::get<N - 1>(values);
|
|
StringMatchResultListener listener;
|
|
if (!matcher.MatchAndExplain(value, &listener)) {
|
|
*os << " Expected arg #" << N - 1 << ": ";
|
|
std::get<N - 1>(matchers).DescribeTo(os);
|
|
*os << "\n Actual: ";
|
|
// We remove the reference in type Value to prevent the
|
|
// universal printer from printing the address of value, which
|
|
// isn't interesting to the user most of the time. The
|
|
// matcher's MatchAndExplain() method handles the case when
|
|
// the address is interesting.
|
|
internal::UniversalPrint(value, os);
|
|
PrintIfNotEmpty(listener.str(), os);
|
|
*os << "\n";
|
|
}
|
|
}
|
|
};
|
|
|
|
// The base case.
|
|
template <>
|
|
class TuplePrefix<0> {
|
|
public:
|
|
template <typename MatcherTuple, typename ValueTuple>
|
|
static bool Matches(const MatcherTuple& /* matcher_tuple */,
|
|
const ValueTuple& /* value_tuple */) {
|
|
return true;
|
|
}
|
|
|
|
template <typename MatcherTuple, typename ValueTuple>
|
|
static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */,
|
|
const ValueTuple& /* values */,
|
|
::std::ostream* /* os */) {}
|
|
};
|
|
|
|
// TupleMatches(matcher_tuple, value_tuple) returns true if and only if
|
|
// all matchers in matcher_tuple match the corresponding fields in
|
|
// value_tuple. It is a compiler error if matcher_tuple and
|
|
// value_tuple have different number of fields or incompatible field
|
|
// types.
|
|
template <typename MatcherTuple, typename ValueTuple>
|
|
bool TupleMatches(const MatcherTuple& matcher_tuple,
|
|
const ValueTuple& value_tuple) {
|
|
// Makes sure that matcher_tuple and value_tuple have the same
|
|
// number of fields.
|
|
GTEST_COMPILE_ASSERT_(std::tuple_size<MatcherTuple>::value ==
|
|
std::tuple_size<ValueTuple>::value,
|
|
matcher_and_value_have_different_numbers_of_fields);
|
|
return TuplePrefix<std::tuple_size<ValueTuple>::value>::Matches(matcher_tuple,
|
|
value_tuple);
|
|
}
|
|
|
|
// Describes failures in matching matchers against values. If there
|
|
// is no failure, nothing will be streamed to os.
|
|
template <typename MatcherTuple, typename ValueTuple>
|
|
void ExplainMatchFailureTupleTo(const MatcherTuple& matchers,
|
|
const ValueTuple& values,
|
|
::std::ostream* os) {
|
|
TuplePrefix<std::tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo(
|
|
matchers, values, os);
|
|
}
|
|
|
|
// TransformTupleValues and its helper.
|
|
//
|
|
// TransformTupleValuesHelper hides the internal machinery that
|
|
// TransformTupleValues uses to implement a tuple traversal.
|
|
template <typename Tuple, typename Func, typename OutIter>
|
|
class TransformTupleValuesHelper {
|
|
private:
|
|
typedef ::std::tuple_size<Tuple> TupleSize;
|
|
|
|
public:
|
|
// For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'.
|
|
// Returns the final value of 'out' in case the caller needs it.
|
|
static OutIter Run(Func f, const Tuple& t, OutIter out) {
|
|
return IterateOverTuple<Tuple, TupleSize::value>()(f, t, out);
|
|
}
|
|
|
|
private:
|
|
template <typename Tup, size_t kRemainingSize>
|
|
struct IterateOverTuple {
|
|
OutIter operator() (Func f, const Tup& t, OutIter out) const {
|
|
*out++ = f(::std::get<TupleSize::value - kRemainingSize>(t));
|
|
return IterateOverTuple<Tup, kRemainingSize - 1>()(f, t, out);
|
|
}
|
|
};
|
|
template <typename Tup>
|
|
struct IterateOverTuple<Tup, 0> {
|
|
OutIter operator() (Func /* f */, const Tup& /* t */, OutIter out) const {
|
|
return out;
|
|
}
|
|
};
|
|
};
|
|
|
|
// Successively invokes 'f(element)' on each element of the tuple 't',
|
|
// appending each result to the 'out' iterator. Returns the final value
|
|
// of 'out'.
|
|
template <typename Tuple, typename Func, typename OutIter>
|
|
OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) {
|
|
return TransformTupleValuesHelper<Tuple, Func, OutIter>::Run(f, t, out);
|
|
}
|
|
|
|
// Implements _, a matcher that matches any value of any
|
|
// type. This is a polymorphic matcher, so we need a template type
|
|
// conversion operator to make it appearing as a Matcher<T> for any
|
|
// type T.
|
|
class AnythingMatcher {
|
|
public:
|
|
using is_gtest_matcher = void;
|
|
|
|
template <typename T>
|
|
bool MatchAndExplain(const T& /* x */, std::ostream* /* listener */) const {
|
|
return true;
|
|
}
|
|
void DescribeTo(std::ostream* os) const { *os << "is anything"; }
|
|
void DescribeNegationTo(::std::ostream* os) const {
|
|
// This is mostly for completeness' sake, as it's not very useful
|
|
// to write Not(A<bool>()). However we cannot completely rule out
|
|
// such a possibility, and it doesn't hurt to be prepared.
|
|
*os << "never matches";
|
|
}
|
|
};
|
|
|
|
// Implements the polymorphic IsNull() matcher, which matches any raw or smart
|
|
// pointer that is NULL.
|
|
class IsNullMatcher {
|
|
public:
|
|
template <typename Pointer>
|
|
bool MatchAndExplain(const Pointer& p,
|
|
MatchResultListener* /* listener */) const {
|
|
return p == nullptr;
|
|
}
|
|
|
|
void DescribeTo(::std::ostream* os) const { *os << "is NULL"; }
|
|
void DescribeNegationTo(::std::ostream* os) const {
|
|
*os << "isn't NULL";
|
|
}
|
|
};
|
|
|
|
// Implements the polymorphic NotNull() matcher, which matches any raw or smart
|
|
// pointer that is not NULL.
|
|
class NotNullMatcher {
|
|
public:
|
|
template <typename Pointer>
|
|
bool MatchAndExplain(const Pointer& p,
|
|
MatchResultListener* /* listener */) const {
|
|
return p != nullptr;
|
|
}
|
|
|
|
void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; }
|
|
void DescribeNegationTo(::std::ostream* os) const {
|
|
*os << "is NULL";
|
|
}
|
|
};
|
|
|
|
// Ref(variable) matches any argument that is a reference to
|
|
// 'variable'. This matcher is polymorphic as it can match any
|
|
// super type of the type of 'variable'.
|
|
//
|
|
// The RefMatcher template class implements Ref(variable). It can
|
|
// only be instantiated with a reference type. This prevents a user
|
|
// from mistakenly using Ref(x) to match a non-reference function
|
|
// argument. For example, the following will righteously cause a
|
|
// compiler error:
|
|
//
|
|
// int n;
|
|
// Matcher<int> m1 = Ref(n); // This won't compile.
|
|
// Matcher<int&> m2 = Ref(n); // This will compile.
|
|
template <typename T>
|
|
class RefMatcher;
|
|
|
|
template <typename T>
|
|
class RefMatcher<T&> {
|
|
// Google Mock is a generic framework and thus needs to support
|
|
// mocking any function types, including those that take non-const
|
|
// reference arguments. Therefore the template parameter T (and
|
|
// Super below) can be instantiated to either a const type or a
|
|
// non-const type.
|
|
public:
|
|
// RefMatcher() takes a T& instead of const T&, as we want the
|
|
// compiler to catch using Ref(const_value) as a matcher for a
|
|
// non-const reference.
|
|
explicit RefMatcher(T& x) : object_(x) {} // NOLINT
|
|
|
|
template <typename Super>
|
|
operator Matcher<Super&>() const {
|
|
// By passing object_ (type T&) to Impl(), which expects a Super&,
|
|
// we make sure that Super is a super type of T. In particular,
|
|
// this catches using Ref(const_value) as a matcher for a
|
|
// non-const reference, as you cannot implicitly convert a const
|
|
// reference to a non-const reference.
|
|
return MakeMatcher(new Impl<Super>(object_));
|
|
}
|
|
|
|
private:
|
|
template <typename Super>
|
|
class Impl : public MatcherInterface<Super&> {
|
|
public:
|
|
explicit Impl(Super& x) : object_(x) {} // NOLINT
|
|
|
|
// MatchAndExplain() takes a Super& (as opposed to const Super&)
|
|
// in order to match the interface MatcherInterface<Super&>.
|
|
bool MatchAndExplain(Super& x,
|
|
MatchResultListener* listener) const override {
|
|
*listener << "which is located @" << static_cast<const void*>(&x);
|
|
return &x == &object_;
|
|
}
|
|
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
*os << "references the variable ";
|
|
UniversalPrinter<Super&>::Print(object_, os);
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
*os << "does not reference the variable ";
|
|
UniversalPrinter<Super&>::Print(object_, os);
|
|
}
|
|
|
|
private:
|
|
const Super& object_;
|
|
};
|
|
|
|
T& object_;
|
|
};
|
|
|
|
// Polymorphic helper functions for narrow and wide string matchers.
|
|
inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) {
|
|
return String::CaseInsensitiveCStringEquals(lhs, rhs);
|
|
}
|
|
|
|
inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs,
|
|
const wchar_t* rhs) {
|
|
return String::CaseInsensitiveWideCStringEquals(lhs, rhs);
|
|
}
|
|
|
|
// String comparison for narrow or wide strings that can have embedded NUL
|
|
// characters.
|
|
template <typename StringType>
|
|
bool CaseInsensitiveStringEquals(const StringType& s1,
|
|
const StringType& s2) {
|
|
// Are the heads equal?
|
|
if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) {
|
|
return false;
|
|
}
|
|
|
|
// Skip the equal heads.
|
|
const typename StringType::value_type nul = 0;
|
|
const size_t i1 = s1.find(nul), i2 = s2.find(nul);
|
|
|
|
// Are we at the end of either s1 or s2?
|
|
if (i1 == StringType::npos || i2 == StringType::npos) {
|
|
return i1 == i2;
|
|
}
|
|
|
|
// Are the tails equal?
|
|
return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1));
|
|
}
|
|
|
|
// String matchers.
|
|
|
|
// Implements equality-based string matchers like StrEq, StrCaseNe, and etc.
|
|
template <typename StringType>
|
|
class StrEqualityMatcher {
|
|
public:
|
|
StrEqualityMatcher(StringType str, bool expect_eq, bool case_sensitive)
|
|
: string_(std::move(str)),
|
|
expect_eq_(expect_eq),
|
|
case_sensitive_(case_sensitive) {}
|
|
|
|
#if GTEST_INTERNAL_HAS_STRING_VIEW
|
|
bool MatchAndExplain(const internal::StringView& s,
|
|
MatchResultListener* listener) const {
|
|
// This should fail to compile if StringView is used with wide
|
|
// strings.
|
|
const StringType& str = std::string(s);
|
|
return MatchAndExplain(str, listener);
|
|
}
|
|
#endif // GTEST_INTERNAL_HAS_STRING_VIEW
|
|
|
|
// Accepts pointer types, particularly:
|
|
// const char*
|
|
// char*
|
|
// const wchar_t*
|
|
// wchar_t*
|
|
template <typename CharType>
|
|
bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
|
|
if (s == nullptr) {
|
|
return !expect_eq_;
|
|
}
|
|
return MatchAndExplain(StringType(s), listener);
|
|
}
|
|
|
|
// Matches anything that can convert to StringType.
|
|
//
|
|
// This is a template, not just a plain function with const StringType&,
|
|
// because StringView has some interfering non-explicit constructors.
|
|
template <typename MatcheeStringType>
|
|
bool MatchAndExplain(const MatcheeStringType& s,
|
|
MatchResultListener* /* listener */) const {
|
|
const StringType s2(s);
|
|
const bool eq = case_sensitive_ ? s2 == string_ :
|
|
CaseInsensitiveStringEquals(s2, string_);
|
|
return expect_eq_ == eq;
|
|
}
|
|
|
|
void DescribeTo(::std::ostream* os) const {
|
|
DescribeToHelper(expect_eq_, os);
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const {
|
|
DescribeToHelper(!expect_eq_, os);
|
|
}
|
|
|
|
private:
|
|
void DescribeToHelper(bool expect_eq, ::std::ostream* os) const {
|
|
*os << (expect_eq ? "is " : "isn't ");
|
|
*os << "equal to ";
|
|
if (!case_sensitive_) {
|
|
*os << "(ignoring case) ";
|
|
}
|
|
UniversalPrint(string_, os);
|
|
}
|
|
|
|
const StringType string_;
|
|
const bool expect_eq_;
|
|
const bool case_sensitive_;
|
|
};
|
|
|
|
// Implements the polymorphic HasSubstr(substring) matcher, which
|
|
// can be used as a Matcher<T> as long as T can be converted to a
|
|
// string.
|
|
template <typename StringType>
|
|
class HasSubstrMatcher {
|
|
public:
|
|
explicit HasSubstrMatcher(const StringType& substring)
|
|
: substring_(substring) {}
|
|
|
|
#if GTEST_INTERNAL_HAS_STRING_VIEW
|
|
bool MatchAndExplain(const internal::StringView& s,
|
|
MatchResultListener* listener) const {
|
|
// This should fail to compile if StringView is used with wide
|
|
// strings.
|
|
const StringType& str = std::string(s);
|
|
return MatchAndExplain(str, listener);
|
|
}
|
|
#endif // GTEST_INTERNAL_HAS_STRING_VIEW
|
|
|
|
// Accepts pointer types, particularly:
|
|
// const char*
|
|
// char*
|
|
// const wchar_t*
|
|
// wchar_t*
|
|
template <typename CharType>
|
|
bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
|
|
return s != nullptr && MatchAndExplain(StringType(s), listener);
|
|
}
|
|
|
|
// Matches anything that can convert to StringType.
|
|
//
|
|
// This is a template, not just a plain function with const StringType&,
|
|
// because StringView has some interfering non-explicit constructors.
|
|
template <typename MatcheeStringType>
|
|
bool MatchAndExplain(const MatcheeStringType& s,
|
|
MatchResultListener* /* listener */) const {
|
|
return StringType(s).find(substring_) != StringType::npos;
|
|
}
|
|
|
|
// Describes what this matcher matches.
|
|
void DescribeTo(::std::ostream* os) const {
|
|
*os << "has substring ";
|
|
UniversalPrint(substring_, os);
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const {
|
|
*os << "has no substring ";
|
|
UniversalPrint(substring_, os);
|
|
}
|
|
|
|
private:
|
|
const StringType substring_;
|
|
};
|
|
|
|
// Implements the polymorphic StartsWith(substring) matcher, which
|
|
// can be used as a Matcher<T> as long as T can be converted to a
|
|
// string.
|
|
template <typename StringType>
|
|
class StartsWithMatcher {
|
|
public:
|
|
explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) {
|
|
}
|
|
|
|
#if GTEST_INTERNAL_HAS_STRING_VIEW
|
|
bool MatchAndExplain(const internal::StringView& s,
|
|
MatchResultListener* listener) const {
|
|
// This should fail to compile if StringView is used with wide
|
|
// strings.
|
|
const StringType& str = std::string(s);
|
|
return MatchAndExplain(str, listener);
|
|
}
|
|
#endif // GTEST_INTERNAL_HAS_STRING_VIEW
|
|
|
|
// Accepts pointer types, particularly:
|
|
// const char*
|
|
// char*
|
|
// const wchar_t*
|
|
// wchar_t*
|
|
template <typename CharType>
|
|
bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
|
|
return s != nullptr && MatchAndExplain(StringType(s), listener);
|
|
}
|
|
|
|
// Matches anything that can convert to StringType.
|
|
//
|
|
// This is a template, not just a plain function with const StringType&,
|
|
// because StringView has some interfering non-explicit constructors.
|
|
template <typename MatcheeStringType>
|
|
bool MatchAndExplain(const MatcheeStringType& s,
|
|
MatchResultListener* /* listener */) const {
|
|
const StringType& s2(s);
|
|
return s2.length() >= prefix_.length() &&
|
|
s2.substr(0, prefix_.length()) == prefix_;
|
|
}
|
|
|
|
void DescribeTo(::std::ostream* os) const {
|
|
*os << "starts with ";
|
|
UniversalPrint(prefix_, os);
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const {
|
|
*os << "doesn't start with ";
|
|
UniversalPrint(prefix_, os);
|
|
}
|
|
|
|
private:
|
|
const StringType prefix_;
|
|
};
|
|
|
|
// Implements the polymorphic EndsWith(substring) matcher, which
|
|
// can be used as a Matcher<T> as long as T can be converted to a
|
|
// string.
|
|
template <typename StringType>
|
|
class EndsWithMatcher {
|
|
public:
|
|
explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {}
|
|
|
|
#if GTEST_INTERNAL_HAS_STRING_VIEW
|
|
bool MatchAndExplain(const internal::StringView& s,
|
|
MatchResultListener* listener) const {
|
|
// This should fail to compile if StringView is used with wide
|
|
// strings.
|
|
const StringType& str = std::string(s);
|
|
return MatchAndExplain(str, listener);
|
|
}
|
|
#endif // GTEST_INTERNAL_HAS_STRING_VIEW
|
|
|
|
// Accepts pointer types, particularly:
|
|
// const char*
|
|
// char*
|
|
// const wchar_t*
|
|
// wchar_t*
|
|
template <typename CharType>
|
|
bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
|
|
return s != nullptr && MatchAndExplain(StringType(s), listener);
|
|
}
|
|
|
|
// Matches anything that can convert to StringType.
|
|
//
|
|
// This is a template, not just a plain function with const StringType&,
|
|
// because StringView has some interfering non-explicit constructors.
|
|
template <typename MatcheeStringType>
|
|
bool MatchAndExplain(const MatcheeStringType& s,
|
|
MatchResultListener* /* listener */) const {
|
|
const StringType& s2(s);
|
|
return s2.length() >= suffix_.length() &&
|
|
s2.substr(s2.length() - suffix_.length()) == suffix_;
|
|
}
|
|
|
|
void DescribeTo(::std::ostream* os) const {
|
|
*os << "ends with ";
|
|
UniversalPrint(suffix_, os);
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const {
|
|
*os << "doesn't end with ";
|
|
UniversalPrint(suffix_, os);
|
|
}
|
|
|
|
private:
|
|
const StringType suffix_;
|
|
};
|
|
|
|
// Implements a matcher that compares the two fields of a 2-tuple
|
|
// using one of the ==, <=, <, etc, operators. The two fields being
|
|
// compared don't have to have the same type.
|
|
//
|
|
// The matcher defined here is polymorphic (for example, Eq() can be
|
|
// used to match a std::tuple<int, short>, a std::tuple<const long&, double>,
|
|
// etc). Therefore we use a template type conversion operator in the
|
|
// implementation.
|
|
template <typename D, typename Op>
|
|
class PairMatchBase {
|
|
public:
|
|
template <typename T1, typename T2>
|
|
operator Matcher<::std::tuple<T1, T2>>() const {
|
|
return Matcher<::std::tuple<T1, T2>>(new Impl<const ::std::tuple<T1, T2>&>);
|
|
}
|
|
template <typename T1, typename T2>
|
|
operator Matcher<const ::std::tuple<T1, T2>&>() const {
|
|
return MakeMatcher(new Impl<const ::std::tuple<T1, T2>&>);
|
|
}
|
|
|
|
private:
|
|
static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT
|
|
return os << D::Desc();
|
|
}
|
|
|
|
template <typename Tuple>
|
|
class Impl : public MatcherInterface<Tuple> {
|
|
public:
|
|
bool MatchAndExplain(Tuple args,
|
|
MatchResultListener* /* listener */) const override {
|
|
return Op()(::std::get<0>(args), ::std::get<1>(args));
|
|
}
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
*os << "are " << GetDesc;
|
|
}
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
*os << "aren't " << GetDesc;
|
|
}
|
|
};
|
|
};
|
|
|
|
class Eq2Matcher : public PairMatchBase<Eq2Matcher, AnyEq> {
|
|
public:
|
|
static const char* Desc() { return "an equal pair"; }
|
|
};
|
|
class Ne2Matcher : public PairMatchBase<Ne2Matcher, AnyNe> {
|
|
public:
|
|
static const char* Desc() { return "an unequal pair"; }
|
|
};
|
|
class Lt2Matcher : public PairMatchBase<Lt2Matcher, AnyLt> {
|
|
public:
|
|
static const char* Desc() { return "a pair where the first < the second"; }
|
|
};
|
|
class Gt2Matcher : public PairMatchBase<Gt2Matcher, AnyGt> {
|
|
public:
|
|
static const char* Desc() { return "a pair where the first > the second"; }
|
|
};
|
|
class Le2Matcher : public PairMatchBase<Le2Matcher, AnyLe> {
|
|
public:
|
|
static const char* Desc() { return "a pair where the first <= the second"; }
|
|
};
|
|
class Ge2Matcher : public PairMatchBase<Ge2Matcher, AnyGe> {
|
|
public:
|
|
static const char* Desc() { return "a pair where the first >= the second"; }
|
|
};
|
|
|
|
// Implements the Not(...) matcher for a particular argument type T.
|
|
// We do not nest it inside the NotMatcher class template, as that
|
|
// will prevent different instantiations of NotMatcher from sharing
|
|
// the same NotMatcherImpl<T> class.
|
|
template <typename T>
|
|
class NotMatcherImpl : public MatcherInterface<const T&> {
|
|
public:
|
|
explicit NotMatcherImpl(const Matcher<T>& matcher)
|
|
: matcher_(matcher) {}
|
|
|
|
bool MatchAndExplain(const T& x,
|
|
MatchResultListener* listener) const override {
|
|
return !matcher_.MatchAndExplain(x, listener);
|
|
}
|
|
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
matcher_.DescribeNegationTo(os);
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
matcher_.DescribeTo(os);
|
|
}
|
|
|
|
private:
|
|
const Matcher<T> matcher_;
|
|
};
|
|
|
|
// Implements the Not(m) matcher, which matches a value that doesn't
|
|
// match matcher m.
|
|
template <typename InnerMatcher>
|
|
class NotMatcher {
|
|
public:
|
|
explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {}
|
|
|
|
// This template type conversion operator allows Not(m) to be used
|
|
// to match any type m can match.
|
|
template <typename T>
|
|
operator Matcher<T>() const {
|
|
return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_)));
|
|
}
|
|
|
|
private:
|
|
InnerMatcher matcher_;
|
|
};
|
|
|
|
// Implements the AllOf(m1, m2) matcher for a particular argument type
|
|
// T. We do not nest it inside the BothOfMatcher class template, as
|
|
// that will prevent different instantiations of BothOfMatcher from
|
|
// sharing the same BothOfMatcherImpl<T> class.
|
|
template <typename T>
|
|
class AllOfMatcherImpl : public MatcherInterface<const T&> {
|
|
public:
|
|
explicit AllOfMatcherImpl(std::vector<Matcher<T> > matchers)
|
|
: matchers_(std::move(matchers)) {}
|
|
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
*os << "(";
|
|
for (size_t i = 0; i < matchers_.size(); ++i) {
|
|
if (i != 0) *os << ") and (";
|
|
matchers_[i].DescribeTo(os);
|
|
}
|
|
*os << ")";
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
*os << "(";
|
|
for (size_t i = 0; i < matchers_.size(); ++i) {
|
|
if (i != 0) *os << ") or (";
|
|
matchers_[i].DescribeNegationTo(os);
|
|
}
|
|
*os << ")";
|
|
}
|
|
|
|
bool MatchAndExplain(const T& x,
|
|
MatchResultListener* listener) const override {
|
|
// If either matcher1_ or matcher2_ doesn't match x, we only need
|
|
// to explain why one of them fails.
|
|
std::string all_match_result;
|
|
|
|
for (size_t i = 0; i < matchers_.size(); ++i) {
|
|
StringMatchResultListener slistener;
|
|
if (matchers_[i].MatchAndExplain(x, &slistener)) {
|
|
if (all_match_result.empty()) {
|
|
all_match_result = slistener.str();
|
|
} else {
|
|
std::string result = slistener.str();
|
|
if (!result.empty()) {
|
|
all_match_result += ", and ";
|
|
all_match_result += result;
|
|
}
|
|
}
|
|
} else {
|
|
*listener << slistener.str();
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Otherwise we need to explain why *both* of them match.
|
|
*listener << all_match_result;
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
const std::vector<Matcher<T> > matchers_;
|
|
};
|
|
|
|
// VariadicMatcher is used for the variadic implementation of
|
|
// AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...).
|
|
// CombiningMatcher<T> is used to recursively combine the provided matchers
|
|
// (of type Args...).
|
|
template <template <typename T> class CombiningMatcher, typename... Args>
|
|
class VariadicMatcher {
|
|
public:
|
|
VariadicMatcher(const Args&... matchers) // NOLINT
|
|
: matchers_(matchers...) {
|
|
static_assert(sizeof...(Args) > 0, "Must have at least one matcher.");
|
|
}
|
|
|
|
VariadicMatcher(const VariadicMatcher&) = default;
|
|
VariadicMatcher& operator=(const VariadicMatcher&) = delete;
|
|
|
|
// This template type conversion operator allows an
|
|
// VariadicMatcher<Matcher1, Matcher2...> object to match any type that
|
|
// all of the provided matchers (Matcher1, Matcher2, ...) can match.
|
|
template <typename T>
|
|
operator Matcher<T>() const {
|
|
std::vector<Matcher<T> > values;
|
|
CreateVariadicMatcher<T>(&values, std::integral_constant<size_t, 0>());
|
|
return Matcher<T>(new CombiningMatcher<T>(std::move(values)));
|
|
}
|
|
|
|
private:
|
|
template <typename T, size_t I>
|
|
void CreateVariadicMatcher(std::vector<Matcher<T> >* values,
|
|
std::integral_constant<size_t, I>) const {
|
|
values->push_back(SafeMatcherCast<T>(std::get<I>(matchers_)));
|
|
CreateVariadicMatcher<T>(values, std::integral_constant<size_t, I + 1>());
|
|
}
|
|
|
|
template <typename T>
|
|
void CreateVariadicMatcher(
|
|
std::vector<Matcher<T> >*,
|
|
std::integral_constant<size_t, sizeof...(Args)>) const {}
|
|
|
|
std::tuple<Args...> matchers_;
|
|
};
|
|
|
|
template <typename... Args>
|
|
using AllOfMatcher = VariadicMatcher<AllOfMatcherImpl, Args...>;
|
|
|
|
// Implements the AnyOf(m1, m2) matcher for a particular argument type
|
|
// T. We do not nest it inside the AnyOfMatcher class template, as
|
|
// that will prevent different instantiations of AnyOfMatcher from
|
|
// sharing the same EitherOfMatcherImpl<T> class.
|
|
template <typename T>
|
|
class AnyOfMatcherImpl : public MatcherInterface<const T&> {
|
|
public:
|
|
explicit AnyOfMatcherImpl(std::vector<Matcher<T> > matchers)
|
|
: matchers_(std::move(matchers)) {}
|
|
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
*os << "(";
|
|
for (size_t i = 0; i < matchers_.size(); ++i) {
|
|
if (i != 0) *os << ") or (";
|
|
matchers_[i].DescribeTo(os);
|
|
}
|
|
*os << ")";
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
*os << "(";
|
|
for (size_t i = 0; i < matchers_.size(); ++i) {
|
|
if (i != 0) *os << ") and (";
|
|
matchers_[i].DescribeNegationTo(os);
|
|
}
|
|
*os << ")";
|
|
}
|
|
|
|
bool MatchAndExplain(const T& x,
|
|
MatchResultListener* listener) const override {
|
|
std::string no_match_result;
|
|
|
|
// If either matcher1_ or matcher2_ matches x, we just need to
|
|
// explain why *one* of them matches.
|
|
for (size_t i = 0; i < matchers_.size(); ++i) {
|
|
StringMatchResultListener slistener;
|
|
if (matchers_[i].MatchAndExplain(x, &slistener)) {
|
|
*listener << slistener.str();
|
|
return true;
|
|
} else {
|
|
if (no_match_result.empty()) {
|
|
no_match_result = slistener.str();
|
|
} else {
|
|
std::string result = slistener.str();
|
|
if (!result.empty()) {
|
|
no_match_result += ", and ";
|
|
no_match_result += result;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Otherwise we need to explain why *both* of them fail.
|
|
*listener << no_match_result;
|
|
return false;
|
|
}
|
|
|
|
private:
|
|
const std::vector<Matcher<T> > matchers_;
|
|
};
|
|
|
|
// AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...).
|
|
template <typename... Args>
|
|
using AnyOfMatcher = VariadicMatcher<AnyOfMatcherImpl, Args...>;
|
|
|
|
// Wrapper for implementation of Any/AllOfArray().
|
|
template <template <class> class MatcherImpl, typename T>
|
|
class SomeOfArrayMatcher {
|
|
public:
|
|
// Constructs the matcher from a sequence of element values or
|
|
// element matchers.
|
|
template <typename Iter>
|
|
SomeOfArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}
|
|
|
|
template <typename U>
|
|
operator Matcher<U>() const { // NOLINT
|
|
using RawU = typename std::decay<U>::type;
|
|
std::vector<Matcher<RawU>> matchers;
|
|
for (const auto& matcher : matchers_) {
|
|
matchers.push_back(MatcherCast<RawU>(matcher));
|
|
}
|
|
return Matcher<U>(new MatcherImpl<RawU>(std::move(matchers)));
|
|
}
|
|
|
|
private:
|
|
const ::std::vector<T> matchers_;
|
|
};
|
|
|
|
template <typename T>
|
|
using AllOfArrayMatcher = SomeOfArrayMatcher<AllOfMatcherImpl, T>;
|
|
|
|
template <typename T>
|
|
using AnyOfArrayMatcher = SomeOfArrayMatcher<AnyOfMatcherImpl, T>;
|
|
|
|
// Used for implementing Truly(pred), which turns a predicate into a
|
|
// matcher.
|
|
template <typename Predicate>
|
|
class TrulyMatcher {
|
|
public:
|
|
explicit TrulyMatcher(Predicate pred) : predicate_(pred) {}
|
|
|
|
// This method template allows Truly(pred) to be used as a matcher
|
|
// for type T where T is the argument type of predicate 'pred'. The
|
|
// argument is passed by reference as the predicate may be
|
|
// interested in the address of the argument.
|
|
template <typename T>
|
|
bool MatchAndExplain(T& x, // NOLINT
|
|
MatchResultListener* listener) const {
|
|
// Without the if-statement, MSVC sometimes warns about converting
|
|
// a value to bool (warning 4800).
|
|
//
|
|
// We cannot write 'return !!predicate_(x);' as that doesn't work
|
|
// when predicate_(x) returns a class convertible to bool but
|
|
// having no operator!().
|
|
if (predicate_(x))
|
|
return true;
|
|
*listener << "didn't satisfy the given predicate";
|
|
return false;
|
|
}
|
|
|
|
void DescribeTo(::std::ostream* os) const {
|
|
*os << "satisfies the given predicate";
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const {
|
|
*os << "doesn't satisfy the given predicate";
|
|
}
|
|
|
|
private:
|
|
Predicate predicate_;
|
|
};
|
|
|
|
// Used for implementing Matches(matcher), which turns a matcher into
|
|
// a predicate.
|
|
template <typename M>
|
|
class MatcherAsPredicate {
|
|
public:
|
|
explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {}
|
|
|
|
// This template operator() allows Matches(m) to be used as a
|
|
// predicate on type T where m is a matcher on type T.
|
|
//
|
|
// The argument x is passed by reference instead of by value, as
|
|
// some matcher may be interested in its address (e.g. as in
|
|
// Matches(Ref(n))(x)).
|
|
template <typename T>
|
|
bool operator()(const T& x) const {
|
|
// We let matcher_ commit to a particular type here instead of
|
|
// when the MatcherAsPredicate object was constructed. This
|
|
// allows us to write Matches(m) where m is a polymorphic matcher
|
|
// (e.g. Eq(5)).
|
|
//
|
|
// If we write Matcher<T>(matcher_).Matches(x) here, it won't
|
|
// compile when matcher_ has type Matcher<const T&>; if we write
|
|
// Matcher<const T&>(matcher_).Matches(x) here, it won't compile
|
|
// when matcher_ has type Matcher<T>; if we just write
|
|
// matcher_.Matches(x), it won't compile when matcher_ is
|
|
// polymorphic, e.g. Eq(5).
|
|
//
|
|
// MatcherCast<const T&>() is necessary for making the code work
|
|
// in all of the above situations.
|
|
return MatcherCast<const T&>(matcher_).Matches(x);
|
|
}
|
|
|
|
private:
|
|
M matcher_;
|
|
};
|
|
|
|
// For implementing ASSERT_THAT() and EXPECT_THAT(). The template
|
|
// argument M must be a type that can be converted to a matcher.
|
|
template <typename M>
|
|
class PredicateFormatterFromMatcher {
|
|
public:
|
|
explicit PredicateFormatterFromMatcher(M m) : matcher_(std::move(m)) {}
|
|
|
|
// This template () operator allows a PredicateFormatterFromMatcher
|
|
// object to act as a predicate-formatter suitable for using with
|
|
// Google Test's EXPECT_PRED_FORMAT1() macro.
|
|
template <typename T>
|
|
AssertionResult operator()(const char* value_text, const T& x) const {
|
|
// We convert matcher_ to a Matcher<const T&> *now* instead of
|
|
// when the PredicateFormatterFromMatcher object was constructed,
|
|
// as matcher_ may be polymorphic (e.g. NotNull()) and we won't
|
|
// know which type to instantiate it to until we actually see the
|
|
// type of x here.
|
|
//
|
|
// We write SafeMatcherCast<const T&>(matcher_) instead of
|
|
// Matcher<const T&>(matcher_), as the latter won't compile when
|
|
// matcher_ has type Matcher<T> (e.g. An<int>()).
|
|
// We don't write MatcherCast<const T&> either, as that allows
|
|
// potentially unsafe downcasting of the matcher argument.
|
|
const Matcher<const T&> matcher = SafeMatcherCast<const T&>(matcher_);
|
|
|
|
// The expected path here is that the matcher should match (i.e. that most
|
|
// tests pass) so optimize for this case.
|
|
if (matcher.Matches(x)) {
|
|
return AssertionSuccess();
|
|
}
|
|
|
|
::std::stringstream ss;
|
|
ss << "Value of: " << value_text << "\n"
|
|
<< "Expected: ";
|
|
matcher.DescribeTo(&ss);
|
|
|
|
// Rerun the matcher to "PrintAndExplain" the failure.
|
|
StringMatchResultListener listener;
|
|
if (MatchPrintAndExplain(x, matcher, &listener)) {
|
|
ss << "\n The matcher failed on the initial attempt; but passed when "
|
|
"rerun to generate the explanation.";
|
|
}
|
|
ss << "\n Actual: " << listener.str();
|
|
return AssertionFailure() << ss.str();
|
|
}
|
|
|
|
private:
|
|
const M matcher_;
|
|
};
|
|
|
|
// A helper function for converting a matcher to a predicate-formatter
|
|
// without the user needing to explicitly write the type. This is
|
|
// used for implementing ASSERT_THAT() and EXPECT_THAT().
|
|
// Implementation detail: 'matcher' is received by-value to force decaying.
|
|
template <typename M>
|
|
inline PredicateFormatterFromMatcher<M>
|
|
MakePredicateFormatterFromMatcher(M matcher) {
|
|
return PredicateFormatterFromMatcher<M>(std::move(matcher));
|
|
}
|
|
|
|
// Implements the polymorphic IsNan() matcher, which matches any floating type
|
|
// value that is Nan.
|
|
class IsNanMatcher {
|
|
public:
|
|
template <typename FloatType>
|
|
bool MatchAndExplain(const FloatType& f,
|
|
MatchResultListener* /* listener */) const {
|
|
return (::std::isnan)(f);
|
|
}
|
|
|
|
void DescribeTo(::std::ostream* os) const { *os << "is NaN"; }
|
|
void DescribeNegationTo(::std::ostream* os) const {
|
|
*os << "isn't NaN";
|
|
}
|
|
};
|
|
|
|
// Implements the polymorphic floating point equality matcher, which matches
|
|
// two float values using ULP-based approximation or, optionally, a
|
|
// user-specified epsilon. The template is meant to be instantiated with
|
|
// FloatType being either float or double.
|
|
template <typename FloatType>
|
|
class FloatingEqMatcher {
|
|
public:
|
|
// Constructor for FloatingEqMatcher.
|
|
// The matcher's input will be compared with expected. The matcher treats two
|
|
// NANs as equal if nan_eq_nan is true. Otherwise, under IEEE standards,
|
|
// equality comparisons between NANs will always return false. We specify a
|
|
// negative max_abs_error_ term to indicate that ULP-based approximation will
|
|
// be used for comparison.
|
|
FloatingEqMatcher(FloatType expected, bool nan_eq_nan) :
|
|
expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(-1) {
|
|
}
|
|
|
|
// Constructor that supports a user-specified max_abs_error that will be used
|
|
// for comparison instead of ULP-based approximation. The max absolute
|
|
// should be non-negative.
|
|
FloatingEqMatcher(FloatType expected, bool nan_eq_nan,
|
|
FloatType max_abs_error)
|
|
: expected_(expected),
|
|
nan_eq_nan_(nan_eq_nan),
|
|
max_abs_error_(max_abs_error) {
|
|
GTEST_CHECK_(max_abs_error >= 0)
|
|
<< ", where max_abs_error is" << max_abs_error;
|
|
}
|
|
|
|
// Implements floating point equality matcher as a Matcher<T>.
|
|
template <typename T>
|
|
class Impl : public MatcherInterface<T> {
|
|
public:
|
|
Impl(FloatType expected, bool nan_eq_nan, FloatType max_abs_error)
|
|
: expected_(expected),
|
|
nan_eq_nan_(nan_eq_nan),
|
|
max_abs_error_(max_abs_error) {}
|
|
|
|
bool MatchAndExplain(T value,
|
|
MatchResultListener* listener) const override {
|
|
const FloatingPoint<FloatType> actual(value), expected(expected_);
|
|
|
|
// Compares NaNs first, if nan_eq_nan_ is true.
|
|
if (actual.is_nan() || expected.is_nan()) {
|
|
if (actual.is_nan() && expected.is_nan()) {
|
|
return nan_eq_nan_;
|
|
}
|
|
// One is nan; the other is not nan.
|
|
return false;
|
|
}
|
|
if (HasMaxAbsError()) {
|
|
// We perform an equality check so that inf will match inf, regardless
|
|
// of error bounds. If the result of value - expected_ would result in
|
|
// overflow or if either value is inf, the default result is infinity,
|
|
// which should only match if max_abs_error_ is also infinity.
|
|
if (value == expected_) {
|
|
return true;
|
|
}
|
|
|
|
const FloatType diff = value - expected_;
|
|
if (::std::fabs(diff) <= max_abs_error_) {
|
|
return true;
|
|
}
|
|
|
|
if (listener->IsInterested()) {
|
|
*listener << "which is " << diff << " from " << expected_;
|
|
}
|
|
return false;
|
|
} else {
|
|
return actual.AlmostEquals(expected);
|
|
}
|
|
}
|
|
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
// os->precision() returns the previously set precision, which we
|
|
// store to restore the ostream to its original configuration
|
|
// after outputting.
|
|
const ::std::streamsize old_precision = os->precision(
|
|
::std::numeric_limits<FloatType>::digits10 + 2);
|
|
if (FloatingPoint<FloatType>(expected_).is_nan()) {
|
|
if (nan_eq_nan_) {
|
|
*os << "is NaN";
|
|
} else {
|
|
*os << "never matches";
|
|
}
|
|
} else {
|
|
*os << "is approximately " << expected_;
|
|
if (HasMaxAbsError()) {
|
|
*os << " (absolute error <= " << max_abs_error_ << ")";
|
|
}
|
|
}
|
|
os->precision(old_precision);
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
// As before, get original precision.
|
|
const ::std::streamsize old_precision = os->precision(
|
|
::std::numeric_limits<FloatType>::digits10 + 2);
|
|
if (FloatingPoint<FloatType>(expected_).is_nan()) {
|
|
if (nan_eq_nan_) {
|
|
*os << "isn't NaN";
|
|
} else {
|
|
*os << "is anything";
|
|
}
|
|
} else {
|
|
*os << "isn't approximately " << expected_;
|
|
if (HasMaxAbsError()) {
|
|
*os << " (absolute error > " << max_abs_error_ << ")";
|
|
}
|
|
}
|
|
// Restore original precision.
|
|
os->precision(old_precision);
|
|
}
|
|
|
|
private:
|
|
bool HasMaxAbsError() const {
|
|
return max_abs_error_ >= 0;
|
|
}
|
|
|
|
const FloatType expected_;
|
|
const bool nan_eq_nan_;
|
|
// max_abs_error will be used for value comparison when >= 0.
|
|
const FloatType max_abs_error_;
|
|
};
|
|
|
|
// The following 3 type conversion operators allow FloatEq(expected) and
|
|
// NanSensitiveFloatEq(expected) to be used as a Matcher<float>, a
|
|
// Matcher<const float&>, or a Matcher<float&>, but nothing else.
|
|
operator Matcher<FloatType>() const {
|
|
return MakeMatcher(
|
|
new Impl<FloatType>(expected_, nan_eq_nan_, max_abs_error_));
|
|
}
|
|
|
|
operator Matcher<const FloatType&>() const {
|
|
return MakeMatcher(
|
|
new Impl<const FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
|
|
}
|
|
|
|
operator Matcher<FloatType&>() const {
|
|
return MakeMatcher(
|
|
new Impl<FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
|
|
}
|
|
|
|
private:
|
|
const FloatType expected_;
|
|
const bool nan_eq_nan_;
|
|
// max_abs_error will be used for value comparison when >= 0.
|
|
const FloatType max_abs_error_;
|
|
};
|
|
|
|
// A 2-tuple ("binary") wrapper around FloatingEqMatcher:
|
|
// FloatingEq2Matcher() matches (x, y) by matching FloatingEqMatcher(x, false)
|
|
// against y, and FloatingEq2Matcher(e) matches FloatingEqMatcher(x, false, e)
|
|
// against y. The former implements "Eq", the latter "Near". At present, there
|
|
// is no version that compares NaNs as equal.
|
|
template <typename FloatType>
|
|
class FloatingEq2Matcher {
|
|
public:
|
|
FloatingEq2Matcher() { Init(-1, false); }
|
|
|
|
explicit FloatingEq2Matcher(bool nan_eq_nan) { Init(-1, nan_eq_nan); }
|
|
|
|
explicit FloatingEq2Matcher(FloatType max_abs_error) {
|
|
Init(max_abs_error, false);
|
|
}
|
|
|
|
FloatingEq2Matcher(FloatType max_abs_error, bool nan_eq_nan) {
|
|
Init(max_abs_error, nan_eq_nan);
|
|
}
|
|
|
|
template <typename T1, typename T2>
|
|
operator Matcher<::std::tuple<T1, T2>>() const {
|
|
return MakeMatcher(
|
|
new Impl<::std::tuple<T1, T2>>(max_abs_error_, nan_eq_nan_));
|
|
}
|
|
template <typename T1, typename T2>
|
|
operator Matcher<const ::std::tuple<T1, T2>&>() const {
|
|
return MakeMatcher(
|
|
new Impl<const ::std::tuple<T1, T2>&>(max_abs_error_, nan_eq_nan_));
|
|
}
|
|
|
|
private:
|
|
static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT
|
|
return os << "an almost-equal pair";
|
|
}
|
|
|
|
template <typename Tuple>
|
|
class Impl : public MatcherInterface<Tuple> {
|
|
public:
|
|
Impl(FloatType max_abs_error, bool nan_eq_nan) :
|
|
max_abs_error_(max_abs_error),
|
|
nan_eq_nan_(nan_eq_nan) {}
|
|
|
|
bool MatchAndExplain(Tuple args,
|
|
MatchResultListener* listener) const override {
|
|
if (max_abs_error_ == -1) {
|
|
FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_);
|
|
return static_cast<Matcher<FloatType>>(fm).MatchAndExplain(
|
|
::std::get<1>(args), listener);
|
|
} else {
|
|
FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_,
|
|
max_abs_error_);
|
|
return static_cast<Matcher<FloatType>>(fm).MatchAndExplain(
|
|
::std::get<1>(args), listener);
|
|
}
|
|
}
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
*os << "are " << GetDesc;
|
|
}
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
*os << "aren't " << GetDesc;
|
|
}
|
|
|
|
private:
|
|
FloatType max_abs_error_;
|
|
const bool nan_eq_nan_;
|
|
};
|
|
|
|
void Init(FloatType max_abs_error_val, bool nan_eq_nan_val) {
|
|
max_abs_error_ = max_abs_error_val;
|
|
nan_eq_nan_ = nan_eq_nan_val;
|
|
}
|
|
FloatType max_abs_error_;
|
|
bool nan_eq_nan_;
|
|
};
|
|
|
|
// Implements the Pointee(m) matcher for matching a pointer whose
|
|
// pointee matches matcher m. The pointer can be either raw or smart.
|
|
template <typename InnerMatcher>
|
|
class PointeeMatcher {
|
|
public:
|
|
explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
|
|
|
|
// This type conversion operator template allows Pointee(m) to be
|
|
// used as a matcher for any pointer type whose pointee type is
|
|
// compatible with the inner matcher, where type Pointer can be
|
|
// either a raw pointer or a smart pointer.
|
|
//
|
|
// The reason we do this instead of relying on
|
|
// MakePolymorphicMatcher() is that the latter is not flexible
|
|
// enough for implementing the DescribeTo() method of Pointee().
|
|
template <typename Pointer>
|
|
operator Matcher<Pointer>() const {
|
|
return Matcher<Pointer>(new Impl<const Pointer&>(matcher_));
|
|
}
|
|
|
|
private:
|
|
// The monomorphic implementation that works for a particular pointer type.
|
|
template <typename Pointer>
|
|
class Impl : public MatcherInterface<Pointer> {
|
|
public:
|
|
using Pointee =
|
|
typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_(
|
|
Pointer)>::element_type;
|
|
|
|
explicit Impl(const InnerMatcher& matcher)
|
|
: matcher_(MatcherCast<const Pointee&>(matcher)) {}
|
|
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
*os << "points to a value that ";
|
|
matcher_.DescribeTo(os);
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
*os << "does not point to a value that ";
|
|
matcher_.DescribeTo(os);
|
|
}
|
|
|
|
bool MatchAndExplain(Pointer pointer,
|
|
MatchResultListener* listener) const override {
|
|
if (GetRawPointer(pointer) == nullptr) return false;
|
|
|
|
*listener << "which points to ";
|
|
return MatchPrintAndExplain(*pointer, matcher_, listener);
|
|
}
|
|
|
|
private:
|
|
const Matcher<const Pointee&> matcher_;
|
|
};
|
|
|
|
const InnerMatcher matcher_;
|
|
};
|
|
|
|
// Implements the Pointer(m) matcher
|
|
// Implements the Pointer(m) matcher for matching a pointer that matches matcher
|
|
// m. The pointer can be either raw or smart, and will match `m` against the
|
|
// raw pointer.
|
|
template <typename InnerMatcher>
|
|
class PointerMatcher {
|
|
public:
|
|
explicit PointerMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
|
|
|
|
// This type conversion operator template allows Pointer(m) to be
|
|
// used as a matcher for any pointer type whose pointer type is
|
|
// compatible with the inner matcher, where type PointerType can be
|
|
// either a raw pointer or a smart pointer.
|
|
//
|
|
// The reason we do this instead of relying on
|
|
// MakePolymorphicMatcher() is that the latter is not flexible
|
|
// enough for implementing the DescribeTo() method of Pointer().
|
|
template <typename PointerType>
|
|
operator Matcher<PointerType>() const { // NOLINT
|
|
return Matcher<PointerType>(new Impl<const PointerType&>(matcher_));
|
|
}
|
|
|
|
private:
|
|
// The monomorphic implementation that works for a particular pointer type.
|
|
template <typename PointerType>
|
|
class Impl : public MatcherInterface<PointerType> {
|
|
public:
|
|
using Pointer =
|
|
const typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_(
|
|
PointerType)>::element_type*;
|
|
|
|
explicit Impl(const InnerMatcher& matcher)
|
|
: matcher_(MatcherCast<Pointer>(matcher)) {}
|
|
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
*os << "is a pointer that ";
|
|
matcher_.DescribeTo(os);
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
*os << "is not a pointer that ";
|
|
matcher_.DescribeTo(os);
|
|
}
|
|
|
|
bool MatchAndExplain(PointerType pointer,
|
|
MatchResultListener* listener) const override {
|
|
*listener << "which is a pointer that ";
|
|
Pointer p = GetRawPointer(pointer);
|
|
return MatchPrintAndExplain(p, matcher_, listener);
|
|
}
|
|
|
|
private:
|
|
Matcher<Pointer> matcher_;
|
|
};
|
|
|
|
const InnerMatcher matcher_;
|
|
};
|
|
|
|
#if GTEST_HAS_RTTI
|
|
// Implements the WhenDynamicCastTo<T>(m) matcher that matches a pointer or
|
|
// reference that matches inner_matcher when dynamic_cast<T> is applied.
|
|
// The result of dynamic_cast<To> is forwarded to the inner matcher.
|
|
// If To is a pointer and the cast fails, the inner matcher will receive NULL.
|
|
// If To is a reference and the cast fails, this matcher returns false
|
|
// immediately.
|
|
template <typename To>
|
|
class WhenDynamicCastToMatcherBase {
|
|
public:
|
|
explicit WhenDynamicCastToMatcherBase(const Matcher<To>& matcher)
|
|
: matcher_(matcher) {}
|
|
|
|
void DescribeTo(::std::ostream* os) const {
|
|
GetCastTypeDescription(os);
|
|
matcher_.DescribeTo(os);
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const {
|
|
GetCastTypeDescription(os);
|
|
matcher_.DescribeNegationTo(os);
|
|
}
|
|
|
|
protected:
|
|
const Matcher<To> matcher_;
|
|
|
|
static std::string GetToName() {
|
|
return GetTypeName<To>();
|
|
}
|
|
|
|
private:
|
|
static void GetCastTypeDescription(::std::ostream* os) {
|
|
*os << "when dynamic_cast to " << GetToName() << ", ";
|
|
}
|
|
};
|
|
|
|
// Primary template.
|
|
// To is a pointer. Cast and forward the result.
|
|
template <typename To>
|
|
class WhenDynamicCastToMatcher : public WhenDynamicCastToMatcherBase<To> {
|
|
public:
|
|
explicit WhenDynamicCastToMatcher(const Matcher<To>& matcher)
|
|
: WhenDynamicCastToMatcherBase<To>(matcher) {}
|
|
|
|
template <typename From>
|
|
bool MatchAndExplain(From from, MatchResultListener* listener) const {
|
|
To to = dynamic_cast<To>(from);
|
|
return MatchPrintAndExplain(to, this->matcher_, listener);
|
|
}
|
|
};
|
|
|
|
// Specialize for references.
|
|
// In this case we return false if the dynamic_cast fails.
|
|
template <typename To>
|
|
class WhenDynamicCastToMatcher<To&> : public WhenDynamicCastToMatcherBase<To&> {
|
|
public:
|
|
explicit WhenDynamicCastToMatcher(const Matcher<To&>& matcher)
|
|
: WhenDynamicCastToMatcherBase<To&>(matcher) {}
|
|
|
|
template <typename From>
|
|
bool MatchAndExplain(From& from, MatchResultListener* listener) const {
|
|
// We don't want an std::bad_cast here, so do the cast with pointers.
|
|
To* to = dynamic_cast<To*>(&from);
|
|
if (to == nullptr) {
|
|
*listener << "which cannot be dynamic_cast to " << this->GetToName();
|
|
return false;
|
|
}
|
|
return MatchPrintAndExplain(*to, this->matcher_, listener);
|
|
}
|
|
};
|
|
#endif // GTEST_HAS_RTTI
|
|
|
|
// Implements the Field() matcher for matching a field (i.e. member
|
|
// variable) of an object.
|
|
template <typename Class, typename FieldType>
|
|
class FieldMatcher {
|
|
public:
|
|
FieldMatcher(FieldType Class::*field,
|
|
const Matcher<const FieldType&>& matcher)
|
|
: field_(field), matcher_(matcher), whose_field_("whose given field ") {}
|
|
|
|
FieldMatcher(const std::string& field_name, FieldType Class::*field,
|
|
const Matcher<const FieldType&>& matcher)
|
|
: field_(field),
|
|
matcher_(matcher),
|
|
whose_field_("whose field `" + field_name + "` ") {}
|
|
|
|
void DescribeTo(::std::ostream* os) const {
|
|
*os << "is an object " << whose_field_;
|
|
matcher_.DescribeTo(os);
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const {
|
|
*os << "is an object " << whose_field_;
|
|
matcher_.DescribeNegationTo(os);
|
|
}
|
|
|
|
template <typename T>
|
|
bool MatchAndExplain(const T& value, MatchResultListener* listener) const {
|
|
// FIXME: The dispatch on std::is_pointer was introduced as a workaround for
|
|
// a compiler bug, and can now be removed.
|
|
return MatchAndExplainImpl(
|
|
typename std::is_pointer<typename std::remove_const<T>::type>::type(),
|
|
value, listener);
|
|
}
|
|
|
|
private:
|
|
bool MatchAndExplainImpl(std::false_type /* is_not_pointer */,
|
|
const Class& obj,
|
|
MatchResultListener* listener) const {
|
|
*listener << whose_field_ << "is ";
|
|
return MatchPrintAndExplain(obj.*field_, matcher_, listener);
|
|
}
|
|
|
|
bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p,
|
|
MatchResultListener* listener) const {
|
|
if (p == nullptr) return false;
|
|
|
|
*listener << "which points to an object ";
|
|
// Since *p has a field, it must be a class/struct/union type and
|
|
// thus cannot be a pointer. Therefore we pass false_type() as
|
|
// the first argument.
|
|
return MatchAndExplainImpl(std::false_type(), *p, listener);
|
|
}
|
|
|
|
const FieldType Class::*field_;
|
|
const Matcher<const FieldType&> matcher_;
|
|
|
|
// Contains either "whose given field " if the name of the field is unknown
|
|
// or "whose field `name_of_field` " if the name is known.
|
|
const std::string whose_field_;
|
|
};
|
|
|
|
// Implements the Property() matcher for matching a property
|
|
// (i.e. return value of a getter method) of an object.
|
|
//
|
|
// Property is a const-qualified member function of Class returning
|
|
// PropertyType.
|
|
template <typename Class, typename PropertyType, typename Property>
|
|
class PropertyMatcher {
|
|
public:
|
|
typedef const PropertyType& RefToConstProperty;
|
|
|
|
PropertyMatcher(Property property, const Matcher<RefToConstProperty>& matcher)
|
|
: property_(property),
|
|
matcher_(matcher),
|
|
whose_property_("whose given property ") {}
|
|
|
|
PropertyMatcher(const std::string& property_name, Property property,
|
|
const Matcher<RefToConstProperty>& matcher)
|
|
: property_(property),
|
|
matcher_(matcher),
|
|
whose_property_("whose property `" + property_name + "` ") {}
|
|
|
|
void DescribeTo(::std::ostream* os) const {
|
|
*os << "is an object " << whose_property_;
|
|
matcher_.DescribeTo(os);
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const {
|
|
*os << "is an object " << whose_property_;
|
|
matcher_.DescribeNegationTo(os);
|
|
}
|
|
|
|
template <typename T>
|
|
bool MatchAndExplain(const T&value, MatchResultListener* listener) const {
|
|
return MatchAndExplainImpl(
|
|
typename std::is_pointer<typename std::remove_const<T>::type>::type(),
|
|
value, listener);
|
|
}
|
|
|
|
private:
|
|
bool MatchAndExplainImpl(std::false_type /* is_not_pointer */,
|
|
const Class& obj,
|
|
MatchResultListener* listener) const {
|
|
*listener << whose_property_ << "is ";
|
|
// Cannot pass the return value (for example, int) to MatchPrintAndExplain,
|
|
// which takes a non-const reference as argument.
|
|
RefToConstProperty result = (obj.*property_)();
|
|
return MatchPrintAndExplain(result, matcher_, listener);
|
|
}
|
|
|
|
bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p,
|
|
MatchResultListener* listener) const {
|
|
if (p == nullptr) return false;
|
|
|
|
*listener << "which points to an object ";
|
|
// Since *p has a property method, it must be a class/struct/union
|
|
// type and thus cannot be a pointer. Therefore we pass
|
|
// false_type() as the first argument.
|
|
return MatchAndExplainImpl(std::false_type(), *p, listener);
|
|
}
|
|
|
|
Property property_;
|
|
const Matcher<RefToConstProperty> matcher_;
|
|
|
|
// Contains either "whose given property " if the name of the property is
|
|
// unknown or "whose property `name_of_property` " if the name is known.
|
|
const std::string whose_property_;
|
|
};
|
|
|
|
// Type traits specifying various features of different functors for ResultOf.
|
|
// The default template specifies features for functor objects.
|
|
template <typename Functor>
|
|
struct CallableTraits {
|
|
typedef Functor StorageType;
|
|
|
|
static void CheckIsValid(Functor /* functor */) {}
|
|
|
|
template <typename T>
|
|
static auto Invoke(Functor f, const T& arg) -> decltype(f(arg)) {
|
|
return f(arg);
|
|
}
|
|
};
|
|
|
|
// Specialization for function pointers.
|
|
template <typename ArgType, typename ResType>
|
|
struct CallableTraits<ResType(*)(ArgType)> {
|
|
typedef ResType ResultType;
|
|
typedef ResType(*StorageType)(ArgType);
|
|
|
|
static void CheckIsValid(ResType(*f)(ArgType)) {
|
|
GTEST_CHECK_(f != nullptr)
|
|
<< "NULL function pointer is passed into ResultOf().";
|
|
}
|
|
template <typename T>
|
|
static ResType Invoke(ResType(*f)(ArgType), T arg) {
|
|
return (*f)(arg);
|
|
}
|
|
};
|
|
|
|
// Implements the ResultOf() matcher for matching a return value of a
|
|
// unary function of an object.
|
|
template <typename Callable, typename InnerMatcher>
|
|
class ResultOfMatcher {
|
|
public:
|
|
ResultOfMatcher(Callable callable, InnerMatcher matcher)
|
|
: callable_(std::move(callable)), matcher_(std::move(matcher)) {
|
|
CallableTraits<Callable>::CheckIsValid(callable_);
|
|
}
|
|
|
|
template <typename T>
|
|
operator Matcher<T>() const {
|
|
return Matcher<T>(new Impl<const T&>(callable_, matcher_));
|
|
}
|
|
|
|
private:
|
|
typedef typename CallableTraits<Callable>::StorageType CallableStorageType;
|
|
|
|
template <typename T>
|
|
class Impl : public MatcherInterface<T> {
|
|
using ResultType = decltype(CallableTraits<Callable>::template Invoke<T>(
|
|
std::declval<CallableStorageType>(), std::declval<T>()));
|
|
|
|
public:
|
|
template <typename M>
|
|
Impl(const CallableStorageType& callable, const M& matcher)
|
|
: callable_(callable), matcher_(MatcherCast<ResultType>(matcher)) {}
|
|
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
*os << "is mapped by the given callable to a value that ";
|
|
matcher_.DescribeTo(os);
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
*os << "is mapped by the given callable to a value that ";
|
|
matcher_.DescribeNegationTo(os);
|
|
}
|
|
|
|
bool MatchAndExplain(T obj, MatchResultListener* listener) const override {
|
|
*listener << "which is mapped by the given callable to ";
|
|
// Cannot pass the return value directly to MatchPrintAndExplain, which
|
|
// takes a non-const reference as argument.
|
|
// Also, specifying template argument explicitly is needed because T could
|
|
// be a non-const reference (e.g. Matcher<Uncopyable&>).
|
|
ResultType result =
|
|
CallableTraits<Callable>::template Invoke<T>(callable_, obj);
|
|
return MatchPrintAndExplain(result, matcher_, listener);
|
|
}
|
|
|
|
private:
|
|
// Functors often define operator() as non-const method even though
|
|
// they are actually stateless. But we need to use them even when
|
|
// 'this' is a const pointer. It's the user's responsibility not to
|
|
// use stateful callables with ResultOf(), which doesn't guarantee
|
|
// how many times the callable will be invoked.
|
|
mutable CallableStorageType callable_;
|
|
const Matcher<ResultType> matcher_;
|
|
}; // class Impl
|
|
|
|
const CallableStorageType callable_;
|
|
const InnerMatcher matcher_;
|
|
};
|
|
|
|
// Implements a matcher that checks the size of an STL-style container.
|
|
template <typename SizeMatcher>
|
|
class SizeIsMatcher {
|
|
public:
|
|
explicit SizeIsMatcher(const SizeMatcher& size_matcher)
|
|
: size_matcher_(size_matcher) {
|
|
}
|
|
|
|
template <typename Container>
|
|
operator Matcher<Container>() const {
|
|
return Matcher<Container>(new Impl<const Container&>(size_matcher_));
|
|
}
|
|
|
|
template <typename Container>
|
|
class Impl : public MatcherInterface<Container> {
|
|
public:
|
|
using SizeType = decltype(std::declval<Container>().size());
|
|
explicit Impl(const SizeMatcher& size_matcher)
|
|
: size_matcher_(MatcherCast<SizeType>(size_matcher)) {}
|
|
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
*os << "size ";
|
|
size_matcher_.DescribeTo(os);
|
|
}
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
*os << "size ";
|
|
size_matcher_.DescribeNegationTo(os);
|
|
}
|
|
|
|
bool MatchAndExplain(Container container,
|
|
MatchResultListener* listener) const override {
|
|
SizeType size = container.size();
|
|
StringMatchResultListener size_listener;
|
|
const bool result = size_matcher_.MatchAndExplain(size, &size_listener);
|
|
*listener
|
|
<< "whose size " << size << (result ? " matches" : " doesn't match");
|
|
PrintIfNotEmpty(size_listener.str(), listener->stream());
|
|
return result;
|
|
}
|
|
|
|
private:
|
|
const Matcher<SizeType> size_matcher_;
|
|
};
|
|
|
|
private:
|
|
const SizeMatcher size_matcher_;
|
|
};
|
|
|
|
// Implements a matcher that checks the begin()..end() distance of an STL-style
|
|
// container.
|
|
template <typename DistanceMatcher>
|
|
class BeginEndDistanceIsMatcher {
|
|
public:
|
|
explicit BeginEndDistanceIsMatcher(const DistanceMatcher& distance_matcher)
|
|
: distance_matcher_(distance_matcher) {}
|
|
|
|
template <typename Container>
|
|
operator Matcher<Container>() const {
|
|
return Matcher<Container>(new Impl<const Container&>(distance_matcher_));
|
|
}
|
|
|
|
template <typename Container>
|
|
class Impl : public MatcherInterface<Container> {
|
|
public:
|
|
typedef internal::StlContainerView<
|
|
GTEST_REMOVE_REFERENCE_AND_CONST_(Container)> ContainerView;
|
|
typedef typename std::iterator_traits<
|
|
typename ContainerView::type::const_iterator>::difference_type
|
|
DistanceType;
|
|
explicit Impl(const DistanceMatcher& distance_matcher)
|
|
: distance_matcher_(MatcherCast<DistanceType>(distance_matcher)) {}
|
|
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
*os << "distance between begin() and end() ";
|
|
distance_matcher_.DescribeTo(os);
|
|
}
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
*os << "distance between begin() and end() ";
|
|
distance_matcher_.DescribeNegationTo(os);
|
|
}
|
|
|
|
bool MatchAndExplain(Container container,
|
|
MatchResultListener* listener) const override {
|
|
using std::begin;
|
|
using std::end;
|
|
DistanceType distance = std::distance(begin(container), end(container));
|
|
StringMatchResultListener distance_listener;
|
|
const bool result =
|
|
distance_matcher_.MatchAndExplain(distance, &distance_listener);
|
|
*listener << "whose distance between begin() and end() " << distance
|
|
<< (result ? " matches" : " doesn't match");
|
|
PrintIfNotEmpty(distance_listener.str(), listener->stream());
|
|
return result;
|
|
}
|
|
|
|
private:
|
|
const Matcher<DistanceType> distance_matcher_;
|
|
};
|
|
|
|
private:
|
|
const DistanceMatcher distance_matcher_;
|
|
};
|
|
|
|
// Implements an equality matcher for any STL-style container whose elements
|
|
// support ==. This matcher is like Eq(), but its failure explanations provide
|
|
// more detailed information that is useful when the container is used as a set.
|
|
// The failure message reports elements that are in one of the operands but not
|
|
// the other. The failure messages do not report duplicate or out-of-order
|
|
// elements in the containers (which don't properly matter to sets, but can
|
|
// occur if the containers are vectors or lists, for example).
|
|
//
|
|
// Uses the container's const_iterator, value_type, operator ==,
|
|
// begin(), and end().
|
|
template <typename Container>
|
|
class ContainerEqMatcher {
|
|
public:
|
|
typedef internal::StlContainerView<Container> View;
|
|
typedef typename View::type StlContainer;
|
|
typedef typename View::const_reference StlContainerReference;
|
|
|
|
static_assert(!std::is_const<Container>::value,
|
|
"Container type must not be const");
|
|
static_assert(!std::is_reference<Container>::value,
|
|
"Container type must not be a reference");
|
|
|
|
// We make a copy of expected in case the elements in it are modified
|
|
// after this matcher is created.
|
|
explicit ContainerEqMatcher(const Container& expected)
|
|
: expected_(View::Copy(expected)) {}
|
|
|
|
void DescribeTo(::std::ostream* os) const {
|
|
*os << "equals ";
|
|
UniversalPrint(expected_, os);
|
|
}
|
|
void DescribeNegationTo(::std::ostream* os) const {
|
|
*os << "does not equal ";
|
|
UniversalPrint(expected_, os);
|
|
}
|
|
|
|
template <typename LhsContainer>
|
|
bool MatchAndExplain(const LhsContainer& lhs,
|
|
MatchResultListener* listener) const {
|
|
typedef internal::StlContainerView<
|
|
typename std::remove_const<LhsContainer>::type>
|
|
LhsView;
|
|
typedef typename LhsView::type LhsStlContainer;
|
|
StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
|
|
if (lhs_stl_container == expected_)
|
|
return true;
|
|
|
|
::std::ostream* const os = listener->stream();
|
|
if (os != nullptr) {
|
|
// Something is different. Check for extra values first.
|
|
bool printed_header = false;
|
|
for (typename LhsStlContainer::const_iterator it =
|
|
lhs_stl_container.begin();
|
|
it != lhs_stl_container.end(); ++it) {
|
|
if (internal::ArrayAwareFind(expected_.begin(), expected_.end(), *it) ==
|
|
expected_.end()) {
|
|
if (printed_header) {
|
|
*os << ", ";
|
|
} else {
|
|
*os << "which has these unexpected elements: ";
|
|
printed_header = true;
|
|
}
|
|
UniversalPrint(*it, os);
|
|
}
|
|
}
|
|
|
|
// Now check for missing values.
|
|
bool printed_header2 = false;
|
|
for (typename StlContainer::const_iterator it = expected_.begin();
|
|
it != expected_.end(); ++it) {
|
|
if (internal::ArrayAwareFind(
|
|
lhs_stl_container.begin(), lhs_stl_container.end(), *it) ==
|
|
lhs_stl_container.end()) {
|
|
if (printed_header2) {
|
|
*os << ", ";
|
|
} else {
|
|
*os << (printed_header ? ",\nand" : "which")
|
|
<< " doesn't have these expected elements: ";
|
|
printed_header2 = true;
|
|
}
|
|
UniversalPrint(*it, os);
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
private:
|
|
const StlContainer expected_;
|
|
};
|
|
|
|
// A comparator functor that uses the < operator to compare two values.
|
|
struct LessComparator {
|
|
template <typename T, typename U>
|
|
bool operator()(const T& lhs, const U& rhs) const { return lhs < rhs; }
|
|
};
|
|
|
|
// Implements WhenSortedBy(comparator, container_matcher).
|
|
template <typename Comparator, typename ContainerMatcher>
|
|
class WhenSortedByMatcher {
|
|
public:
|
|
WhenSortedByMatcher(const Comparator& comparator,
|
|
const ContainerMatcher& matcher)
|
|
: comparator_(comparator), matcher_(matcher) {}
|
|
|
|
template <typename LhsContainer>
|
|
operator Matcher<LhsContainer>() const {
|
|
return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_));
|
|
}
|
|
|
|
template <typename LhsContainer>
|
|
class Impl : public MatcherInterface<LhsContainer> {
|
|
public:
|
|
typedef internal::StlContainerView<
|
|
GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView;
|
|
typedef typename LhsView::type LhsStlContainer;
|
|
typedef typename LhsView::const_reference LhsStlContainerReference;
|
|
// Transforms std::pair<const Key, Value> into std::pair<Key, Value>
|
|
// so that we can match associative containers.
|
|
typedef typename RemoveConstFromKey<
|
|
typename LhsStlContainer::value_type>::type LhsValue;
|
|
|
|
Impl(const Comparator& comparator, const ContainerMatcher& matcher)
|
|
: comparator_(comparator), matcher_(matcher) {}
|
|
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
*os << "(when sorted) ";
|
|
matcher_.DescribeTo(os);
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
*os << "(when sorted) ";
|
|
matcher_.DescribeNegationTo(os);
|
|
}
|
|
|
|
bool MatchAndExplain(LhsContainer lhs,
|
|
MatchResultListener* listener) const override {
|
|
LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
|
|
::std::vector<LhsValue> sorted_container(lhs_stl_container.begin(),
|
|
lhs_stl_container.end());
|
|
::std::sort(
|
|
sorted_container.begin(), sorted_container.end(), comparator_);
|
|
|
|
if (!listener->IsInterested()) {
|
|
// If the listener is not interested, we do not need to
|
|
// construct the inner explanation.
|
|
return matcher_.Matches(sorted_container);
|
|
}
|
|
|
|
*listener << "which is ";
|
|
UniversalPrint(sorted_container, listener->stream());
|
|
*listener << " when sorted";
|
|
|
|
StringMatchResultListener inner_listener;
|
|
const bool match = matcher_.MatchAndExplain(sorted_container,
|
|
&inner_listener);
|
|
PrintIfNotEmpty(inner_listener.str(), listener->stream());
|
|
return match;
|
|
}
|
|
|
|
private:
|
|
const Comparator comparator_;
|
|
const Matcher<const ::std::vector<LhsValue>&> matcher_;
|
|
|
|
GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl);
|
|
};
|
|
|
|
private:
|
|
const Comparator comparator_;
|
|
const ContainerMatcher matcher_;
|
|
};
|
|
|
|
// Implements Pointwise(tuple_matcher, rhs_container). tuple_matcher
|
|
// must be able to be safely cast to Matcher<std::tuple<const T1&, const
|
|
// T2&> >, where T1 and T2 are the types of elements in the LHS
|
|
// container and the RHS container respectively.
|
|
template <typename TupleMatcher, typename RhsContainer>
|
|
class PointwiseMatcher {
|
|
GTEST_COMPILE_ASSERT_(
|
|
!IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>::value,
|
|
use_UnorderedPointwise_with_hash_tables);
|
|
|
|
public:
|
|
typedef internal::StlContainerView<RhsContainer> RhsView;
|
|
typedef typename RhsView::type RhsStlContainer;
|
|
typedef typename RhsStlContainer::value_type RhsValue;
|
|
|
|
static_assert(!std::is_const<RhsContainer>::value,
|
|
"RhsContainer type must not be const");
|
|
static_assert(!std::is_reference<RhsContainer>::value,
|
|
"RhsContainer type must not be a reference");
|
|
|
|
// Like ContainerEq, we make a copy of rhs in case the elements in
|
|
// it are modified after this matcher is created.
|
|
PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs)
|
|
: tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) {}
|
|
|
|
template <typename LhsContainer>
|
|
operator Matcher<LhsContainer>() const {
|
|
GTEST_COMPILE_ASSERT_(
|
|
!IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)>::value,
|
|
use_UnorderedPointwise_with_hash_tables);
|
|
|
|
return Matcher<LhsContainer>(
|
|
new Impl<const LhsContainer&>(tuple_matcher_, rhs_));
|
|
}
|
|
|
|
template <typename LhsContainer>
|
|
class Impl : public MatcherInterface<LhsContainer> {
|
|
public:
|
|
typedef internal::StlContainerView<
|
|
GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView;
|
|
typedef typename LhsView::type LhsStlContainer;
|
|
typedef typename LhsView::const_reference LhsStlContainerReference;
|
|
typedef typename LhsStlContainer::value_type LhsValue;
|
|
// We pass the LHS value and the RHS value to the inner matcher by
|
|
// reference, as they may be expensive to copy. We must use tuple
|
|
// instead of pair here, as a pair cannot hold references (C++ 98,
|
|
// 20.2.2 [lib.pairs]).
|
|
typedef ::std::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg;
|
|
|
|
Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs)
|
|
// mono_tuple_matcher_ holds a monomorphic version of the tuple matcher.
|
|
: mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)),
|
|
rhs_(rhs) {}
|
|
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
*os << "contains " << rhs_.size()
|
|
<< " values, where each value and its corresponding value in ";
|
|
UniversalPrinter<RhsStlContainer>::Print(rhs_, os);
|
|
*os << " ";
|
|
mono_tuple_matcher_.DescribeTo(os);
|
|
}
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
*os << "doesn't contain exactly " << rhs_.size()
|
|
<< " values, or contains a value x at some index i"
|
|
<< " where x and the i-th value of ";
|
|
UniversalPrint(rhs_, os);
|
|
*os << " ";
|
|
mono_tuple_matcher_.DescribeNegationTo(os);
|
|
}
|
|
|
|
bool MatchAndExplain(LhsContainer lhs,
|
|
MatchResultListener* listener) const override {
|
|
LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
|
|
const size_t actual_size = lhs_stl_container.size();
|
|
if (actual_size != rhs_.size()) {
|
|
*listener << "which contains " << actual_size << " values";
|
|
return false;
|
|
}
|
|
|
|
typename LhsStlContainer::const_iterator left = lhs_stl_container.begin();
|
|
typename RhsStlContainer::const_iterator right = rhs_.begin();
|
|
for (size_t i = 0; i != actual_size; ++i, ++left, ++right) {
|
|
if (listener->IsInterested()) {
|
|
StringMatchResultListener inner_listener;
|
|
// Create InnerMatcherArg as a temporarily object to avoid it outlives
|
|
// *left and *right. Dereference or the conversion to `const T&` may
|
|
// return temp objects, e.g for vector<bool>.
|
|
if (!mono_tuple_matcher_.MatchAndExplain(
|
|
InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left),
|
|
ImplicitCast_<const RhsValue&>(*right)),
|
|
&inner_listener)) {
|
|
*listener << "where the value pair (";
|
|
UniversalPrint(*left, listener->stream());
|
|
*listener << ", ";
|
|
UniversalPrint(*right, listener->stream());
|
|
*listener << ") at index #" << i << " don't match";
|
|
PrintIfNotEmpty(inner_listener.str(), listener->stream());
|
|
return false;
|
|
}
|
|
} else {
|
|
if (!mono_tuple_matcher_.Matches(
|
|
InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left),
|
|
ImplicitCast_<const RhsValue&>(*right))))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
const Matcher<InnerMatcherArg> mono_tuple_matcher_;
|
|
const RhsStlContainer rhs_;
|
|
};
|
|
|
|
private:
|
|
const TupleMatcher tuple_matcher_;
|
|
const RhsStlContainer rhs_;
|
|
};
|
|
|
|
// Holds the logic common to ContainsMatcherImpl and EachMatcherImpl.
|
|
template <typename Container>
|
|
class QuantifierMatcherImpl : public MatcherInterface<Container> {
|
|
public:
|
|
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
|
|
typedef StlContainerView<RawContainer> View;
|
|
typedef typename View::type StlContainer;
|
|
typedef typename View::const_reference StlContainerReference;
|
|
typedef typename StlContainer::value_type Element;
|
|
|
|
template <typename InnerMatcher>
|
|
explicit QuantifierMatcherImpl(InnerMatcher inner_matcher)
|
|
: inner_matcher_(
|
|
testing::SafeMatcherCast<const Element&>(inner_matcher)) {}
|
|
|
|
// Checks whether:
|
|
// * All elements in the container match, if all_elements_should_match.
|
|
// * Any element in the container matches, if !all_elements_should_match.
|
|
bool MatchAndExplainImpl(bool all_elements_should_match,
|
|
Container container,
|
|
MatchResultListener* listener) const {
|
|
StlContainerReference stl_container = View::ConstReference(container);
|
|
size_t i = 0;
|
|
for (typename StlContainer::const_iterator it = stl_container.begin();
|
|
it != stl_container.end(); ++it, ++i) {
|
|
StringMatchResultListener inner_listener;
|
|
const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener);
|
|
|
|
if (matches != all_elements_should_match) {
|
|
*listener << "whose element #" << i
|
|
<< (matches ? " matches" : " doesn't match");
|
|
PrintIfNotEmpty(inner_listener.str(), listener->stream());
|
|
return !all_elements_should_match;
|
|
}
|
|
}
|
|
return all_elements_should_match;
|
|
}
|
|
|
|
protected:
|
|
const Matcher<const Element&> inner_matcher_;
|
|
};
|
|
|
|
// Implements Contains(element_matcher) for the given argument type Container.
|
|
// Symmetric to EachMatcherImpl.
|
|
template <typename Container>
|
|
class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> {
|
|
public:
|
|
template <typename InnerMatcher>
|
|
explicit ContainsMatcherImpl(InnerMatcher inner_matcher)
|
|
: QuantifierMatcherImpl<Container>(inner_matcher) {}
|
|
|
|
// Describes what this matcher does.
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
*os << "contains at least one element that ";
|
|
this->inner_matcher_.DescribeTo(os);
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
*os << "doesn't contain any element that ";
|
|
this->inner_matcher_.DescribeTo(os);
|
|
}
|
|
|
|
bool MatchAndExplain(Container container,
|
|
MatchResultListener* listener) const override {
|
|
return this->MatchAndExplainImpl(false, container, listener);
|
|
}
|
|
};
|
|
|
|
// Implements Each(element_matcher) for the given argument type Container.
|
|
// Symmetric to ContainsMatcherImpl.
|
|
template <typename Container>
|
|
class EachMatcherImpl : public QuantifierMatcherImpl<Container> {
|
|
public:
|
|
template <typename InnerMatcher>
|
|
explicit EachMatcherImpl(InnerMatcher inner_matcher)
|
|
: QuantifierMatcherImpl<Container>(inner_matcher) {}
|
|
|
|
// Describes what this matcher does.
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
*os << "only contains elements that ";
|
|
this->inner_matcher_.DescribeTo(os);
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
*os << "contains some element that ";
|
|
this->inner_matcher_.DescribeNegationTo(os);
|
|
}
|
|
|
|
bool MatchAndExplain(Container container,
|
|
MatchResultListener* listener) const override {
|
|
return this->MatchAndExplainImpl(true, container, listener);
|
|
}
|
|
};
|
|
|
|
// Implements polymorphic Contains(element_matcher).
|
|
template <typename M>
|
|
class ContainsMatcher {
|
|
public:
|
|
explicit ContainsMatcher(M m) : inner_matcher_(m) {}
|
|
|
|
template <typename Container>
|
|
operator Matcher<Container>() const {
|
|
return Matcher<Container>(
|
|
new ContainsMatcherImpl<const Container&>(inner_matcher_));
|
|
}
|
|
|
|
private:
|
|
const M inner_matcher_;
|
|
};
|
|
|
|
// Implements polymorphic Each(element_matcher).
|
|
template <typename M>
|
|
class EachMatcher {
|
|
public:
|
|
explicit EachMatcher(M m) : inner_matcher_(m) {}
|
|
|
|
template <typename Container>
|
|
operator Matcher<Container>() const {
|
|
return Matcher<Container>(
|
|
new EachMatcherImpl<const Container&>(inner_matcher_));
|
|
}
|
|
|
|
private:
|
|
const M inner_matcher_;
|
|
};
|
|
|
|
struct Rank1 {};
|
|
struct Rank0 : Rank1 {};
|
|
|
|
namespace pair_getters {
|
|
using std::get;
|
|
template <typename T>
|
|
auto First(T& x, Rank1) -> decltype(get<0>(x)) { // NOLINT
|
|
return get<0>(x);
|
|
}
|
|
template <typename T>
|
|
auto First(T& x, Rank0) -> decltype((x.first)) { // NOLINT
|
|
return x.first;
|
|
}
|
|
|
|
template <typename T>
|
|
auto Second(T& x, Rank1) -> decltype(get<1>(x)) { // NOLINT
|
|
return get<1>(x);
|
|
}
|
|
template <typename T>
|
|
auto Second(T& x, Rank0) -> decltype((x.second)) { // NOLINT
|
|
return x.second;
|
|
}
|
|
} // namespace pair_getters
|
|
|
|
// Implements Key(inner_matcher) for the given argument pair type.
|
|
// Key(inner_matcher) matches an std::pair whose 'first' field matches
|
|
// inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an
|
|
// std::map that contains at least one element whose key is >= 5.
|
|
template <typename PairType>
|
|
class KeyMatcherImpl : public MatcherInterface<PairType> {
|
|
public:
|
|
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
|
|
typedef typename RawPairType::first_type KeyType;
|
|
|
|
template <typename InnerMatcher>
|
|
explicit KeyMatcherImpl(InnerMatcher inner_matcher)
|
|
: inner_matcher_(
|
|
testing::SafeMatcherCast<const KeyType&>(inner_matcher)) {
|
|
}
|
|
|
|
// Returns true if and only if 'key_value.first' (the key) matches the inner
|
|
// matcher.
|
|
bool MatchAndExplain(PairType key_value,
|
|
MatchResultListener* listener) const override {
|
|
StringMatchResultListener inner_listener;
|
|
const bool match = inner_matcher_.MatchAndExplain(
|
|
pair_getters::First(key_value, Rank0()), &inner_listener);
|
|
const std::string explanation = inner_listener.str();
|
|
if (explanation != "") {
|
|
*listener << "whose first field is a value " << explanation;
|
|
}
|
|
return match;
|
|
}
|
|
|
|
// Describes what this matcher does.
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
*os << "has a key that ";
|
|
inner_matcher_.DescribeTo(os);
|
|
}
|
|
|
|
// Describes what the negation of this matcher does.
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
*os << "doesn't have a key that ";
|
|
inner_matcher_.DescribeTo(os);
|
|
}
|
|
|
|
private:
|
|
const Matcher<const KeyType&> inner_matcher_;
|
|
};
|
|
|
|
// Implements polymorphic Key(matcher_for_key).
|
|
template <typename M>
|
|
class KeyMatcher {
|
|
public:
|
|
explicit KeyMatcher(M m) : matcher_for_key_(m) {}
|
|
|
|
template <typename PairType>
|
|
operator Matcher<PairType>() const {
|
|
return Matcher<PairType>(
|
|
new KeyMatcherImpl<const PairType&>(matcher_for_key_));
|
|
}
|
|
|
|
private:
|
|
const M matcher_for_key_;
|
|
};
|
|
|
|
// Implements polymorphic Address(matcher_for_address).
|
|
template <typename InnerMatcher>
|
|
class AddressMatcher {
|
|
public:
|
|
explicit AddressMatcher(InnerMatcher m) : matcher_(m) {}
|
|
|
|
template <typename Type>
|
|
operator Matcher<Type>() const { // NOLINT
|
|
return Matcher<Type>(new Impl<const Type&>(matcher_));
|
|
}
|
|
|
|
private:
|
|
// The monomorphic implementation that works for a particular object type.
|
|
template <typename Type>
|
|
class Impl : public MatcherInterface<Type> {
|
|
public:
|
|
using Address = const GTEST_REMOVE_REFERENCE_AND_CONST_(Type) *;
|
|
explicit Impl(const InnerMatcher& matcher)
|
|
: matcher_(MatcherCast<Address>(matcher)) {}
|
|
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
*os << "has address that ";
|
|
matcher_.DescribeTo(os);
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
*os << "does not have address that ";
|
|
matcher_.DescribeTo(os);
|
|
}
|
|
|
|
bool MatchAndExplain(Type object,
|
|
MatchResultListener* listener) const override {
|
|
*listener << "which has address ";
|
|
Address address = std::addressof(object);
|
|
return MatchPrintAndExplain(address, matcher_, listener);
|
|
}
|
|
|
|
private:
|
|
const Matcher<Address> matcher_;
|
|
};
|
|
const InnerMatcher matcher_;
|
|
};
|
|
|
|
// Implements Pair(first_matcher, second_matcher) for the given argument pair
|
|
// type with its two matchers. See Pair() function below.
|
|
template <typename PairType>
|
|
class PairMatcherImpl : public MatcherInterface<PairType> {
|
|
public:
|
|
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
|
|
typedef typename RawPairType::first_type FirstType;
|
|
typedef typename RawPairType::second_type SecondType;
|
|
|
|
template <typename FirstMatcher, typename SecondMatcher>
|
|
PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher)
|
|
: first_matcher_(
|
|
testing::SafeMatcherCast<const FirstType&>(first_matcher)),
|
|
second_matcher_(
|
|
testing::SafeMatcherCast<const SecondType&>(second_matcher)) {
|
|
}
|
|
|
|
// Describes what this matcher does.
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
*os << "has a first field that ";
|
|
first_matcher_.DescribeTo(os);
|
|
*os << ", and has a second field that ";
|
|
second_matcher_.DescribeTo(os);
|
|
}
|
|
|
|
// Describes what the negation of this matcher does.
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
*os << "has a first field that ";
|
|
first_matcher_.DescribeNegationTo(os);
|
|
*os << ", or has a second field that ";
|
|
second_matcher_.DescribeNegationTo(os);
|
|
}
|
|
|
|
// Returns true if and only if 'a_pair.first' matches first_matcher and
|
|
// 'a_pair.second' matches second_matcher.
|
|
bool MatchAndExplain(PairType a_pair,
|
|
MatchResultListener* listener) const override {
|
|
if (!listener->IsInterested()) {
|
|
// If the listener is not interested, we don't need to construct the
|
|
// explanation.
|
|
return first_matcher_.Matches(pair_getters::First(a_pair, Rank0())) &&
|
|
second_matcher_.Matches(pair_getters::Second(a_pair, Rank0()));
|
|
}
|
|
StringMatchResultListener first_inner_listener;
|
|
if (!first_matcher_.MatchAndExplain(pair_getters::First(a_pair, Rank0()),
|
|
&first_inner_listener)) {
|
|
*listener << "whose first field does not match";
|
|
PrintIfNotEmpty(first_inner_listener.str(), listener->stream());
|
|
return false;
|
|
}
|
|
StringMatchResultListener second_inner_listener;
|
|
if (!second_matcher_.MatchAndExplain(pair_getters::Second(a_pair, Rank0()),
|
|
&second_inner_listener)) {
|
|
*listener << "whose second field does not match";
|
|
PrintIfNotEmpty(second_inner_listener.str(), listener->stream());
|
|
return false;
|
|
}
|
|
ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(),
|
|
listener);
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
void ExplainSuccess(const std::string& first_explanation,
|
|
const std::string& second_explanation,
|
|
MatchResultListener* listener) const {
|
|
*listener << "whose both fields match";
|
|
if (first_explanation != "") {
|
|
*listener << ", where the first field is a value " << first_explanation;
|
|
}
|
|
if (second_explanation != "") {
|
|
*listener << ", ";
|
|
if (first_explanation != "") {
|
|
*listener << "and ";
|
|
} else {
|
|
*listener << "where ";
|
|
}
|
|
*listener << "the second field is a value " << second_explanation;
|
|
}
|
|
}
|
|
|
|
const Matcher<const FirstType&> first_matcher_;
|
|
const Matcher<const SecondType&> second_matcher_;
|
|
};
|
|
|
|
// Implements polymorphic Pair(first_matcher, second_matcher).
|
|
template <typename FirstMatcher, typename SecondMatcher>
|
|
class PairMatcher {
|
|
public:
|
|
PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher)
|
|
: first_matcher_(first_matcher), second_matcher_(second_matcher) {}
|
|
|
|
template <typename PairType>
|
|
operator Matcher<PairType> () const {
|
|
return Matcher<PairType>(
|
|
new PairMatcherImpl<const PairType&>(first_matcher_, second_matcher_));
|
|
}
|
|
|
|
private:
|
|
const FirstMatcher first_matcher_;
|
|
const SecondMatcher second_matcher_;
|
|
};
|
|
|
|
template <typename T, size_t... I>
|
|
auto UnpackStructImpl(const T& t, IndexSequence<I...>, int)
|
|
-> decltype(std::tie(get<I>(t)...)) {
|
|
static_assert(std::tuple_size<T>::value == sizeof...(I),
|
|
"Number of arguments doesn't match the number of fields.");
|
|
return std::tie(get<I>(t)...);
|
|
}
|
|
|
|
#if defined(__cpp_structured_bindings) && __cpp_structured_bindings >= 201606
|
|
template <typename T>
|
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<1>, char) {
|
|
const auto& [a] = t;
|
|
return std::tie(a);
|
|
}
|
|
template <typename T>
|
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<2>, char) {
|
|
const auto& [a, b] = t;
|
|
return std::tie(a, b);
|
|
}
|
|
template <typename T>
|
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<3>, char) {
|
|
const auto& [a, b, c] = t;
|
|
return std::tie(a, b, c);
|
|
}
|
|
template <typename T>
|
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<4>, char) {
|
|
const auto& [a, b, c, d] = t;
|
|
return std::tie(a, b, c, d);
|
|
}
|
|
template <typename T>
|
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<5>, char) {
|
|
const auto& [a, b, c, d, e] = t;
|
|
return std::tie(a, b, c, d, e);
|
|
}
|
|
template <typename T>
|
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<6>, char) {
|
|
const auto& [a, b, c, d, e, f] = t;
|
|
return std::tie(a, b, c, d, e, f);
|
|
}
|
|
template <typename T>
|
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<7>, char) {
|
|
const auto& [a, b, c, d, e, f, g] = t;
|
|
return std::tie(a, b, c, d, e, f, g);
|
|
}
|
|
template <typename T>
|
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<8>, char) {
|
|
const auto& [a, b, c, d, e, f, g, h] = t;
|
|
return std::tie(a, b, c, d, e, f, g, h);
|
|
}
|
|
template <typename T>
|
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<9>, char) {
|
|
const auto& [a, b, c, d, e, f, g, h, i] = t;
|
|
return std::tie(a, b, c, d, e, f, g, h, i);
|
|
}
|
|
template <typename T>
|
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<10>, char) {
|
|
const auto& [a, b, c, d, e, f, g, h, i, j] = t;
|
|
return std::tie(a, b, c, d, e, f, g, h, i, j);
|
|
}
|
|
template <typename T>
|
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<11>, char) {
|
|
const auto& [a, b, c, d, e, f, g, h, i, j, k] = t;
|
|
return std::tie(a, b, c, d, e, f, g, h, i, j, k);
|
|
}
|
|
template <typename T>
|
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<12>, char) {
|
|
const auto& [a, b, c, d, e, f, g, h, i, j, k, l] = t;
|
|
return std::tie(a, b, c, d, e, f, g, h, i, j, k, l);
|
|
}
|
|
template <typename T>
|
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<13>, char) {
|
|
const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m] = t;
|
|
return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m);
|
|
}
|
|
template <typename T>
|
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<14>, char) {
|
|
const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n] = t;
|
|
return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n);
|
|
}
|
|
template <typename T>
|
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<15>, char) {
|
|
const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o] = t;
|
|
return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o);
|
|
}
|
|
template <typename T>
|
|
auto UnpackStructImpl(const T& t, MakeIndexSequence<16>, char) {
|
|
const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p] = t;
|
|
return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p);
|
|
}
|
|
#endif // defined(__cpp_structured_bindings)
|
|
|
|
template <size_t I, typename T>
|
|
auto UnpackStruct(const T& t)
|
|
-> decltype((UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0)) {
|
|
return (UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0);
|
|
}
|
|
|
|
// Helper function to do comma folding in C++11.
|
|
// The array ensures left-to-right order of evaluation.
|
|
// Usage: VariadicExpand({expr...});
|
|
template <typename T, size_t N>
|
|
void VariadicExpand(const T (&)[N]) {}
|
|
|
|
template <typename Struct, typename StructSize>
|
|
class FieldsAreMatcherImpl;
|
|
|
|
template <typename Struct, size_t... I>
|
|
class FieldsAreMatcherImpl<Struct, IndexSequence<I...>>
|
|
: public MatcherInterface<Struct> {
|
|
using UnpackedType =
|
|
decltype(UnpackStruct<sizeof...(I)>(std::declval<const Struct&>()));
|
|
using MatchersType = std::tuple<
|
|
Matcher<const typename std::tuple_element<I, UnpackedType>::type&>...>;
|
|
|
|
public:
|
|
template <typename Inner>
|
|
explicit FieldsAreMatcherImpl(const Inner& matchers)
|
|
: matchers_(testing::SafeMatcherCast<
|
|
const typename std::tuple_element<I, UnpackedType>::type&>(
|
|
std::get<I>(matchers))...) {}
|
|
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
const char* separator = "";
|
|
VariadicExpand(
|
|
{(*os << separator << "has field #" << I << " that ",
|
|
std::get<I>(matchers_).DescribeTo(os), separator = ", and ")...});
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
const char* separator = "";
|
|
VariadicExpand({(*os << separator << "has field #" << I << " that ",
|
|
std::get<I>(matchers_).DescribeNegationTo(os),
|
|
separator = ", or ")...});
|
|
}
|
|
|
|
bool MatchAndExplain(Struct t, MatchResultListener* listener) const override {
|
|
return MatchInternal((UnpackStruct<sizeof...(I)>)(t), listener);
|
|
}
|
|
|
|
private:
|
|
bool MatchInternal(UnpackedType tuple, MatchResultListener* listener) const {
|
|
if (!listener->IsInterested()) {
|
|
// If the listener is not interested, we don't need to construct the
|
|
// explanation.
|
|
bool good = true;
|
|
VariadicExpand({good = good && std::get<I>(matchers_).Matches(
|
|
std::get<I>(tuple))...});
|
|
return good;
|
|
}
|
|
|
|
size_t failed_pos = ~size_t{};
|
|
|
|
std::vector<StringMatchResultListener> inner_listener(sizeof...(I));
|
|
|
|
VariadicExpand(
|
|
{failed_pos == ~size_t{} && !std::get<I>(matchers_).MatchAndExplain(
|
|
std::get<I>(tuple), &inner_listener[I])
|
|
? failed_pos = I
|
|
: 0 ...});
|
|
if (failed_pos != ~size_t{}) {
|
|
*listener << "whose field #" << failed_pos << " does not match";
|
|
PrintIfNotEmpty(inner_listener[failed_pos].str(), listener->stream());
|
|
return false;
|
|
}
|
|
|
|
*listener << "whose all elements match";
|
|
const char* separator = ", where";
|
|
for (size_t index = 0; index < sizeof...(I); ++index) {
|
|
const std::string str = inner_listener[index].str();
|
|
if (!str.empty()) {
|
|
*listener << separator << " field #" << index << " is a value " << str;
|
|
separator = ", and";
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
MatchersType matchers_;
|
|
};
|
|
|
|
template <typename... Inner>
|
|
class FieldsAreMatcher {
|
|
public:
|
|
explicit FieldsAreMatcher(Inner... inner) : matchers_(std::move(inner)...) {}
|
|
|
|
template <typename Struct>
|
|
operator Matcher<Struct>() const { // NOLINT
|
|
return Matcher<Struct>(
|
|
new FieldsAreMatcherImpl<const Struct&, IndexSequenceFor<Inner...>>(
|
|
matchers_));
|
|
}
|
|
|
|
private:
|
|
std::tuple<Inner...> matchers_;
|
|
};
|
|
|
|
// Implements ElementsAre() and ElementsAreArray().
|
|
template <typename Container>
|
|
class ElementsAreMatcherImpl : public MatcherInterface<Container> {
|
|
public:
|
|
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
|
|
typedef internal::StlContainerView<RawContainer> View;
|
|
typedef typename View::type StlContainer;
|
|
typedef typename View::const_reference StlContainerReference;
|
|
typedef typename StlContainer::value_type Element;
|
|
|
|
// Constructs the matcher from a sequence of element values or
|
|
// element matchers.
|
|
template <typename InputIter>
|
|
ElementsAreMatcherImpl(InputIter first, InputIter last) {
|
|
while (first != last) {
|
|
matchers_.push_back(MatcherCast<const Element&>(*first++));
|
|
}
|
|
}
|
|
|
|
// Describes what this matcher does.
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
if (count() == 0) {
|
|
*os << "is empty";
|
|
} else if (count() == 1) {
|
|
*os << "has 1 element that ";
|
|
matchers_[0].DescribeTo(os);
|
|
} else {
|
|
*os << "has " << Elements(count()) << " where\n";
|
|
for (size_t i = 0; i != count(); ++i) {
|
|
*os << "element #" << i << " ";
|
|
matchers_[i].DescribeTo(os);
|
|
if (i + 1 < count()) {
|
|
*os << ",\n";
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Describes what the negation of this matcher does.
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
if (count() == 0) {
|
|
*os << "isn't empty";
|
|
return;
|
|
}
|
|
|
|
*os << "doesn't have " << Elements(count()) << ", or\n";
|
|
for (size_t i = 0; i != count(); ++i) {
|
|
*os << "element #" << i << " ";
|
|
matchers_[i].DescribeNegationTo(os);
|
|
if (i + 1 < count()) {
|
|
*os << ", or\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
bool MatchAndExplain(Container container,
|
|
MatchResultListener* listener) const override {
|
|
// To work with stream-like "containers", we must only walk
|
|
// through the elements in one pass.
|
|
|
|
const bool listener_interested = listener->IsInterested();
|
|
|
|
// explanations[i] is the explanation of the element at index i.
|
|
::std::vector<std::string> explanations(count());
|
|
StlContainerReference stl_container = View::ConstReference(container);
|
|
typename StlContainer::const_iterator it = stl_container.begin();
|
|
size_t exam_pos = 0;
|
|
bool mismatch_found = false; // Have we found a mismatched element yet?
|
|
|
|
// Go through the elements and matchers in pairs, until we reach
|
|
// the end of either the elements or the matchers, or until we find a
|
|
// mismatch.
|
|
for (; it != stl_container.end() && exam_pos != count(); ++it, ++exam_pos) {
|
|
bool match; // Does the current element match the current matcher?
|
|
if (listener_interested) {
|
|
StringMatchResultListener s;
|
|
match = matchers_[exam_pos].MatchAndExplain(*it, &s);
|
|
explanations[exam_pos] = s.str();
|
|
} else {
|
|
match = matchers_[exam_pos].Matches(*it);
|
|
}
|
|
|
|
if (!match) {
|
|
mismatch_found = true;
|
|
break;
|
|
}
|
|
}
|
|
// If mismatch_found is true, 'exam_pos' is the index of the mismatch.
|
|
|
|
// Find how many elements the actual container has. We avoid
|
|
// calling size() s.t. this code works for stream-like "containers"
|
|
// that don't define size().
|
|
size_t actual_count = exam_pos;
|
|
for (; it != stl_container.end(); ++it) {
|
|
++actual_count;
|
|
}
|
|
|
|
if (actual_count != count()) {
|
|
// The element count doesn't match. If the container is empty,
|
|
// there's no need to explain anything as Google Mock already
|
|
// prints the empty container. Otherwise we just need to show
|
|
// how many elements there actually are.
|
|
if (listener_interested && (actual_count != 0)) {
|
|
*listener << "which has " << Elements(actual_count);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
if (mismatch_found) {
|
|
// The element count matches, but the exam_pos-th element doesn't match.
|
|
if (listener_interested) {
|
|
*listener << "whose element #" << exam_pos << " doesn't match";
|
|
PrintIfNotEmpty(explanations[exam_pos], listener->stream());
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Every element matches its expectation. We need to explain why
|
|
// (the obvious ones can be skipped).
|
|
if (listener_interested) {
|
|
bool reason_printed = false;
|
|
for (size_t i = 0; i != count(); ++i) {
|
|
const std::string& s = explanations[i];
|
|
if (!s.empty()) {
|
|
if (reason_printed) {
|
|
*listener << ",\nand ";
|
|
}
|
|
*listener << "whose element #" << i << " matches, " << s;
|
|
reason_printed = true;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
static Message Elements(size_t count) {
|
|
return Message() << count << (count == 1 ? " element" : " elements");
|
|
}
|
|
|
|
size_t count() const { return matchers_.size(); }
|
|
|
|
::std::vector<Matcher<const Element&> > matchers_;
|
|
};
|
|
|
|
// Connectivity matrix of (elements X matchers), in element-major order.
|
|
// Initially, there are no edges.
|
|
// Use NextGraph() to iterate over all possible edge configurations.
|
|
// Use Randomize() to generate a random edge configuration.
|
|
class GTEST_API_ MatchMatrix {
|
|
public:
|
|
MatchMatrix(size_t num_elements, size_t num_matchers)
|
|
: num_elements_(num_elements),
|
|
num_matchers_(num_matchers),
|
|
matched_(num_elements_* num_matchers_, 0) {
|
|
}
|
|
|
|
size_t LhsSize() const { return num_elements_; }
|
|
size_t RhsSize() const { return num_matchers_; }
|
|
bool HasEdge(size_t ilhs, size_t irhs) const {
|
|
return matched_[SpaceIndex(ilhs, irhs)] == 1;
|
|
}
|
|
void SetEdge(size_t ilhs, size_t irhs, bool b) {
|
|
matched_[SpaceIndex(ilhs, irhs)] = b ? 1 : 0;
|
|
}
|
|
|
|
// Treating the connectivity matrix as a (LhsSize()*RhsSize())-bit number,
|
|
// adds 1 to that number; returns false if incrementing the graph left it
|
|
// empty.
|
|
bool NextGraph();
|
|
|
|
void Randomize();
|
|
|
|
std::string DebugString() const;
|
|
|
|
private:
|
|
size_t SpaceIndex(size_t ilhs, size_t irhs) const {
|
|
return ilhs * num_matchers_ + irhs;
|
|
}
|
|
|
|
size_t num_elements_;
|
|
size_t num_matchers_;
|
|
|
|
// Each element is a char interpreted as bool. They are stored as a
|
|
// flattened array in lhs-major order, use 'SpaceIndex()' to translate
|
|
// a (ilhs, irhs) matrix coordinate into an offset.
|
|
::std::vector<char> matched_;
|
|
};
|
|
|
|
typedef ::std::pair<size_t, size_t> ElementMatcherPair;
|
|
typedef ::std::vector<ElementMatcherPair> ElementMatcherPairs;
|
|
|
|
// Returns a maximum bipartite matching for the specified graph 'g'.
|
|
// The matching is represented as a vector of {element, matcher} pairs.
|
|
GTEST_API_ ElementMatcherPairs
|
|
FindMaxBipartiteMatching(const MatchMatrix& g);
|
|
|
|
struct UnorderedMatcherRequire {
|
|
enum Flags {
|
|
Superset = 1 << 0,
|
|
Subset = 1 << 1,
|
|
ExactMatch = Superset | Subset,
|
|
};
|
|
};
|
|
|
|
// Untyped base class for implementing UnorderedElementsAre. By
|
|
// putting logic that's not specific to the element type here, we
|
|
// reduce binary bloat and increase compilation speed.
|
|
class GTEST_API_ UnorderedElementsAreMatcherImplBase {
|
|
protected:
|
|
explicit UnorderedElementsAreMatcherImplBase(
|
|
UnorderedMatcherRequire::Flags matcher_flags)
|
|
: match_flags_(matcher_flags) {}
|
|
|
|
// A vector of matcher describers, one for each element matcher.
|
|
// Does not own the describers (and thus can be used only when the
|
|
// element matchers are alive).
|
|
typedef ::std::vector<const MatcherDescriberInterface*> MatcherDescriberVec;
|
|
|
|
// Describes this UnorderedElementsAre matcher.
|
|
void DescribeToImpl(::std::ostream* os) const;
|
|
|
|
// Describes the negation of this UnorderedElementsAre matcher.
|
|
void DescribeNegationToImpl(::std::ostream* os) const;
|
|
|
|
bool VerifyMatchMatrix(const ::std::vector<std::string>& element_printouts,
|
|
const MatchMatrix& matrix,
|
|
MatchResultListener* listener) const;
|
|
|
|
bool FindPairing(const MatchMatrix& matrix,
|
|
MatchResultListener* listener) const;
|
|
|
|
MatcherDescriberVec& matcher_describers() {
|
|
return matcher_describers_;
|
|
}
|
|
|
|
static Message Elements(size_t n) {
|
|
return Message() << n << " element" << (n == 1 ? "" : "s");
|
|
}
|
|
|
|
UnorderedMatcherRequire::Flags match_flags() const { return match_flags_; }
|
|
|
|
private:
|
|
UnorderedMatcherRequire::Flags match_flags_;
|
|
MatcherDescriberVec matcher_describers_;
|
|
};
|
|
|
|
// Implements UnorderedElementsAre, UnorderedElementsAreArray, IsSubsetOf, and
|
|
// IsSupersetOf.
|
|
template <typename Container>
|
|
class UnorderedElementsAreMatcherImpl
|
|
: public MatcherInterface<Container>,
|
|
public UnorderedElementsAreMatcherImplBase {
|
|
public:
|
|
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
|
|
typedef internal::StlContainerView<RawContainer> View;
|
|
typedef typename View::type StlContainer;
|
|
typedef typename View::const_reference StlContainerReference;
|
|
typedef typename StlContainer::const_iterator StlContainerConstIterator;
|
|
typedef typename StlContainer::value_type Element;
|
|
|
|
template <typename InputIter>
|
|
UnorderedElementsAreMatcherImpl(UnorderedMatcherRequire::Flags matcher_flags,
|
|
InputIter first, InputIter last)
|
|
: UnorderedElementsAreMatcherImplBase(matcher_flags) {
|
|
for (; first != last; ++first) {
|
|
matchers_.push_back(MatcherCast<const Element&>(*first));
|
|
}
|
|
for (const auto& m : matchers_) {
|
|
matcher_describers().push_back(m.GetDescriber());
|
|
}
|
|
}
|
|
|
|
// Describes what this matcher does.
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
return UnorderedElementsAreMatcherImplBase::DescribeToImpl(os);
|
|
}
|
|
|
|
// Describes what the negation of this matcher does.
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
return UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(os);
|
|
}
|
|
|
|
bool MatchAndExplain(Container container,
|
|
MatchResultListener* listener) const override {
|
|
StlContainerReference stl_container = View::ConstReference(container);
|
|
::std::vector<std::string> element_printouts;
|
|
MatchMatrix matrix =
|
|
AnalyzeElements(stl_container.begin(), stl_container.end(),
|
|
&element_printouts, listener);
|
|
|
|
if (matrix.LhsSize() == 0 && matrix.RhsSize() == 0) {
|
|
return true;
|
|
}
|
|
|
|
if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
|
|
if (matrix.LhsSize() != matrix.RhsSize()) {
|
|
// The element count doesn't match. If the container is empty,
|
|
// there's no need to explain anything as Google Mock already
|
|
// prints the empty container. Otherwise we just need to show
|
|
// how many elements there actually are.
|
|
if (matrix.LhsSize() != 0 && listener->IsInterested()) {
|
|
*listener << "which has " << Elements(matrix.LhsSize());
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return VerifyMatchMatrix(element_printouts, matrix, listener) &&
|
|
FindPairing(matrix, listener);
|
|
}
|
|
|
|
private:
|
|
template <typename ElementIter>
|
|
MatchMatrix AnalyzeElements(ElementIter elem_first, ElementIter elem_last,
|
|
::std::vector<std::string>* element_printouts,
|
|
MatchResultListener* listener) const {
|
|
element_printouts->clear();
|
|
::std::vector<char> did_match;
|
|
size_t num_elements = 0;
|
|
DummyMatchResultListener dummy;
|
|
for (; elem_first != elem_last; ++num_elements, ++elem_first) {
|
|
if (listener->IsInterested()) {
|
|
element_printouts->push_back(PrintToString(*elem_first));
|
|
}
|
|
for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
|
|
did_match.push_back(
|
|
matchers_[irhs].MatchAndExplain(*elem_first, &dummy));
|
|
}
|
|
}
|
|
|
|
MatchMatrix matrix(num_elements, matchers_.size());
|
|
::std::vector<char>::const_iterator did_match_iter = did_match.begin();
|
|
for (size_t ilhs = 0; ilhs != num_elements; ++ilhs) {
|
|
for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
|
|
matrix.SetEdge(ilhs, irhs, *did_match_iter++ != 0);
|
|
}
|
|
}
|
|
return matrix;
|
|
}
|
|
|
|
::std::vector<Matcher<const Element&> > matchers_;
|
|
};
|
|
|
|
// Functor for use in TransformTuple.
|
|
// Performs MatcherCast<Target> on an input argument of any type.
|
|
template <typename Target>
|
|
struct CastAndAppendTransform {
|
|
template <typename Arg>
|
|
Matcher<Target> operator()(const Arg& a) const {
|
|
return MatcherCast<Target>(a);
|
|
}
|
|
};
|
|
|
|
// Implements UnorderedElementsAre.
|
|
template <typename MatcherTuple>
|
|
class UnorderedElementsAreMatcher {
|
|
public:
|
|
explicit UnorderedElementsAreMatcher(const MatcherTuple& args)
|
|
: matchers_(args) {}
|
|
|
|
template <typename Container>
|
|
operator Matcher<Container>() const {
|
|
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
|
|
typedef typename internal::StlContainerView<RawContainer>::type View;
|
|
typedef typename View::value_type Element;
|
|
typedef ::std::vector<Matcher<const Element&> > MatcherVec;
|
|
MatcherVec matchers;
|
|
matchers.reserve(::std::tuple_size<MatcherTuple>::value);
|
|
TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
|
|
::std::back_inserter(matchers));
|
|
return Matcher<Container>(
|
|
new UnorderedElementsAreMatcherImpl<const Container&>(
|
|
UnorderedMatcherRequire::ExactMatch, matchers.begin(),
|
|
matchers.end()));
|
|
}
|
|
|
|
private:
|
|
const MatcherTuple matchers_;
|
|
};
|
|
|
|
// Implements ElementsAre.
|
|
template <typename MatcherTuple>
|
|
class ElementsAreMatcher {
|
|
public:
|
|
explicit ElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {}
|
|
|
|
template <typename Container>
|
|
operator Matcher<Container>() const {
|
|
GTEST_COMPILE_ASSERT_(
|
|
!IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value ||
|
|
::std::tuple_size<MatcherTuple>::value < 2,
|
|
use_UnorderedElementsAre_with_hash_tables);
|
|
|
|
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
|
|
typedef typename internal::StlContainerView<RawContainer>::type View;
|
|
typedef typename View::value_type Element;
|
|
typedef ::std::vector<Matcher<const Element&> > MatcherVec;
|
|
MatcherVec matchers;
|
|
matchers.reserve(::std::tuple_size<MatcherTuple>::value);
|
|
TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
|
|
::std::back_inserter(matchers));
|
|
return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>(
|
|
matchers.begin(), matchers.end()));
|
|
}
|
|
|
|
private:
|
|
const MatcherTuple matchers_;
|
|
};
|
|
|
|
// Implements UnorderedElementsAreArray(), IsSubsetOf(), and IsSupersetOf().
|
|
template <typename T>
|
|
class UnorderedElementsAreArrayMatcher {
|
|
public:
|
|
template <typename Iter>
|
|
UnorderedElementsAreArrayMatcher(UnorderedMatcherRequire::Flags match_flags,
|
|
Iter first, Iter last)
|
|
: match_flags_(match_flags), matchers_(first, last) {}
|
|
|
|
template <typename Container>
|
|
operator Matcher<Container>() const {
|
|
return Matcher<Container>(
|
|
new UnorderedElementsAreMatcherImpl<const Container&>(
|
|
match_flags_, matchers_.begin(), matchers_.end()));
|
|
}
|
|
|
|
private:
|
|
UnorderedMatcherRequire::Flags match_flags_;
|
|
::std::vector<T> matchers_;
|
|
};
|
|
|
|
// Implements ElementsAreArray().
|
|
template <typename T>
|
|
class ElementsAreArrayMatcher {
|
|
public:
|
|
template <typename Iter>
|
|
ElementsAreArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}
|
|
|
|
template <typename Container>
|
|
operator Matcher<Container>() const {
|
|
GTEST_COMPILE_ASSERT_(
|
|
!IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value,
|
|
use_UnorderedElementsAreArray_with_hash_tables);
|
|
|
|
return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>(
|
|
matchers_.begin(), matchers_.end()));
|
|
}
|
|
|
|
private:
|
|
const ::std::vector<T> matchers_;
|
|
};
|
|
|
|
// Given a 2-tuple matcher tm of type Tuple2Matcher and a value second
|
|
// of type Second, BoundSecondMatcher<Tuple2Matcher, Second>(tm,
|
|
// second) is a polymorphic matcher that matches a value x if and only if
|
|
// tm matches tuple (x, second). Useful for implementing
|
|
// UnorderedPointwise() in terms of UnorderedElementsAreArray().
|
|
//
|
|
// BoundSecondMatcher is copyable and assignable, as we need to put
|
|
// instances of this class in a vector when implementing
|
|
// UnorderedPointwise().
|
|
template <typename Tuple2Matcher, typename Second>
|
|
class BoundSecondMatcher {
|
|
public:
|
|
BoundSecondMatcher(const Tuple2Matcher& tm, const Second& second)
|
|
: tuple2_matcher_(tm), second_value_(second) {}
|
|
|
|
BoundSecondMatcher(const BoundSecondMatcher& other) = default;
|
|
|
|
template <typename T>
|
|
operator Matcher<T>() const {
|
|
return MakeMatcher(new Impl<T>(tuple2_matcher_, second_value_));
|
|
}
|
|
|
|
// We have to define this for UnorderedPointwise() to compile in
|
|
// C++98 mode, as it puts BoundSecondMatcher instances in a vector,
|
|
// which requires the elements to be assignable in C++98. The
|
|
// compiler cannot generate the operator= for us, as Tuple2Matcher
|
|
// and Second may not be assignable.
|
|
//
|
|
// However, this should never be called, so the implementation just
|
|
// need to assert.
|
|
void operator=(const BoundSecondMatcher& /*rhs*/) {
|
|
GTEST_LOG_(FATAL) << "BoundSecondMatcher should never be assigned.";
|
|
}
|
|
|
|
private:
|
|
template <typename T>
|
|
class Impl : public MatcherInterface<T> {
|
|
public:
|
|
typedef ::std::tuple<T, Second> ArgTuple;
|
|
|
|
Impl(const Tuple2Matcher& tm, const Second& second)
|
|
: mono_tuple2_matcher_(SafeMatcherCast<const ArgTuple&>(tm)),
|
|
second_value_(second) {}
|
|
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
*os << "and ";
|
|
UniversalPrint(second_value_, os);
|
|
*os << " ";
|
|
mono_tuple2_matcher_.DescribeTo(os);
|
|
}
|
|
|
|
bool MatchAndExplain(T x, MatchResultListener* listener) const override {
|
|
return mono_tuple2_matcher_.MatchAndExplain(ArgTuple(x, second_value_),
|
|
listener);
|
|
}
|
|
|
|
private:
|
|
const Matcher<const ArgTuple&> mono_tuple2_matcher_;
|
|
const Second second_value_;
|
|
};
|
|
|
|
const Tuple2Matcher tuple2_matcher_;
|
|
const Second second_value_;
|
|
};
|
|
|
|
// Given a 2-tuple matcher tm and a value second,
|
|
// MatcherBindSecond(tm, second) returns a matcher that matches a
|
|
// value x if and only if tm matches tuple (x, second). Useful for
|
|
// implementing UnorderedPointwise() in terms of UnorderedElementsAreArray().
|
|
template <typename Tuple2Matcher, typename Second>
|
|
BoundSecondMatcher<Tuple2Matcher, Second> MatcherBindSecond(
|
|
const Tuple2Matcher& tm, const Second& second) {
|
|
return BoundSecondMatcher<Tuple2Matcher, Second>(tm, second);
|
|
}
|
|
|
|
// Returns the description for a matcher defined using the MATCHER*()
|
|
// macro where the user-supplied description string is "", if
|
|
// 'negation' is false; otherwise returns the description of the
|
|
// negation of the matcher. 'param_values' contains a list of strings
|
|
// that are the print-out of the matcher's parameters.
|
|
GTEST_API_ std::string FormatMatcherDescription(bool negation,
|
|
const char* matcher_name,
|
|
const Strings& param_values);
|
|
|
|
// Implements a matcher that checks the value of a optional<> type variable.
|
|
template <typename ValueMatcher>
|
|
class OptionalMatcher {
|
|
public:
|
|
explicit OptionalMatcher(const ValueMatcher& value_matcher)
|
|
: value_matcher_(value_matcher) {}
|
|
|
|
template <typename Optional>
|
|
operator Matcher<Optional>() const {
|
|
return Matcher<Optional>(new Impl<const Optional&>(value_matcher_));
|
|
}
|
|
|
|
template <typename Optional>
|
|
class Impl : public MatcherInterface<Optional> {
|
|
public:
|
|
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Optional) OptionalView;
|
|
typedef typename OptionalView::value_type ValueType;
|
|
explicit Impl(const ValueMatcher& value_matcher)
|
|
: value_matcher_(MatcherCast<ValueType>(value_matcher)) {}
|
|
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
*os << "value ";
|
|
value_matcher_.DescribeTo(os);
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
*os << "value ";
|
|
value_matcher_.DescribeNegationTo(os);
|
|
}
|
|
|
|
bool MatchAndExplain(Optional optional,
|
|
MatchResultListener* listener) const override {
|
|
if (!optional) {
|
|
*listener << "which is not engaged";
|
|
return false;
|
|
}
|
|
const ValueType& value = *optional;
|
|
StringMatchResultListener value_listener;
|
|
const bool match = value_matcher_.MatchAndExplain(value, &value_listener);
|
|
*listener << "whose value " << PrintToString(value)
|
|
<< (match ? " matches" : " doesn't match");
|
|
PrintIfNotEmpty(value_listener.str(), listener->stream());
|
|
return match;
|
|
}
|
|
|
|
private:
|
|
const Matcher<ValueType> value_matcher_;
|
|
};
|
|
|
|
private:
|
|
const ValueMatcher value_matcher_;
|
|
};
|
|
|
|
namespace variant_matcher {
|
|
// Overloads to allow VariantMatcher to do proper ADL lookup.
|
|
template <typename T>
|
|
void holds_alternative() {}
|
|
template <typename T>
|
|
void get() {}
|
|
|
|
// Implements a matcher that checks the value of a variant<> type variable.
|
|
template <typename T>
|
|
class VariantMatcher {
|
|
public:
|
|
explicit VariantMatcher(::testing::Matcher<const T&> matcher)
|
|
: matcher_(std::move(matcher)) {}
|
|
|
|
template <typename Variant>
|
|
bool MatchAndExplain(const Variant& value,
|
|
::testing::MatchResultListener* listener) const {
|
|
using std::get;
|
|
if (!listener->IsInterested()) {
|
|
return holds_alternative<T>(value) && matcher_.Matches(get<T>(value));
|
|
}
|
|
|
|
if (!holds_alternative<T>(value)) {
|
|
*listener << "whose value is not of type '" << GetTypeName() << "'";
|
|
return false;
|
|
}
|
|
|
|
const T& elem = get<T>(value);
|
|
StringMatchResultListener elem_listener;
|
|
const bool match = matcher_.MatchAndExplain(elem, &elem_listener);
|
|
*listener << "whose value " << PrintToString(elem)
|
|
<< (match ? " matches" : " doesn't match");
|
|
PrintIfNotEmpty(elem_listener.str(), listener->stream());
|
|
return match;
|
|
}
|
|
|
|
void DescribeTo(std::ostream* os) const {
|
|
*os << "is a variant<> with value of type '" << GetTypeName()
|
|
<< "' and the value ";
|
|
matcher_.DescribeTo(os);
|
|
}
|
|
|
|
void DescribeNegationTo(std::ostream* os) const {
|
|
*os << "is a variant<> with value of type other than '" << GetTypeName()
|
|
<< "' or the value ";
|
|
matcher_.DescribeNegationTo(os);
|
|
}
|
|
|
|
private:
|
|
static std::string GetTypeName() {
|
|
#if GTEST_HAS_RTTI
|
|
GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(
|
|
return internal::GetTypeName<T>());
|
|
#endif
|
|
return "the element type";
|
|
}
|
|
|
|
const ::testing::Matcher<const T&> matcher_;
|
|
};
|
|
|
|
} // namespace variant_matcher
|
|
|
|
namespace any_cast_matcher {
|
|
|
|
// Overloads to allow AnyCastMatcher to do proper ADL lookup.
|
|
template <typename T>
|
|
void any_cast() {}
|
|
|
|
// Implements a matcher that any_casts the value.
|
|
template <typename T>
|
|
class AnyCastMatcher {
|
|
public:
|
|
explicit AnyCastMatcher(const ::testing::Matcher<const T&>& matcher)
|
|
: matcher_(matcher) {}
|
|
|
|
template <typename AnyType>
|
|
bool MatchAndExplain(const AnyType& value,
|
|
::testing::MatchResultListener* listener) const {
|
|
if (!listener->IsInterested()) {
|
|
const T* ptr = any_cast<T>(&value);
|
|
return ptr != nullptr && matcher_.Matches(*ptr);
|
|
}
|
|
|
|
const T* elem = any_cast<T>(&value);
|
|
if (elem == nullptr) {
|
|
*listener << "whose value is not of type '" << GetTypeName() << "'";
|
|
return false;
|
|
}
|
|
|
|
StringMatchResultListener elem_listener;
|
|
const bool match = matcher_.MatchAndExplain(*elem, &elem_listener);
|
|
*listener << "whose value " << PrintToString(*elem)
|
|
<< (match ? " matches" : " doesn't match");
|
|
PrintIfNotEmpty(elem_listener.str(), listener->stream());
|
|
return match;
|
|
}
|
|
|
|
void DescribeTo(std::ostream* os) const {
|
|
*os << "is an 'any' type with value of type '" << GetTypeName()
|
|
<< "' and the value ";
|
|
matcher_.DescribeTo(os);
|
|
}
|
|
|
|
void DescribeNegationTo(std::ostream* os) const {
|
|
*os << "is an 'any' type with value of type other than '" << GetTypeName()
|
|
<< "' or the value ";
|
|
matcher_.DescribeNegationTo(os);
|
|
}
|
|
|
|
private:
|
|
static std::string GetTypeName() {
|
|
#if GTEST_HAS_RTTI
|
|
GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(
|
|
return internal::GetTypeName<T>());
|
|
#endif
|
|
return "the element type";
|
|
}
|
|
|
|
const ::testing::Matcher<const T&> matcher_;
|
|
};
|
|
|
|
} // namespace any_cast_matcher
|
|
|
|
// Implements the Args() matcher.
|
|
template <class ArgsTuple, size_t... k>
|
|
class ArgsMatcherImpl : public MatcherInterface<ArgsTuple> {
|
|
public:
|
|
using RawArgsTuple = typename std::decay<ArgsTuple>::type;
|
|
using SelectedArgs =
|
|
std::tuple<typename std::tuple_element<k, RawArgsTuple>::type...>;
|
|
using MonomorphicInnerMatcher = Matcher<const SelectedArgs&>;
|
|
|
|
template <typename InnerMatcher>
|
|
explicit ArgsMatcherImpl(const InnerMatcher& inner_matcher)
|
|
: inner_matcher_(SafeMatcherCast<const SelectedArgs&>(inner_matcher)) {}
|
|
|
|
bool MatchAndExplain(ArgsTuple args,
|
|
MatchResultListener* listener) const override {
|
|
// Workaround spurious C4100 on MSVC<=15.7 when k is empty.
|
|
(void)args;
|
|
const SelectedArgs& selected_args =
|
|
std::forward_as_tuple(std::get<k>(args)...);
|
|
if (!listener->IsInterested()) return inner_matcher_.Matches(selected_args);
|
|
|
|
PrintIndices(listener->stream());
|
|
*listener << "are " << PrintToString(selected_args);
|
|
|
|
StringMatchResultListener inner_listener;
|
|
const bool match =
|
|
inner_matcher_.MatchAndExplain(selected_args, &inner_listener);
|
|
PrintIfNotEmpty(inner_listener.str(), listener->stream());
|
|
return match;
|
|
}
|
|
|
|
void DescribeTo(::std::ostream* os) const override {
|
|
*os << "are a tuple ";
|
|
PrintIndices(os);
|
|
inner_matcher_.DescribeTo(os);
|
|
}
|
|
|
|
void DescribeNegationTo(::std::ostream* os) const override {
|
|
*os << "are a tuple ";
|
|
PrintIndices(os);
|
|
inner_matcher_.DescribeNegationTo(os);
|
|
}
|
|
|
|
private:
|
|
// Prints the indices of the selected fields.
|
|
static void PrintIndices(::std::ostream* os) {
|
|
*os << "whose fields (";
|
|
const char* sep = "";
|
|
// Workaround spurious C4189 on MSVC<=15.7 when k is empty.
|
|
(void)sep;
|
|
const char* dummy[] = {"", (*os << sep << "#" << k, sep = ", ")...};
|
|
(void)dummy;
|
|
*os << ") ";
|
|
}
|
|
|
|
MonomorphicInnerMatcher inner_matcher_;
|
|
};
|
|
|
|
template <class InnerMatcher, size_t... k>
|
|
class ArgsMatcher {
|
|
public:
|
|
explicit ArgsMatcher(InnerMatcher inner_matcher)
|
|
: inner_matcher_(std::move(inner_matcher)) {}
|
|
|
|
template <typename ArgsTuple>
|
|
operator Matcher<ArgsTuple>() const { // NOLINT
|
|
return MakeMatcher(new ArgsMatcherImpl<ArgsTuple, k...>(inner_matcher_));
|
|
}
|
|
|
|
private:
|
|
InnerMatcher inner_matcher_;
|
|
};
|
|
|
|
} // namespace internal
|
|
|
|
// ElementsAreArray(iterator_first, iterator_last)
|
|
// ElementsAreArray(pointer, count)
|
|
// ElementsAreArray(array)
|
|
// ElementsAreArray(container)
|
|
// ElementsAreArray({ e1, e2, ..., en })
|
|
//
|
|
// The ElementsAreArray() functions are like ElementsAre(...), except
|
|
// that they are given a homogeneous sequence rather than taking each
|
|
// element as a function argument. The sequence can be specified as an
|
|
// array, a pointer and count, a vector, an initializer list, or an
|
|
// STL iterator range. In each of these cases, the underlying sequence
|
|
// can be either a sequence of values or a sequence of matchers.
|
|
//
|
|
// All forms of ElementsAreArray() make a copy of the input matcher sequence.
|
|
|
|
template <typename Iter>
|
|
inline internal::ElementsAreArrayMatcher<
|
|
typename ::std::iterator_traits<Iter>::value_type>
|
|
ElementsAreArray(Iter first, Iter last) {
|
|
typedef typename ::std::iterator_traits<Iter>::value_type T;
|
|
return internal::ElementsAreArrayMatcher<T>(first, last);
|
|
}
|
|
|
|
template <typename T>
|
|
inline internal::ElementsAreArrayMatcher<T> ElementsAreArray(
|
|
const T* pointer, size_t count) {
|
|
return ElementsAreArray(pointer, pointer + count);
|
|
}
|
|
|
|
template <typename T, size_t N>
|
|
inline internal::ElementsAreArrayMatcher<T> ElementsAreArray(
|
|
const T (&array)[N]) {
|
|
return ElementsAreArray(array, N);
|
|
}
|
|
|
|
template <typename Container>
|
|
inline internal::ElementsAreArrayMatcher<typename Container::value_type>
|
|
ElementsAreArray(const Container& container) {
|
|
return ElementsAreArray(container.begin(), container.end());
|
|
}
|
|
|
|
template <typename T>
|
|
inline internal::ElementsAreArrayMatcher<T>
|
|
ElementsAreArray(::std::initializer_list<T> xs) {
|
|
return ElementsAreArray(xs.begin(), xs.end());
|
|
}
|
|
|
|
// UnorderedElementsAreArray(iterator_first, iterator_last)
|
|
// UnorderedElementsAreArray(pointer, count)
|
|
// UnorderedElementsAreArray(array)
|
|
// UnorderedElementsAreArray(container)
|
|
// UnorderedElementsAreArray({ e1, e2, ..., en })
|
|
//
|
|
// UnorderedElementsAreArray() verifies that a bijective mapping onto a
|
|
// collection of matchers exists.
|
|
//
|
|
// The matchers can be specified as an array, a pointer and count, a container,
|
|
// an initializer list, or an STL iterator range. In each of these cases, the
|
|
// underlying matchers can be either values or matchers.
|
|
|
|
template <typename Iter>
|
|
inline internal::UnorderedElementsAreArrayMatcher<
|
|
typename ::std::iterator_traits<Iter>::value_type>
|
|
UnorderedElementsAreArray(Iter first, Iter last) {
|
|
typedef typename ::std::iterator_traits<Iter>::value_type T;
|
|
return internal::UnorderedElementsAreArrayMatcher<T>(
|
|
internal::UnorderedMatcherRequire::ExactMatch, first, last);
|
|
}
|
|
|
|
template <typename T>
|
|
inline internal::UnorderedElementsAreArrayMatcher<T>
|
|
UnorderedElementsAreArray(const T* pointer, size_t count) {
|
|
return UnorderedElementsAreArray(pointer, pointer + count);
|
|
}
|
|
|
|
template <typename T, size_t N>
|
|
inline internal::UnorderedElementsAreArrayMatcher<T>
|
|
UnorderedElementsAreArray(const T (&array)[N]) {
|
|
return UnorderedElementsAreArray(array, N);
|
|
}
|
|
|
|
template <typename Container>
|
|
inline internal::UnorderedElementsAreArrayMatcher<
|
|
typename Container::value_type>
|
|
UnorderedElementsAreArray(const Container& container) {
|
|
return UnorderedElementsAreArray(container.begin(), container.end());
|
|
}
|
|
|
|
template <typename T>
|
|
inline internal::UnorderedElementsAreArrayMatcher<T>
|
|
UnorderedElementsAreArray(::std::initializer_list<T> xs) {
|
|
return UnorderedElementsAreArray(xs.begin(), xs.end());
|
|
}
|
|
|
|
// _ is a matcher that matches anything of any type.
|
|
//
|
|
// This definition is fine as:
|
|
//
|
|
// 1. The C++ standard permits using the name _ in a namespace that
|
|
// is not the global namespace or ::std.
|
|
// 2. The AnythingMatcher class has no data member or constructor,
|
|
// so it's OK to create global variables of this type.
|
|
// 3. c-style has approved of using _ in this case.
|
|
const internal::AnythingMatcher _ = {};
|
|
// Creates a matcher that matches any value of the given type T.
|
|
template <typename T>
|
|
inline Matcher<T> A() {
|
|
return _;
|
|
}
|
|
|
|
// Creates a matcher that matches any value of the given type T.
|
|
template <typename T>
|
|
inline Matcher<T> An() {
|
|
return _;
|
|
}
|
|
|
|
template <typename T, typename M>
|
|
Matcher<T> internal::MatcherCastImpl<T, M>::CastImpl(
|
|
const M& value, std::false_type /* convertible_to_matcher */,
|
|
std::false_type /* convertible_to_T */) {
|
|
return Eq(value);
|
|
}
|
|
|
|
// Creates a polymorphic matcher that matches any NULL pointer.
|
|
inline PolymorphicMatcher<internal::IsNullMatcher > IsNull() {
|
|
return MakePolymorphicMatcher(internal::IsNullMatcher());
|
|
}
|
|
|
|
// Creates a polymorphic matcher that matches any non-NULL pointer.
|
|
// This is convenient as Not(NULL) doesn't compile (the compiler
|
|
// thinks that that expression is comparing a pointer with an integer).
|
|
inline PolymorphicMatcher<internal::NotNullMatcher > NotNull() {
|
|
return MakePolymorphicMatcher(internal::NotNullMatcher());
|
|
}
|
|
|
|
// Creates a polymorphic matcher that matches any argument that
|
|
// references variable x.
|
|
template <typename T>
|
|
inline internal::RefMatcher<T&> Ref(T& x) { // NOLINT
|
|
return internal::RefMatcher<T&>(x);
|
|
}
|
|
|
|
// Creates a polymorphic matcher that matches any NaN floating point.
|
|
inline PolymorphicMatcher<internal::IsNanMatcher> IsNan() {
|
|
return MakePolymorphicMatcher(internal::IsNanMatcher());
|
|
}
|
|
|
|
// Creates a matcher that matches any double argument approximately
|
|
// equal to rhs, where two NANs are considered unequal.
|
|
inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) {
|
|
return internal::FloatingEqMatcher<double>(rhs, false);
|
|
}
|
|
|
|
// Creates a matcher that matches any double argument approximately
|
|
// equal to rhs, including NaN values when rhs is NaN.
|
|
inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) {
|
|
return internal::FloatingEqMatcher<double>(rhs, true);
|
|
}
|
|
|
|
// Creates a matcher that matches any double argument approximately equal to
|
|
// rhs, up to the specified max absolute error bound, where two NANs are
|
|
// considered unequal. The max absolute error bound must be non-negative.
|
|
inline internal::FloatingEqMatcher<double> DoubleNear(
|
|
double rhs, double max_abs_error) {
|
|
return internal::FloatingEqMatcher<double>(rhs, false, max_abs_error);
|
|
}
|
|
|
|
// Creates a matcher that matches any double argument approximately equal to
|
|
// rhs, up to the specified max absolute error bound, including NaN values when
|
|
// rhs is NaN. The max absolute error bound must be non-negative.
|
|
inline internal::FloatingEqMatcher<double> NanSensitiveDoubleNear(
|
|
double rhs, double max_abs_error) {
|
|
return internal::FloatingEqMatcher<double>(rhs, true, max_abs_error);
|
|
}
|
|
|
|
// Creates a matcher that matches any float argument approximately
|
|
// equal to rhs, where two NANs are considered unequal.
|
|
inline internal::FloatingEqMatcher<float> FloatEq(float rhs) {
|
|
return internal::FloatingEqMatcher<float>(rhs, false);
|
|
}
|
|
|
|
// Creates a matcher that matches any float argument approximately
|
|
// equal to rhs, including NaN values when rhs is NaN.
|
|
inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) {
|
|
return internal::FloatingEqMatcher<float>(rhs, true);
|
|
}
|
|
|
|
// Creates a matcher that matches any float argument approximately equal to
|
|
// rhs, up to the specified max absolute error bound, where two NANs are
|
|
// considered unequal. The max absolute error bound must be non-negative.
|
|
inline internal::FloatingEqMatcher<float> FloatNear(
|
|
float rhs, float max_abs_error) {
|
|
return internal::FloatingEqMatcher<float>(rhs, false, max_abs_error);
|
|
}
|
|
|
|
// Creates a matcher that matches any float argument approximately equal to
|
|
// rhs, up to the specified max absolute error bound, including NaN values when
|
|
// rhs is NaN. The max absolute error bound must be non-negative.
|
|
inline internal::FloatingEqMatcher<float> NanSensitiveFloatNear(
|
|
float rhs, float max_abs_error) {
|
|
return internal::FloatingEqMatcher<float>(rhs, true, max_abs_error);
|
|
}
|
|
|
|
// Creates a matcher that matches a pointer (raw or smart) that points
|
|
// to a value that matches inner_matcher.
|
|
template <typename InnerMatcher>
|
|
inline internal::PointeeMatcher<InnerMatcher> Pointee(
|
|
const InnerMatcher& inner_matcher) {
|
|
return internal::PointeeMatcher<InnerMatcher>(inner_matcher);
|
|
}
|
|
|
|
#if GTEST_HAS_RTTI
|
|
// Creates a matcher that matches a pointer or reference that matches
|
|
// inner_matcher when dynamic_cast<To> is applied.
|
|
// The result of dynamic_cast<To> is forwarded to the inner matcher.
|
|
// If To is a pointer and the cast fails, the inner matcher will receive NULL.
|
|
// If To is a reference and the cast fails, this matcher returns false
|
|
// immediately.
|
|
template <typename To>
|
|
inline PolymorphicMatcher<internal::WhenDynamicCastToMatcher<To> >
|
|
WhenDynamicCastTo(const Matcher<To>& inner_matcher) {
|
|
return MakePolymorphicMatcher(
|
|
internal::WhenDynamicCastToMatcher<To>(inner_matcher));
|
|
}
|
|
#endif // GTEST_HAS_RTTI
|
|
|
|
// Creates a matcher that matches an object whose given field matches
|
|
// 'matcher'. For example,
|
|
// Field(&Foo::number, Ge(5))
|
|
// matches a Foo object x if and only if x.number >= 5.
|
|
template <typename Class, typename FieldType, typename FieldMatcher>
|
|
inline PolymorphicMatcher<
|
|
internal::FieldMatcher<Class, FieldType> > Field(
|
|
FieldType Class::*field, const FieldMatcher& matcher) {
|
|
return MakePolymorphicMatcher(
|
|
internal::FieldMatcher<Class, FieldType>(
|
|
field, MatcherCast<const FieldType&>(matcher)));
|
|
// The call to MatcherCast() is required for supporting inner
|
|
// matchers of compatible types. For example, it allows
|
|
// Field(&Foo::bar, m)
|
|
// to compile where bar is an int32 and m is a matcher for int64.
|
|
}
|
|
|
|
// Same as Field() but also takes the name of the field to provide better error
|
|
// messages.
|
|
template <typename Class, typename FieldType, typename FieldMatcher>
|
|
inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType> > Field(
|
|
const std::string& field_name, FieldType Class::*field,
|
|
const FieldMatcher& matcher) {
|
|
return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>(
|
|
field_name, field, MatcherCast<const FieldType&>(matcher)));
|
|
}
|
|
|
|
// Creates a matcher that matches an object whose given property
|
|
// matches 'matcher'. For example,
|
|
// Property(&Foo::str, StartsWith("hi"))
|
|
// matches a Foo object x if and only if x.str() starts with "hi".
|
|
template <typename Class, typename PropertyType, typename PropertyMatcher>
|
|
inline PolymorphicMatcher<internal::PropertyMatcher<
|
|
Class, PropertyType, PropertyType (Class::*)() const> >
|
|
Property(PropertyType (Class::*property)() const,
|
|
const PropertyMatcher& matcher) {
|
|
return MakePolymorphicMatcher(
|
|
internal::PropertyMatcher<Class, PropertyType,
|
|
PropertyType (Class::*)() const>(
|
|
property, MatcherCast<const PropertyType&>(matcher)));
|
|
// The call to MatcherCast() is required for supporting inner
|
|
// matchers of compatible types. For example, it allows
|
|
// Property(&Foo::bar, m)
|
|
// to compile where bar() returns an int32 and m is a matcher for int64.
|
|
}
|
|
|
|
// Same as Property() above, but also takes the name of the property to provide
|
|
// better error messages.
|
|
template <typename Class, typename PropertyType, typename PropertyMatcher>
|
|
inline PolymorphicMatcher<internal::PropertyMatcher<
|
|
Class, PropertyType, PropertyType (Class::*)() const> >
|
|
Property(const std::string& property_name,
|
|
PropertyType (Class::*property)() const,
|
|
const PropertyMatcher& matcher) {
|
|
return MakePolymorphicMatcher(
|
|
internal::PropertyMatcher<Class, PropertyType,
|
|
PropertyType (Class::*)() const>(
|
|
property_name, property, MatcherCast<const PropertyType&>(matcher)));
|
|
}
|
|
|
|
// The same as above but for reference-qualified member functions.
|
|
template <typename Class, typename PropertyType, typename PropertyMatcher>
|
|
inline PolymorphicMatcher<internal::PropertyMatcher<
|
|
Class, PropertyType, PropertyType (Class::*)() const &> >
|
|
Property(PropertyType (Class::*property)() const &,
|
|
const PropertyMatcher& matcher) {
|
|
return MakePolymorphicMatcher(
|
|
internal::PropertyMatcher<Class, PropertyType,
|
|
PropertyType (Class::*)() const&>(
|
|
property, MatcherCast<const PropertyType&>(matcher)));
|
|
}
|
|
|
|
// Three-argument form for reference-qualified member functions.
|
|
template <typename Class, typename PropertyType, typename PropertyMatcher>
|
|
inline PolymorphicMatcher<internal::PropertyMatcher<
|
|
Class, PropertyType, PropertyType (Class::*)() const &> >
|
|
Property(const std::string& property_name,
|
|
PropertyType (Class::*property)() const &,
|
|
const PropertyMatcher& matcher) {
|
|
return MakePolymorphicMatcher(
|
|
internal::PropertyMatcher<Class, PropertyType,
|
|
PropertyType (Class::*)() const&>(
|
|
property_name, property, MatcherCast<const PropertyType&>(matcher)));
|
|
}
|
|
|
|
// Creates a matcher that matches an object if and only if the result of
|
|
// applying a callable to x matches 'matcher'. For example,
|
|
// ResultOf(f, StartsWith("hi"))
|
|
// matches a Foo object x if and only if f(x) starts with "hi".
|
|
// `callable` parameter can be a function, function pointer, or a functor. It is
|
|
// required to keep no state affecting the results of the calls on it and make
|
|
// no assumptions about how many calls will be made. Any state it keeps must be
|
|
// protected from the concurrent access.
|
|
template <typename Callable, typename InnerMatcher>
|
|
internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf(
|
|
Callable callable, InnerMatcher matcher) {
|
|
return internal::ResultOfMatcher<Callable, InnerMatcher>(
|
|
std::move(callable), std::move(matcher));
|
|
}
|
|
|
|
// String matchers.
|
|
|
|
// Matches a string equal to str.
|
|
template <typename T = std::string>
|
|
PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrEq(
|
|
const internal::StringLike<T>& str) {
|
|
return MakePolymorphicMatcher(
|
|
internal::StrEqualityMatcher<std::string>(std::string(str), true, true));
|
|
}
|
|
|
|
// Matches a string not equal to str.
|
|
template <typename T = std::string>
|
|
PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrNe(
|
|
const internal::StringLike<T>& str) {
|
|
return MakePolymorphicMatcher(
|
|
internal::StrEqualityMatcher<std::string>(std::string(str), false, true));
|
|
}
|
|
|
|
// Matches a string equal to str, ignoring case.
|
|
template <typename T = std::string>
|
|
PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseEq(
|
|
const internal::StringLike<T>& str) {
|
|
return MakePolymorphicMatcher(
|
|
internal::StrEqualityMatcher<std::string>(std::string(str), true, false));
|
|
}
|
|
|
|
// Matches a string not equal to str, ignoring case.
|
|
template <typename T = std::string>
|
|
PolymorphicMatcher<internal::StrEqualityMatcher<std::string> > StrCaseNe(
|
|
const internal::StringLike<T>& str) {
|
|
return MakePolymorphicMatcher(internal::StrEqualityMatcher<std::string>(
|
|
std::string(str), false, false));
|
|
}
|
|
|
|
// Creates a matcher that matches any string, std::string, or C string
|
|
// that contains the given substring.
|
|
template <typename T = std::string>
|
|
PolymorphicMatcher<internal::HasSubstrMatcher<std::string> > HasSubstr(
|
|
const internal::StringLike<T>& substring) {
|
|
return MakePolymorphicMatcher(
|
|
internal::HasSubstrMatcher<std::string>(std::string(substring)));
|
|
}
|
|
|
|
// Matches a string that starts with 'prefix' (case-sensitive).
|
|
template <typename T = std::string>
|
|
PolymorphicMatcher<internal::StartsWithMatcher<std::string> > StartsWith(
|
|
const internal::StringLike<T>& prefix) {
|
|
return MakePolymorphicMatcher(
|
|
internal::StartsWithMatcher<std::string>(std::string(prefix)));
|
|
}
|
|
|
|
// Matches a string that ends with 'suffix' (case-sensitive).
|
|
template <typename T = std::string>
|
|
PolymorphicMatcher<internal::EndsWithMatcher<std::string> > EndsWith(
|
|
const internal::StringLike<T>& suffix) {
|
|
return MakePolymorphicMatcher(
|
|
internal::EndsWithMatcher<std::string>(std::string(suffix)));
|
|
}
|
|
|
|
#if GTEST_HAS_STD_WSTRING
|
|
// Wide string matchers.
|
|
|
|
// Matches a string equal to str.
|
|
inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrEq(
|
|
const std::wstring& str) {
|
|
return MakePolymorphicMatcher(
|
|
internal::StrEqualityMatcher<std::wstring>(str, true, true));
|
|
}
|
|
|
|
// Matches a string not equal to str.
|
|
inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> > StrNe(
|
|
const std::wstring& str) {
|
|
return MakePolymorphicMatcher(
|
|
internal::StrEqualityMatcher<std::wstring>(str, false, true));
|
|
}
|
|
|
|
// Matches a string equal to str, ignoring case.
|
|
inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> >
|
|
StrCaseEq(const std::wstring& str) {
|
|
return MakePolymorphicMatcher(
|
|
internal::StrEqualityMatcher<std::wstring>(str, true, false));
|
|
}
|
|
|
|
// Matches a string not equal to str, ignoring case.
|
|
inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring> >
|
|
StrCaseNe(const std::wstring& str) {
|
|
return MakePolymorphicMatcher(
|
|
internal::StrEqualityMatcher<std::wstring>(str, false, false));
|
|
}
|
|
|
|
// Creates a matcher that matches any ::wstring, std::wstring, or C wide string
|
|
// that contains the given substring.
|
|
inline PolymorphicMatcher<internal::HasSubstrMatcher<std::wstring> > HasSubstr(
|
|
const std::wstring& substring) {
|
|
return MakePolymorphicMatcher(
|
|
internal::HasSubstrMatcher<std::wstring>(substring));
|
|
}
|
|
|
|
// Matches a string that starts with 'prefix' (case-sensitive).
|
|
inline PolymorphicMatcher<internal::StartsWithMatcher<std::wstring> >
|
|
StartsWith(const std::wstring& prefix) {
|
|
return MakePolymorphicMatcher(
|
|
internal::StartsWithMatcher<std::wstring>(prefix));
|
|
}
|
|
|
|
// Matches a string that ends with 'suffix' (case-sensitive).
|
|
inline PolymorphicMatcher<internal::EndsWithMatcher<std::wstring> > EndsWith(
|
|
const std::wstring& suffix) {
|
|
return MakePolymorphicMatcher(
|
|
internal::EndsWithMatcher<std::wstring>(suffix));
|
|
}
|
|
|
|
#endif // GTEST_HAS_STD_WSTRING
|
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where the
|
|
// first field == the second field.
|
|
inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); }
|
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where the
|
|
// first field >= the second field.
|
|
inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); }
|
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where the
|
|
// first field > the second field.
|
|
inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); }
|
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where the
|
|
// first field <= the second field.
|
|
inline internal::Le2Matcher Le() { return internal::Le2Matcher(); }
|
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where the
|
|
// first field < the second field.
|
|
inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); }
|
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where the
|
|
// first field != the second field.
|
|
inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); }
|
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where
|
|
// FloatEq(first field) matches the second field.
|
|
inline internal::FloatingEq2Matcher<float> FloatEq() {
|
|
return internal::FloatingEq2Matcher<float>();
|
|
}
|
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where
|
|
// DoubleEq(first field) matches the second field.
|
|
inline internal::FloatingEq2Matcher<double> DoubleEq() {
|
|
return internal::FloatingEq2Matcher<double>();
|
|
}
|
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where
|
|
// FloatEq(first field) matches the second field with NaN equality.
|
|
inline internal::FloatingEq2Matcher<float> NanSensitiveFloatEq() {
|
|
return internal::FloatingEq2Matcher<float>(true);
|
|
}
|
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where
|
|
// DoubleEq(first field) matches the second field with NaN equality.
|
|
inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleEq() {
|
|
return internal::FloatingEq2Matcher<double>(true);
|
|
}
|
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where
|
|
// FloatNear(first field, max_abs_error) matches the second field.
|
|
inline internal::FloatingEq2Matcher<float> FloatNear(float max_abs_error) {
|
|
return internal::FloatingEq2Matcher<float>(max_abs_error);
|
|
}
|
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where
|
|
// DoubleNear(first field, max_abs_error) matches the second field.
|
|
inline internal::FloatingEq2Matcher<double> DoubleNear(double max_abs_error) {
|
|
return internal::FloatingEq2Matcher<double>(max_abs_error);
|
|
}
|
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where
|
|
// FloatNear(first field, max_abs_error) matches the second field with NaN
|
|
// equality.
|
|
inline internal::FloatingEq2Matcher<float> NanSensitiveFloatNear(
|
|
float max_abs_error) {
|
|
return internal::FloatingEq2Matcher<float>(max_abs_error, true);
|
|
}
|
|
|
|
// Creates a polymorphic matcher that matches a 2-tuple where
|
|
// DoubleNear(first field, max_abs_error) matches the second field with NaN
|
|
// equality.
|
|
inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleNear(
|
|
double max_abs_error) {
|
|
return internal::FloatingEq2Matcher<double>(max_abs_error, true);
|
|
}
|
|
|
|
// Creates a matcher that matches any value of type T that m doesn't
|
|
// match.
|
|
template <typename InnerMatcher>
|
|
inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) {
|
|
return internal::NotMatcher<InnerMatcher>(m);
|
|
}
|
|
|
|
// Returns a matcher that matches anything that satisfies the given
|
|
// predicate. The predicate can be any unary function or functor
|
|
// whose return type can be implicitly converted to bool.
|
|
template <typename Predicate>
|
|
inline PolymorphicMatcher<internal::TrulyMatcher<Predicate> >
|
|
Truly(Predicate pred) {
|
|
return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred));
|
|
}
|
|
|
|
// Returns a matcher that matches the container size. The container must
|
|
// support both size() and size_type which all STL-like containers provide.
|
|
// Note that the parameter 'size' can be a value of type size_type as well as
|
|
// matcher. For instance:
|
|
// EXPECT_THAT(container, SizeIs(2)); // Checks container has 2 elements.
|
|
// EXPECT_THAT(container, SizeIs(Le(2)); // Checks container has at most 2.
|
|
template <typename SizeMatcher>
|
|
inline internal::SizeIsMatcher<SizeMatcher>
|
|
SizeIs(const SizeMatcher& size_matcher) {
|
|
return internal::SizeIsMatcher<SizeMatcher>(size_matcher);
|
|
}
|
|
|
|
// Returns a matcher that matches the distance between the container's begin()
|
|
// iterator and its end() iterator, i.e. the size of the container. This matcher
|
|
// can be used instead of SizeIs with containers such as std::forward_list which
|
|
// do not implement size(). The container must provide const_iterator (with
|
|
// valid iterator_traits), begin() and end().
|
|
template <typename DistanceMatcher>
|
|
inline internal::BeginEndDistanceIsMatcher<DistanceMatcher>
|
|
BeginEndDistanceIs(const DistanceMatcher& distance_matcher) {
|
|
return internal::BeginEndDistanceIsMatcher<DistanceMatcher>(distance_matcher);
|
|
}
|
|
|
|
// Returns a matcher that matches an equal container.
|
|
// This matcher behaves like Eq(), but in the event of mismatch lists the
|
|
// values that are included in one container but not the other. (Duplicate
|
|
// values and order differences are not explained.)
|
|
template <typename Container>
|
|
inline PolymorphicMatcher<internal::ContainerEqMatcher<
|
|
typename std::remove_const<Container>::type>>
|
|
ContainerEq(const Container& rhs) {
|
|
return MakePolymorphicMatcher(internal::ContainerEqMatcher<Container>(rhs));
|
|
}
|
|
|
|
// Returns a matcher that matches a container that, when sorted using
|
|
// the given comparator, matches container_matcher.
|
|
template <typename Comparator, typename ContainerMatcher>
|
|
inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher>
|
|
WhenSortedBy(const Comparator& comparator,
|
|
const ContainerMatcher& container_matcher) {
|
|
return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>(
|
|
comparator, container_matcher);
|
|
}
|
|
|
|
// Returns a matcher that matches a container that, when sorted using
|
|
// the < operator, matches container_matcher.
|
|
template <typename ContainerMatcher>
|
|
inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>
|
|
WhenSorted(const ContainerMatcher& container_matcher) {
|
|
return
|
|
internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>(
|
|
internal::LessComparator(), container_matcher);
|
|
}
|
|
|
|
// Matches an STL-style container or a native array that contains the
|
|
// same number of elements as in rhs, where its i-th element and rhs's
|
|
// i-th element (as a pair) satisfy the given pair matcher, for all i.
|
|
// TupleMatcher must be able to be safely cast to Matcher<std::tuple<const
|
|
// T1&, const T2&> >, where T1 and T2 are the types of elements in the
|
|
// LHS container and the RHS container respectively.
|
|
template <typename TupleMatcher, typename Container>
|
|
inline internal::PointwiseMatcher<TupleMatcher,
|
|
typename std::remove_const<Container>::type>
|
|
Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) {
|
|
return internal::PointwiseMatcher<TupleMatcher, Container>(tuple_matcher,
|
|
rhs);
|
|
}
|
|
|
|
|
|
// Supports the Pointwise(m, {a, b, c}) syntax.
|
|
template <typename TupleMatcher, typename T>
|
|
inline internal::PointwiseMatcher<TupleMatcher, std::vector<T> > Pointwise(
|
|
const TupleMatcher& tuple_matcher, std::initializer_list<T> rhs) {
|
|
return Pointwise(tuple_matcher, std::vector<T>(rhs));
|
|
}
|
|
|
|
|
|
// UnorderedPointwise(pair_matcher, rhs) matches an STL-style
|
|
// container or a native array that contains the same number of
|
|
// elements as in rhs, where in some permutation of the container, its
|
|
// i-th element and rhs's i-th element (as a pair) satisfy the given
|
|
// pair matcher, for all i. Tuple2Matcher must be able to be safely
|
|
// cast to Matcher<std::tuple<const T1&, const T2&> >, where T1 and T2 are
|
|
// the types of elements in the LHS container and the RHS container
|
|
// respectively.
|
|
//
|
|
// This is like Pointwise(pair_matcher, rhs), except that the element
|
|
// order doesn't matter.
|
|
template <typename Tuple2Matcher, typename RhsContainer>
|
|
inline internal::UnorderedElementsAreArrayMatcher<
|
|
typename internal::BoundSecondMatcher<
|
|
Tuple2Matcher,
|
|
typename internal::StlContainerView<
|
|
typename std::remove_const<RhsContainer>::type>::type::value_type>>
|
|
UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
|
|
const RhsContainer& rhs_container) {
|
|
// RhsView allows the same code to handle RhsContainer being a
|
|
// STL-style container and it being a native C-style array.
|
|
typedef typename internal::StlContainerView<RhsContainer> RhsView;
|
|
typedef typename RhsView::type RhsStlContainer;
|
|
typedef typename RhsStlContainer::value_type Second;
|
|
const RhsStlContainer& rhs_stl_container =
|
|
RhsView::ConstReference(rhs_container);
|
|
|
|
// Create a matcher for each element in rhs_container.
|
|
::std::vector<internal::BoundSecondMatcher<Tuple2Matcher, Second> > matchers;
|
|
for (typename RhsStlContainer::const_iterator it = rhs_stl_container.begin();
|
|
it != rhs_stl_container.end(); ++it) {
|
|
matchers.push_back(
|
|
internal::MatcherBindSecond(tuple2_matcher, *it));
|
|
}
|
|
|
|
// Delegate the work to UnorderedElementsAreArray().
|
|
return UnorderedElementsAreArray(matchers);
|
|
}
|
|
|
|
|
|
// Supports the UnorderedPointwise(m, {a, b, c}) syntax.
|
|
template <typename Tuple2Matcher, typename T>
|
|
inline internal::UnorderedElementsAreArrayMatcher<
|
|
typename internal::BoundSecondMatcher<Tuple2Matcher, T> >
|
|
UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
|
|
std::initializer_list<T> rhs) {
|
|
return UnorderedPointwise(tuple2_matcher, std::vector<T>(rhs));
|
|
}
|
|
|
|
|
|
// Matches an STL-style container or a native array that contains at
|
|
// least one element matching the given value or matcher.
|
|
//
|
|
// Examples:
|
|
// ::std::set<int> page_ids;
|
|
// page_ids.insert(3);
|
|
// page_ids.insert(1);
|
|
// EXPECT_THAT(page_ids, Contains(1));
|
|
// EXPECT_THAT(page_ids, Contains(Gt(2)));
|
|
// EXPECT_THAT(page_ids, Not(Contains(4)));
|
|
//
|
|
// ::std::map<int, size_t> page_lengths;
|
|
// page_lengths[1] = 100;
|
|
// EXPECT_THAT(page_lengths,
|
|
// Contains(::std::pair<const int, size_t>(1, 100)));
|
|
//
|
|
// const char* user_ids[] = { "joe", "mike", "tom" };
|
|
// EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom"))));
|
|
template <typename M>
|
|
inline internal::ContainsMatcher<M> Contains(M matcher) {
|
|
return internal::ContainsMatcher<M>(matcher);
|
|
}
|
|
|
|
// IsSupersetOf(iterator_first, iterator_last)
|
|
// IsSupersetOf(pointer, count)
|
|
// IsSupersetOf(array)
|
|
// IsSupersetOf(container)
|
|
// IsSupersetOf({e1, e2, ..., en})
|
|
//
|
|
// IsSupersetOf() verifies that a surjective partial mapping onto a collection
|
|
// of matchers exists. In other words, a container matches
|
|
// IsSupersetOf({e1, ..., en}) if and only if there is a permutation
|
|
// {y1, ..., yn} of some of the container's elements where y1 matches e1,
|
|
// ..., and yn matches en. Obviously, the size of the container must be >= n
|
|
// in order to have a match. Examples:
|
|
//
|
|
// - {1, 2, 3} matches IsSupersetOf({Ge(3), Ne(0)}), as 3 matches Ge(3) and
|
|
// 1 matches Ne(0).
|
|
// - {1, 2} doesn't match IsSupersetOf({Eq(1), Lt(2)}), even though 1 matches
|
|
// both Eq(1) and Lt(2). The reason is that different matchers must be used
|
|
// for elements in different slots of the container.
|
|
// - {1, 1, 2} matches IsSupersetOf({Eq(1), Lt(2)}), as (the first) 1 matches
|
|
// Eq(1) and (the second) 1 matches Lt(2).
|
|
// - {1, 2, 3} matches IsSupersetOf(Gt(1), Gt(1)), as 2 matches (the first)
|
|
// Gt(1) and 3 matches (the second) Gt(1).
|
|
//
|
|
// The matchers can be specified as an array, a pointer and count, a container,
|
|
// an initializer list, or an STL iterator range. In each of these cases, the
|
|
// underlying matchers can be either values or matchers.
|
|
|
|
template <typename Iter>
|
|
inline internal::UnorderedElementsAreArrayMatcher<
|
|
typename ::std::iterator_traits<Iter>::value_type>
|
|
IsSupersetOf(Iter first, Iter last) {
|
|
typedef typename ::std::iterator_traits<Iter>::value_type T;
|
|
return internal::UnorderedElementsAreArrayMatcher<T>(
|
|
internal::UnorderedMatcherRequire::Superset, first, last);
|
|
}
|
|
|
|
template <typename T>
|
|
inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
|
|
const T* pointer, size_t count) {
|
|
return IsSupersetOf(pointer, pointer + count);
|
|
}
|
|
|
|
template <typename T, size_t N>
|
|
inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
|
|
const T (&array)[N]) {
|
|
return IsSupersetOf(array, N);
|
|
}
|
|
|
|
template <typename Container>
|
|
inline internal::UnorderedElementsAreArrayMatcher<
|
|
typename Container::value_type>
|
|
IsSupersetOf(const Container& container) {
|
|
return IsSupersetOf(container.begin(), container.end());
|
|
}
|
|
|
|
template <typename T>
|
|
inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
|
|
::std::initializer_list<T> xs) {
|
|
return IsSupersetOf(xs.begin(), xs.end());
|
|
}
|
|
|
|
// IsSubsetOf(iterator_first, iterator_last)
|
|
// IsSubsetOf(pointer, count)
|
|
// IsSubsetOf(array)
|
|
// IsSubsetOf(container)
|
|
// IsSubsetOf({e1, e2, ..., en})
|
|
//
|
|
// IsSubsetOf() verifies that an injective mapping onto a collection of matchers
|
|
// exists. In other words, a container matches IsSubsetOf({e1, ..., en}) if and
|
|
// only if there is a subset of matchers {m1, ..., mk} which would match the
|
|
// container using UnorderedElementsAre. Obviously, the size of the container
|
|
// must be <= n in order to have a match. Examples:
|
|
//
|
|
// - {1} matches IsSubsetOf({Gt(0), Lt(0)}), as 1 matches Gt(0).
|
|
// - {1, -1} matches IsSubsetOf({Lt(0), Gt(0)}), as 1 matches Gt(0) and -1
|
|
// matches Lt(0).
|
|
// - {1, 2} doesn't matches IsSubsetOf({Gt(0), Lt(0)}), even though 1 and 2 both
|
|
// match Gt(0). The reason is that different matchers must be used for
|
|
// elements in different slots of the container.
|
|
//
|
|
// The matchers can be specified as an array, a pointer and count, a container,
|
|
// an initializer list, or an STL iterator range. In each of these cases, the
|
|
// underlying matchers can be either values or matchers.
|
|
|
|
template <typename Iter>
|
|
inline internal::UnorderedElementsAreArrayMatcher<
|
|
typename ::std::iterator_traits<Iter>::value_type>
|
|
IsSubsetOf(Iter first, Iter last) {
|
|
typedef typename ::std::iterator_traits<Iter>::value_type T;
|
|
return internal::UnorderedElementsAreArrayMatcher<T>(
|
|
internal::UnorderedMatcherRequire::Subset, first, last);
|
|
}
|
|
|
|
template <typename T>
|
|
inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
|
|
const T* pointer, size_t count) {
|
|
return IsSubsetOf(pointer, pointer + count);
|
|
}
|
|
|
|
template <typename T, size_t N>
|
|
inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
|
|
const T (&array)[N]) {
|
|
return IsSubsetOf(array, N);
|
|
}
|
|
|
|
template <typename Container>
|
|
inline internal::UnorderedElementsAreArrayMatcher<
|
|
typename Container::value_type>
|
|
IsSubsetOf(const Container& container) {
|
|
return IsSubsetOf(container.begin(), container.end());
|
|
}
|
|
|
|
template <typename T>
|
|
inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
|
|
::std::initializer_list<T> xs) {
|
|
return IsSubsetOf(xs.begin(), xs.end());
|
|
}
|
|
|
|
// Matches an STL-style container or a native array that contains only
|
|
// elements matching the given value or matcher.
|
|
//
|
|
// Each(m) is semantically equivalent to Not(Contains(Not(m))). Only
|
|
// the messages are different.
|
|
//
|
|
// Examples:
|
|
// ::std::set<int> page_ids;
|
|
// // Each(m) matches an empty container, regardless of what m is.
|
|
// EXPECT_THAT(page_ids, Each(Eq(1)));
|
|
// EXPECT_THAT(page_ids, Each(Eq(77)));
|
|
//
|
|
// page_ids.insert(3);
|
|
// EXPECT_THAT(page_ids, Each(Gt(0)));
|
|
// EXPECT_THAT(page_ids, Not(Each(Gt(4))));
|
|
// page_ids.insert(1);
|
|
// EXPECT_THAT(page_ids, Not(Each(Lt(2))));
|
|
//
|
|
// ::std::map<int, size_t> page_lengths;
|
|
// page_lengths[1] = 100;
|
|
// page_lengths[2] = 200;
|
|
// page_lengths[3] = 300;
|
|
// EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100))));
|
|
// EXPECT_THAT(page_lengths, Each(Key(Le(3))));
|
|
//
|
|
// const char* user_ids[] = { "joe", "mike", "tom" };
|
|
// EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom")))));
|
|
template <typename M>
|
|
inline internal::EachMatcher<M> Each(M matcher) {
|
|
return internal::EachMatcher<M>(matcher);
|
|
}
|
|
|
|
// Key(inner_matcher) matches an std::pair whose 'first' field matches
|
|
// inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an
|
|
// std::map that contains at least one element whose key is >= 5.
|
|
template <typename M>
|
|
inline internal::KeyMatcher<M> Key(M inner_matcher) {
|
|
return internal::KeyMatcher<M>(inner_matcher);
|
|
}
|
|
|
|
// Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field
|
|
// matches first_matcher and whose 'second' field matches second_matcher. For
|
|
// example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used
|
|
// to match a std::map<int, string> that contains exactly one element whose key
|
|
// is >= 5 and whose value equals "foo".
|
|
template <typename FirstMatcher, typename SecondMatcher>
|
|
inline internal::PairMatcher<FirstMatcher, SecondMatcher>
|
|
Pair(FirstMatcher first_matcher, SecondMatcher second_matcher) {
|
|
return internal::PairMatcher<FirstMatcher, SecondMatcher>(
|
|
first_matcher, second_matcher);
|
|
}
|
|
|
|
namespace no_adl {
|
|
// FieldsAre(matchers...) matches piecewise the fields of compatible structs.
|
|
// These include those that support `get<I>(obj)`, and when structured bindings
|
|
// are enabled any class that supports them.
|
|
// In particular, `std::tuple`, `std::pair`, `std::array` and aggregate types.
|
|
template <typename... M>
|
|
internal::FieldsAreMatcher<typename std::decay<M>::type...> FieldsAre(
|
|
M&&... matchers) {
|
|
return internal::FieldsAreMatcher<typename std::decay<M>::type...>(
|
|
std::forward<M>(matchers)...);
|
|
}
|
|
|
|
// Creates a matcher that matches a pointer (raw or smart) that matches
|
|
// inner_matcher.
|
|
template <typename InnerMatcher>
|
|
inline internal::PointerMatcher<InnerMatcher> Pointer(
|
|
const InnerMatcher& inner_matcher) {
|
|
return internal::PointerMatcher<InnerMatcher>(inner_matcher);
|
|
}
|
|
|
|
// Creates a matcher that matches an object that has an address that matches
|
|
// inner_matcher.
|
|
template <typename InnerMatcher>
|
|
inline internal::AddressMatcher<InnerMatcher> Address(
|
|
const InnerMatcher& inner_matcher) {
|
|
return internal::AddressMatcher<InnerMatcher>(inner_matcher);
|
|
}
|
|
} // namespace no_adl
|
|
|
|
// Returns a predicate that is satisfied by anything that matches the
|
|
// given matcher.
|
|
template <typename M>
|
|
inline internal::MatcherAsPredicate<M> Matches(M matcher) {
|
|
return internal::MatcherAsPredicate<M>(matcher);
|
|
}
|
|
|
|
// Returns true if and only if the value matches the matcher.
|
|
template <typename T, typename M>
|
|
inline bool Value(const T& value, M matcher) {
|
|
return testing::Matches(matcher)(value);
|
|
}
|
|
|
|
// Matches the value against the given matcher and explains the match
|
|
// result to listener.
|
|
template <typename T, typename M>
|
|
inline bool ExplainMatchResult(
|
|
M matcher, const T& value, MatchResultListener* listener) {
|
|
return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener);
|
|
}
|
|
|
|
// Returns a string representation of the given matcher. Useful for description
|
|
// strings of matchers defined using MATCHER_P* macros that accept matchers as
|
|
// their arguments. For example:
|
|
//
|
|
// MATCHER_P(XAndYThat, matcher,
|
|
// "X that " + DescribeMatcher<int>(matcher, negation) +
|
|
// " and Y that " + DescribeMatcher<double>(matcher, negation)) {
|
|
// return ExplainMatchResult(matcher, arg.x(), result_listener) &&
|
|
// ExplainMatchResult(matcher, arg.y(), result_listener);
|
|
// }
|
|
template <typename T, typename M>
|
|
std::string DescribeMatcher(const M& matcher, bool negation = false) {
|
|
::std::stringstream ss;
|
|
Matcher<T> monomorphic_matcher = SafeMatcherCast<T>(matcher);
|
|
if (negation) {
|
|
monomorphic_matcher.DescribeNegationTo(&ss);
|
|
} else {
|
|
monomorphic_matcher.DescribeTo(&ss);
|
|
}
|
|
return ss.str();
|
|
}
|
|
|
|
template <typename... Args>
|
|
internal::ElementsAreMatcher<
|
|
std::tuple<typename std::decay<const Args&>::type...>>
|
|
ElementsAre(const Args&... matchers) {
|
|
return internal::ElementsAreMatcher<
|
|
std::tuple<typename std::decay<const Args&>::type...>>(
|
|
std::make_tuple(matchers...));
|
|
}
|
|
|
|
template <typename... Args>
|
|
internal::UnorderedElementsAreMatcher<
|
|
std::tuple<typename std::decay<const Args&>::type...>>
|
|
UnorderedElementsAre(const Args&... matchers) {
|
|
return internal::UnorderedElementsAreMatcher<
|
|
std::tuple<typename std::decay<const Args&>::type...>>(
|
|
std::make_tuple(matchers...));
|
|
}
|
|
|
|
// Define variadic matcher versions.
|
|
template <typename... Args>
|
|
internal::AllOfMatcher<typename std::decay<const Args&>::type...> AllOf(
|
|
const Args&... matchers) {
|
|
return internal::AllOfMatcher<typename std::decay<const Args&>::type...>(
|
|
matchers...);
|
|
}
|
|
|
|
template <typename... Args>
|
|
internal::AnyOfMatcher<typename std::decay<const Args&>::type...> AnyOf(
|
|
const Args&... matchers) {
|
|
return internal::AnyOfMatcher<typename std::decay<const Args&>::type...>(
|
|
matchers...);
|
|
}
|
|
|
|
// AnyOfArray(array)
|
|
// AnyOfArray(pointer, count)
|
|
// AnyOfArray(container)
|
|
// AnyOfArray({ e1, e2, ..., en })
|
|
// AnyOfArray(iterator_first, iterator_last)
|
|
//
|
|
// AnyOfArray() verifies whether a given value matches any member of a
|
|
// collection of matchers.
|
|
//
|
|
// AllOfArray(array)
|
|
// AllOfArray(pointer, count)
|
|
// AllOfArray(container)
|
|
// AllOfArray({ e1, e2, ..., en })
|
|
// AllOfArray(iterator_first, iterator_last)
|
|
//
|
|
// AllOfArray() verifies whether a given value matches all members of a
|
|
// collection of matchers.
|
|
//
|
|
// The matchers can be specified as an array, a pointer and count, a container,
|
|
// an initializer list, or an STL iterator range. In each of these cases, the
|
|
// underlying matchers can be either values or matchers.
|
|
|
|
template <typename Iter>
|
|
inline internal::AnyOfArrayMatcher<
|
|
typename ::std::iterator_traits<Iter>::value_type>
|
|
AnyOfArray(Iter first, Iter last) {
|
|
return internal::AnyOfArrayMatcher<
|
|
typename ::std::iterator_traits<Iter>::value_type>(first, last);
|
|
}
|
|
|
|
template <typename Iter>
|
|
inline internal::AllOfArrayMatcher<
|
|
typename ::std::iterator_traits<Iter>::value_type>
|
|
AllOfArray(Iter first, Iter last) {
|
|
return internal::AllOfArrayMatcher<
|
|
typename ::std::iterator_traits<Iter>::value_type>(first, last);
|
|
}
|
|
|
|
template <typename T>
|
|
inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T* ptr, size_t count) {
|
|
return AnyOfArray(ptr, ptr + count);
|
|
}
|
|
|
|
template <typename T>
|
|
inline internal::AllOfArrayMatcher<T> AllOfArray(const T* ptr, size_t count) {
|
|
return AllOfArray(ptr, ptr + count);
|
|
}
|
|
|
|
template <typename T, size_t N>
|
|
inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T (&array)[N]) {
|
|
return AnyOfArray(array, N);
|
|
}
|
|
|
|
template <typename T, size_t N>
|
|
inline internal::AllOfArrayMatcher<T> AllOfArray(const T (&array)[N]) {
|
|
return AllOfArray(array, N);
|
|
}
|
|
|
|
template <typename Container>
|
|
inline internal::AnyOfArrayMatcher<typename Container::value_type> AnyOfArray(
|
|
const Container& container) {
|
|
return AnyOfArray(container.begin(), container.end());
|
|
}
|
|
|
|
template <typename Container>
|
|
inline internal::AllOfArrayMatcher<typename Container::value_type> AllOfArray(
|
|
const Container& container) {
|
|
return AllOfArray(container.begin(), container.end());
|
|
}
|
|
|
|
template <typename T>
|
|
inline internal::AnyOfArrayMatcher<T> AnyOfArray(
|
|
::std::initializer_list<T> xs) {
|
|
return AnyOfArray(xs.begin(), xs.end());
|
|
}
|
|
|
|
template <typename T>
|
|
inline internal::AllOfArrayMatcher<T> AllOfArray(
|
|
::std::initializer_list<T> xs) {
|
|
return AllOfArray(xs.begin(), xs.end());
|
|
}
|
|
|
|
// Args<N1, N2, ..., Nk>(a_matcher) matches a tuple if the selected
|
|
// fields of it matches a_matcher. C++ doesn't support default
|
|
// arguments for function templates, so we have to overload it.
|
|
template <size_t... k, typename InnerMatcher>
|
|
internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...> Args(
|
|
InnerMatcher&& matcher) {
|
|
return internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...>(
|
|
std::forward<InnerMatcher>(matcher));
|
|
}
|
|
|
|
// AllArgs(m) is a synonym of m. This is useful in
|
|
//
|
|
// EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq()));
|
|
//
|
|
// which is easier to read than
|
|
//
|
|
// EXPECT_CALL(foo, Bar(_, _)).With(Eq());
|
|
template <typename InnerMatcher>
|
|
inline InnerMatcher AllArgs(const InnerMatcher& matcher) { return matcher; }
|
|
|
|
// Returns a matcher that matches the value of an optional<> type variable.
|
|
// The matcher implementation only uses '!arg' and requires that the optional<>
|
|
// type has a 'value_type' member type and that '*arg' is of type 'value_type'
|
|
// and is printable using 'PrintToString'. It is compatible with
|
|
// std::optional/std::experimental::optional.
|
|
// Note that to compare an optional type variable against nullopt you should
|
|
// use Eq(nullopt) and not Eq(Optional(nullopt)). The latter implies that the
|
|
// optional value contains an optional itself.
|
|
template <typename ValueMatcher>
|
|
inline internal::OptionalMatcher<ValueMatcher> Optional(
|
|
const ValueMatcher& value_matcher) {
|
|
return internal::OptionalMatcher<ValueMatcher>(value_matcher);
|
|
}
|
|
|
|
// Returns a matcher that matches the value of a absl::any type variable.
|
|
template <typename T>
|
|
PolymorphicMatcher<internal::any_cast_matcher::AnyCastMatcher<T> > AnyWith(
|
|
const Matcher<const T&>& matcher) {
|
|
return MakePolymorphicMatcher(
|
|
internal::any_cast_matcher::AnyCastMatcher<T>(matcher));
|
|
}
|
|
|
|
// Returns a matcher that matches the value of a variant<> type variable.
|
|
// The matcher implementation uses ADL to find the holds_alternative and get
|
|
// functions.
|
|
// It is compatible with std::variant.
|
|
template <typename T>
|
|
PolymorphicMatcher<internal::variant_matcher::VariantMatcher<T> > VariantWith(
|
|
const Matcher<const T&>& matcher) {
|
|
return MakePolymorphicMatcher(
|
|
internal::variant_matcher::VariantMatcher<T>(matcher));
|
|
}
|
|
|
|
#if GTEST_HAS_EXCEPTIONS
|
|
|
|
// Anything inside the `internal` namespace is internal to the implementation
|
|
// and must not be used in user code!
|
|
namespace internal {
|
|
|
|
class WithWhatMatcherImpl {
|
|
public:
|
|
WithWhatMatcherImpl(Matcher<std::string> matcher)
|
|
: matcher_(std::move(matcher)) {}
|
|
|
|
void DescribeTo(std::ostream* os) const {
|
|
*os << "contains .what() that ";
|
|
matcher_.DescribeTo(os);
|
|
}
|
|
|
|
void DescribeNegationTo(std::ostream* os) const {
|
|
*os << "contains .what() that does not ";
|
|
matcher_.DescribeTo(os);
|
|
}
|
|
|
|
template <typename Err>
|
|
bool MatchAndExplain(const Err& err, MatchResultListener* listener) const {
|
|
*listener << "which contains .what() that ";
|
|
return matcher_.MatchAndExplain(err.what(), listener);
|
|
}
|
|
|
|
private:
|
|
const Matcher<std::string> matcher_;
|
|
};
|
|
|
|
inline PolymorphicMatcher<WithWhatMatcherImpl> WithWhat(
|
|
Matcher<std::string> m) {
|
|
return MakePolymorphicMatcher(WithWhatMatcherImpl(std::move(m)));
|
|
}
|
|
|
|
template <typename Err>
|
|
class ExceptionMatcherImpl {
|
|
class NeverThrown {
|
|
public:
|
|
const char* what() const noexcept {
|
|
return "this exception should never be thrown";
|
|
}
|
|
};
|
|
|
|
// If the matchee raises an exception of a wrong type, we'd like to
|
|
// catch it and print its message and type. To do that, we add an additional
|
|
// catch clause:
|
|
//
|
|
// try { ... }
|
|
// catch (const Err&) { /* an expected exception */ }
|
|
// catch (const std::exception&) { /* exception of a wrong type */ }
|
|
//
|
|
// However, if the `Err` itself is `std::exception`, we'd end up with two
|
|
// identical `catch` clauses:
|
|
//
|
|
// try { ... }
|
|
// catch (const std::exception&) { /* an expected exception */ }
|
|
// catch (const std::exception&) { /* exception of a wrong type */ }
|
|
//
|
|
// This can cause a warning or an error in some compilers. To resolve
|
|
// the issue, we use a fake error type whenever `Err` is `std::exception`:
|
|
//
|
|
// try { ... }
|
|
// catch (const std::exception&) { /* an expected exception */ }
|
|
// catch (const NeverThrown&) { /* exception of a wrong type */ }
|
|
using DefaultExceptionType = typename std::conditional<
|
|
std::is_same<typename std::remove_cv<
|
|
typename std::remove_reference<Err>::type>::type,
|
|
std::exception>::value,
|
|
const NeverThrown&, const std::exception&>::type;
|
|
|
|
public:
|
|
ExceptionMatcherImpl(Matcher<const Err&> matcher)
|
|
: matcher_(std::move(matcher)) {}
|
|
|
|
void DescribeTo(std::ostream* os) const {
|
|
*os << "throws an exception which is a " << GetTypeName<Err>();
|
|
*os << " which ";
|
|
matcher_.DescribeTo(os);
|
|
}
|
|
|
|
void DescribeNegationTo(std::ostream* os) const {
|
|
*os << "throws an exception which is not a " << GetTypeName<Err>();
|
|
*os << " which ";
|
|
matcher_.DescribeNegationTo(os);
|
|
}
|
|
|
|
template <typename T>
|
|
bool MatchAndExplain(T&& x, MatchResultListener* listener) const {
|
|
try {
|
|
(void)(std::forward<T>(x)());
|
|
} catch (const Err& err) {
|
|
*listener << "throws an exception which is a " << GetTypeName<Err>();
|
|
*listener << " ";
|
|
return matcher_.MatchAndExplain(err, listener);
|
|
} catch (DefaultExceptionType err) {
|
|
#if GTEST_HAS_RTTI
|
|
*listener << "throws an exception of type " << GetTypeName(typeid(err));
|
|
*listener << " ";
|
|
#else
|
|
*listener << "throws an std::exception-derived type ";
|
|
#endif
|
|
*listener << "with description \"" << err.what() << "\"";
|
|
return false;
|
|
} catch (...) {
|
|
*listener << "throws an exception of an unknown type";
|
|
return false;
|
|
}
|
|
|
|
*listener << "does not throw any exception";
|
|
return false;
|
|
}
|
|
|
|
private:
|
|
const Matcher<const Err&> matcher_;
|
|
};
|
|
|
|
} // namespace internal
|
|
|
|
// Throws()
|
|
// Throws(exceptionMatcher)
|
|
// ThrowsMessage(messageMatcher)
|
|
//
|
|
// This matcher accepts a callable and verifies that when invoked, it throws
|
|
// an exception with the given type and properties.
|
|
//
|
|
// Examples:
|
|
//
|
|
// EXPECT_THAT(
|
|
// []() { throw std::runtime_error("message"); },
|
|
// Throws<std::runtime_error>());
|
|
//
|
|
// EXPECT_THAT(
|
|
// []() { throw std::runtime_error("message"); },
|
|
// ThrowsMessage<std::runtime_error>(HasSubstr("message")));
|
|
//
|
|
// EXPECT_THAT(
|
|
// []() { throw std::runtime_error("message"); },
|
|
// Throws<std::runtime_error>(
|
|
// Property(&std::runtime_error::what, HasSubstr("message"))));
|
|
|
|
template <typename Err>
|
|
PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws() {
|
|
return MakePolymorphicMatcher(
|
|
internal::ExceptionMatcherImpl<Err>(A<const Err&>()));
|
|
}
|
|
|
|
template <typename Err, typename ExceptionMatcher>
|
|
PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws(
|
|
const ExceptionMatcher& exception_matcher) {
|
|
// Using matcher cast allows users to pass a matcher of a more broad type.
|
|
// For example user may want to pass Matcher<std::exception>
|
|
// to Throws<std::runtime_error>, or Matcher<int64> to Throws<int32>.
|
|
return MakePolymorphicMatcher(internal::ExceptionMatcherImpl<Err>(
|
|
SafeMatcherCast<const Err&>(exception_matcher)));
|
|
}
|
|
|
|
template <typename Err, typename MessageMatcher>
|
|
PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> ThrowsMessage(
|
|
MessageMatcher&& message_matcher) {
|
|
static_assert(std::is_base_of<std::exception, Err>::value,
|
|
"expected an std::exception-derived type");
|
|
return Throws<Err>(internal::WithWhat(
|
|
MatcherCast<std::string>(std::forward<MessageMatcher>(message_matcher))));
|
|
}
|
|
|
|
#endif // GTEST_HAS_EXCEPTIONS
|
|
|
|
// These macros allow using matchers to check values in Google Test
|
|
// tests. ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher)
|
|
// succeed if and only if the value matches the matcher. If the assertion
|
|
// fails, the value and the description of the matcher will be printed.
|
|
#define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\
|
|
::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
|
|
#define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\
|
|
::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
|
|
|
|
// MATCHER* macroses itself are listed below.
|
|
#define MATCHER(name, description) \
|
|
class name##Matcher \
|
|
: public ::testing::internal::MatcherBaseImpl<name##Matcher> { \
|
|
public: \
|
|
template <typename arg_type> \
|
|
class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> { \
|
|
public: \
|
|
gmock_Impl() {} \
|
|
bool MatchAndExplain( \
|
|
const arg_type& arg, \
|
|
::testing::MatchResultListener* result_listener) const override; \
|
|
void DescribeTo(::std::ostream* gmock_os) const override { \
|
|
*gmock_os << FormatDescription(false); \
|
|
} \
|
|
void DescribeNegationTo(::std::ostream* gmock_os) const override { \
|
|
*gmock_os << FormatDescription(true); \
|
|
} \
|
|
\
|
|
private: \
|
|
::std::string FormatDescription(bool negation) const { \
|
|
::std::string gmock_description = (description); \
|
|
if (!gmock_description.empty()) { \
|
|
return gmock_description; \
|
|
} \
|
|
return ::testing::internal::FormatMatcherDescription(negation, #name, \
|
|
{}); \
|
|
} \
|
|
}; \
|
|
}; \
|
|
GTEST_ATTRIBUTE_UNUSED_ inline name##Matcher name() { return {}; } \
|
|
template <typename arg_type> \
|
|
bool name##Matcher::gmock_Impl<arg_type>::MatchAndExplain( \
|
|
const arg_type& arg, \
|
|
::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_) \
|
|
const
|
|
|
|
#define MATCHER_P(name, p0, description) \
|
|
GMOCK_INTERNAL_MATCHER(name, name##MatcherP, description, (p0))
|
|
#define MATCHER_P2(name, p0, p1, description) \
|
|
GMOCK_INTERNAL_MATCHER(name, name##MatcherP2, description, (p0, p1))
|
|
#define MATCHER_P3(name, p0, p1, p2, description) \
|
|
GMOCK_INTERNAL_MATCHER(name, name##MatcherP3, description, (p0, p1, p2))
|
|
#define MATCHER_P4(name, p0, p1, p2, p3, description) \
|
|
GMOCK_INTERNAL_MATCHER(name, name##MatcherP4, description, (p0, p1, p2, p3))
|
|
#define MATCHER_P5(name, p0, p1, p2, p3, p4, description) \
|
|
GMOCK_INTERNAL_MATCHER(name, name##MatcherP5, description, \
|
|
(p0, p1, p2, p3, p4))
|
|
#define MATCHER_P6(name, p0, p1, p2, p3, p4, p5, description) \
|
|
GMOCK_INTERNAL_MATCHER(name, name##MatcherP6, description, \
|
|
(p0, p1, p2, p3, p4, p5))
|
|
#define MATCHER_P7(name, p0, p1, p2, p3, p4, p5, p6, description) \
|
|
GMOCK_INTERNAL_MATCHER(name, name##MatcherP7, description, \
|
|
(p0, p1, p2, p3, p4, p5, p6))
|
|
#define MATCHER_P8(name, p0, p1, p2, p3, p4, p5, p6, p7, description) \
|
|
GMOCK_INTERNAL_MATCHER(name, name##MatcherP8, description, \
|
|
(p0, p1, p2, p3, p4, p5, p6, p7))
|
|
#define MATCHER_P9(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, description) \
|
|
GMOCK_INTERNAL_MATCHER(name, name##MatcherP9, description, \
|
|
(p0, p1, p2, p3, p4, p5, p6, p7, p8))
|
|
#define MATCHER_P10(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, description) \
|
|
GMOCK_INTERNAL_MATCHER(name, name##MatcherP10, description, \
|
|
(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9))
|
|
|
|
#define GMOCK_INTERNAL_MATCHER(name, full_name, description, args) \
|
|
template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \
|
|
class full_name : public ::testing::internal::MatcherBaseImpl< \
|
|
full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>> { \
|
|
public: \
|
|
using full_name::MatcherBaseImpl::MatcherBaseImpl; \
|
|
template <typename arg_type> \
|
|
class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> { \
|
|
public: \
|
|
explicit gmock_Impl(GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) \
|
|
: GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) {} \
|
|
bool MatchAndExplain( \
|
|
const arg_type& arg, \
|
|
::testing::MatchResultListener* result_listener) const override; \
|
|
void DescribeTo(::std::ostream* gmock_os) const override { \
|
|
*gmock_os << FormatDescription(false); \
|
|
} \
|
|
void DescribeNegationTo(::std::ostream* gmock_os) const override { \
|
|
*gmock_os << FormatDescription(true); \
|
|
} \
|
|
GMOCK_INTERNAL_MATCHER_MEMBERS(args) \
|
|
\
|
|
private: \
|
|
::std::string FormatDescription(bool negation) const { \
|
|
::std::string gmock_description = (description); \
|
|
if (!gmock_description.empty()) { \
|
|
return gmock_description; \
|
|
} \
|
|
return ::testing::internal::FormatMatcherDescription( \
|
|
negation, #name, \
|
|
::testing::internal::UniversalTersePrintTupleFieldsToStrings( \
|
|
::std::tuple<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>( \
|
|
GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args)))); \
|
|
} \
|
|
}; \
|
|
}; \
|
|
template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \
|
|
inline full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)> name( \
|
|
GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) { \
|
|
return full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>( \
|
|
GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args)); \
|
|
} \
|
|
template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)> \
|
|
template <typename arg_type> \
|
|
bool full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>::gmock_Impl< \
|
|
arg_type>::MatchAndExplain(const arg_type& arg, \
|
|
::testing::MatchResultListener* \
|
|
result_listener GTEST_ATTRIBUTE_UNUSED_) \
|
|
const
|
|
|
|
#define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args) \
|
|
GMOCK_PP_TAIL( \
|
|
GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM, , args))
|
|
#define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM(i_unused, data_unused, arg) \
|
|
, typename arg##_type
|
|
|
|
#define GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args) \
|
|
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TYPE_PARAM, , args))
|
|
#define GMOCK_INTERNAL_MATCHER_TYPE_PARAM(i_unused, data_unused, arg) \
|
|
, arg##_type
|
|
|
|
#define GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args) \
|
|
GMOCK_PP_TAIL(dummy_first GMOCK_PP_FOR_EACH( \
|
|
GMOCK_INTERNAL_MATCHER_FUNCTION_ARG, , args))
|
|
#define GMOCK_INTERNAL_MATCHER_FUNCTION_ARG(i, data_unused, arg) \
|
|
, arg##_type gmock_p##i
|
|
|
|
#define GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) \
|
|
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_FORWARD_ARG, , args))
|
|
#define GMOCK_INTERNAL_MATCHER_FORWARD_ARG(i, data_unused, arg) \
|
|
, arg(::std::forward<arg##_type>(gmock_p##i))
|
|
|
|
#define GMOCK_INTERNAL_MATCHER_MEMBERS(args) \
|
|
GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER, , args)
|
|
#define GMOCK_INTERNAL_MATCHER_MEMBER(i_unused, data_unused, arg) \
|
|
const arg##_type arg;
|
|
|
|
#define GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args) \
|
|
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER_USAGE, , args))
|
|
#define GMOCK_INTERNAL_MATCHER_MEMBER_USAGE(i_unused, data_unused, arg) , arg
|
|
|
|
#define GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args) \
|
|
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_ARG_USAGE, , args))
|
|
#define GMOCK_INTERNAL_MATCHER_ARG_USAGE(i, data_unused, arg_unused) \
|
|
, gmock_p##i
|
|
|
|
// To prevent ADL on certain functions we put them on a separate namespace.
|
|
using namespace no_adl; // NOLINT
|
|
|
|
} // namespace testing
|
|
|
|
GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251 5046
|
|
|
|
// Include any custom callback matchers added by the local installation.
|
|
// We must include this header at the end to make sure it can use the
|
|
// declarations from this file.
|
|
// Copyright 2015, Google Inc.
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Injection point for custom user configurations. See README for details
|
|
//
|
|
// GOOGLETEST_CM0002 DO NOT DELETE
|
|
|
|
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_MATCHERS_H_
|
|
#define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_MATCHERS_H_
|
|
#endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_MATCHERS_H_
|
|
|
|
#endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
|
|
|
|
#if GTEST_HAS_EXCEPTIONS
|
|
# include <stdexcept> // NOLINT
|
|
#endif
|
|
|
|
GTEST_DISABLE_MSC_WARNINGS_PUSH_(4251 \
|
|
/* class A needs to have dll-interface to be used by clients of class B */)
|
|
|
|
namespace testing {
|
|
|
|
// An abstract handle of an expectation.
|
|
class Expectation;
|
|
|
|
// A set of expectation handles.
|
|
class ExpectationSet;
|
|
|
|
// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
|
|
// and MUST NOT BE USED IN USER CODE!!!
|
|
namespace internal {
|
|
|
|
// Implements a mock function.
|
|
template <typename F> class FunctionMocker;
|
|
|
|
// Base class for expectations.
|
|
class ExpectationBase;
|
|
|
|
// Implements an expectation.
|
|
template <typename F> class TypedExpectation;
|
|
|
|
// Helper class for testing the Expectation class template.
|
|
class ExpectationTester;
|
|
|
|
// Helper classes for implementing NiceMock, StrictMock, and NaggyMock.
|
|
template <typename MockClass>
|
|
class NiceMockImpl;
|
|
template <typename MockClass>
|
|
class StrictMockImpl;
|
|
template <typename MockClass>
|
|
class NaggyMockImpl;
|
|
|
|
// Protects the mock object registry (in class Mock), all function
|
|
// mockers, and all expectations.
|
|
//
|
|
// The reason we don't use more fine-grained protection is: when a
|
|
// mock function Foo() is called, it needs to consult its expectations
|
|
// to see which one should be picked. If another thread is allowed to
|
|
// call a mock function (either Foo() or a different one) at the same
|
|
// time, it could affect the "retired" attributes of Foo()'s
|
|
// expectations when InSequence() is used, and thus affect which
|
|
// expectation gets picked. Therefore, we sequence all mock function
|
|
// calls to ensure the integrity of the mock objects' states.
|
|
GTEST_API_ GTEST_DECLARE_STATIC_MUTEX_(g_gmock_mutex);
|
|
|
|
// Untyped base class for ActionResultHolder<R>.
|
|
class UntypedActionResultHolderBase;
|
|
|
|
// Abstract base class of FunctionMocker. This is the
|
|
// type-agnostic part of the function mocker interface. Its pure
|
|
// virtual methods are implemented by FunctionMocker.
|
|
class GTEST_API_ UntypedFunctionMockerBase {
|
|
public:
|
|
UntypedFunctionMockerBase();
|
|
virtual ~UntypedFunctionMockerBase();
|
|
|
|
// Verifies that all expectations on this mock function have been
|
|
// satisfied. Reports one or more Google Test non-fatal failures
|
|
// and returns false if not.
|
|
bool VerifyAndClearExpectationsLocked()
|
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex);
|
|
|
|
// Clears the ON_CALL()s set on this mock function.
|
|
virtual void ClearDefaultActionsLocked()
|
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) = 0;
|
|
|
|
// In all of the following Untyped* functions, it's the caller's
|
|
// responsibility to guarantee the correctness of the arguments'
|
|
// types.
|
|
|
|
// Performs the default action with the given arguments and returns
|
|
// the action's result. The call description string will be used in
|
|
// the error message to describe the call in the case the default
|
|
// action fails.
|
|
// L = *
|
|
virtual UntypedActionResultHolderBase* UntypedPerformDefaultAction(
|
|
void* untyped_args, const std::string& call_description) const = 0;
|
|
|
|
// Performs the given action with the given arguments and returns
|
|
// the action's result.
|
|
// L = *
|
|
virtual UntypedActionResultHolderBase* UntypedPerformAction(
|
|
const void* untyped_action, void* untyped_args) const = 0;
|
|
|
|
// Writes a message that the call is uninteresting (i.e. neither
|
|
// explicitly expected nor explicitly unexpected) to the given
|
|
// ostream.
|
|
virtual void UntypedDescribeUninterestingCall(
|
|
const void* untyped_args,
|
|
::std::ostream* os) const
|
|
GTEST_LOCK_EXCLUDED_(g_gmock_mutex) = 0;
|
|
|
|
// Returns the expectation that matches the given function arguments
|
|
// (or NULL is there's no match); when a match is found,
|
|
// untyped_action is set to point to the action that should be
|
|
// performed (or NULL if the action is "do default"), and
|
|
// is_excessive is modified to indicate whether the call exceeds the
|
|
// expected number.
|
|
virtual const ExpectationBase* UntypedFindMatchingExpectation(
|
|
const void* untyped_args,
|
|
const void** untyped_action, bool* is_excessive,
|
|
::std::ostream* what, ::std::ostream* why)
|
|
GTEST_LOCK_EXCLUDED_(g_gmock_mutex) = 0;
|
|
|
|
// Prints the given function arguments to the ostream.
|
|
virtual void UntypedPrintArgs(const void* untyped_args,
|
|
::std::ostream* os) const = 0;
|
|
|
|
// Sets the mock object this mock method belongs to, and registers
|
|
// this information in the global mock registry. Will be called
|
|
// whenever an EXPECT_CALL() or ON_CALL() is executed on this mock
|
|
// method.
|
|
void RegisterOwner(const void* mock_obj)
|
|
GTEST_LOCK_EXCLUDED_(g_gmock_mutex);
|
|
|
|
// Sets the mock object this mock method belongs to, and sets the
|
|
// name of the mock function. Will be called upon each invocation
|
|
// of this mock function.
|
|
void SetOwnerAndName(const void* mock_obj, const char* name)
|
|
GTEST_LOCK_EXCLUDED_(g_gmock_mutex);
|
|
|
|
// Returns the mock object this mock method belongs to. Must be
|
|
// called after RegisterOwner() or SetOwnerAndName() has been
|
|
// called.
|
|
const void* MockObject() const
|
|
GTEST_LOCK_EXCLUDED_(g_gmock_mutex);
|
|
|
|
// Returns the name of this mock method. Must be called after
|
|
// SetOwnerAndName() has been called.
|
|
const char* Name() const
|
|
GTEST_LOCK_EXCLUDED_(g_gmock_mutex);
|
|
|
|
// Returns the result of invoking this mock function with the given
|
|
// arguments. This function can be safely called from multiple
|
|
// threads concurrently. The caller is responsible for deleting the
|
|
// result.
|
|
UntypedActionResultHolderBase* UntypedInvokeWith(void* untyped_args)
|
|
GTEST_LOCK_EXCLUDED_(g_gmock_mutex);
|
|
|
|
protected:
|
|
typedef std::vector<const void*> UntypedOnCallSpecs;
|
|
|
|
using UntypedExpectations = std::vector<std::shared_ptr<ExpectationBase>>;
|
|
|
|
// Returns an Expectation object that references and co-owns exp,
|
|
// which must be an expectation on this mock function.
|
|
Expectation GetHandleOf(ExpectationBase* exp);
|
|
|
|
// Address of the mock object this mock method belongs to. Only
|
|
// valid after this mock method has been called or
|
|
// ON_CALL/EXPECT_CALL has been invoked on it.
|
|
const void* mock_obj_; // Protected by g_gmock_mutex.
|
|
|
|
// Name of the function being mocked. Only valid after this mock
|
|
// method has been called.
|
|
const char* name_; // Protected by g_gmock_mutex.
|
|
|
|
// All default action specs for this function mocker.
|
|
UntypedOnCallSpecs untyped_on_call_specs_;
|
|
|
|
// All expectations for this function mocker.
|
|
//
|
|
// It's undefined behavior to interleave expectations (EXPECT_CALLs
|
|
// or ON_CALLs) and mock function calls. Also, the order of
|
|
// expectations is important. Therefore it's a logic race condition
|
|
// to read/write untyped_expectations_ concurrently. In order for
|
|
// tools like tsan to catch concurrent read/write accesses to
|
|
// untyped_expectations, we deliberately leave accesses to it
|
|
// unprotected.
|
|
UntypedExpectations untyped_expectations_;
|
|
}; // class UntypedFunctionMockerBase
|
|
|
|
// Untyped base class for OnCallSpec<F>.
|
|
class UntypedOnCallSpecBase {
|
|
public:
|
|
// The arguments are the location of the ON_CALL() statement.
|
|
UntypedOnCallSpecBase(const char* a_file, int a_line)
|
|
: file_(a_file), line_(a_line), last_clause_(kNone) {}
|
|
|
|
// Where in the source file was the default action spec defined?
|
|
const char* file() const { return file_; }
|
|
int line() const { return line_; }
|
|
|
|
protected:
|
|
// Gives each clause in the ON_CALL() statement a name.
|
|
enum Clause {
|
|
// Do not change the order of the enum members! The run-time
|
|
// syntax checking relies on it.
|
|
kNone,
|
|
kWith,
|
|
kWillByDefault
|
|
};
|
|
|
|
// Asserts that the ON_CALL() statement has a certain property.
|
|
void AssertSpecProperty(bool property,
|
|
const std::string& failure_message) const {
|
|
Assert(property, file_, line_, failure_message);
|
|
}
|
|
|
|
// Expects that the ON_CALL() statement has a certain property.
|
|
void ExpectSpecProperty(bool property,
|
|
const std::string& failure_message) const {
|
|
Expect(property, file_, line_, failure_message);
|
|
}
|
|
|
|
const char* file_;
|
|
int line_;
|
|
|
|
// The last clause in the ON_CALL() statement as seen so far.
|
|
// Initially kNone and changes as the statement is parsed.
|
|
Clause last_clause_;
|
|
}; // class UntypedOnCallSpecBase
|
|
|
|
// This template class implements an ON_CALL spec.
|
|
template <typename F>
|
|
class OnCallSpec : public UntypedOnCallSpecBase {
|
|
public:
|
|
typedef typename Function<F>::ArgumentTuple ArgumentTuple;
|
|
typedef typename Function<F>::ArgumentMatcherTuple ArgumentMatcherTuple;
|
|
|
|
// Constructs an OnCallSpec object from the information inside
|
|
// the parenthesis of an ON_CALL() statement.
|
|
OnCallSpec(const char* a_file, int a_line,
|
|
const ArgumentMatcherTuple& matchers)
|
|
: UntypedOnCallSpecBase(a_file, a_line),
|
|
matchers_(matchers),
|
|
// By default, extra_matcher_ should match anything. However,
|
|
// we cannot initialize it with _ as that causes ambiguity between
|
|
// Matcher's copy and move constructor for some argument types.
|
|
extra_matcher_(A<const ArgumentTuple&>()) {}
|
|
|
|
// Implements the .With() clause.
|
|
OnCallSpec& With(const Matcher<const ArgumentTuple&>& m) {
|
|
// Makes sure this is called at most once.
|
|
ExpectSpecProperty(last_clause_ < kWith,
|
|
".With() cannot appear "
|
|
"more than once in an ON_CALL().");
|
|
last_clause_ = kWith;
|
|
|
|
extra_matcher_ = m;
|
|
return *this;
|
|
}
|
|
|
|
// Implements the .WillByDefault() clause.
|
|
OnCallSpec& WillByDefault(const Action<F>& action) {
|
|
ExpectSpecProperty(last_clause_ < kWillByDefault,
|
|
".WillByDefault() must appear "
|
|
"exactly once in an ON_CALL().");
|
|
last_clause_ = kWillByDefault;
|
|
|
|
ExpectSpecProperty(!action.IsDoDefault(),
|
|
"DoDefault() cannot be used in ON_CALL().");
|
|
action_ = action;
|
|
return *this;
|
|
}
|
|
|
|
// Returns true if and only if the given arguments match the matchers.
|
|
bool Matches(const ArgumentTuple& args) const {
|
|
return TupleMatches(matchers_, args) && extra_matcher_.Matches(args);
|
|
}
|
|
|
|
// Returns the action specified by the user.
|
|
const Action<F>& GetAction() const {
|
|
AssertSpecProperty(last_clause_ == kWillByDefault,
|
|
".WillByDefault() must appear exactly "
|
|
"once in an ON_CALL().");
|
|
return action_;
|
|
}
|
|
|
|
private:
|
|
// The information in statement
|
|
//
|
|
// ON_CALL(mock_object, Method(matchers))
|
|
// .With(multi-argument-matcher)
|
|
// .WillByDefault(action);
|
|
//
|
|
// is recorded in the data members like this:
|
|
//
|
|
// source file that contains the statement => file_
|
|
// line number of the statement => line_
|
|
// matchers => matchers_
|
|
// multi-argument-matcher => extra_matcher_
|
|
// action => action_
|
|
ArgumentMatcherTuple matchers_;
|
|
Matcher<const ArgumentTuple&> extra_matcher_;
|
|
Action<F> action_;
|
|
}; // class OnCallSpec
|
|
|
|
// Possible reactions on uninteresting calls.
|
|
enum CallReaction {
|
|
kAllow,
|
|
kWarn,
|
|
kFail,
|
|
};
|
|
|
|
} // namespace internal
|
|
|
|
// Utilities for manipulating mock objects.
|
|
class GTEST_API_ Mock {
|
|
public:
|
|
// The following public methods can be called concurrently.
|
|
|
|
// Tells Google Mock to ignore mock_obj when checking for leaked
|
|
// mock objects.
|
|
static void AllowLeak(const void* mock_obj)
|
|
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
|
|
|
|
// Verifies and clears all expectations on the given mock object.
|
|
// If the expectations aren't satisfied, generates one or more
|
|
// Google Test non-fatal failures and returns false.
|
|
static bool VerifyAndClearExpectations(void* mock_obj)
|
|
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
|
|
|
|
// Verifies all expectations on the given mock object and clears its
|
|
// default actions and expectations. Returns true if and only if the
|
|
// verification was successful.
|
|
static bool VerifyAndClear(void* mock_obj)
|
|
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
|
|
|
|
// Returns whether the mock was created as a naggy mock (default)
|
|
static bool IsNaggy(void* mock_obj)
|
|
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
|
|
// Returns whether the mock was created as a nice mock
|
|
static bool IsNice(void* mock_obj)
|
|
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
|
|
// Returns whether the mock was created as a strict mock
|
|
static bool IsStrict(void* mock_obj)
|
|
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
|
|
|
|
private:
|
|
friend class internal::UntypedFunctionMockerBase;
|
|
|
|
// Needed for a function mocker to register itself (so that we know
|
|
// how to clear a mock object).
|
|
template <typename F>
|
|
friend class internal::FunctionMocker;
|
|
|
|
template <typename MockClass>
|
|
friend class internal::NiceMockImpl;
|
|
template <typename MockClass>
|
|
friend class internal::NaggyMockImpl;
|
|
template <typename MockClass>
|
|
friend class internal::StrictMockImpl;
|
|
|
|
// Tells Google Mock to allow uninteresting calls on the given mock
|
|
// object.
|
|
static void AllowUninterestingCalls(const void* mock_obj)
|
|
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
|
|
|
|
// Tells Google Mock to warn the user about uninteresting calls on
|
|
// the given mock object.
|
|
static void WarnUninterestingCalls(const void* mock_obj)
|
|
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
|
|
|
|
// Tells Google Mock to fail uninteresting calls on the given mock
|
|
// object.
|
|
static void FailUninterestingCalls(const void* mock_obj)
|
|
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
|
|
|
|
// Tells Google Mock the given mock object is being destroyed and
|
|
// its entry in the call-reaction table should be removed.
|
|
static void UnregisterCallReaction(const void* mock_obj)
|
|
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
|
|
|
|
// Returns the reaction Google Mock will have on uninteresting calls
|
|
// made on the given mock object.
|
|
static internal::CallReaction GetReactionOnUninterestingCalls(
|
|
const void* mock_obj)
|
|
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
|
|
|
|
// Verifies that all expectations on the given mock object have been
|
|
// satisfied. Reports one or more Google Test non-fatal failures
|
|
// and returns false if not.
|
|
static bool VerifyAndClearExpectationsLocked(void* mock_obj)
|
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex);
|
|
|
|
// Clears all ON_CALL()s set on the given mock object.
|
|
static void ClearDefaultActionsLocked(void* mock_obj)
|
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex);
|
|
|
|
// Registers a mock object and a mock method it owns.
|
|
static void Register(
|
|
const void* mock_obj,
|
|
internal::UntypedFunctionMockerBase* mocker)
|
|
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
|
|
|
|
// Tells Google Mock where in the source code mock_obj is used in an
|
|
// ON_CALL or EXPECT_CALL. In case mock_obj is leaked, this
|
|
// information helps the user identify which object it is.
|
|
static void RegisterUseByOnCallOrExpectCall(
|
|
const void* mock_obj, const char* file, int line)
|
|
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
|
|
|
|
// Unregisters a mock method; removes the owning mock object from
|
|
// the registry when the last mock method associated with it has
|
|
// been unregistered. This is called only in the destructor of
|
|
// FunctionMocker.
|
|
static void UnregisterLocked(internal::UntypedFunctionMockerBase* mocker)
|
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex);
|
|
}; // class Mock
|
|
|
|
// An abstract handle of an expectation. Useful in the .After()
|
|
// clause of EXPECT_CALL() for setting the (partial) order of
|
|
// expectations. The syntax:
|
|
//
|
|
// Expectation e1 = EXPECT_CALL(...)...;
|
|
// EXPECT_CALL(...).After(e1)...;
|
|
//
|
|
// sets two expectations where the latter can only be matched after
|
|
// the former has been satisfied.
|
|
//
|
|
// Notes:
|
|
// - This class is copyable and has value semantics.
|
|
// - Constness is shallow: a const Expectation object itself cannot
|
|
// be modified, but the mutable methods of the ExpectationBase
|
|
// object it references can be called via expectation_base().
|
|
|
|
class GTEST_API_ Expectation {
|
|
public:
|
|
// Constructs a null object that doesn't reference any expectation.
|
|
Expectation();
|
|
Expectation(Expectation&&) = default;
|
|
Expectation(const Expectation&) = default;
|
|
Expectation& operator=(Expectation&&) = default;
|
|
Expectation& operator=(const Expectation&) = default;
|
|
~Expectation();
|
|
|
|
// This single-argument ctor must not be explicit, in order to support the
|
|
// Expectation e = EXPECT_CALL(...);
|
|
// syntax.
|
|
//
|
|
// A TypedExpectation object stores its pre-requisites as
|
|
// Expectation objects, and needs to call the non-const Retire()
|
|
// method on the ExpectationBase objects they reference. Therefore
|
|
// Expectation must receive a *non-const* reference to the
|
|
// ExpectationBase object.
|
|
Expectation(internal::ExpectationBase& exp); // NOLINT
|
|
|
|
// The compiler-generated copy ctor and operator= work exactly as
|
|
// intended, so we don't need to define our own.
|
|
|
|
// Returns true if and only if rhs references the same expectation as this
|
|
// object does.
|
|
bool operator==(const Expectation& rhs) const {
|
|
return expectation_base_ == rhs.expectation_base_;
|
|
}
|
|
|
|
bool operator!=(const Expectation& rhs) const { return !(*this == rhs); }
|
|
|
|
private:
|
|
friend class ExpectationSet;
|
|
friend class Sequence;
|
|
friend class ::testing::internal::ExpectationBase;
|
|
friend class ::testing::internal::UntypedFunctionMockerBase;
|
|
|
|
template <typename F>
|
|
friend class ::testing::internal::FunctionMocker;
|
|
|
|
template <typename F>
|
|
friend class ::testing::internal::TypedExpectation;
|
|
|
|
// This comparator is needed for putting Expectation objects into a set.
|
|
class Less {
|
|
public:
|
|
bool operator()(const Expectation& lhs, const Expectation& rhs) const {
|
|
return lhs.expectation_base_.get() < rhs.expectation_base_.get();
|
|
}
|
|
};
|
|
|
|
typedef ::std::set<Expectation, Less> Set;
|
|
|
|
Expectation(
|
|
const std::shared_ptr<internal::ExpectationBase>& expectation_base);
|
|
|
|
// Returns the expectation this object references.
|
|
const std::shared_ptr<internal::ExpectationBase>& expectation_base() const {
|
|
return expectation_base_;
|
|
}
|
|
|
|
// A shared_ptr that co-owns the expectation this handle references.
|
|
std::shared_ptr<internal::ExpectationBase> expectation_base_;
|
|
};
|
|
|
|
// A set of expectation handles. Useful in the .After() clause of
|
|
// EXPECT_CALL() for setting the (partial) order of expectations. The
|
|
// syntax:
|
|
//
|
|
// ExpectationSet es;
|
|
// es += EXPECT_CALL(...)...;
|
|
// es += EXPECT_CALL(...)...;
|
|
// EXPECT_CALL(...).After(es)...;
|
|
//
|
|
// sets three expectations where the last one can only be matched
|
|
// after the first two have both been satisfied.
|
|
//
|
|
// This class is copyable and has value semantics.
|
|
class ExpectationSet {
|
|
public:
|
|
// A bidirectional iterator that can read a const element in the set.
|
|
typedef Expectation::Set::const_iterator const_iterator;
|
|
|
|
// An object stored in the set. This is an alias of Expectation.
|
|
typedef Expectation::Set::value_type value_type;
|
|
|
|
// Constructs an empty set.
|
|
ExpectationSet() {}
|
|
|
|
// This single-argument ctor must not be explicit, in order to support the
|
|
// ExpectationSet es = EXPECT_CALL(...);
|
|
// syntax.
|
|
ExpectationSet(internal::ExpectationBase& exp) { // NOLINT
|
|
*this += Expectation(exp);
|
|
}
|
|
|
|
// This single-argument ctor implements implicit conversion from
|
|
// Expectation and thus must not be explicit. This allows either an
|
|
// Expectation or an ExpectationSet to be used in .After().
|
|
ExpectationSet(const Expectation& e) { // NOLINT
|
|
*this += e;
|
|
}
|
|
|
|
// The compiler-generator ctor and operator= works exactly as
|
|
// intended, so we don't need to define our own.
|
|
|
|
// Returns true if and only if rhs contains the same set of Expectation
|
|
// objects as this does.
|
|
bool operator==(const ExpectationSet& rhs) const {
|
|
return expectations_ == rhs.expectations_;
|
|
}
|
|
|
|
bool operator!=(const ExpectationSet& rhs) const { return !(*this == rhs); }
|
|
|
|
// Implements the syntax
|
|
// expectation_set += EXPECT_CALL(...);
|
|
ExpectationSet& operator+=(const Expectation& e) {
|
|
expectations_.insert(e);
|
|
return *this;
|
|
}
|
|
|
|
int size() const { return static_cast<int>(expectations_.size()); }
|
|
|
|
const_iterator begin() const { return expectations_.begin(); }
|
|
const_iterator end() const { return expectations_.end(); }
|
|
|
|
private:
|
|
Expectation::Set expectations_;
|
|
};
|
|
|
|
|
|
// Sequence objects are used by a user to specify the relative order
|
|
// in which the expectations should match. They are copyable (we rely
|
|
// on the compiler-defined copy constructor and assignment operator).
|
|
class GTEST_API_ Sequence {
|
|
public:
|
|
// Constructs an empty sequence.
|
|
Sequence() : last_expectation_(new Expectation) {}
|
|
|
|
// Adds an expectation to this sequence. The caller must ensure
|
|
// that no other thread is accessing this Sequence object.
|
|
void AddExpectation(const Expectation& expectation) const;
|
|
|
|
private:
|
|
// The last expectation in this sequence.
|
|
std::shared_ptr<Expectation> last_expectation_;
|
|
}; // class Sequence
|
|
|
|
// An object of this type causes all EXPECT_CALL() statements
|
|
// encountered in its scope to be put in an anonymous sequence. The
|
|
// work is done in the constructor and destructor. You should only
|
|
// create an InSequence object on the stack.
|
|
//
|
|
// The sole purpose for this class is to support easy definition of
|
|
// sequential expectations, e.g.
|
|
//
|
|
// {
|
|
// InSequence dummy; // The name of the object doesn't matter.
|
|
//
|
|
// // The following expectations must match in the order they appear.
|
|
// EXPECT_CALL(a, Bar())...;
|
|
// EXPECT_CALL(a, Baz())...;
|
|
// ...
|
|
// EXPECT_CALL(b, Xyz())...;
|
|
// }
|
|
//
|
|
// You can create InSequence objects in multiple threads, as long as
|
|
// they are used to affect different mock objects. The idea is that
|
|
// each thread can create and set up its own mocks as if it's the only
|
|
// thread. However, for clarity of your tests we recommend you to set
|
|
// up mocks in the main thread unless you have a good reason not to do
|
|
// so.
|
|
class GTEST_API_ InSequence {
|
|
public:
|
|
InSequence();
|
|
~InSequence();
|
|
private:
|
|
bool sequence_created_;
|
|
|
|
GTEST_DISALLOW_COPY_AND_ASSIGN_(InSequence); // NOLINT
|
|
} GTEST_ATTRIBUTE_UNUSED_;
|
|
|
|
namespace internal {
|
|
|
|
// Points to the implicit sequence introduced by a living InSequence
|
|
// object (if any) in the current thread or NULL.
|
|
GTEST_API_ extern ThreadLocal<Sequence*> g_gmock_implicit_sequence;
|
|
|
|
// Base class for implementing expectations.
|
|
//
|
|
// There are two reasons for having a type-agnostic base class for
|
|
// Expectation:
|
|
//
|
|
// 1. We need to store collections of expectations of different
|
|
// types (e.g. all pre-requisites of a particular expectation, all
|
|
// expectations in a sequence). Therefore these expectation objects
|
|
// must share a common base class.
|
|
//
|
|
// 2. We can avoid binary code bloat by moving methods not depending
|
|
// on the template argument of Expectation to the base class.
|
|
//
|
|
// This class is internal and mustn't be used by user code directly.
|
|
class GTEST_API_ ExpectationBase {
|
|
public:
|
|
// source_text is the EXPECT_CALL(...) source that created this Expectation.
|
|
ExpectationBase(const char* file, int line, const std::string& source_text);
|
|
|
|
virtual ~ExpectationBase();
|
|
|
|
// Where in the source file was the expectation spec defined?
|
|
const char* file() const { return file_; }
|
|
int line() const { return line_; }
|
|
const char* source_text() const { return source_text_.c_str(); }
|
|
// Returns the cardinality specified in the expectation spec.
|
|
const Cardinality& cardinality() const { return cardinality_; }
|
|
|
|
// Describes the source file location of this expectation.
|
|
void DescribeLocationTo(::std::ostream* os) const {
|
|
*os << FormatFileLocation(file(), line()) << " ";
|
|
}
|
|
|
|
// Describes how many times a function call matching this
|
|
// expectation has occurred.
|
|
void DescribeCallCountTo(::std::ostream* os) const
|
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex);
|
|
|
|
// If this mock method has an extra matcher (i.e. .With(matcher)),
|
|
// describes it to the ostream.
|
|
virtual void MaybeDescribeExtraMatcherTo(::std::ostream* os) = 0;
|
|
|
|
protected:
|
|
friend class ::testing::Expectation;
|
|
friend class UntypedFunctionMockerBase;
|
|
|
|
enum Clause {
|
|
// Don't change the order of the enum members!
|
|
kNone,
|
|
kWith,
|
|
kTimes,
|
|
kInSequence,
|
|
kAfter,
|
|
kWillOnce,
|
|
kWillRepeatedly,
|
|
kRetiresOnSaturation
|
|
};
|
|
|
|
typedef std::vector<const void*> UntypedActions;
|
|
|
|
// Returns an Expectation object that references and co-owns this
|
|
// expectation.
|
|
virtual Expectation GetHandle() = 0;
|
|
|
|
// Asserts that the EXPECT_CALL() statement has the given property.
|
|
void AssertSpecProperty(bool property,
|
|
const std::string& failure_message) const {
|
|
Assert(property, file_, line_, failure_message);
|
|
}
|
|
|
|
// Expects that the EXPECT_CALL() statement has the given property.
|
|
void ExpectSpecProperty(bool property,
|
|
const std::string& failure_message) const {
|
|
Expect(property, file_, line_, failure_message);
|
|
}
|
|
|
|
// Explicitly specifies the cardinality of this expectation. Used
|
|
// by the subclasses to implement the .Times() clause.
|
|
void SpecifyCardinality(const Cardinality& cardinality);
|
|
|
|
// Returns true if and only if the user specified the cardinality
|
|
// explicitly using a .Times().
|
|
bool cardinality_specified() const { return cardinality_specified_; }
|
|
|
|
// Sets the cardinality of this expectation spec.
|
|
void set_cardinality(const Cardinality& a_cardinality) {
|
|
cardinality_ = a_cardinality;
|
|
}
|
|
|
|
// The following group of methods should only be called after the
|
|
// EXPECT_CALL() statement, and only when g_gmock_mutex is held by
|
|
// the current thread.
|
|
|
|
// Retires all pre-requisites of this expectation.
|
|
void RetireAllPreRequisites()
|
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex);
|
|
|
|
// Returns true if and only if this expectation is retired.
|
|
bool is_retired() const
|
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
|
|
g_gmock_mutex.AssertHeld();
|
|
return retired_;
|
|
}
|
|
|
|
// Retires this expectation.
|
|
void Retire()
|
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
|
|
g_gmock_mutex.AssertHeld();
|
|
retired_ = true;
|
|
}
|
|
|
|
// Returns true if and only if this expectation is satisfied.
|
|
bool IsSatisfied() const
|
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
|
|
g_gmock_mutex.AssertHeld();
|
|
return cardinality().IsSatisfiedByCallCount(call_count_);
|
|
}
|
|
|
|
// Returns true if and only if this expectation is saturated.
|
|
bool IsSaturated() const
|
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
|
|
g_gmock_mutex.AssertHeld();
|
|
return cardinality().IsSaturatedByCallCount(call_count_);
|
|
}
|
|
|
|
// Returns true if and only if this expectation is over-saturated.
|
|
bool IsOverSaturated() const
|
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
|
|
g_gmock_mutex.AssertHeld();
|
|
return cardinality().IsOverSaturatedByCallCount(call_count_);
|
|
}
|
|
|
|
// Returns true if and only if all pre-requisites of this expectation are
|
|
// satisfied.
|
|
bool AllPrerequisitesAreSatisfied() const
|
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex);
|
|
|
|
// Adds unsatisfied pre-requisites of this expectation to 'result'.
|
|
void FindUnsatisfiedPrerequisites(ExpectationSet* result) const
|
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex);
|
|
|
|
// Returns the number this expectation has been invoked.
|
|
int call_count() const
|
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
|
|
g_gmock_mutex.AssertHeld();
|
|
return call_count_;
|
|
}
|
|
|
|
// Increments the number this expectation has been invoked.
|
|
void IncrementCallCount()
|
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
|
|
g_gmock_mutex.AssertHeld();
|
|
call_count_++;
|
|
}
|
|
|
|
// Checks the action count (i.e. the number of WillOnce() and
|
|
// WillRepeatedly() clauses) against the cardinality if this hasn't
|
|
// been done before. Prints a warning if there are too many or too
|
|
// few actions.
|
|
void CheckActionCountIfNotDone() const
|
|
GTEST_LOCK_EXCLUDED_(mutex_);
|
|
|
|
friend class ::testing::Sequence;
|
|
friend class ::testing::internal::ExpectationTester;
|
|
|
|
template <typename Function>
|
|
friend class TypedExpectation;
|
|
|
|
// Implements the .Times() clause.
|
|
void UntypedTimes(const Cardinality& a_cardinality);
|
|
|
|
// This group of fields are part of the spec and won't change after
|
|
// an EXPECT_CALL() statement finishes.
|
|
const char* file_; // The file that contains the expectation.
|
|
int line_; // The line number of the expectation.
|
|
const std::string source_text_; // The EXPECT_CALL(...) source text.
|
|
// True if and only if the cardinality is specified explicitly.
|
|
bool cardinality_specified_;
|
|
Cardinality cardinality_; // The cardinality of the expectation.
|
|
// The immediate pre-requisites (i.e. expectations that must be
|
|
// satisfied before this expectation can be matched) of this
|
|
// expectation. We use std::shared_ptr in the set because we want an
|
|
// Expectation object to be co-owned by its FunctionMocker and its
|
|
// successors. This allows multiple mock objects to be deleted at
|
|
// different times.
|
|
ExpectationSet immediate_prerequisites_;
|
|
|
|
// This group of fields are the current state of the expectation,
|
|
// and can change as the mock function is called.
|
|
int call_count_; // How many times this expectation has been invoked.
|
|
bool retired_; // True if and only if this expectation has retired.
|
|
UntypedActions untyped_actions_;
|
|
bool extra_matcher_specified_;
|
|
bool repeated_action_specified_; // True if a WillRepeatedly() was specified.
|
|
bool retires_on_saturation_;
|
|
Clause last_clause_;
|
|
mutable bool action_count_checked_; // Under mutex_.
|
|
mutable Mutex mutex_; // Protects action_count_checked_.
|
|
}; // class ExpectationBase
|
|
|
|
// Impements an expectation for the given function type.
|
|
template <typename F>
|
|
class TypedExpectation : public ExpectationBase {
|
|
public:
|
|
typedef typename Function<F>::ArgumentTuple ArgumentTuple;
|
|
typedef typename Function<F>::ArgumentMatcherTuple ArgumentMatcherTuple;
|
|
typedef typename Function<F>::Result Result;
|
|
|
|
TypedExpectation(FunctionMocker<F>* owner, const char* a_file, int a_line,
|
|
const std::string& a_source_text,
|
|
const ArgumentMatcherTuple& m)
|
|
: ExpectationBase(a_file, a_line, a_source_text),
|
|
owner_(owner),
|
|
matchers_(m),
|
|
// By default, extra_matcher_ should match anything. However,
|
|
// we cannot initialize it with _ as that causes ambiguity between
|
|
// Matcher's copy and move constructor for some argument types.
|
|
extra_matcher_(A<const ArgumentTuple&>()),
|
|
repeated_action_(DoDefault()) {}
|
|
|
|
~TypedExpectation() override {
|
|
// Check the validity of the action count if it hasn't been done
|
|
// yet (for example, if the expectation was never used).
|
|
CheckActionCountIfNotDone();
|
|
for (UntypedActions::const_iterator it = untyped_actions_.begin();
|
|
it != untyped_actions_.end(); ++it) {
|
|
delete static_cast<const Action<F>*>(*it);
|
|
}
|
|
}
|
|
|
|
// Implements the .With() clause.
|
|
TypedExpectation& With(const Matcher<const ArgumentTuple&>& m) {
|
|
if (last_clause_ == kWith) {
|
|
ExpectSpecProperty(false,
|
|
".With() cannot appear "
|
|
"more than once in an EXPECT_CALL().");
|
|
} else {
|
|
ExpectSpecProperty(last_clause_ < kWith,
|
|
".With() must be the first "
|
|
"clause in an EXPECT_CALL().");
|
|
}
|
|
last_clause_ = kWith;
|
|
|
|
extra_matcher_ = m;
|
|
extra_matcher_specified_ = true;
|
|
return *this;
|
|
}
|
|
|
|
// Implements the .Times() clause.
|
|
TypedExpectation& Times(const Cardinality& a_cardinality) {
|
|
ExpectationBase::UntypedTimes(a_cardinality);
|
|
return *this;
|
|
}
|
|
|
|
// Implements the .Times() clause.
|
|
TypedExpectation& Times(int n) {
|
|
return Times(Exactly(n));
|
|
}
|
|
|
|
// Implements the .InSequence() clause.
|
|
TypedExpectation& InSequence(const Sequence& s) {
|
|
ExpectSpecProperty(last_clause_ <= kInSequence,
|
|
".InSequence() cannot appear after .After(),"
|
|
" .WillOnce(), .WillRepeatedly(), or "
|
|
".RetiresOnSaturation().");
|
|
last_clause_ = kInSequence;
|
|
|
|
s.AddExpectation(GetHandle());
|
|
return *this;
|
|
}
|
|
TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2) {
|
|
return InSequence(s1).InSequence(s2);
|
|
}
|
|
TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2,
|
|
const Sequence& s3) {
|
|
return InSequence(s1, s2).InSequence(s3);
|
|
}
|
|
TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2,
|
|
const Sequence& s3, const Sequence& s4) {
|
|
return InSequence(s1, s2, s3).InSequence(s4);
|
|
}
|
|
TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2,
|
|
const Sequence& s3, const Sequence& s4,
|
|
const Sequence& s5) {
|
|
return InSequence(s1, s2, s3, s4).InSequence(s5);
|
|
}
|
|
|
|
// Implements that .After() clause.
|
|
TypedExpectation& After(const ExpectationSet& s) {
|
|
ExpectSpecProperty(last_clause_ <= kAfter,
|
|
".After() cannot appear after .WillOnce(),"
|
|
" .WillRepeatedly(), or "
|
|
".RetiresOnSaturation().");
|
|
last_clause_ = kAfter;
|
|
|
|
for (ExpectationSet::const_iterator it = s.begin(); it != s.end(); ++it) {
|
|
immediate_prerequisites_ += *it;
|
|
}
|
|
return *this;
|
|
}
|
|
TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2) {
|
|
return After(s1).After(s2);
|
|
}
|
|
TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2,
|
|
const ExpectationSet& s3) {
|
|
return After(s1, s2).After(s3);
|
|
}
|
|
TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2,
|
|
const ExpectationSet& s3, const ExpectationSet& s4) {
|
|
return After(s1, s2, s3).After(s4);
|
|
}
|
|
TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2,
|
|
const ExpectationSet& s3, const ExpectationSet& s4,
|
|
const ExpectationSet& s5) {
|
|
return After(s1, s2, s3, s4).After(s5);
|
|
}
|
|
|
|
// Implements the .WillOnce() clause.
|
|
TypedExpectation& WillOnce(const Action<F>& action) {
|
|
ExpectSpecProperty(last_clause_ <= kWillOnce,
|
|
".WillOnce() cannot appear after "
|
|
".WillRepeatedly() or .RetiresOnSaturation().");
|
|
last_clause_ = kWillOnce;
|
|
|
|
untyped_actions_.push_back(new Action<F>(action));
|
|
if (!cardinality_specified()) {
|
|
set_cardinality(Exactly(static_cast<int>(untyped_actions_.size())));
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
// Implements the .WillRepeatedly() clause.
|
|
TypedExpectation& WillRepeatedly(const Action<F>& action) {
|
|
if (last_clause_ == kWillRepeatedly) {
|
|
ExpectSpecProperty(false,
|
|
".WillRepeatedly() cannot appear "
|
|
"more than once in an EXPECT_CALL().");
|
|
} else {
|
|
ExpectSpecProperty(last_clause_ < kWillRepeatedly,
|
|
".WillRepeatedly() cannot appear "
|
|
"after .RetiresOnSaturation().");
|
|
}
|
|
last_clause_ = kWillRepeatedly;
|
|
repeated_action_specified_ = true;
|
|
|
|
repeated_action_ = action;
|
|
if (!cardinality_specified()) {
|
|
set_cardinality(AtLeast(static_cast<int>(untyped_actions_.size())));
|
|
}
|
|
|
|
// Now that no more action clauses can be specified, we check
|
|
// whether their count makes sense.
|
|
CheckActionCountIfNotDone();
|
|
return *this;
|
|
}
|
|
|
|
// Implements the .RetiresOnSaturation() clause.
|
|
TypedExpectation& RetiresOnSaturation() {
|
|
ExpectSpecProperty(last_clause_ < kRetiresOnSaturation,
|
|
".RetiresOnSaturation() cannot appear "
|
|
"more than once.");
|
|
last_clause_ = kRetiresOnSaturation;
|
|
retires_on_saturation_ = true;
|
|
|
|
// Now that no more action clauses can be specified, we check
|
|
// whether their count makes sense.
|
|
CheckActionCountIfNotDone();
|
|
return *this;
|
|
}
|
|
|
|
// Returns the matchers for the arguments as specified inside the
|
|
// EXPECT_CALL() macro.
|
|
const ArgumentMatcherTuple& matchers() const {
|
|
return matchers_;
|
|
}
|
|
|
|
// Returns the matcher specified by the .With() clause.
|
|
const Matcher<const ArgumentTuple&>& extra_matcher() const {
|
|
return extra_matcher_;
|
|
}
|
|
|
|
// Returns the action specified by the .WillRepeatedly() clause.
|
|
const Action<F>& repeated_action() const { return repeated_action_; }
|
|
|
|
// If this mock method has an extra matcher (i.e. .With(matcher)),
|
|
// describes it to the ostream.
|
|
void MaybeDescribeExtraMatcherTo(::std::ostream* os) override {
|
|
if (extra_matcher_specified_) {
|
|
*os << " Expected args: ";
|
|
extra_matcher_.DescribeTo(os);
|
|
*os << "\n";
|
|
}
|
|
}
|
|
|
|
private:
|
|
template <typename Function>
|
|
friend class FunctionMocker;
|
|
|
|
// Returns an Expectation object that references and co-owns this
|
|
// expectation.
|
|
Expectation GetHandle() override { return owner_->GetHandleOf(this); }
|
|
|
|
// The following methods will be called only after the EXPECT_CALL()
|
|
// statement finishes and when the current thread holds
|
|
// g_gmock_mutex.
|
|
|
|
// Returns true if and only if this expectation matches the given arguments.
|
|
bool Matches(const ArgumentTuple& args) const
|
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
|
|
g_gmock_mutex.AssertHeld();
|
|
return TupleMatches(matchers_, args) && extra_matcher_.Matches(args);
|
|
}
|
|
|
|
// Returns true if and only if this expectation should handle the given
|
|
// arguments.
|
|
bool ShouldHandleArguments(const ArgumentTuple& args) const
|
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
|
|
g_gmock_mutex.AssertHeld();
|
|
|
|
// In case the action count wasn't checked when the expectation
|
|
// was defined (e.g. if this expectation has no WillRepeatedly()
|
|
// or RetiresOnSaturation() clause), we check it when the
|
|
// expectation is used for the first time.
|
|
CheckActionCountIfNotDone();
|
|
return !is_retired() && AllPrerequisitesAreSatisfied() && Matches(args);
|
|
}
|
|
|
|
// Describes the result of matching the arguments against this
|
|
// expectation to the given ostream.
|
|
void ExplainMatchResultTo(
|
|
const ArgumentTuple& args,
|
|
::std::ostream* os) const
|
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
|
|
g_gmock_mutex.AssertHeld();
|
|
|
|
if (is_retired()) {
|
|
*os << " Expected: the expectation is active\n"
|
|
<< " Actual: it is retired\n";
|
|
} else if (!Matches(args)) {
|
|
if (!TupleMatches(matchers_, args)) {
|
|
ExplainMatchFailureTupleTo(matchers_, args, os);
|
|
}
|
|
StringMatchResultListener listener;
|
|
if (!extra_matcher_.MatchAndExplain(args, &listener)) {
|
|
*os << " Expected args: ";
|
|
extra_matcher_.DescribeTo(os);
|
|
*os << "\n Actual: don't match";
|
|
|
|
internal::PrintIfNotEmpty(listener.str(), os);
|
|
*os << "\n";
|
|
}
|
|
} else if (!AllPrerequisitesAreSatisfied()) {
|
|
*os << " Expected: all pre-requisites are satisfied\n"
|
|
<< " Actual: the following immediate pre-requisites "
|
|
<< "are not satisfied:\n";
|
|
ExpectationSet unsatisfied_prereqs;
|
|
FindUnsatisfiedPrerequisites(&unsatisfied_prereqs);
|
|
int i = 0;
|
|
for (ExpectationSet::const_iterator it = unsatisfied_prereqs.begin();
|
|
it != unsatisfied_prereqs.end(); ++it) {
|
|
it->expectation_base()->DescribeLocationTo(os);
|
|
*os << "pre-requisite #" << i++ << "\n";
|
|
}
|
|
*os << " (end of pre-requisites)\n";
|
|
} else {
|
|
// This line is here just for completeness' sake. It will never
|
|
// be executed as currently the ExplainMatchResultTo() function
|
|
// is called only when the mock function call does NOT match the
|
|
// expectation.
|
|
*os << "The call matches the expectation.\n";
|
|
}
|
|
}
|
|
|
|
// Returns the action that should be taken for the current invocation.
|
|
const Action<F>& GetCurrentAction(const FunctionMocker<F>* mocker,
|
|
const ArgumentTuple& args) const
|
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
|
|
g_gmock_mutex.AssertHeld();
|
|
const int count = call_count();
|
|
Assert(count >= 1, __FILE__, __LINE__,
|
|
"call_count() is <= 0 when GetCurrentAction() is "
|
|
"called - this should never happen.");
|
|
|
|
const int action_count = static_cast<int>(untyped_actions_.size());
|
|
if (action_count > 0 && !repeated_action_specified_ &&
|
|
count > action_count) {
|
|
// If there is at least one WillOnce() and no WillRepeatedly(),
|
|
// we warn the user when the WillOnce() clauses ran out.
|
|
::std::stringstream ss;
|
|
DescribeLocationTo(&ss);
|
|
ss << "Actions ran out in " << source_text() << "...\n"
|
|
<< "Called " << count << " times, but only "
|
|
<< action_count << " WillOnce()"
|
|
<< (action_count == 1 ? " is" : "s are") << " specified - ";
|
|
mocker->DescribeDefaultActionTo(args, &ss);
|
|
Log(kWarning, ss.str(), 1);
|
|
}
|
|
|
|
return count <= action_count
|
|
? *static_cast<const Action<F>*>(
|
|
untyped_actions_[static_cast<size_t>(count - 1)])
|
|
: repeated_action();
|
|
}
|
|
|
|
// Given the arguments of a mock function call, if the call will
|
|
// over-saturate this expectation, returns the default action;
|
|
// otherwise, returns the next action in this expectation. Also
|
|
// describes *what* happened to 'what', and explains *why* Google
|
|
// Mock does it to 'why'. This method is not const as it calls
|
|
// IncrementCallCount(). A return value of NULL means the default
|
|
// action.
|
|
const Action<F>* GetActionForArguments(const FunctionMocker<F>* mocker,
|
|
const ArgumentTuple& args,
|
|
::std::ostream* what,
|
|
::std::ostream* why)
|
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
|
|
g_gmock_mutex.AssertHeld();
|
|
if (IsSaturated()) {
|
|
// We have an excessive call.
|
|
IncrementCallCount();
|
|
*what << "Mock function called more times than expected - ";
|
|
mocker->DescribeDefaultActionTo(args, what);
|
|
DescribeCallCountTo(why);
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
IncrementCallCount();
|
|
RetireAllPreRequisites();
|
|
|
|
if (retires_on_saturation_ && IsSaturated()) {
|
|
Retire();
|
|
}
|
|
|
|
// Must be done after IncrementCount()!
|
|
*what << "Mock function call matches " << source_text() <<"...\n";
|
|
return &(GetCurrentAction(mocker, args));
|
|
}
|
|
|
|
// All the fields below won't change once the EXPECT_CALL()
|
|
// statement finishes.
|
|
FunctionMocker<F>* const owner_;
|
|
ArgumentMatcherTuple matchers_;
|
|
Matcher<const ArgumentTuple&> extra_matcher_;
|
|
Action<F> repeated_action_;
|
|
|
|
GTEST_DISALLOW_COPY_AND_ASSIGN_(TypedExpectation);
|
|
}; // class TypedExpectation
|
|
|
|
// A MockSpec object is used by ON_CALL() or EXPECT_CALL() for
|
|
// specifying the default behavior of, or expectation on, a mock
|
|
// function.
|
|
|
|
// Note: class MockSpec really belongs to the ::testing namespace.
|
|
// However if we define it in ::testing, MSVC will complain when
|
|
// classes in ::testing::internal declare it as a friend class
|
|
// template. To workaround this compiler bug, we define MockSpec in
|
|
// ::testing::internal and import it into ::testing.
|
|
|
|
// Logs a message including file and line number information.
|
|
GTEST_API_ void LogWithLocation(testing::internal::LogSeverity severity,
|
|
const char* file, int line,
|
|
const std::string& message);
|
|
|
|
template <typename F>
|
|
class MockSpec {
|
|
public:
|
|
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
|
|
typedef typename internal::Function<F>::ArgumentMatcherTuple
|
|
ArgumentMatcherTuple;
|
|
|
|
// Constructs a MockSpec object, given the function mocker object
|
|
// that the spec is associated with.
|
|
MockSpec(internal::FunctionMocker<F>* function_mocker,
|
|
const ArgumentMatcherTuple& matchers)
|
|
: function_mocker_(function_mocker), matchers_(matchers) {}
|
|
|
|
// Adds a new default action spec to the function mocker and returns
|
|
// the newly created spec.
|
|
internal::OnCallSpec<F>& InternalDefaultActionSetAt(
|
|
const char* file, int line, const char* obj, const char* call) {
|
|
LogWithLocation(internal::kInfo, file, line,
|
|
std::string("ON_CALL(") + obj + ", " + call + ") invoked");
|
|
return function_mocker_->AddNewOnCallSpec(file, line, matchers_);
|
|
}
|
|
|
|
// Adds a new expectation spec to the function mocker and returns
|
|
// the newly created spec.
|
|
internal::TypedExpectation<F>& InternalExpectedAt(
|
|
const char* file, int line, const char* obj, const char* call) {
|
|
const std::string source_text(std::string("EXPECT_CALL(") + obj + ", " +
|
|
call + ")");
|
|
LogWithLocation(internal::kInfo, file, line, source_text + " invoked");
|
|
return function_mocker_->AddNewExpectation(
|
|
file, line, source_text, matchers_);
|
|
}
|
|
|
|
// This operator overload is used to swallow the superfluous parameter list
|
|
// introduced by the ON/EXPECT_CALL macros. See the macro comments for more
|
|
// explanation.
|
|
MockSpec<F>& operator()(const internal::WithoutMatchers&, void* const) {
|
|
return *this;
|
|
}
|
|
|
|
private:
|
|
template <typename Function>
|
|
friend class internal::FunctionMocker;
|
|
|
|
// The function mocker that owns this spec.
|
|
internal::FunctionMocker<F>* const function_mocker_;
|
|
// The argument matchers specified in the spec.
|
|
ArgumentMatcherTuple matchers_;
|
|
}; // class MockSpec
|
|
|
|
// Wrapper type for generically holding an ordinary value or lvalue reference.
|
|
// If T is not a reference type, it must be copyable or movable.
|
|
// ReferenceOrValueWrapper<T> is movable, and will also be copyable unless
|
|
// T is a move-only value type (which means that it will always be copyable
|
|
// if the current platform does not support move semantics).
|
|
//
|
|
// The primary template defines handling for values, but function header
|
|
// comments describe the contract for the whole template (including
|
|
// specializations).
|
|
template <typename T>
|
|
class ReferenceOrValueWrapper {
|
|
public:
|
|
// Constructs a wrapper from the given value/reference.
|
|
explicit ReferenceOrValueWrapper(T value)
|
|
: value_(std::move(value)) {
|
|
}
|
|
|
|
// Unwraps and returns the underlying value/reference, exactly as
|
|
// originally passed. The behavior of calling this more than once on
|
|
// the same object is unspecified.
|
|
T Unwrap() { return std::move(value_); }
|
|
|
|
// Provides nondestructive access to the underlying value/reference.
|
|
// Always returns a const reference (more precisely,
|
|
// const std::add_lvalue_reference<T>::type). The behavior of calling this
|
|
// after calling Unwrap on the same object is unspecified.
|
|
const T& Peek() const {
|
|
return value_;
|
|
}
|
|
|
|
private:
|
|
T value_;
|
|
};
|
|
|
|
// Specialization for lvalue reference types. See primary template
|
|
// for documentation.
|
|
template <typename T>
|
|
class ReferenceOrValueWrapper<T&> {
|
|
public:
|
|
// Workaround for debatable pass-by-reference lint warning (c-library-team
|
|
// policy precludes NOLINT in this context)
|
|
typedef T& reference;
|
|
explicit ReferenceOrValueWrapper(reference ref)
|
|
: value_ptr_(&ref) {}
|
|
T& Unwrap() { return *value_ptr_; }
|
|
const T& Peek() const { return *value_ptr_; }
|
|
|
|
private:
|
|
T* value_ptr_;
|
|
};
|
|
|
|
// C++ treats the void type specially. For example, you cannot define
|
|
// a void-typed variable or pass a void value to a function.
|
|
// ActionResultHolder<T> holds a value of type T, where T must be a
|
|
// copyable type or void (T doesn't need to be default-constructable).
|
|
// It hides the syntactic difference between void and other types, and
|
|
// is used to unify the code for invoking both void-returning and
|
|
// non-void-returning mock functions.
|
|
|
|
// Untyped base class for ActionResultHolder<T>.
|
|
class UntypedActionResultHolderBase {
|
|
public:
|
|
virtual ~UntypedActionResultHolderBase() {}
|
|
|
|
// Prints the held value as an action's result to os.
|
|
virtual void PrintAsActionResult(::std::ostream* os) const = 0;
|
|
};
|
|
|
|
// This generic definition is used when T is not void.
|
|
template <typename T>
|
|
class ActionResultHolder : public UntypedActionResultHolderBase {
|
|
public:
|
|
// Returns the held value. Must not be called more than once.
|
|
T Unwrap() {
|
|
return result_.Unwrap();
|
|
}
|
|
|
|
// Prints the held value as an action's result to os.
|
|
void PrintAsActionResult(::std::ostream* os) const override {
|
|
*os << "\n Returns: ";
|
|
// T may be a reference type, so we don't use UniversalPrint().
|
|
UniversalPrinter<T>::Print(result_.Peek(), os);
|
|
}
|
|
|
|
// Performs the given mock function's default action and returns the
|
|
// result in a new-ed ActionResultHolder.
|
|
template <typename F>
|
|
static ActionResultHolder* PerformDefaultAction(
|
|
const FunctionMocker<F>* func_mocker,
|
|
typename Function<F>::ArgumentTuple&& args,
|
|
const std::string& call_description) {
|
|
return new ActionResultHolder(Wrapper(func_mocker->PerformDefaultAction(
|
|
std::move(args), call_description)));
|
|
}
|
|
|
|
// Performs the given action and returns the result in a new-ed
|
|
// ActionResultHolder.
|
|
template <typename F>
|
|
static ActionResultHolder* PerformAction(
|
|
const Action<F>& action, typename Function<F>::ArgumentTuple&& args) {
|
|
return new ActionResultHolder(
|
|
Wrapper(action.Perform(std::move(args))));
|
|
}
|
|
|
|
private:
|
|
typedef ReferenceOrValueWrapper<T> Wrapper;
|
|
|
|
explicit ActionResultHolder(Wrapper result)
|
|
: result_(std::move(result)) {
|
|
}
|
|
|
|
Wrapper result_;
|
|
|
|
GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionResultHolder);
|
|
};
|
|
|
|
// Specialization for T = void.
|
|
template <>
|
|
class ActionResultHolder<void> : public UntypedActionResultHolderBase {
|
|
public:
|
|
void Unwrap() { }
|
|
|
|
void PrintAsActionResult(::std::ostream* /* os */) const override {}
|
|
|
|
// Performs the given mock function's default action and returns ownership
|
|
// of an empty ActionResultHolder*.
|
|
template <typename F>
|
|
static ActionResultHolder* PerformDefaultAction(
|
|
const FunctionMocker<F>* func_mocker,
|
|
typename Function<F>::ArgumentTuple&& args,
|
|
const std::string& call_description) {
|
|
func_mocker->PerformDefaultAction(std::move(args), call_description);
|
|
return new ActionResultHolder;
|
|
}
|
|
|
|
// Performs the given action and returns ownership of an empty
|
|
// ActionResultHolder*.
|
|
template <typename F>
|
|
static ActionResultHolder* PerformAction(
|
|
const Action<F>& action, typename Function<F>::ArgumentTuple&& args) {
|
|
action.Perform(std::move(args));
|
|
return new ActionResultHolder;
|
|
}
|
|
|
|
private:
|
|
ActionResultHolder() {}
|
|
GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionResultHolder);
|
|
};
|
|
|
|
template <typename F>
|
|
class FunctionMocker;
|
|
|
|
template <typename R, typename... Args>
|
|
class FunctionMocker<R(Args...)> final : public UntypedFunctionMockerBase {
|
|
using F = R(Args...);
|
|
|
|
public:
|
|
using Result = R;
|
|
using ArgumentTuple = std::tuple<Args...>;
|
|
using ArgumentMatcherTuple = std::tuple<Matcher<Args>...>;
|
|
|
|
FunctionMocker() {}
|
|
|
|
// There is no generally useful and implementable semantics of
|
|
// copying a mock object, so copying a mock is usually a user error.
|
|
// Thus we disallow copying function mockers. If the user really
|
|
// wants to copy a mock object, they should implement their own copy
|
|
// operation, for example:
|
|
//
|
|
// class MockFoo : public Foo {
|
|
// public:
|
|
// // Defines a copy constructor explicitly.
|
|
// MockFoo(const MockFoo& src) {}
|
|
// ...
|
|
// };
|
|
FunctionMocker(const FunctionMocker&) = delete;
|
|
FunctionMocker& operator=(const FunctionMocker&) = delete;
|
|
|
|
// The destructor verifies that all expectations on this mock
|
|
// function have been satisfied. If not, it will report Google Test
|
|
// non-fatal failures for the violations.
|
|
~FunctionMocker() override GTEST_LOCK_EXCLUDED_(g_gmock_mutex) {
|
|
MutexLock l(&g_gmock_mutex);
|
|
VerifyAndClearExpectationsLocked();
|
|
Mock::UnregisterLocked(this);
|
|
ClearDefaultActionsLocked();
|
|
}
|
|
|
|
// Returns the ON_CALL spec that matches this mock function with the
|
|
// given arguments; returns NULL if no matching ON_CALL is found.
|
|
// L = *
|
|
const OnCallSpec<F>* FindOnCallSpec(
|
|
const ArgumentTuple& args) const {
|
|
for (UntypedOnCallSpecs::const_reverse_iterator it
|
|
= untyped_on_call_specs_.rbegin();
|
|
it != untyped_on_call_specs_.rend(); ++it) {
|
|
const OnCallSpec<F>* spec = static_cast<const OnCallSpec<F>*>(*it);
|
|
if (spec->Matches(args))
|
|
return spec;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
// Performs the default action of this mock function on the given
|
|
// arguments and returns the result. Asserts (or throws if
|
|
// exceptions are enabled) with a helpful call descrption if there
|
|
// is no valid return value. This method doesn't depend on the
|
|
// mutable state of this object, and thus can be called concurrently
|
|
// without locking.
|
|
// L = *
|
|
Result PerformDefaultAction(ArgumentTuple&& args,
|
|
const std::string& call_description) const {
|
|
const OnCallSpec<F>* const spec =
|
|
this->FindOnCallSpec(args);
|
|
if (spec != nullptr) {
|
|
return spec->GetAction().Perform(std::move(args));
|
|
}
|
|
const std::string message =
|
|
call_description +
|
|
"\n The mock function has no default action "
|
|
"set, and its return type has no default value set.";
|
|
#if GTEST_HAS_EXCEPTIONS
|
|
if (!DefaultValue<Result>::Exists()) {
|
|
throw std::runtime_error(message);
|
|
}
|
|
#else
|
|
Assert(DefaultValue<Result>::Exists(), "", -1, message);
|
|
#endif
|
|
return DefaultValue<Result>::Get();
|
|
}
|
|
|
|
// Performs the default action with the given arguments and returns
|
|
// the action's result. The call description string will be used in
|
|
// the error message to describe the call in the case the default
|
|
// action fails. The caller is responsible for deleting the result.
|
|
// L = *
|
|
UntypedActionResultHolderBase* UntypedPerformDefaultAction(
|
|
void* untyped_args, // must point to an ArgumentTuple
|
|
const std::string& call_description) const override {
|
|
ArgumentTuple* args = static_cast<ArgumentTuple*>(untyped_args);
|
|
return ResultHolder::PerformDefaultAction(this, std::move(*args),
|
|
call_description);
|
|
}
|
|
|
|
// Performs the given action with the given arguments and returns
|
|
// the action's result. The caller is responsible for deleting the
|
|
// result.
|
|
// L = *
|
|
UntypedActionResultHolderBase* UntypedPerformAction(
|
|
const void* untyped_action, void* untyped_args) const override {
|
|
// Make a copy of the action before performing it, in case the
|
|
// action deletes the mock object (and thus deletes itself).
|
|
const Action<F> action = *static_cast<const Action<F>*>(untyped_action);
|
|
ArgumentTuple* args = static_cast<ArgumentTuple*>(untyped_args);
|
|
return ResultHolder::PerformAction(action, std::move(*args));
|
|
}
|
|
|
|
// Implements UntypedFunctionMockerBase::ClearDefaultActionsLocked():
|
|
// clears the ON_CALL()s set on this mock function.
|
|
void ClearDefaultActionsLocked() override
|
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
|
|
g_gmock_mutex.AssertHeld();
|
|
|
|
// Deleting our default actions may trigger other mock objects to be
|
|
// deleted, for example if an action contains a reference counted smart
|
|
// pointer to that mock object, and that is the last reference. So if we
|
|
// delete our actions within the context of the global mutex we may deadlock
|
|
// when this method is called again. Instead, make a copy of the set of
|
|
// actions to delete, clear our set within the mutex, and then delete the
|
|
// actions outside of the mutex.
|
|
UntypedOnCallSpecs specs_to_delete;
|
|
untyped_on_call_specs_.swap(specs_to_delete);
|
|
|
|
g_gmock_mutex.Unlock();
|
|
for (UntypedOnCallSpecs::const_iterator it =
|
|
specs_to_delete.begin();
|
|
it != specs_to_delete.end(); ++it) {
|
|
delete static_cast<const OnCallSpec<F>*>(*it);
|
|
}
|
|
|
|
// Lock the mutex again, since the caller expects it to be locked when we
|
|
// return.
|
|
g_gmock_mutex.Lock();
|
|
}
|
|
|
|
// Returns the result of invoking this mock function with the given
|
|
// arguments. This function can be safely called from multiple
|
|
// threads concurrently.
|
|
Result Invoke(Args... args) GTEST_LOCK_EXCLUDED_(g_gmock_mutex) {
|
|
ArgumentTuple tuple(std::forward<Args>(args)...);
|
|
std::unique_ptr<ResultHolder> holder(DownCast_<ResultHolder*>(
|
|
this->UntypedInvokeWith(static_cast<void*>(&tuple))));
|
|
return holder->Unwrap();
|
|
}
|
|
|
|
MockSpec<F> With(Matcher<Args>... m) {
|
|
return MockSpec<F>(this, ::std::make_tuple(std::move(m)...));
|
|
}
|
|
|
|
protected:
|
|
template <typename Function>
|
|
friend class MockSpec;
|
|
|
|
typedef ActionResultHolder<Result> ResultHolder;
|
|
|
|
// Adds and returns a default action spec for this mock function.
|
|
OnCallSpec<F>& AddNewOnCallSpec(
|
|
const char* file, int line,
|
|
const ArgumentMatcherTuple& m)
|
|
GTEST_LOCK_EXCLUDED_(g_gmock_mutex) {
|
|
Mock::RegisterUseByOnCallOrExpectCall(MockObject(), file, line);
|
|
OnCallSpec<F>* const on_call_spec = new OnCallSpec<F>(file, line, m);
|
|
untyped_on_call_specs_.push_back(on_call_spec);
|
|
return *on_call_spec;
|
|
}
|
|
|
|
// Adds and returns an expectation spec for this mock function.
|
|
TypedExpectation<F>& AddNewExpectation(const char* file, int line,
|
|
const std::string& source_text,
|
|
const ArgumentMatcherTuple& m)
|
|
GTEST_LOCK_EXCLUDED_(g_gmock_mutex) {
|
|
Mock::RegisterUseByOnCallOrExpectCall(MockObject(), file, line);
|
|
TypedExpectation<F>* const expectation =
|
|
new TypedExpectation<F>(this, file, line, source_text, m);
|
|
const std::shared_ptr<ExpectationBase> untyped_expectation(expectation);
|
|
// See the definition of untyped_expectations_ for why access to
|
|
// it is unprotected here.
|
|
untyped_expectations_.push_back(untyped_expectation);
|
|
|
|
// Adds this expectation into the implicit sequence if there is one.
|
|
Sequence* const implicit_sequence = g_gmock_implicit_sequence.get();
|
|
if (implicit_sequence != nullptr) {
|
|
implicit_sequence->AddExpectation(Expectation(untyped_expectation));
|
|
}
|
|
|
|
return *expectation;
|
|
}
|
|
|
|
private:
|
|
template <typename Func> friend class TypedExpectation;
|
|
|
|
// Some utilities needed for implementing UntypedInvokeWith().
|
|
|
|
// Describes what default action will be performed for the given
|
|
// arguments.
|
|
// L = *
|
|
void DescribeDefaultActionTo(const ArgumentTuple& args,
|
|
::std::ostream* os) const {
|
|
const OnCallSpec<F>* const spec = FindOnCallSpec(args);
|
|
|
|
if (spec == nullptr) {
|
|
*os << (std::is_void<Result>::value ? "returning directly.\n"
|
|
: "returning default value.\n");
|
|
} else {
|
|
*os << "taking default action specified at:\n"
|
|
<< FormatFileLocation(spec->file(), spec->line()) << "\n";
|
|
}
|
|
}
|
|
|
|
// Writes a message that the call is uninteresting (i.e. neither
|
|
// explicitly expected nor explicitly unexpected) to the given
|
|
// ostream.
|
|
void UntypedDescribeUninterestingCall(const void* untyped_args,
|
|
::std::ostream* os) const override
|
|
GTEST_LOCK_EXCLUDED_(g_gmock_mutex) {
|
|
const ArgumentTuple& args =
|
|
*static_cast<const ArgumentTuple*>(untyped_args);
|
|
*os << "Uninteresting mock function call - ";
|
|
DescribeDefaultActionTo(args, os);
|
|
*os << " Function call: " << Name();
|
|
UniversalPrint(args, os);
|
|
}
|
|
|
|
// Returns the expectation that matches the given function arguments
|
|
// (or NULL is there's no match); when a match is found,
|
|
// untyped_action is set to point to the action that should be
|
|
// performed (or NULL if the action is "do default"), and
|
|
// is_excessive is modified to indicate whether the call exceeds the
|
|
// expected number.
|
|
//
|
|
// Critical section: We must find the matching expectation and the
|
|
// corresponding action that needs to be taken in an ATOMIC
|
|
// transaction. Otherwise another thread may call this mock
|
|
// method in the middle and mess up the state.
|
|
//
|
|
// However, performing the action has to be left out of the critical
|
|
// section. The reason is that we have no control on what the
|
|
// action does (it can invoke an arbitrary user function or even a
|
|
// mock function) and excessive locking could cause a dead lock.
|
|
const ExpectationBase* UntypedFindMatchingExpectation(
|
|
const void* untyped_args, const void** untyped_action, bool* is_excessive,
|
|
::std::ostream* what, ::std::ostream* why) override
|
|
GTEST_LOCK_EXCLUDED_(g_gmock_mutex) {
|
|
const ArgumentTuple& args =
|
|
*static_cast<const ArgumentTuple*>(untyped_args);
|
|
MutexLock l(&g_gmock_mutex);
|
|
TypedExpectation<F>* exp = this->FindMatchingExpectationLocked(args);
|
|
if (exp == nullptr) { // A match wasn't found.
|
|
this->FormatUnexpectedCallMessageLocked(args, what, why);
|
|
return nullptr;
|
|
}
|
|
|
|
// This line must be done before calling GetActionForArguments(),
|
|
// which will increment the call count for *exp and thus affect
|
|
// its saturation status.
|
|
*is_excessive = exp->IsSaturated();
|
|
const Action<F>* action = exp->GetActionForArguments(this, args, what, why);
|
|
if (action != nullptr && action->IsDoDefault())
|
|
action = nullptr; // Normalize "do default" to NULL.
|
|
*untyped_action = action;
|
|
return exp;
|
|
}
|
|
|
|
// Prints the given function arguments to the ostream.
|
|
void UntypedPrintArgs(const void* untyped_args,
|
|
::std::ostream* os) const override {
|
|
const ArgumentTuple& args =
|
|
*static_cast<const ArgumentTuple*>(untyped_args);
|
|
UniversalPrint(args, os);
|
|
}
|
|
|
|
// Returns the expectation that matches the arguments, or NULL if no
|
|
// expectation matches them.
|
|
TypedExpectation<F>* FindMatchingExpectationLocked(
|
|
const ArgumentTuple& args) const
|
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
|
|
g_gmock_mutex.AssertHeld();
|
|
// See the definition of untyped_expectations_ for why access to
|
|
// it is unprotected here.
|
|
for (typename UntypedExpectations::const_reverse_iterator it =
|
|
untyped_expectations_.rbegin();
|
|
it != untyped_expectations_.rend(); ++it) {
|
|
TypedExpectation<F>* const exp =
|
|
static_cast<TypedExpectation<F>*>(it->get());
|
|
if (exp->ShouldHandleArguments(args)) {
|
|
return exp;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
// Returns a message that the arguments don't match any expectation.
|
|
void FormatUnexpectedCallMessageLocked(
|
|
const ArgumentTuple& args,
|
|
::std::ostream* os,
|
|
::std::ostream* why) const
|
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
|
|
g_gmock_mutex.AssertHeld();
|
|
*os << "\nUnexpected mock function call - ";
|
|
DescribeDefaultActionTo(args, os);
|
|
PrintTriedExpectationsLocked(args, why);
|
|
}
|
|
|
|
// Prints a list of expectations that have been tried against the
|
|
// current mock function call.
|
|
void PrintTriedExpectationsLocked(
|
|
const ArgumentTuple& args,
|
|
::std::ostream* why) const
|
|
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
|
|
g_gmock_mutex.AssertHeld();
|
|
const size_t count = untyped_expectations_.size();
|
|
*why << "Google Mock tried the following " << count << " "
|
|
<< (count == 1 ? "expectation, but it didn't match" :
|
|
"expectations, but none matched")
|
|
<< ":\n";
|
|
for (size_t i = 0; i < count; i++) {
|
|
TypedExpectation<F>* const expectation =
|
|
static_cast<TypedExpectation<F>*>(untyped_expectations_[i].get());
|
|
*why << "\n";
|
|
expectation->DescribeLocationTo(why);
|
|
if (count > 1) {
|
|
*why << "tried expectation #" << i << ": ";
|
|
}
|
|
*why << expectation->source_text() << "...\n";
|
|
expectation->ExplainMatchResultTo(args, why);
|
|
expectation->DescribeCallCountTo(why);
|
|
}
|
|
}
|
|
}; // class FunctionMocker
|
|
|
|
// Reports an uninteresting call (whose description is in msg) in the
|
|
// manner specified by 'reaction'.
|
|
void ReportUninterestingCall(CallReaction reaction, const std::string& msg);
|
|
|
|
} // namespace internal
|
|
|
|
namespace internal {
|
|
|
|
template <typename F>
|
|
class MockFunction;
|
|
|
|
template <typename R, typename... Args>
|
|
class MockFunction<R(Args...)> {
|
|
public:
|
|
MockFunction(const MockFunction&) = delete;
|
|
MockFunction& operator=(const MockFunction&) = delete;
|
|
|
|
std::function<R(Args...)> AsStdFunction() {
|
|
return [this](Args... args) -> R {
|
|
return this->Call(std::forward<Args>(args)...);
|
|
};
|
|
}
|
|
|
|
// Implementation detail: the expansion of the MOCK_METHOD macro.
|
|
R Call(Args... args) {
|
|
mock_.SetOwnerAndName(this, "Call");
|
|
return mock_.Invoke(std::forward<Args>(args)...);
|
|
}
|
|
|
|
MockSpec<R(Args...)> gmock_Call(Matcher<Args>... m) {
|
|
mock_.RegisterOwner(this);
|
|
return mock_.With(std::move(m)...);
|
|
}
|
|
|
|
MockSpec<R(Args...)> gmock_Call(const WithoutMatchers&, R (*)(Args...)) {
|
|
return this->gmock_Call(::testing::A<Args>()...);
|
|
}
|
|
|
|
protected:
|
|
MockFunction() = default;
|
|
~MockFunction() = default;
|
|
|
|
private:
|
|
FunctionMocker<R(Args...)> mock_;
|
|
};
|
|
|
|
/*
|
|
The SignatureOf<F> struct is a meta-function returning function signature
|
|
corresponding to the provided F argument.
|
|
|
|
It makes use of MockFunction easier by allowing it to accept more F arguments
|
|
than just function signatures.
|
|
|
|
Specializations provided here cover only a signature type itself and
|
|
std::function. However, if need be it can be easily extended to cover also other
|
|
types (like for example boost::function).
|
|
*/
|
|
|
|
template <typename F>
|
|
struct SignatureOf;
|
|
|
|
template <typename R, typename... Args>
|
|
struct SignatureOf<R(Args...)> {
|
|
using type = R(Args...);
|
|
};
|
|
|
|
template <typename F>
|
|
struct SignatureOf<std::function<F>> : SignatureOf<F> {};
|
|
|
|
template <typename F>
|
|
using SignatureOfT = typename SignatureOf<F>::type;
|
|
|
|
} // namespace internal
|
|
|
|
// A MockFunction<F> type has one mock method whose type is
|
|
// internal::SignatureOfT<F>. It is useful when you just want your
|
|
// test code to emit some messages and have Google Mock verify the
|
|
// right messages are sent (and perhaps at the right times). For
|
|
// example, if you are exercising code:
|
|
//
|
|
// Foo(1);
|
|
// Foo(2);
|
|
// Foo(3);
|
|
//
|
|
// and want to verify that Foo(1) and Foo(3) both invoke
|
|
// mock.Bar("a"), but Foo(2) doesn't invoke anything, you can write:
|
|
//
|
|
// TEST(FooTest, InvokesBarCorrectly) {
|
|
// MyMock mock;
|
|
// MockFunction<void(string check_point_name)> check;
|
|
// {
|
|
// InSequence s;
|
|
//
|
|
// EXPECT_CALL(mock, Bar("a"));
|
|
// EXPECT_CALL(check, Call("1"));
|
|
// EXPECT_CALL(check, Call("2"));
|
|
// EXPECT_CALL(mock, Bar("a"));
|
|
// }
|
|
// Foo(1);
|
|
// check.Call("1");
|
|
// Foo(2);
|
|
// check.Call("2");
|
|
// Foo(3);
|
|
// }
|
|
//
|
|
// The expectation spec says that the first Bar("a") must happen
|
|
// before check point "1", the second Bar("a") must happen after check
|
|
// point "2", and nothing should happen between the two check
|
|
// points. The explicit check points make it easy to tell which
|
|
// Bar("a") is called by which call to Foo().
|
|
//
|
|
// MockFunction<F> can also be used to exercise code that accepts
|
|
// std::function<internal::SignatureOfT<F>> callbacks. To do so, use
|
|
// AsStdFunction() method to create std::function proxy forwarding to
|
|
// original object's Call. Example:
|
|
//
|
|
// TEST(FooTest, RunsCallbackWithBarArgument) {
|
|
// MockFunction<int(string)> callback;
|
|
// EXPECT_CALL(callback, Call("bar")).WillOnce(Return(1));
|
|
// Foo(callback.AsStdFunction());
|
|
// }
|
|
//
|
|
// The internal::SignatureOfT<F> indirection allows to use other types
|
|
// than just function signature type. This is typically useful when
|
|
// providing a mock for a predefined std::function type. Example:
|
|
//
|
|
// using FilterPredicate = std::function<bool(string)>;
|
|
// void MyFilterAlgorithm(FilterPredicate predicate);
|
|
//
|
|
// TEST(FooTest, FilterPredicateAlwaysAccepts) {
|
|
// MockFunction<FilterPredicate> predicateMock;
|
|
// EXPECT_CALL(predicateMock, Call(_)).WillRepeatedly(Return(true));
|
|
// MyFilterAlgorithm(predicateMock.AsStdFunction());
|
|
// }
|
|
template <typename F>
|
|
class MockFunction : public internal::MockFunction<internal::SignatureOfT<F>> {
|
|
using Base = internal::MockFunction<internal::SignatureOfT<F>>;
|
|
|
|
public:
|
|
using Base::Base;
|
|
};
|
|
|
|
// The style guide prohibits "using" statements in a namespace scope
|
|
// inside a header file. However, the MockSpec class template is
|
|
// meant to be defined in the ::testing namespace. The following line
|
|
// is just a trick for working around a bug in MSVC 8.0, which cannot
|
|
// handle it if we define MockSpec in ::testing.
|
|
using internal::MockSpec;
|
|
|
|
// Const(x) is a convenient function for obtaining a const reference
|
|
// to x. This is useful for setting expectations on an overloaded
|
|
// const mock method, e.g.
|
|
//
|
|
// class MockFoo : public FooInterface {
|
|
// public:
|
|
// MOCK_METHOD0(Bar, int());
|
|
// MOCK_CONST_METHOD0(Bar, int&());
|
|
// };
|
|
//
|
|
// MockFoo foo;
|
|
// // Expects a call to non-const MockFoo::Bar().
|
|
// EXPECT_CALL(foo, Bar());
|
|
// // Expects a call to const MockFoo::Bar().
|
|
// EXPECT_CALL(Const(foo), Bar());
|
|
template <typename T>
|
|
inline const T& Const(const T& x) { return x; }
|
|
|
|
// Constructs an Expectation object that references and co-owns exp.
|
|
inline Expectation::Expectation(internal::ExpectationBase& exp) // NOLINT
|
|
: expectation_base_(exp.GetHandle().expectation_base()) {}
|
|
|
|
} // namespace testing
|
|
|
|
GTEST_DISABLE_MSC_WARNINGS_POP_() // 4251
|
|
|
|
// Implementation for ON_CALL and EXPECT_CALL macros. A separate macro is
|
|
// required to avoid compile errors when the name of the method used in call is
|
|
// a result of macro expansion. See CompilesWithMethodNameExpandedFromMacro
|
|
// tests in internal/gmock-spec-builders_test.cc for more details.
|
|
//
|
|
// This macro supports statements both with and without parameter matchers. If
|
|
// the parameter list is omitted, gMock will accept any parameters, which allows
|
|
// tests to be written that don't need to encode the number of method
|
|
// parameter. This technique may only be used for non-overloaded methods.
|
|
//
|
|
// // These are the same:
|
|
// ON_CALL(mock, NoArgsMethod()).WillByDefault(...);
|
|
// ON_CALL(mock, NoArgsMethod).WillByDefault(...);
|
|
//
|
|
// // As are these:
|
|
// ON_CALL(mock, TwoArgsMethod(_, _)).WillByDefault(...);
|
|
// ON_CALL(mock, TwoArgsMethod).WillByDefault(...);
|
|
//
|
|
// // Can also specify args if you want, of course:
|
|
// ON_CALL(mock, TwoArgsMethod(_, 45)).WillByDefault(...);
|
|
//
|
|
// // Overloads work as long as you specify parameters:
|
|
// ON_CALL(mock, OverloadedMethod(_)).WillByDefault(...);
|
|
// ON_CALL(mock, OverloadedMethod(_, _)).WillByDefault(...);
|
|
//
|
|
// // Oops! Which overload did you want?
|
|
// ON_CALL(mock, OverloadedMethod).WillByDefault(...);
|
|
// => ERROR: call to member function 'gmock_OverloadedMethod' is ambiguous
|
|
//
|
|
// How this works: The mock class uses two overloads of the gmock_Method
|
|
// expectation setter method plus an operator() overload on the MockSpec object.
|
|
// In the matcher list form, the macro expands to:
|
|
//
|
|
// // This statement:
|
|
// ON_CALL(mock, TwoArgsMethod(_, 45))...
|
|
//
|
|
// // ...expands to:
|
|
// mock.gmock_TwoArgsMethod(_, 45)(WithoutMatchers(), nullptr)...
|
|
// |-------------v---------------||------------v-------------|
|
|
// invokes first overload swallowed by operator()
|
|
//
|
|
// // ...which is essentially:
|
|
// mock.gmock_TwoArgsMethod(_, 45)...
|
|
//
|
|
// Whereas the form without a matcher list:
|
|
//
|
|
// // This statement:
|
|
// ON_CALL(mock, TwoArgsMethod)...
|
|
//
|
|
// // ...expands to:
|
|
// mock.gmock_TwoArgsMethod(WithoutMatchers(), nullptr)...
|
|
// |-----------------------v--------------------------|
|
|
// invokes second overload
|
|
//
|
|
// // ...which is essentially:
|
|
// mock.gmock_TwoArgsMethod(_, _)...
|
|
//
|
|
// The WithoutMatchers() argument is used to disambiguate overloads and to
|
|
// block the caller from accidentally invoking the second overload directly. The
|
|
// second argument is an internal type derived from the method signature. The
|
|
// failure to disambiguate two overloads of this method in the ON_CALL statement
|
|
// is how we block callers from setting expectations on overloaded methods.
|
|
#define GMOCK_ON_CALL_IMPL_(mock_expr, Setter, call) \
|
|
((mock_expr).gmock_##call)(::testing::internal::GetWithoutMatchers(), \
|
|
nullptr) \
|
|
.Setter(__FILE__, __LINE__, #mock_expr, #call)
|
|
|
|
#define ON_CALL(obj, call) \
|
|
GMOCK_ON_CALL_IMPL_(obj, InternalDefaultActionSetAt, call)
|
|
|
|
#define EXPECT_CALL(obj, call) \
|
|
GMOCK_ON_CALL_IMPL_(obj, InternalExpectedAt, call)
|
|
|
|
#endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_
|
|
|
|
namespace testing {
|
|
namespace internal {
|
|
template <typename T>
|
|
using identity_t = T;
|
|
|
|
template <typename Pattern>
|
|
struct ThisRefAdjuster {
|
|
template <typename T>
|
|
using AdjustT = typename std::conditional<
|
|
std::is_const<typename std::remove_reference<Pattern>::type>::value,
|
|
typename std::conditional<std::is_lvalue_reference<Pattern>::value,
|
|
const T&, const T&&>::type,
|
|
typename std::conditional<std::is_lvalue_reference<Pattern>::value, T&,
|
|
T&&>::type>::type;
|
|
|
|
template <typename MockType>
|
|
static AdjustT<MockType> Adjust(const MockType& mock) {
|
|
return static_cast<AdjustT<MockType>>(const_cast<MockType&>(mock));
|
|
}
|
|
};
|
|
|
|
} // namespace internal
|
|
|
|
// The style guide prohibits "using" statements in a namespace scope
|
|
// inside a header file. However, the FunctionMocker class template
|
|
// is meant to be defined in the ::testing namespace. The following
|
|
// line is just a trick for working around a bug in MSVC 8.0, which
|
|
// cannot handle it if we define FunctionMocker in ::testing.
|
|
using internal::FunctionMocker;
|
|
} // namespace testing
|
|
|
|
#define MOCK_METHOD(...) \
|
|
GMOCK_PP_VARIADIC_CALL(GMOCK_INTERNAL_MOCK_METHOD_ARG_, __VA_ARGS__)
|
|
|
|
#define GMOCK_INTERNAL_MOCK_METHOD_ARG_1(...) \
|
|
GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__)
|
|
|
|
#define GMOCK_INTERNAL_MOCK_METHOD_ARG_2(...) \
|
|
GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__)
|
|
|
|
#define GMOCK_INTERNAL_MOCK_METHOD_ARG_3(_Ret, _MethodName, _Args) \
|
|
GMOCK_INTERNAL_MOCK_METHOD_ARG_4(_Ret, _MethodName, _Args, ())
|
|
|
|
#define GMOCK_INTERNAL_MOCK_METHOD_ARG_4(_Ret, _MethodName, _Args, _Spec) \
|
|
GMOCK_INTERNAL_ASSERT_PARENTHESIS(_Args); \
|
|
GMOCK_INTERNAL_ASSERT_PARENTHESIS(_Spec); \
|
|
GMOCK_INTERNAL_ASSERT_VALID_SIGNATURE( \
|
|
GMOCK_PP_NARG0 _Args, GMOCK_INTERNAL_SIGNATURE(_Ret, _Args)); \
|
|
GMOCK_INTERNAL_ASSERT_VALID_SPEC(_Spec) \
|
|
GMOCK_INTERNAL_MOCK_METHOD_IMPL( \
|
|
GMOCK_PP_NARG0 _Args, _MethodName, GMOCK_INTERNAL_HAS_CONST(_Spec), \
|
|
GMOCK_INTERNAL_HAS_OVERRIDE(_Spec), GMOCK_INTERNAL_HAS_FINAL(_Spec), \
|
|
GMOCK_INTERNAL_GET_NOEXCEPT_SPEC(_Spec), \
|
|
GMOCK_INTERNAL_GET_CALLTYPE(_Spec), GMOCK_INTERNAL_GET_REF_SPEC(_Spec), \
|
|
(GMOCK_INTERNAL_SIGNATURE(_Ret, _Args)))
|
|
|
|
#define GMOCK_INTERNAL_MOCK_METHOD_ARG_5(...) \
|
|
GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__)
|
|
|
|
#define GMOCK_INTERNAL_MOCK_METHOD_ARG_6(...) \
|
|
GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__)
|
|
|
|
#define GMOCK_INTERNAL_MOCK_METHOD_ARG_7(...) \
|
|
GMOCK_INTERNAL_WRONG_ARITY(__VA_ARGS__)
|
|
|
|
#define GMOCK_INTERNAL_WRONG_ARITY(...) \
|
|
static_assert( \
|
|
false, \
|
|
"MOCK_METHOD must be called with 3 or 4 arguments. _Ret, " \
|
|
"_MethodName, _Args and optionally _Spec. _Args and _Spec must be " \
|
|
"enclosed in parentheses. If _Ret is a type with unprotected commas, " \
|
|
"it must also be enclosed in parentheses.")
|
|
|
|
#define GMOCK_INTERNAL_ASSERT_PARENTHESIS(_Tuple) \
|
|
static_assert( \
|
|
GMOCK_PP_IS_ENCLOSED_PARENS(_Tuple), \
|
|
GMOCK_PP_STRINGIZE(_Tuple) " should be enclosed in parentheses.")
|
|
|
|
#define GMOCK_INTERNAL_ASSERT_VALID_SIGNATURE(_N, ...) \
|
|
static_assert( \
|
|
std::is_function<__VA_ARGS__>::value, \
|
|
"Signature must be a function type, maybe return type contains " \
|
|
"unprotected comma."); \
|
|
static_assert( \
|
|
::testing::tuple_size<typename ::testing::internal::Function< \
|
|
__VA_ARGS__>::ArgumentTuple>::value == _N, \
|
|
"This method does not take " GMOCK_PP_STRINGIZE( \
|
|
_N) " arguments. Parenthesize all types with unprotected commas.")
|
|
|
|
#define GMOCK_INTERNAL_ASSERT_VALID_SPEC(_Spec) \
|
|
GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_ASSERT_VALID_SPEC_ELEMENT, ~, _Spec)
|
|
|
|
#define GMOCK_INTERNAL_MOCK_METHOD_IMPL(_N, _MethodName, _Constness, \
|
|
_Override, _Final, _NoexceptSpec, \
|
|
_CallType, _RefSpec, _Signature) \
|
|
typename ::testing::internal::Function<GMOCK_PP_REMOVE_PARENS( \
|
|
_Signature)>::Result \
|
|
GMOCK_INTERNAL_EXPAND(_CallType) \
|
|
_MethodName(GMOCK_PP_REPEAT(GMOCK_INTERNAL_PARAMETER, _Signature, _N)) \
|
|
GMOCK_PP_IF(_Constness, const, ) _RefSpec _NoexceptSpec \
|
|
GMOCK_PP_IF(_Override, override, ) GMOCK_PP_IF(_Final, final, ) { \
|
|
GMOCK_MOCKER_(_N, _Constness, _MethodName) \
|
|
.SetOwnerAndName(this, #_MethodName); \
|
|
return GMOCK_MOCKER_(_N, _Constness, _MethodName) \
|
|
.Invoke(GMOCK_PP_REPEAT(GMOCK_INTERNAL_FORWARD_ARG, _Signature, _N)); \
|
|
} \
|
|
::testing::MockSpec<GMOCK_PP_REMOVE_PARENS(_Signature)> gmock_##_MethodName( \
|
|
GMOCK_PP_REPEAT(GMOCK_INTERNAL_MATCHER_PARAMETER, _Signature, _N)) \
|
|
GMOCK_PP_IF(_Constness, const, ) _RefSpec { \
|
|
GMOCK_MOCKER_(_N, _Constness, _MethodName).RegisterOwner(this); \
|
|
return GMOCK_MOCKER_(_N, _Constness, _MethodName) \
|
|
.With(GMOCK_PP_REPEAT(GMOCK_INTERNAL_MATCHER_ARGUMENT, , _N)); \
|
|
} \
|
|
::testing::MockSpec<GMOCK_PP_REMOVE_PARENS(_Signature)> gmock_##_MethodName( \
|
|
const ::testing::internal::WithoutMatchers&, \
|
|
GMOCK_PP_IF(_Constness, const, )::testing::internal::Function< \
|
|
GMOCK_PP_REMOVE_PARENS(_Signature)>*) const _RefSpec _NoexceptSpec { \
|
|
return ::testing::internal::ThisRefAdjuster<GMOCK_PP_IF( \
|
|
_Constness, const, ) int _RefSpec>::Adjust(*this) \
|
|
.gmock_##_MethodName(GMOCK_PP_REPEAT( \
|
|
GMOCK_INTERNAL_A_MATCHER_ARGUMENT, _Signature, _N)); \
|
|
} \
|
|
mutable ::testing::FunctionMocker<GMOCK_PP_REMOVE_PARENS(_Signature)> \
|
|
GMOCK_MOCKER_(_N, _Constness, _MethodName)
|
|
|
|
#define GMOCK_INTERNAL_EXPAND(...) __VA_ARGS__
|
|
|
|
// Five Valid modifiers.
|
|
#define GMOCK_INTERNAL_HAS_CONST(_Tuple) \
|
|
GMOCK_PP_HAS_COMMA(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_DETECT_CONST, ~, _Tuple))
|
|
|
|
#define GMOCK_INTERNAL_HAS_OVERRIDE(_Tuple) \
|
|
GMOCK_PP_HAS_COMMA( \
|
|
GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_DETECT_OVERRIDE, ~, _Tuple))
|
|
|
|
#define GMOCK_INTERNAL_HAS_FINAL(_Tuple) \
|
|
GMOCK_PP_HAS_COMMA(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_DETECT_FINAL, ~, _Tuple))
|
|
|
|
#define GMOCK_INTERNAL_GET_NOEXCEPT_SPEC(_Tuple) \
|
|
GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_NOEXCEPT_SPEC_IF_NOEXCEPT, ~, _Tuple)
|
|
|
|
#define GMOCK_INTERNAL_NOEXCEPT_SPEC_IF_NOEXCEPT(_i, _, _elem) \
|
|
GMOCK_PP_IF( \
|
|
GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_NOEXCEPT(_i, _, _elem)), \
|
|
_elem, )
|
|
|
|
#define GMOCK_INTERNAL_GET_REF_SPEC(_Tuple) \
|
|
GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_REF_SPEC_IF_REF, ~, _Tuple)
|
|
|
|
#define GMOCK_INTERNAL_REF_SPEC_IF_REF(_i, _, _elem) \
|
|
GMOCK_PP_IF(GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_REF(_i, _, _elem)), \
|
|
GMOCK_PP_CAT(GMOCK_INTERNAL_UNPACK_, _elem), )
|
|
|
|
#define GMOCK_INTERNAL_GET_CALLTYPE(_Tuple) \
|
|
GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GET_CALLTYPE_IMPL, ~, _Tuple)
|
|
|
|
#define GMOCK_INTERNAL_ASSERT_VALID_SPEC_ELEMENT(_i, _, _elem) \
|
|
static_assert( \
|
|
(GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_CONST(_i, _, _elem)) + \
|
|
GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_OVERRIDE(_i, _, _elem)) + \
|
|
GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_FINAL(_i, _, _elem)) + \
|
|
GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_NOEXCEPT(_i, _, _elem)) + \
|
|
GMOCK_PP_HAS_COMMA(GMOCK_INTERNAL_DETECT_REF(_i, _, _elem)) + \
|
|
GMOCK_INTERNAL_IS_CALLTYPE(_elem)) == 1, \
|
|
GMOCK_PP_STRINGIZE( \
|
|
_elem) " cannot be recognized as a valid specification modifier.");
|
|
|
|
// Modifiers implementation.
|
|
#define GMOCK_INTERNAL_DETECT_CONST(_i, _, _elem) \
|
|
GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_CONST_I_, _elem)
|
|
|
|
#define GMOCK_INTERNAL_DETECT_CONST_I_const ,
|
|
|
|
#define GMOCK_INTERNAL_DETECT_OVERRIDE(_i, _, _elem) \
|
|
GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_OVERRIDE_I_, _elem)
|
|
|
|
#define GMOCK_INTERNAL_DETECT_OVERRIDE_I_override ,
|
|
|
|
#define GMOCK_INTERNAL_DETECT_FINAL(_i, _, _elem) \
|
|
GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_FINAL_I_, _elem)
|
|
|
|
#define GMOCK_INTERNAL_DETECT_FINAL_I_final ,
|
|
|
|
#define GMOCK_INTERNAL_DETECT_NOEXCEPT(_i, _, _elem) \
|
|
GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_NOEXCEPT_I_, _elem)
|
|
|
|
#define GMOCK_INTERNAL_DETECT_NOEXCEPT_I_noexcept ,
|
|
|
|
#define GMOCK_INTERNAL_DETECT_REF(_i, _, _elem) \
|
|
GMOCK_PP_CAT(GMOCK_INTERNAL_DETECT_REF_I_, _elem)
|
|
|
|
#define GMOCK_INTERNAL_DETECT_REF_I_ref ,
|
|
|
|
#define GMOCK_INTERNAL_UNPACK_ref(x) x
|
|
|
|
#define GMOCK_INTERNAL_GET_CALLTYPE_IMPL(_i, _, _elem) \
|
|
GMOCK_PP_IF(GMOCK_INTERNAL_IS_CALLTYPE(_elem), \
|
|
GMOCK_INTERNAL_GET_VALUE_CALLTYPE, GMOCK_PP_EMPTY) \
|
|
(_elem)
|
|
|
|
// TODO(iserna): GMOCK_INTERNAL_IS_CALLTYPE and
|
|
// GMOCK_INTERNAL_GET_VALUE_CALLTYPE needed more expansions to work on windows
|
|
// maybe they can be simplified somehow.
|
|
#define GMOCK_INTERNAL_IS_CALLTYPE(_arg) \
|
|
GMOCK_INTERNAL_IS_CALLTYPE_I( \
|
|
GMOCK_PP_CAT(GMOCK_INTERNAL_IS_CALLTYPE_HELPER_, _arg))
|
|
#define GMOCK_INTERNAL_IS_CALLTYPE_I(_arg) GMOCK_PP_IS_ENCLOSED_PARENS(_arg)
|
|
|
|
#define GMOCK_INTERNAL_GET_VALUE_CALLTYPE(_arg) \
|
|
GMOCK_INTERNAL_GET_VALUE_CALLTYPE_I( \
|
|
GMOCK_PP_CAT(GMOCK_INTERNAL_IS_CALLTYPE_HELPER_, _arg))
|
|
#define GMOCK_INTERNAL_GET_VALUE_CALLTYPE_I(_arg) \
|
|
GMOCK_PP_IDENTITY _arg
|
|
|
|
#define GMOCK_INTERNAL_IS_CALLTYPE_HELPER_Calltype
|
|
|
|
// Note: The use of `identity_t` here allows _Ret to represent return types that
|
|
// would normally need to be specified in a different way. For example, a method
|
|
// returning a function pointer must be written as
|
|
//
|
|
// fn_ptr_return_t (*method(method_args_t...))(fn_ptr_args_t...)
|
|
//
|
|
// But we only support placing the return type at the beginning. To handle this,
|
|
// we wrap all calls in identity_t, so that a declaration will be expanded to
|
|
//
|
|
// identity_t<fn_ptr_return_t (*)(fn_ptr_args_t...)> method(method_args_t...)
|
|
//
|
|
// This allows us to work around the syntactic oddities of function/method
|
|
// types.
|
|
#define GMOCK_INTERNAL_SIGNATURE(_Ret, _Args) \
|
|
::testing::internal::identity_t<GMOCK_PP_IF(GMOCK_PP_IS_BEGIN_PARENS(_Ret), \
|
|
GMOCK_PP_REMOVE_PARENS, \
|
|
GMOCK_PP_IDENTITY)(_Ret)>( \
|
|
GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GET_TYPE, _, _Args))
|
|
|
|
#define GMOCK_INTERNAL_GET_TYPE(_i, _, _elem) \
|
|
GMOCK_PP_COMMA_IF(_i) \
|
|
GMOCK_PP_IF(GMOCK_PP_IS_BEGIN_PARENS(_elem), GMOCK_PP_REMOVE_PARENS, \
|
|
GMOCK_PP_IDENTITY) \
|
|
(_elem)
|
|
|
|
#define GMOCK_INTERNAL_PARAMETER(_i, _Signature, _) \
|
|
GMOCK_PP_COMMA_IF(_i) \
|
|
GMOCK_INTERNAL_ARG_O(_i, GMOCK_PP_REMOVE_PARENS(_Signature)) \
|
|
gmock_a##_i
|
|
|
|
#define GMOCK_INTERNAL_FORWARD_ARG(_i, _Signature, _) \
|
|
GMOCK_PP_COMMA_IF(_i) \
|
|
::std::forward<GMOCK_INTERNAL_ARG_O( \
|
|
_i, GMOCK_PP_REMOVE_PARENS(_Signature))>(gmock_a##_i)
|
|
|
|
#define GMOCK_INTERNAL_MATCHER_PARAMETER(_i, _Signature, _) \
|
|
GMOCK_PP_COMMA_IF(_i) \
|
|
GMOCK_INTERNAL_MATCHER_O(_i, GMOCK_PP_REMOVE_PARENS(_Signature)) \
|
|
gmock_a##_i
|
|
|
|
#define GMOCK_INTERNAL_MATCHER_ARGUMENT(_i, _1, _2) \
|
|
GMOCK_PP_COMMA_IF(_i) \
|
|
gmock_a##_i
|
|
|
|
#define GMOCK_INTERNAL_A_MATCHER_ARGUMENT(_i, _Signature, _) \
|
|
GMOCK_PP_COMMA_IF(_i) \
|
|
::testing::A<GMOCK_INTERNAL_ARG_O(_i, GMOCK_PP_REMOVE_PARENS(_Signature))>()
|
|
|
|
#define GMOCK_INTERNAL_ARG_O(_i, ...) \
|
|
typename ::testing::internal::Function<__VA_ARGS__>::template Arg<_i>::type
|
|
|
|
#define GMOCK_INTERNAL_MATCHER_O(_i, ...) \
|
|
const ::testing::Matcher<typename ::testing::internal::Function< \
|
|
__VA_ARGS__>::template Arg<_i>::type>&
|
|
|
|
#define MOCK_METHOD0(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 0, __VA_ARGS__)
|
|
#define MOCK_METHOD1(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 1, __VA_ARGS__)
|
|
#define MOCK_METHOD2(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 2, __VA_ARGS__)
|
|
#define MOCK_METHOD3(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 3, __VA_ARGS__)
|
|
#define MOCK_METHOD4(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 4, __VA_ARGS__)
|
|
#define MOCK_METHOD5(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 5, __VA_ARGS__)
|
|
#define MOCK_METHOD6(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 6, __VA_ARGS__)
|
|
#define MOCK_METHOD7(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 7, __VA_ARGS__)
|
|
#define MOCK_METHOD8(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 8, __VA_ARGS__)
|
|
#define MOCK_METHOD9(m, ...) GMOCK_INTERNAL_MOCK_METHODN(, , m, 9, __VA_ARGS__)
|
|
#define MOCK_METHOD10(m, ...) \
|
|
GMOCK_INTERNAL_MOCK_METHODN(, , m, 10, __VA_ARGS__)
|
|
|
|
#define MOCK_CONST_METHOD0(m, ...) \
|
|
GMOCK_INTERNAL_MOCK_METHODN(const, , m, 0, __VA_ARGS__)
|
|
#define MOCK_CONST_METHOD1(m, ...) \
|
|
GMOCK_INTERNAL_MOCK_METHODN(const, , m, 1, __VA_ARGS__)
|
|
#define MOCK_CONST_METHOD2(m, ...) \
|
|
GMOCK_INTERNAL_MOCK_METHODN(const, , m, 2, __VA_ARGS__)
|
|
#define MOCK_CONST_METHOD3(m, ...) \
|
|
GMOCK_INTERNAL_MOCK_METHODN(const, , m, 3, __VA_ARGS__)
|
|
#define MOCK_CONST_METHOD4(m, ...) \
|
|
GMOCK_INTERNAL_MOCK_METHODN(const, , m, 4, __VA_ARGS__)
|
|
#define MOCK_CONST_METHOD5(m, ...) \
|
|
GMOCK_INTERNAL_MOCK_METHODN(const, , m, 5, __VA_ARGS__)
|
|
#define MOCK_CONST_METHOD6(m, ...) \
|
|
GMOCK_INTERNAL_MOCK_METHODN(const, , m, 6, __VA_ARGS__)
|
|
#define MOCK_CONST_METHOD7(m, ...) \
|
|
GMOCK_INTERNAL_MOCK_METHODN(const, , m, 7, __VA_ARGS__)
|
|
#define MOCK_CONST_METHOD8(m, ...) \
|
|
GMOCK_INTERNAL_MOCK_METHODN(const, , m, 8, __VA_ARGS__)
|
|
#define MOCK_CONST_METHOD9(m, ...) \
|
|
GMOCK_INTERNAL_MOCK_METHODN(const, , m, 9, __VA_ARGS__)
|
|
#define MOCK_CONST_METHOD10(m, ...) \
|
|
GMOCK_INTERNAL_MOCK_METHODN(const, , m, 10, __VA_ARGS__)
|
|
|
|
#define MOCK_METHOD0_T(m, ...) MOCK_METHOD0(m, __VA_ARGS__)
|
|
#define MOCK_METHOD1_T(m, ...) MOCK_METHOD1(m, __VA_ARGS__)
|
|
#define MOCK_METHOD2_T(m, ...) MOCK_METHOD2(m, __VA_ARGS__)
|
|
#define MOCK_METHOD3_T(m, ...) MOCK_METHOD3(m, __VA_ARGS__)
|
|
#define MOCK_METHOD4_T(m, ...) MOCK_METHOD4(m, __VA_ARGS__)
|
|
#define MOCK_METHOD5_T(m, ...) MOCK_METHOD5(m, __VA_ARGS__)
|
|
#define MOCK_METHOD6_T(m, ...) MOCK_METHOD6(m, __VA_ARGS__)
|
|
#define MOCK_METHOD7_T(m, ...) MOCK_METHOD7(m, __VA_ARGS__)
|
|
#define MOCK_METHOD8_T(m, ...) MOCK_METHOD8(m, __VA_ARGS__)
|
|
#define MOCK_METHOD9_T(m, ...) MOCK_METHOD9(m, __VA_ARGS__)
|
|
#define MOCK_METHOD10_T(m, ...) MOCK_METHOD10(m, __VA_ARGS__)
|
|
|
|
#define MOCK_CONST_METHOD0_T(m, ...) MOCK_CONST_METHOD0(m, __VA_ARGS__)
|
|
#define MOCK_CONST_METHOD1_T(m, ...) MOCK_CONST_METHOD1(m, __VA_ARGS__)
|
|
#define MOCK_CONST_METHOD2_T(m, ...) MOCK_CONST_METHOD2(m, __VA_ARGS__)
|
|
#define MOCK_CONST_METHOD3_T(m, ...) MOCK_CONST_METHOD3(m, __VA_ARGS__)
|
|
#define MOCK_CONST_METHOD4_T(m, ...) MOCK_CONST_METHOD4(m, __VA_ARGS__)
|
|
#define MOCK_CONST_METHOD5_T(m, ...) MOCK_CONST_METHOD5(m, __VA_ARGS__)
|
|
#define MOCK_CONST_METHOD6_T(m, ...) MOCK_CONST_METHOD6(m, __VA_ARGS__)
|
|
#define MOCK_CONST_METHOD7_T(m, ...) MOCK_CONST_METHOD7(m, __VA_ARGS__)
|
|
#define MOCK_CONST_METHOD8_T(m, ...) MOCK_CONST_METHOD8(m, __VA_ARGS__)
|
|
#define MOCK_CONST_METHOD9_T(m, ...) MOCK_CONST_METHOD9(m, __VA_ARGS__)
|
|
#define MOCK_CONST_METHOD10_T(m, ...) MOCK_CONST_METHOD10(m, __VA_ARGS__)
|
|
|
|
#define MOCK_METHOD0_WITH_CALLTYPE(ct, m, ...) \
|
|
GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 0, __VA_ARGS__)
|
|
#define MOCK_METHOD1_WITH_CALLTYPE(ct, m, ...) \
|
|
GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 1, __VA_ARGS__)
|
|
#define MOCK_METHOD2_WITH_CALLTYPE(ct, m, ...) \
|
|
GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 2, __VA_ARGS__)
|
|
#define MOCK_METHOD3_WITH_CALLTYPE(ct, m, ...) \
|
|
GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 3, __VA_ARGS__)
|
|
#define MOCK_METHOD4_WITH_CALLTYPE(ct, m, ...) \
|
|
GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 4, __VA_ARGS__)
|
|
#define MOCK_METHOD5_WITH_CALLTYPE(ct, m, ...) \
|
|
GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 5, __VA_ARGS__)
|
|
#define MOCK_METHOD6_WITH_CALLTYPE(ct, m, ...) \
|
|
GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 6, __VA_ARGS__)
|
|
#define MOCK_METHOD7_WITH_CALLTYPE(ct, m, ...) \
|
|
GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 7, __VA_ARGS__)
|
|
#define MOCK_METHOD8_WITH_CALLTYPE(ct, m, ...) \
|
|
GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 8, __VA_ARGS__)
|
|
#define MOCK_METHOD9_WITH_CALLTYPE(ct, m, ...) \
|
|
GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 9, __VA_ARGS__)
|
|
#define MOCK_METHOD10_WITH_CALLTYPE(ct, m, ...) \
|
|
GMOCK_INTERNAL_MOCK_METHODN(, ct, m, 10, __VA_ARGS__)
|
|
|
|
#define MOCK_CONST_METHOD0_WITH_CALLTYPE(ct, m, ...) \
|
|
GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 0, __VA_ARGS__)
|
|
#define MOCK_CONST_METHOD1_WITH_CALLTYPE(ct, m, ...) \
|
|
GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 1, __VA_ARGS__)
|
|
#define MOCK_CONST_METHOD2_WITH_CALLTYPE(ct, m, ...) \
|
|
GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 2, __VA_ARGS__)
|
|
#define MOCK_CONST_METHOD3_WITH_CALLTYPE(ct, m, ...) \
|
|
GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 3, __VA_ARGS__)
|
|
#define MOCK_CONST_METHOD4_WITH_CALLTYPE(ct, m, ...) \
|
|
GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 4, __VA_ARGS__)
|
|
#define MOCK_CONST_METHOD5_WITH_CALLTYPE(ct, m, ...) \
|
|
GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 5, __VA_ARGS__)
|
|
#define MOCK_CONST_METHOD6_WITH_CALLTYPE(ct, m, ...) \
|
|
GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 6, __VA_ARGS__)
|
|
#define MOCK_CONST_METHOD7_WITH_CALLTYPE(ct, m, ...) \
|
|
GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 7, __VA_ARGS__)
|
|
#define MOCK_CONST_METHOD8_WITH_CALLTYPE(ct, m, ...) \
|
|
GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 8, __VA_ARGS__)
|
|
#define MOCK_CONST_METHOD9_WITH_CALLTYPE(ct, m, ...) \
|
|
GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 9, __VA_ARGS__)
|
|
#define MOCK_CONST_METHOD10_WITH_CALLTYPE(ct, m, ...) \
|
|
GMOCK_INTERNAL_MOCK_METHODN(const, ct, m, 10, __VA_ARGS__)
|
|
|
|
#define MOCK_METHOD0_T_WITH_CALLTYPE(ct, m, ...) \
|
|
MOCK_METHOD0_WITH_CALLTYPE(ct, m, __VA_ARGS__)
|
|
#define MOCK_METHOD1_T_WITH_CALLTYPE(ct, m, ...) \
|
|
MOCK_METHOD1_WITH_CALLTYPE(ct, m, __VA_ARGS__)
|
|
#define MOCK_METHOD2_T_WITH_CALLTYPE(ct, m, ...) \
|
|
MOCK_METHOD2_WITH_CALLTYPE(ct, m, __VA_ARGS__)
|
|
#define MOCK_METHOD3_T_WITH_CALLTYPE(ct, m, ...) \
|
|
MOCK_METHOD3_WITH_CALLTYPE(ct, m, __VA_ARGS__)
|
|
#define MOCK_METHOD4_T_WITH_CALLTYPE(ct, m, ...) \
|
|
MOCK_METHOD4_WITH_CALLTYPE(ct, m, __VA_ARGS__)
|
|
#define MOCK_METHOD5_T_WITH_CALLTYPE(ct, m, ...) \
|
|
MOCK_METHOD5_WITH_CALLTYPE(ct, m, __VA_ARGS__)
|
|
#define MOCK_METHOD6_T_WITH_CALLTYPE(ct, m, ...) \
|
|
MOCK_METHOD6_WITH_CALLTYPE(ct, m, __VA_ARGS__)
|
|
#define MOCK_METHOD7_T_WITH_CALLTYPE(ct, m, ...) \
|
|
MOCK_METHOD7_WITH_CALLTYPE(ct, m, __VA_ARGS__)
|
|
#define MOCK_METHOD8_T_WITH_CALLTYPE(ct, m, ...) \
|
|
MOCK_METHOD8_WITH_CALLTYPE(ct, m, __VA_ARGS__)
|
|
#define MOCK_METHOD9_T_WITH_CALLTYPE(ct, m, ...) \
|
|
MOCK_METHOD9_WITH_CALLTYPE(ct, m, __VA_ARGS__)
|
|
#define MOCK_METHOD10_T_WITH_CALLTYPE(ct, m, ...) \
|
|
MOCK_METHOD10_WITH_CALLTYPE(ct, m, __VA_ARGS__)
|
|
|
|
#define MOCK_CONST_METHOD0_T_WITH_CALLTYPE(ct, m, ...) \
|
|
MOCK_CONST_METHOD0_WITH_CALLTYPE(ct, m, __VA_ARGS__)
|
|
#define MOCK_CONST_METHOD1_T_WITH_CALLTYPE(ct, m, ...) \
|
|
MOCK_CONST_METHOD1_WITH_CALLTYPE(ct, m, __VA_ARGS__)
|
|
#define MOCK_CONST_METHOD2_T_WITH_CALLTYPE(ct, m, ...) \
|
|
MOCK_CONST_METHOD2_WITH_CALLTYPE(ct, m, __VA_ARGS__)
|
|
#define MOCK_CONST_METHOD3_T_WITH_CALLTYPE(ct, m, ...) \
|
|
MOCK_CONST_METHOD3_WITH_CALLTYPE(ct, m, __VA_ARGS__)
|
|
#define MOCK_CONST_METHOD4_T_WITH_CALLTYPE(ct, m, ...) \
|
|
MOCK_CONST_METHOD4_WITH_CALLTYPE(ct, m, __VA_ARGS__)
|
|
#define MOCK_CONST_METHOD5_T_WITH_CALLTYPE(ct, m, ...) \
|
|
MOCK_CONST_METHOD5_WITH_CALLTYPE(ct, m, __VA_ARGS__)
|
|
#define MOCK_CONST_METHOD6_T_WITH_CALLTYPE(ct, m, ...) \
|
|
MOCK_CONST_METHOD6_WITH_CALLTYPE(ct, m, __VA_ARGS__)
|
|
#define MOCK_CONST_METHOD7_T_WITH_CALLTYPE(ct, m, ...) \
|
|
MOCK_CONST_METHOD7_WITH_CALLTYPE(ct, m, __VA_ARGS__)
|
|
#define MOCK_CONST_METHOD8_T_WITH_CALLTYPE(ct, m, ...) \
|
|
MOCK_CONST_METHOD8_WITH_CALLTYPE(ct, m, __VA_ARGS__)
|
|
#define MOCK_CONST_METHOD9_T_WITH_CALLTYPE(ct, m, ...) \
|
|
MOCK_CONST_METHOD9_WITH_CALLTYPE(ct, m, __VA_ARGS__)
|
|
#define MOCK_CONST_METHOD10_T_WITH_CALLTYPE(ct, m, ...) \
|
|
MOCK_CONST_METHOD10_WITH_CALLTYPE(ct, m, __VA_ARGS__)
|
|
|
|
#define GMOCK_INTERNAL_MOCK_METHODN(constness, ct, Method, args_num, ...) \
|
|
GMOCK_INTERNAL_ASSERT_VALID_SIGNATURE( \
|
|
args_num, ::testing::internal::identity_t<__VA_ARGS__>); \
|
|
GMOCK_INTERNAL_MOCK_METHOD_IMPL( \
|
|
args_num, Method, GMOCK_PP_NARG0(constness), 0, 0, , ct, , \
|
|
(::testing::internal::identity_t<__VA_ARGS__>))
|
|
|
|
#define GMOCK_MOCKER_(arity, constness, Method) \
|
|
GTEST_CONCAT_TOKEN_(gmock##constness##arity##_##Method##_, __LINE__)
|
|
|
|
#endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_FUNCTION_MOCKER_H_
|
|
// Copyright 2007, Google Inc.
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
// Google Mock - a framework for writing C++ mock classes.
|
|
//
|
|
// This file implements some commonly used variadic actions.
|
|
|
|
// GOOGLETEST_CM0002 DO NOT DELETE
|
|
|
|
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_ACTIONS_H_
|
|
#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_ACTIONS_H_
|
|
|
|
#include <memory>
|
|
#include <utility>
|
|
|
|
|
|
// Include any custom callback actions added by the local installation.
|
|
// GOOGLETEST_CM0002 DO NOT DELETE
|
|
|
|
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_GENERATED_ACTIONS_H_
|
|
#define GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_GENERATED_ACTIONS_H_
|
|
|
|
#endif // GOOGLEMOCK_INCLUDE_GMOCK_INTERNAL_CUSTOM_GMOCK_GENERATED_ACTIONS_H_
|
|
|
|
// Sometimes you want to give an action explicit template parameters
|
|
// that cannot be inferred from its value parameters. ACTION() and
|
|
// ACTION_P*() don't support that. ACTION_TEMPLATE() remedies that
|
|
// and can be viewed as an extension to ACTION() and ACTION_P*().
|
|
//
|
|
// The syntax:
|
|
//
|
|
// ACTION_TEMPLATE(ActionName,
|
|
// HAS_m_TEMPLATE_PARAMS(kind1, name1, ..., kind_m, name_m),
|
|
// AND_n_VALUE_PARAMS(p1, ..., p_n)) { statements; }
|
|
//
|
|
// defines an action template that takes m explicit template
|
|
// parameters and n value parameters. name_i is the name of the i-th
|
|
// template parameter, and kind_i specifies whether it's a typename,
|
|
// an integral constant, or a template. p_i is the name of the i-th
|
|
// value parameter.
|
|
//
|
|
// Example:
|
|
//
|
|
// // DuplicateArg<k, T>(output) converts the k-th argument of the mock
|
|
// // function to type T and copies it to *output.
|
|
// ACTION_TEMPLATE(DuplicateArg,
|
|
// HAS_2_TEMPLATE_PARAMS(int, k, typename, T),
|
|
// AND_1_VALUE_PARAMS(output)) {
|
|
// *output = T(::std::get<k>(args));
|
|
// }
|
|
// ...
|
|
// int n;
|
|
// EXPECT_CALL(mock, Foo(_, _))
|
|
// .WillOnce(DuplicateArg<1, unsigned char>(&n));
|
|
//
|
|
// To create an instance of an action template, write:
|
|
//
|
|
// ActionName<t1, ..., t_m>(v1, ..., v_n)
|
|
//
|
|
// where the ts are the template arguments and the vs are the value
|
|
// arguments. The value argument types are inferred by the compiler.
|
|
// If you want to explicitly specify the value argument types, you can
|
|
// provide additional template arguments:
|
|
//
|
|
// ActionName<t1, ..., t_m, u1, ..., u_k>(v1, ..., v_n)
|
|
//
|
|
// where u_i is the desired type of v_i.
|
|
//
|
|
// ACTION_TEMPLATE and ACTION/ACTION_P* can be overloaded on the
|
|
// number of value parameters, but not on the number of template
|
|
// parameters. Without the restriction, the meaning of the following
|
|
// is unclear:
|
|
//
|
|
// OverloadedAction<int, bool>(x);
|
|
//
|
|
// Are we using a single-template-parameter action where 'bool' refers
|
|
// to the type of x, or are we using a two-template-parameter action
|
|
// where the compiler is asked to infer the type of x?
|
|
//
|
|
// Implementation notes:
|
|
//
|
|
// GMOCK_INTERNAL_*_HAS_m_TEMPLATE_PARAMS and
|
|
// GMOCK_INTERNAL_*_AND_n_VALUE_PARAMS are internal macros for
|
|
// implementing ACTION_TEMPLATE. The main trick we use is to create
|
|
// new macro invocations when expanding a macro. For example, we have
|
|
//
|
|
// #define ACTION_TEMPLATE(name, template_params, value_params)
|
|
// ... GMOCK_INTERNAL_DECL_##template_params ...
|
|
//
|
|
// which causes ACTION_TEMPLATE(..., HAS_1_TEMPLATE_PARAMS(typename, T), ...)
|
|
// to expand to
|
|
//
|
|
// ... GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS(typename, T) ...
|
|
//
|
|
// Since GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS is a macro, the
|
|
// preprocessor will continue to expand it to
|
|
//
|
|
// ... typename T ...
|
|
//
|
|
// This technique conforms to the C++ standard and is portable. It
|
|
// allows us to implement action templates using O(N) code, where N is
|
|
// the maximum number of template/value parameters supported. Without
|
|
// using it, we'd have to devote O(N^2) amount of code to implement all
|
|
// combinations of m and n.
|
|
|
|
// Declares the template parameters.
|
|
#define GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS(kind0, name0) kind0 name0
|
|
#define GMOCK_INTERNAL_DECL_HAS_2_TEMPLATE_PARAMS(kind0, name0, kind1, \
|
|
name1) kind0 name0, kind1 name1
|
|
#define GMOCK_INTERNAL_DECL_HAS_3_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
|
|
kind2, name2) kind0 name0, kind1 name1, kind2 name2
|
|
#define GMOCK_INTERNAL_DECL_HAS_4_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
|
|
kind2, name2, kind3, name3) kind0 name0, kind1 name1, kind2 name2, \
|
|
kind3 name3
|
|
#define GMOCK_INTERNAL_DECL_HAS_5_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
|
|
kind2, name2, kind3, name3, kind4, name4) kind0 name0, kind1 name1, \
|
|
kind2 name2, kind3 name3, kind4 name4
|
|
#define GMOCK_INTERNAL_DECL_HAS_6_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
|
|
kind2, name2, kind3, name3, kind4, name4, kind5, name5) kind0 name0, \
|
|
kind1 name1, kind2 name2, kind3 name3, kind4 name4, kind5 name5
|
|
#define GMOCK_INTERNAL_DECL_HAS_7_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
|
|
kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \
|
|
name6) kind0 name0, kind1 name1, kind2 name2, kind3 name3, kind4 name4, \
|
|
kind5 name5, kind6 name6
|
|
#define GMOCK_INTERNAL_DECL_HAS_8_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
|
|
kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \
|
|
kind7, name7) kind0 name0, kind1 name1, kind2 name2, kind3 name3, \
|
|
kind4 name4, kind5 name5, kind6 name6, kind7 name7
|
|
#define GMOCK_INTERNAL_DECL_HAS_9_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
|
|
kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \
|
|
kind7, name7, kind8, name8) kind0 name0, kind1 name1, kind2 name2, \
|
|
kind3 name3, kind4 name4, kind5 name5, kind6 name6, kind7 name7, \
|
|
kind8 name8
|
|
#define GMOCK_INTERNAL_DECL_HAS_10_TEMPLATE_PARAMS(kind0, name0, kind1, \
|
|
name1, kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \
|
|
name6, kind7, name7, kind8, name8, kind9, name9) kind0 name0, \
|
|
kind1 name1, kind2 name2, kind3 name3, kind4 name4, kind5 name5, \
|
|
kind6 name6, kind7 name7, kind8 name8, kind9 name9
|
|
|
|
// Lists the template parameters.
|
|
#define GMOCK_INTERNAL_LIST_HAS_1_TEMPLATE_PARAMS(kind0, name0) name0
|
|
#define GMOCK_INTERNAL_LIST_HAS_2_TEMPLATE_PARAMS(kind0, name0, kind1, \
|
|
name1) name0, name1
|
|
#define GMOCK_INTERNAL_LIST_HAS_3_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
|
|
kind2, name2) name0, name1, name2
|
|
#define GMOCK_INTERNAL_LIST_HAS_4_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
|
|
kind2, name2, kind3, name3) name0, name1, name2, name3
|
|
#define GMOCK_INTERNAL_LIST_HAS_5_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
|
|
kind2, name2, kind3, name3, kind4, name4) name0, name1, name2, name3, \
|
|
name4
|
|
#define GMOCK_INTERNAL_LIST_HAS_6_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
|
|
kind2, name2, kind3, name3, kind4, name4, kind5, name5) name0, name1, \
|
|
name2, name3, name4, name5
|
|
#define GMOCK_INTERNAL_LIST_HAS_7_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
|
|
kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \
|
|
name6) name0, name1, name2, name3, name4, name5, name6
|
|
#define GMOCK_INTERNAL_LIST_HAS_8_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
|
|
kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \
|
|
kind7, name7) name0, name1, name2, name3, name4, name5, name6, name7
|
|
#define GMOCK_INTERNAL_LIST_HAS_9_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
|
|
kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \
|
|
kind7, name7, kind8, name8) name0, name1, name2, name3, name4, name5, \
|
|
name6, name7, name8
|
|
#define GMOCK_INTERNAL_LIST_HAS_10_TEMPLATE_PARAMS(kind0, name0, kind1, \
|
|
name1, kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \
|
|
name6, kind7, name7, kind8, name8, kind9, name9) name0, name1, name2, \
|
|
name3, name4, name5, name6, name7, name8, name9
|
|
|
|
// Declares the types of value parameters.
|
|
#define GMOCK_INTERNAL_DECL_TYPE_AND_0_VALUE_PARAMS()
|
|
#define GMOCK_INTERNAL_DECL_TYPE_AND_1_VALUE_PARAMS(p0) , typename p0##_type
|
|
#define GMOCK_INTERNAL_DECL_TYPE_AND_2_VALUE_PARAMS(p0, p1) , \
|
|
typename p0##_type, typename p1##_type
|
|
#define GMOCK_INTERNAL_DECL_TYPE_AND_3_VALUE_PARAMS(p0, p1, p2) , \
|
|
typename p0##_type, typename p1##_type, typename p2##_type
|
|
#define GMOCK_INTERNAL_DECL_TYPE_AND_4_VALUE_PARAMS(p0, p1, p2, p3) , \
|
|
typename p0##_type, typename p1##_type, typename p2##_type, \
|
|
typename p3##_type
|
|
#define GMOCK_INTERNAL_DECL_TYPE_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) , \
|
|
typename p0##_type, typename p1##_type, typename p2##_type, \
|
|
typename p3##_type, typename p4##_type
|
|
#define GMOCK_INTERNAL_DECL_TYPE_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) , \
|
|
typename p0##_type, typename p1##_type, typename p2##_type, \
|
|
typename p3##_type, typename p4##_type, typename p5##_type
|
|
#define GMOCK_INTERNAL_DECL_TYPE_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
|
|
p6) , typename p0##_type, typename p1##_type, typename p2##_type, \
|
|
typename p3##_type, typename p4##_type, typename p5##_type, \
|
|
typename p6##_type
|
|
#define GMOCK_INTERNAL_DECL_TYPE_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
|
|
p6, p7) , typename p0##_type, typename p1##_type, typename p2##_type, \
|
|
typename p3##_type, typename p4##_type, typename p5##_type, \
|
|
typename p6##_type, typename p7##_type
|
|
#define GMOCK_INTERNAL_DECL_TYPE_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
|
|
p6, p7, p8) , typename p0##_type, typename p1##_type, typename p2##_type, \
|
|
typename p3##_type, typename p4##_type, typename p5##_type, \
|
|
typename p6##_type, typename p7##_type, typename p8##_type
|
|
#define GMOCK_INTERNAL_DECL_TYPE_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
|
|
p6, p7, p8, p9) , typename p0##_type, typename p1##_type, \
|
|
typename p2##_type, typename p3##_type, typename p4##_type, \
|
|
typename p5##_type, typename p6##_type, typename p7##_type, \
|
|
typename p8##_type, typename p9##_type
|
|
|
|
// Initializes the value parameters.
|
|
#define GMOCK_INTERNAL_INIT_AND_0_VALUE_PARAMS()\
|
|
()
|
|
#define GMOCK_INTERNAL_INIT_AND_1_VALUE_PARAMS(p0)\
|
|
(p0##_type gmock_p0) : p0(::std::move(gmock_p0))
|
|
#define GMOCK_INTERNAL_INIT_AND_2_VALUE_PARAMS(p0, p1)\
|
|
(p0##_type gmock_p0, p1##_type gmock_p1) : p0(::std::move(gmock_p0)), \
|
|
p1(::std::move(gmock_p1))
|
|
#define GMOCK_INTERNAL_INIT_AND_3_VALUE_PARAMS(p0, p1, p2)\
|
|
(p0##_type gmock_p0, p1##_type gmock_p1, \
|
|
p2##_type gmock_p2) : p0(::std::move(gmock_p0)), \
|
|
p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2))
|
|
#define GMOCK_INTERNAL_INIT_AND_4_VALUE_PARAMS(p0, p1, p2, p3)\
|
|
(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
|
|
p3##_type gmock_p3) : p0(::std::move(gmock_p0)), \
|
|
p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \
|
|
p3(::std::move(gmock_p3))
|
|
#define GMOCK_INTERNAL_INIT_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4)\
|
|
(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
|
|
p3##_type gmock_p3, p4##_type gmock_p4) : p0(::std::move(gmock_p0)), \
|
|
p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \
|
|
p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4))
|
|
#define GMOCK_INTERNAL_INIT_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5)\
|
|
(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
|
|
p3##_type gmock_p3, p4##_type gmock_p4, \
|
|
p5##_type gmock_p5) : p0(::std::move(gmock_p0)), \
|
|
p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \
|
|
p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \
|
|
p5(::std::move(gmock_p5))
|
|
#define GMOCK_INTERNAL_INIT_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6)\
|
|
(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
|
|
p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \
|
|
p6##_type gmock_p6) : p0(::std::move(gmock_p0)), \
|
|
p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \
|
|
p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \
|
|
p5(::std::move(gmock_p5)), p6(::std::move(gmock_p6))
|
|
#define GMOCK_INTERNAL_INIT_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7)\
|
|
(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
|
|
p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \
|
|
p6##_type gmock_p6, p7##_type gmock_p7) : p0(::std::move(gmock_p0)), \
|
|
p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \
|
|
p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \
|
|
p5(::std::move(gmock_p5)), p6(::std::move(gmock_p6)), \
|
|
p7(::std::move(gmock_p7))
|
|
#define GMOCK_INTERNAL_INIT_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
|
|
p7, p8)\
|
|
(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
|
|
p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \
|
|
p6##_type gmock_p6, p7##_type gmock_p7, \
|
|
p8##_type gmock_p8) : p0(::std::move(gmock_p0)), \
|
|
p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \
|
|
p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \
|
|
p5(::std::move(gmock_p5)), p6(::std::move(gmock_p6)), \
|
|
p7(::std::move(gmock_p7)), p8(::std::move(gmock_p8))
|
|
#define GMOCK_INTERNAL_INIT_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
|
|
p7, p8, p9)\
|
|
(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
|
|
p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \
|
|
p6##_type gmock_p6, p7##_type gmock_p7, p8##_type gmock_p8, \
|
|
p9##_type gmock_p9) : p0(::std::move(gmock_p0)), \
|
|
p1(::std::move(gmock_p1)), p2(::std::move(gmock_p2)), \
|
|
p3(::std::move(gmock_p3)), p4(::std::move(gmock_p4)), \
|
|
p5(::std::move(gmock_p5)), p6(::std::move(gmock_p6)), \
|
|
p7(::std::move(gmock_p7)), p8(::std::move(gmock_p8)), \
|
|
p9(::std::move(gmock_p9))
|
|
|
|
// Defines the copy constructor
|
|
#define GMOCK_INTERNAL_DEFN_COPY_AND_0_VALUE_PARAMS() \
|
|
{} // Avoid https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82134
|
|
#define GMOCK_INTERNAL_DEFN_COPY_AND_1_VALUE_PARAMS(...) = default;
|
|
#define GMOCK_INTERNAL_DEFN_COPY_AND_2_VALUE_PARAMS(...) = default;
|
|
#define GMOCK_INTERNAL_DEFN_COPY_AND_3_VALUE_PARAMS(...) = default;
|
|
#define GMOCK_INTERNAL_DEFN_COPY_AND_4_VALUE_PARAMS(...) = default;
|
|
#define GMOCK_INTERNAL_DEFN_COPY_AND_5_VALUE_PARAMS(...) = default;
|
|
#define GMOCK_INTERNAL_DEFN_COPY_AND_6_VALUE_PARAMS(...) = default;
|
|
#define GMOCK_INTERNAL_DEFN_COPY_AND_7_VALUE_PARAMS(...) = default;
|
|
#define GMOCK_INTERNAL_DEFN_COPY_AND_8_VALUE_PARAMS(...) = default;
|
|
#define GMOCK_INTERNAL_DEFN_COPY_AND_9_VALUE_PARAMS(...) = default;
|
|
#define GMOCK_INTERNAL_DEFN_COPY_AND_10_VALUE_PARAMS(...) = default;
|
|
|
|
// Declares the fields for storing the value parameters.
|
|
#define GMOCK_INTERNAL_DEFN_AND_0_VALUE_PARAMS()
|
|
#define GMOCK_INTERNAL_DEFN_AND_1_VALUE_PARAMS(p0) p0##_type p0;
|
|
#define GMOCK_INTERNAL_DEFN_AND_2_VALUE_PARAMS(p0, p1) p0##_type p0; \
|
|
p1##_type p1;
|
|
#define GMOCK_INTERNAL_DEFN_AND_3_VALUE_PARAMS(p0, p1, p2) p0##_type p0; \
|
|
p1##_type p1; p2##_type p2;
|
|
#define GMOCK_INTERNAL_DEFN_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0##_type p0; \
|
|
p1##_type p1; p2##_type p2; p3##_type p3;
|
|
#define GMOCK_INTERNAL_DEFN_AND_5_VALUE_PARAMS(p0, p1, p2, p3, \
|
|
p4) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4;
|
|
#define GMOCK_INTERNAL_DEFN_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, \
|
|
p5) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \
|
|
p5##_type p5;
|
|
#define GMOCK_INTERNAL_DEFN_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
|
|
p6) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \
|
|
p5##_type p5; p6##_type p6;
|
|
#define GMOCK_INTERNAL_DEFN_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
|
|
p7) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \
|
|
p5##_type p5; p6##_type p6; p7##_type p7;
|
|
#define GMOCK_INTERNAL_DEFN_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
|
|
p7, p8) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; \
|
|
p4##_type p4; p5##_type p5; p6##_type p6; p7##_type p7; p8##_type p8;
|
|
#define GMOCK_INTERNAL_DEFN_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
|
|
p7, p8, p9) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; \
|
|
p4##_type p4; p5##_type p5; p6##_type p6; p7##_type p7; p8##_type p8; \
|
|
p9##_type p9;
|
|
|
|
// Lists the value parameters.
|
|
#define GMOCK_INTERNAL_LIST_AND_0_VALUE_PARAMS()
|
|
#define GMOCK_INTERNAL_LIST_AND_1_VALUE_PARAMS(p0) p0
|
|
#define GMOCK_INTERNAL_LIST_AND_2_VALUE_PARAMS(p0, p1) p0, p1
|
|
#define GMOCK_INTERNAL_LIST_AND_3_VALUE_PARAMS(p0, p1, p2) p0, p1, p2
|
|
#define GMOCK_INTERNAL_LIST_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0, p1, p2, p3
|
|
#define GMOCK_INTERNAL_LIST_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) p0, p1, \
|
|
p2, p3, p4
|
|
#define GMOCK_INTERNAL_LIST_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) p0, \
|
|
p1, p2, p3, p4, p5
|
|
#define GMOCK_INTERNAL_LIST_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
|
|
p6) p0, p1, p2, p3, p4, p5, p6
|
|
#define GMOCK_INTERNAL_LIST_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
|
|
p7) p0, p1, p2, p3, p4, p5, p6, p7
|
|
#define GMOCK_INTERNAL_LIST_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
|
|
p7, p8) p0, p1, p2, p3, p4, p5, p6, p7, p8
|
|
#define GMOCK_INTERNAL_LIST_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
|
|
p7, p8, p9) p0, p1, p2, p3, p4, p5, p6, p7, p8, p9
|
|
|
|
// Lists the value parameter types.
|
|
#define GMOCK_INTERNAL_LIST_TYPE_AND_0_VALUE_PARAMS()
|
|
#define GMOCK_INTERNAL_LIST_TYPE_AND_1_VALUE_PARAMS(p0) , p0##_type
|
|
#define GMOCK_INTERNAL_LIST_TYPE_AND_2_VALUE_PARAMS(p0, p1) , p0##_type, \
|
|
p1##_type
|
|
#define GMOCK_INTERNAL_LIST_TYPE_AND_3_VALUE_PARAMS(p0, p1, p2) , p0##_type, \
|
|
p1##_type, p2##_type
|
|
#define GMOCK_INTERNAL_LIST_TYPE_AND_4_VALUE_PARAMS(p0, p1, p2, p3) , \
|
|
p0##_type, p1##_type, p2##_type, p3##_type
|
|
#define GMOCK_INTERNAL_LIST_TYPE_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) , \
|
|
p0##_type, p1##_type, p2##_type, p3##_type, p4##_type
|
|
#define GMOCK_INTERNAL_LIST_TYPE_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) , \
|
|
p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, p5##_type
|
|
#define GMOCK_INTERNAL_LIST_TYPE_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
|
|
p6) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, p5##_type, \
|
|
p6##_type
|
|
#define GMOCK_INTERNAL_LIST_TYPE_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
|
|
p6, p7) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \
|
|
p5##_type, p6##_type, p7##_type
|
|
#define GMOCK_INTERNAL_LIST_TYPE_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
|
|
p6, p7, p8) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \
|
|
p5##_type, p6##_type, p7##_type, p8##_type
|
|
#define GMOCK_INTERNAL_LIST_TYPE_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
|
|
p6, p7, p8, p9) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \
|
|
p5##_type, p6##_type, p7##_type, p8##_type, p9##_type
|
|
|
|
// Declares the value parameters.
|
|
#define GMOCK_INTERNAL_DECL_AND_0_VALUE_PARAMS()
|
|
#define GMOCK_INTERNAL_DECL_AND_1_VALUE_PARAMS(p0) p0##_type p0
|
|
#define GMOCK_INTERNAL_DECL_AND_2_VALUE_PARAMS(p0, p1) p0##_type p0, \
|
|
p1##_type p1
|
|
#define GMOCK_INTERNAL_DECL_AND_3_VALUE_PARAMS(p0, p1, p2) p0##_type p0, \
|
|
p1##_type p1, p2##_type p2
|
|
#define GMOCK_INTERNAL_DECL_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0##_type p0, \
|
|
p1##_type p1, p2##_type p2, p3##_type p3
|
|
#define GMOCK_INTERNAL_DECL_AND_5_VALUE_PARAMS(p0, p1, p2, p3, \
|
|
p4) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4
|
|
#define GMOCK_INTERNAL_DECL_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, \
|
|
p5) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \
|
|
p5##_type p5
|
|
#define GMOCK_INTERNAL_DECL_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
|
|
p6) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \
|
|
p5##_type p5, p6##_type p6
|
|
#define GMOCK_INTERNAL_DECL_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
|
|
p7) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \
|
|
p5##_type p5, p6##_type p6, p7##_type p7
|
|
#define GMOCK_INTERNAL_DECL_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
|
|
p7, p8) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \
|
|
p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, p8##_type p8
|
|
#define GMOCK_INTERNAL_DECL_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
|
|
p7, p8, p9) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \
|
|
p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, p8##_type p8, \
|
|
p9##_type p9
|
|
|
|
// The suffix of the class template implementing the action template.
|
|
#define GMOCK_INTERNAL_COUNT_AND_0_VALUE_PARAMS()
|
|
#define GMOCK_INTERNAL_COUNT_AND_1_VALUE_PARAMS(p0) P
|
|
#define GMOCK_INTERNAL_COUNT_AND_2_VALUE_PARAMS(p0, p1) P2
|
|
#define GMOCK_INTERNAL_COUNT_AND_3_VALUE_PARAMS(p0, p1, p2) P3
|
|
#define GMOCK_INTERNAL_COUNT_AND_4_VALUE_PARAMS(p0, p1, p2, p3) P4
|
|
#define GMOCK_INTERNAL_COUNT_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) P5
|
|
#define GMOCK_INTERNAL_COUNT_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) P6
|
|
#define GMOCK_INTERNAL_COUNT_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6) P7
|
|
#define GMOCK_INTERNAL_COUNT_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
|
|
p7) P8
|
|
#define GMOCK_INTERNAL_COUNT_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
|
|
p7, p8) P9
|
|
#define GMOCK_INTERNAL_COUNT_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
|
|
p7, p8, p9) P10
|
|
|
|
// The name of the class template implementing the action template.
|
|
#define GMOCK_ACTION_CLASS_(name, value_params)\
|
|
GTEST_CONCAT_TOKEN_(name##Action, GMOCK_INTERNAL_COUNT_##value_params)
|
|
|
|
#define ACTION_TEMPLATE(name, template_params, value_params) \
|
|
template <GMOCK_INTERNAL_DECL_##template_params \
|
|
GMOCK_INTERNAL_DECL_TYPE_##value_params> \
|
|
class GMOCK_ACTION_CLASS_(name, value_params) { \
|
|
public: \
|
|
explicit GMOCK_ACTION_CLASS_(name, value_params)( \
|
|
GMOCK_INTERNAL_DECL_##value_params) \
|
|
GMOCK_PP_IF(GMOCK_PP_IS_EMPTY(GMOCK_INTERNAL_COUNT_##value_params), \
|
|
= default; , \
|
|
: impl_(std::make_shared<gmock_Impl>( \
|
|
GMOCK_INTERNAL_LIST_##value_params)) { }) \
|
|
GMOCK_ACTION_CLASS_(name, value_params)( \
|
|
const GMOCK_ACTION_CLASS_(name, value_params)&) noexcept \
|
|
GMOCK_INTERNAL_DEFN_COPY_##value_params \
|
|
GMOCK_ACTION_CLASS_(name, value_params)( \
|
|
GMOCK_ACTION_CLASS_(name, value_params)&&) noexcept \
|
|
GMOCK_INTERNAL_DEFN_COPY_##value_params \
|
|
template <typename F> \
|
|
operator ::testing::Action<F>() const { \
|
|
return GMOCK_PP_IF( \
|
|
GMOCK_PP_IS_EMPTY(GMOCK_INTERNAL_COUNT_##value_params), \
|
|
(::testing::internal::MakeAction<F, gmock_Impl>()), \
|
|
(::testing::internal::MakeAction<F>(impl_))); \
|
|
} \
|
|
private: \
|
|
class gmock_Impl { \
|
|
public: \
|
|
explicit gmock_Impl GMOCK_INTERNAL_INIT_##value_params {} \
|
|
template <typename function_type, typename return_type, \
|
|
typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
|
|
return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \
|
|
GMOCK_INTERNAL_DEFN_##value_params \
|
|
}; \
|
|
GMOCK_PP_IF(GMOCK_PP_IS_EMPTY(GMOCK_INTERNAL_COUNT_##value_params), \
|
|
, std::shared_ptr<const gmock_Impl> impl_;) \
|
|
}; \
|
|
template <GMOCK_INTERNAL_DECL_##template_params \
|
|
GMOCK_INTERNAL_DECL_TYPE_##value_params> \
|
|
GMOCK_ACTION_CLASS_(name, value_params)< \
|
|
GMOCK_INTERNAL_LIST_##template_params \
|
|
GMOCK_INTERNAL_LIST_TYPE_##value_params> name( \
|
|
GMOCK_INTERNAL_DECL_##value_params) GTEST_MUST_USE_RESULT_; \
|
|
template <GMOCK_INTERNAL_DECL_##template_params \
|
|
GMOCK_INTERNAL_DECL_TYPE_##value_params> \
|
|
inline GMOCK_ACTION_CLASS_(name, value_params)< \
|
|
GMOCK_INTERNAL_LIST_##template_params \
|
|
GMOCK_INTERNAL_LIST_TYPE_##value_params> name( \
|
|
GMOCK_INTERNAL_DECL_##value_params) { \
|
|
return GMOCK_ACTION_CLASS_(name, value_params)< \
|
|
GMOCK_INTERNAL_LIST_##template_params \
|
|
GMOCK_INTERNAL_LIST_TYPE_##value_params>( \
|
|
GMOCK_INTERNAL_LIST_##value_params); \
|
|
} \
|
|
template <GMOCK_INTERNAL_DECL_##template_params \
|
|
GMOCK_INTERNAL_DECL_TYPE_##value_params> \
|
|
template <typename function_type, typename return_type, typename args_type, \
|
|
GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
|
|
return_type GMOCK_ACTION_CLASS_(name, value_params)< \
|
|
GMOCK_INTERNAL_LIST_##template_params \
|
|
GMOCK_INTERNAL_LIST_TYPE_##value_params>::gmock_Impl::gmock_PerformImpl( \
|
|
GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
|
|
|
|
namespace testing {
|
|
|
|
// The ACTION*() macros trigger warning C4100 (unreferenced formal
|
|
// parameter) in MSVC with -W4. Unfortunately they cannot be fixed in
|
|
// the macro definition, as the warnings are generated when the macro
|
|
// is expanded and macro expansion cannot contain #pragma. Therefore
|
|
// we suppress them here.
|
|
#ifdef _MSC_VER
|
|
# pragma warning(push)
|
|
# pragma warning(disable:4100)
|
|
#endif
|
|
|
|
namespace internal {
|
|
|
|
// internal::InvokeArgument - a helper for InvokeArgument action.
|
|
// The basic overloads are provided here for generic functors.
|
|
// Overloads for other custom-callables are provided in the
|
|
// internal/custom/gmock-generated-actions.h header.
|
|
template <typename F, typename... Args>
|
|
auto InvokeArgument(F f, Args... args) -> decltype(f(args...)) {
|
|
return f(args...);
|
|
}
|
|
|
|
template <std::size_t index, typename... Params>
|
|
struct InvokeArgumentAction {
|
|
template <typename... Args>
|
|
auto operator()(Args&&... args) const -> decltype(internal::InvokeArgument(
|
|
std::get<index>(std::forward_as_tuple(std::forward<Args>(args)...)),
|
|
std::declval<const Params&>()...)) {
|
|
internal::FlatTuple<Args&&...> args_tuple(FlatTupleConstructTag{},
|
|
std::forward<Args>(args)...);
|
|
return params.Apply([&](const Params&... unpacked_params) {
|
|
auto&& callable = args_tuple.template Get<index>();
|
|
return internal::InvokeArgument(
|
|
std::forward<decltype(callable)>(callable), unpacked_params...);
|
|
});
|
|
}
|
|
|
|
internal::FlatTuple<Params...> params;
|
|
};
|
|
|
|
} // namespace internal
|
|
|
|
// The InvokeArgument<N>(a1, a2, ..., a_k) action invokes the N-th
|
|
// (0-based) argument, which must be a k-ary callable, of the mock
|
|
// function, with arguments a1, a2, ..., a_k.
|
|
//
|
|
// Notes:
|
|
//
|
|
// 1. The arguments are passed by value by default. If you need to
|
|
// pass an argument by reference, wrap it inside std::ref(). For
|
|
// example,
|
|
//
|
|
// InvokeArgument<1>(5, string("Hello"), std::ref(foo))
|
|
//
|
|
// passes 5 and string("Hello") by value, and passes foo by
|
|
// reference.
|
|
//
|
|
// 2. If the callable takes an argument by reference but std::ref() is
|
|
// not used, it will receive the reference to a copy of the value,
|
|
// instead of the original value. For example, when the 0-th
|
|
// argument of the mock function takes a const string&, the action
|
|
//
|
|
// InvokeArgument<0>(string("Hello"))
|
|
//
|
|
// makes a copy of the temporary string("Hello") object and passes a
|
|
// reference of the copy, instead of the original temporary object,
|
|
// to the callable. This makes it easy for a user to define an
|
|
// InvokeArgument action from temporary values and have it performed
|
|
// later.
|
|
template <std::size_t index, typename... Params>
|
|
internal::InvokeArgumentAction<index, typename std::decay<Params>::type...>
|
|
InvokeArgument(Params&&... params) {
|
|
return {internal::FlatTuple<typename std::decay<Params>::type...>(
|
|
internal::FlatTupleConstructTag{}, std::forward<Params>(params)...)};
|
|
}
|
|
|
|
#ifdef _MSC_VER
|
|
# pragma warning(pop)
|
|
#endif
|
|
|
|
} // namespace testing
|
|
|
|
#endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_ACTIONS_H_
|
|
// Copyright 2013, Google Inc.
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
// Google Mock - a framework for writing C++ mock classes.
|
|
//
|
|
// This file implements some matchers that depend on gmock-matchers.h.
|
|
//
|
|
// Note that tests are implemented in gmock-matchers_test.cc rather than
|
|
// gmock-more-matchers-test.cc.
|
|
|
|
// GOOGLETEST_CM0002 DO NOT DELETE
|
|
|
|
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_MATCHERS_H_
|
|
#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_MATCHERS_H_
|
|
|
|
|
|
namespace testing {
|
|
|
|
// Silence C4100 (unreferenced formal
|
|
// parameter) for MSVC
|
|
#ifdef _MSC_VER
|
|
# pragma warning(push)
|
|
# pragma warning(disable:4100)
|
|
#if (_MSC_VER == 1900)
|
|
// and silence C4800 (C4800: 'int *const ': forcing value
|
|
// to bool 'true' or 'false') for MSVC 14
|
|
# pragma warning(disable:4800)
|
|
#endif
|
|
#endif
|
|
|
|
// Defines a matcher that matches an empty container. The container must
|
|
// support both size() and empty(), which all STL-like containers provide.
|
|
MATCHER(IsEmpty, negation ? "isn't empty" : "is empty") {
|
|
if (arg.empty()) {
|
|
return true;
|
|
}
|
|
*result_listener << "whose size is " << arg.size();
|
|
return false;
|
|
}
|
|
|
|
// Define a matcher that matches a value that evaluates in boolean
|
|
// context to true. Useful for types that define "explicit operator
|
|
// bool" operators and so can't be compared for equality with true
|
|
// and false.
|
|
MATCHER(IsTrue, negation ? "is false" : "is true") {
|
|
return static_cast<bool>(arg);
|
|
}
|
|
|
|
// Define a matcher that matches a value that evaluates in boolean
|
|
// context to false. Useful for types that define "explicit operator
|
|
// bool" operators and so can't be compared for equality with true
|
|
// and false.
|
|
MATCHER(IsFalse, negation ? "is true" : "is false") {
|
|
return !static_cast<bool>(arg);
|
|
}
|
|
|
|
#ifdef _MSC_VER
|
|
# pragma warning(pop)
|
|
#endif
|
|
|
|
|
|
} // namespace testing
|
|
|
|
#endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MORE_MATCHERS_H_
|
|
// Copyright 2008, Google Inc.
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
// Implements class templates NiceMock, NaggyMock, and StrictMock.
|
|
//
|
|
// Given a mock class MockFoo that is created using Google Mock,
|
|
// NiceMock<MockFoo> is a subclass of MockFoo that allows
|
|
// uninteresting calls (i.e. calls to mock methods that have no
|
|
// EXPECT_CALL specs), NaggyMock<MockFoo> is a subclass of MockFoo
|
|
// that prints a warning when an uninteresting call occurs, and
|
|
// StrictMock<MockFoo> is a subclass of MockFoo that treats all
|
|
// uninteresting calls as errors.
|
|
//
|
|
// Currently a mock is naggy by default, so MockFoo and
|
|
// NaggyMock<MockFoo> behave like the same. However, we will soon
|
|
// switch the default behavior of mocks to be nice, as that in general
|
|
// leads to more maintainable tests. When that happens, MockFoo will
|
|
// stop behaving like NaggyMock<MockFoo> and start behaving like
|
|
// NiceMock<MockFoo>.
|
|
//
|
|
// NiceMock, NaggyMock, and StrictMock "inherit" the constructors of
|
|
// their respective base class. Therefore you can write
|
|
// NiceMock<MockFoo>(5, "a") to construct a nice mock where MockFoo
|
|
// has a constructor that accepts (int, const char*), for example.
|
|
//
|
|
// A known limitation is that NiceMock<MockFoo>, NaggyMock<MockFoo>,
|
|
// and StrictMock<MockFoo> only works for mock methods defined using
|
|
// the MOCK_METHOD* family of macros DIRECTLY in the MockFoo class.
|
|
// If a mock method is defined in a base class of MockFoo, the "nice"
|
|
// or "strict" modifier may not affect it, depending on the compiler.
|
|
// In particular, nesting NiceMock, NaggyMock, and StrictMock is NOT
|
|
// supported.
|
|
|
|
// GOOGLETEST_CM0002 DO NOT DELETE
|
|
|
|
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_NICE_STRICT_H_
|
|
#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_NICE_STRICT_H_
|
|
|
|
#include <type_traits>
|
|
|
|
|
|
namespace testing {
|
|
template <class MockClass>
|
|
class NiceMock;
|
|
template <class MockClass>
|
|
class NaggyMock;
|
|
template <class MockClass>
|
|
class StrictMock;
|
|
|
|
namespace internal {
|
|
template <typename T>
|
|
std::true_type StrictnessModifierProbe(const NiceMock<T>&);
|
|
template <typename T>
|
|
std::true_type StrictnessModifierProbe(const NaggyMock<T>&);
|
|
template <typename T>
|
|
std::true_type StrictnessModifierProbe(const StrictMock<T>&);
|
|
std::false_type StrictnessModifierProbe(...);
|
|
|
|
template <typename T>
|
|
constexpr bool HasStrictnessModifier() {
|
|
return decltype(StrictnessModifierProbe(std::declval<const T&>()))::value;
|
|
}
|
|
|
|
// Base classes that register and deregister with testing::Mock to alter the
|
|
// default behavior around uninteresting calls. Inheriting from one of these
|
|
// classes first and then MockClass ensures the MockClass constructor is run
|
|
// after registration, and that the MockClass destructor runs before
|
|
// deregistration. This guarantees that MockClass's constructor and destructor
|
|
// run with the same level of strictness as its instance methods.
|
|
|
|
#if GTEST_OS_WINDOWS && !GTEST_OS_WINDOWS_MINGW && \
|
|
(defined(_MSC_VER) || defined(__clang__))
|
|
// We need to mark these classes with this declspec to ensure that
|
|
// the empty base class optimization is performed.
|
|
#define GTEST_INTERNAL_EMPTY_BASE_CLASS __declspec(empty_bases)
|
|
#else
|
|
#define GTEST_INTERNAL_EMPTY_BASE_CLASS
|
|
#endif
|
|
|
|
template <typename Base>
|
|
class NiceMockImpl {
|
|
public:
|
|
NiceMockImpl() { ::testing::Mock::AllowUninterestingCalls(this); }
|
|
|
|
~NiceMockImpl() { ::testing::Mock::UnregisterCallReaction(this); }
|
|
};
|
|
|
|
template <typename Base>
|
|
class NaggyMockImpl {
|
|
public:
|
|
NaggyMockImpl() { ::testing::Mock::WarnUninterestingCalls(this); }
|
|
|
|
~NaggyMockImpl() { ::testing::Mock::UnregisterCallReaction(this); }
|
|
};
|
|
|
|
template <typename Base>
|
|
class StrictMockImpl {
|
|
public:
|
|
StrictMockImpl() { ::testing::Mock::FailUninterestingCalls(this); }
|
|
|
|
~StrictMockImpl() { ::testing::Mock::UnregisterCallReaction(this); }
|
|
};
|
|
|
|
} // namespace internal
|
|
|
|
template <class MockClass>
|
|
class GTEST_INTERNAL_EMPTY_BASE_CLASS NiceMock
|
|
: private internal::NiceMockImpl<MockClass>,
|
|
public MockClass {
|
|
public:
|
|
static_assert(!internal::HasStrictnessModifier<MockClass>(),
|
|
"Can't apply NiceMock to a class hierarchy that already has a "
|
|
"strictness modifier. See "
|
|
"https://google.github.io/googletest/"
|
|
"gmock_cook_book.html#NiceStrictNaggy");
|
|
NiceMock() : MockClass() {
|
|
static_assert(sizeof(*this) == sizeof(MockClass),
|
|
"The impl subclass shouldn't introduce any padding");
|
|
}
|
|
|
|
// Ideally, we would inherit base class's constructors through a using
|
|
// declaration, which would preserve their visibility. However, many existing
|
|
// tests rely on the fact that current implementation reexports protected
|
|
// constructors as public. These tests would need to be cleaned up first.
|
|
|
|
// Single argument constructor is special-cased so that it can be
|
|
// made explicit.
|
|
template <typename A>
|
|
explicit NiceMock(A&& arg) : MockClass(std::forward<A>(arg)) {
|
|
static_assert(sizeof(*this) == sizeof(MockClass),
|
|
"The impl subclass shouldn't introduce any padding");
|
|
}
|
|
|
|
template <typename TArg1, typename TArg2, typename... An>
|
|
NiceMock(TArg1&& arg1, TArg2&& arg2, An&&... args)
|
|
: MockClass(std::forward<TArg1>(arg1), std::forward<TArg2>(arg2),
|
|
std::forward<An>(args)...) {
|
|
static_assert(sizeof(*this) == sizeof(MockClass),
|
|
"The impl subclass shouldn't introduce any padding");
|
|
}
|
|
|
|
private:
|
|
GTEST_DISALLOW_COPY_AND_ASSIGN_(NiceMock);
|
|
};
|
|
|
|
template <class MockClass>
|
|
class GTEST_INTERNAL_EMPTY_BASE_CLASS NaggyMock
|
|
: private internal::NaggyMockImpl<MockClass>,
|
|
public MockClass {
|
|
static_assert(!internal::HasStrictnessModifier<MockClass>(),
|
|
"Can't apply NaggyMock to a class hierarchy that already has a "
|
|
"strictness modifier. See "
|
|
"https://google.github.io/googletest/"
|
|
"gmock_cook_book.html#NiceStrictNaggy");
|
|
|
|
public:
|
|
NaggyMock() : MockClass() {
|
|
static_assert(sizeof(*this) == sizeof(MockClass),
|
|
"The impl subclass shouldn't introduce any padding");
|
|
}
|
|
|
|
// Ideally, we would inherit base class's constructors through a using
|
|
// declaration, which would preserve their visibility. However, many existing
|
|
// tests rely on the fact that current implementation reexports protected
|
|
// constructors as public. These tests would need to be cleaned up first.
|
|
|
|
// Single argument constructor is special-cased so that it can be
|
|
// made explicit.
|
|
template <typename A>
|
|
explicit NaggyMock(A&& arg) : MockClass(std::forward<A>(arg)) {
|
|
static_assert(sizeof(*this) == sizeof(MockClass),
|
|
"The impl subclass shouldn't introduce any padding");
|
|
}
|
|
|
|
template <typename TArg1, typename TArg2, typename... An>
|
|
NaggyMock(TArg1&& arg1, TArg2&& arg2, An&&... args)
|
|
: MockClass(std::forward<TArg1>(arg1), std::forward<TArg2>(arg2),
|
|
std::forward<An>(args)...) {
|
|
static_assert(sizeof(*this) == sizeof(MockClass),
|
|
"The impl subclass shouldn't introduce any padding");
|
|
}
|
|
|
|
private:
|
|
GTEST_DISALLOW_COPY_AND_ASSIGN_(NaggyMock);
|
|
};
|
|
|
|
template <class MockClass>
|
|
class GTEST_INTERNAL_EMPTY_BASE_CLASS StrictMock
|
|
: private internal::StrictMockImpl<MockClass>,
|
|
public MockClass {
|
|
public:
|
|
static_assert(
|
|
!internal::HasStrictnessModifier<MockClass>(),
|
|
"Can't apply StrictMock to a class hierarchy that already has a "
|
|
"strictness modifier. See "
|
|
"https://google.github.io/googletest/"
|
|
"gmock_cook_book.html#NiceStrictNaggy");
|
|
StrictMock() : MockClass() {
|
|
static_assert(sizeof(*this) == sizeof(MockClass),
|
|
"The impl subclass shouldn't introduce any padding");
|
|
}
|
|
|
|
// Ideally, we would inherit base class's constructors through a using
|
|
// declaration, which would preserve their visibility. However, many existing
|
|
// tests rely on the fact that current implementation reexports protected
|
|
// constructors as public. These tests would need to be cleaned up first.
|
|
|
|
// Single argument constructor is special-cased so that it can be
|
|
// made explicit.
|
|
template <typename A>
|
|
explicit StrictMock(A&& arg) : MockClass(std::forward<A>(arg)) {
|
|
static_assert(sizeof(*this) == sizeof(MockClass),
|
|
"The impl subclass shouldn't introduce any padding");
|
|
}
|
|
|
|
template <typename TArg1, typename TArg2, typename... An>
|
|
StrictMock(TArg1&& arg1, TArg2&& arg2, An&&... args)
|
|
: MockClass(std::forward<TArg1>(arg1), std::forward<TArg2>(arg2),
|
|
std::forward<An>(args)...) {
|
|
static_assert(sizeof(*this) == sizeof(MockClass),
|
|
"The impl subclass shouldn't introduce any padding");
|
|
}
|
|
|
|
private:
|
|
GTEST_DISALLOW_COPY_AND_ASSIGN_(StrictMock);
|
|
};
|
|
|
|
#undef GTEST_INTERNAL_EMPTY_BASE_CLASS
|
|
|
|
} // namespace testing
|
|
|
|
#endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_NICE_STRICT_H_
|
|
|
|
namespace testing {
|
|
|
|
// Declares Google Mock flags that we want a user to use programmatically.
|
|
GMOCK_DECLARE_bool_(catch_leaked_mocks);
|
|
GMOCK_DECLARE_string_(verbose);
|
|
GMOCK_DECLARE_int32_(default_mock_behavior);
|
|
|
|
// Initializes Google Mock. This must be called before running the
|
|
// tests. In particular, it parses the command line for the flags
|
|
// that Google Mock recognizes. Whenever a Google Mock flag is seen,
|
|
// it is removed from argv, and *argc is decremented.
|
|
//
|
|
// No value is returned. Instead, the Google Mock flag variables are
|
|
// updated.
|
|
//
|
|
// Since Google Test is needed for Google Mock to work, this function
|
|
// also initializes Google Test and parses its flags, if that hasn't
|
|
// been done.
|
|
GTEST_API_ void InitGoogleMock(int* argc, char** argv);
|
|
|
|
// This overloaded version can be used in Windows programs compiled in
|
|
// UNICODE mode.
|
|
GTEST_API_ void InitGoogleMock(int* argc, wchar_t** argv);
|
|
|
|
// This overloaded version can be used on Arduino/embedded platforms where
|
|
// there is no argc/argv.
|
|
GTEST_API_ void InitGoogleMock();
|
|
|
|
} // namespace testing
|
|
|
|
#endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_H_
|