fmtlegacy/include/fmt/compile.h

957 lines
32 KiB
C
Raw Normal View History

2019-06-24 01:54:46 +00:00
// Formatting library for C++ - experimental format string compilation
//
// Copyright (c) 2012 - present, Victor Zverovich and fmt contributors
// All rights reserved.
//
// For the license information refer to format.h.
2019-07-25 16:01:21 +00:00
#ifndef FMT_COMPILE_H_
#define FMT_COMPILE_H_
2020-11-11 16:31:34 +00:00
#include <algorithm>
#include <vector>
2019-07-25 17:27:27 +00:00
#include "format.h"
#ifndef FMT_USE_NONTYPE_TEMPLATE_PARAMETERS
# if defined(__cpp_nontype_template_parameter_class) && \
(!FMT_GCC_VERSION || FMT_GCC_VERSION >= 903)
# define FMT_USE_NONTYPE_TEMPLATE_PARAMETERS 1
# else
# define FMT_USE_NONTYPE_TEMPLATE_PARAMETERS 0
# endif
#endif
FMT_BEGIN_NAMESPACE
2020-05-10 14:25:42 +00:00
namespace detail {
template <typename OutputIt> class truncating_iterator_base {
protected:
OutputIt out_;
size_t limit_;
size_t count_ = 0;
truncating_iterator_base() : out_(), limit_(0) {}
truncating_iterator_base(OutputIt out, size_t limit)
: out_(out), limit_(limit) {}
public:
using iterator_category = std::output_iterator_tag;
using value_type = typename std::iterator_traits<OutputIt>::value_type;
using difference_type = std::ptrdiff_t;
using pointer = void;
using reference = void;
using _Unchecked_type =
truncating_iterator_base; // Mark iterator as checked.
OutputIt base() const { return out_; }
size_t count() const { return count_; }
};
// An output iterator that truncates the output and counts the number of objects
// written to it.
template <typename OutputIt,
typename Enable = typename std::is_void<
typename std::iterator_traits<OutputIt>::value_type>::type>
class truncating_iterator;
template <typename OutputIt>
class truncating_iterator<OutputIt, std::false_type>
: public truncating_iterator_base<OutputIt> {
mutable typename truncating_iterator_base<OutputIt>::value_type blackhole_;
public:
using value_type = typename truncating_iterator_base<OutputIt>::value_type;
truncating_iterator() = default;
truncating_iterator(OutputIt out, size_t limit)
: truncating_iterator_base<OutputIt>(out, limit) {}
truncating_iterator& operator++() {
if (this->count_++ < this->limit_) ++this->out_;
return *this;
}
truncating_iterator operator++(int) {
auto it = *this;
++*this;
return it;
}
value_type& operator*() const {
return this->count_ < this->limit_ ? *this->out_ : blackhole_;
}
};
template <typename OutputIt>
class truncating_iterator<OutputIt, std::true_type>
: public truncating_iterator_base<OutputIt> {
public:
truncating_iterator() = default;
truncating_iterator(OutputIt out, size_t limit)
: truncating_iterator_base<OutputIt>(out, limit) {}
template <typename T> truncating_iterator& operator=(T val) {
if (this->count_++ < this->limit_) *this->out_++ = val;
return *this;
}
truncating_iterator& operator++() { return *this; }
truncating_iterator& operator++(int) { return *this; }
truncating_iterator& operator*() { return *this; }
};
// A compile-time string which is compiled into fast formatting code.
class compiled_string {};
template <typename S>
struct is_compiled_string : std::is_base_of<compiled_string, S> {};
2020-06-25 13:57:23 +00:00
/**
\rst
2020-06-25 18:29:49 +00:00
Converts a string literal *s* into a format string that will be parsed at
compile time and converted into efficient formatting code. Requires C++17
``constexpr if`` compiler support.
2020-06-25 13:57:23 +00:00
**Example**::
2020-06-25 18:29:49 +00:00
// Converts 42 into std::string using the most efficient method and no
// runtime format string processing.
2020-06-25 13:57:23 +00:00
std::string s = fmt::format(FMT_COMPILE("{}"), 42);
\endrst
*/
#define FMT_COMPILE(s) FMT_STRING_IMPL(s, fmt::detail::compiled_string)
#if FMT_USE_NONTYPE_TEMPLATE_PARAMETERS
template <typename Char, size_t N> struct fixed_string {
constexpr fixed_string(const Char (&str)[N]) {
copy_str<Char, const Char*, Char*>(static_cast<const Char*>(str), str + N,
data);
}
Char data[N]{};
};
template <typename Char, size_t N, fixed_string<Char, N> Str>
struct udl_compiled_string : compiled_string {
using char_type = Char;
constexpr operator basic_string_view<char_type>() const {
return {Str.data, N - 1};
}
};
#endif
template <typename T, typename... Tail>
2020-06-20 15:50:02 +00:00
const T& first(const T& value, const Tail&...) {
return value;
}
2019-09-01 16:05:24 +00:00
// Part of a compiled format string. It can be either literal text or a
// replacement field.
template <typename Char> struct format_part {
2019-09-01 16:05:24 +00:00
enum class kind { arg_index, arg_name, text, replacement };
2019-08-31 17:23:42 +00:00
struct replacement {
arg_ref<Char> arg_id;
2019-09-01 16:05:24 +00:00
dynamic_format_specs<Char> specs;
};
2019-08-31 17:23:42 +00:00
kind part_kind;
union value {
int arg_index;
basic_string_view<Char> str;
2019-08-31 17:23:42 +00:00
replacement repl;
2019-09-01 16:05:24 +00:00
FMT_CONSTEXPR value(int index = 0) : arg_index(index) {}
FMT_CONSTEXPR value(basic_string_view<Char> s) : str(s) {}
2019-09-01 16:05:24 +00:00
FMT_CONSTEXPR value(replacement r) : repl(r) {}
2019-08-31 17:23:42 +00:00
} val;
2019-09-01 19:12:19 +00:00
// Position past the end of the argument id.
const Char* arg_id_end = nullptr;
2019-09-01 16:05:24 +00:00
FMT_CONSTEXPR format_part(kind k = kind::arg_index, value v = {})
: part_kind(k), val(v) {}
static FMT_CONSTEXPR format_part make_arg_index(int index) {
2019-09-01 16:05:24 +00:00
return format_part(kind::arg_index, index);
}
static FMT_CONSTEXPR format_part make_arg_name(basic_string_view<Char> name) {
2019-09-01 16:05:24 +00:00
return format_part(kind::arg_name, name);
}
static FMT_CONSTEXPR format_part make_text(basic_string_view<Char> text) {
2019-09-01 16:05:24 +00:00
return format_part(kind::text, text);
}
static FMT_CONSTEXPR format_part make_replacement(replacement repl) {
return format_part(kind::replacement, repl);
}
};
template <typename Char> struct part_counter {
unsigned num_parts = 0;
FMT_CONSTEXPR void on_text(const Char* begin, const Char* end) {
if (begin != end) ++num_parts;
}
2020-06-06 14:13:38 +00:00
FMT_CONSTEXPR int on_arg_id() { return ++num_parts, 0; }
FMT_CONSTEXPR int on_arg_id(int) { return ++num_parts, 0; }
FMT_CONSTEXPR int on_arg_id(basic_string_view<Char>) {
return ++num_parts, 0;
}
2020-06-06 14:13:38 +00:00
FMT_CONSTEXPR void on_replacement_field(int, const Char*) {}
2020-06-06 14:13:38 +00:00
FMT_CONSTEXPR const Char* on_format_specs(int, const Char* begin,
2019-09-01 16:05:24 +00:00
const Char* end) {
// Find the matching brace.
unsigned brace_counter = 0;
for (; begin != end; ++begin) {
if (*begin == '{') {
++brace_counter;
} else if (*begin == '}') {
if (brace_counter == 0u) break;
--brace_counter;
}
}
return begin;
}
2019-09-01 16:05:24 +00:00
FMT_CONSTEXPR void on_error(const char*) {}
};
2019-09-01 16:05:24 +00:00
// Counts the number of parts in a format string.
template <typename Char>
FMT_CONSTEXPR unsigned count_parts(basic_string_view<Char> format_str) {
part_counter<Char> counter;
parse_format_string<true>(format_str, counter);
return counter.num_parts;
}
template <typename Char, typename PartHandler>
class format_string_compiler : public error_handler {
2019-01-13 02:27:38 +00:00
private:
2019-08-04 18:15:07 +00:00
using part = format_part<Char>;
2019-09-01 19:12:19 +00:00
PartHandler handler_;
part part_;
basic_string_view<Char> format_str_;
basic_format_parse_context<Char> parse_context_;
2019-09-01 19:12:19 +00:00
2019-01-13 02:27:38 +00:00
public:
2019-09-01 16:05:24 +00:00
FMT_CONSTEXPR format_string_compiler(basic_string_view<Char> format_str,
PartHandler handler)
: handler_(handler),
format_str_(format_str),
parse_context_(format_str) {}
2019-01-13 02:27:38 +00:00
FMT_CONSTEXPR void on_text(const Char* begin, const Char* end) {
if (begin != end)
handler_(part::make_text({begin, to_unsigned(end - begin)}));
}
2020-06-06 14:13:38 +00:00
FMT_CONSTEXPR int on_arg_id() {
2019-09-01 16:05:24 +00:00
part_ = part::make_arg_index(parse_context_.next_arg_id());
2020-06-06 14:13:38 +00:00
return 0;
}
2020-06-06 14:13:38 +00:00
FMT_CONSTEXPR int on_arg_id(int id) {
parse_context_.check_arg_id(id);
2019-09-01 16:05:24 +00:00
part_ = part::make_arg_index(id);
2020-06-06 14:13:38 +00:00
return 0;
}
2020-06-06 14:13:38 +00:00
FMT_CONSTEXPR int on_arg_id(basic_string_view<Char> id) {
part_ = part::make_arg_name(id);
2020-06-06 14:13:38 +00:00
return 0;
}
2020-06-06 14:13:38 +00:00
FMT_CONSTEXPR void on_replacement_field(int, const Char* ptr) {
2019-09-01 19:12:19 +00:00
part_.arg_id_end = ptr;
2019-09-01 16:05:24 +00:00
handler_(part_);
}
2020-06-06 14:13:38 +00:00
FMT_CONSTEXPR const Char* on_format_specs(int, const Char* begin,
2019-01-13 02:27:38 +00:00
const Char* end) {
2019-09-01 16:05:24 +00:00
auto repl = typename part::replacement();
dynamic_specs_handler<basic_format_parse_context<Char>> handler(
repl.specs, parse_context_);
2019-09-01 19:12:19 +00:00
auto it = parse_format_specs(begin, end, handler);
if (*it != '}') on_error("missing '}' in format string");
2019-09-01 16:05:24 +00:00
repl.arg_id = part_.part_kind == part::kind::arg_index
? arg_ref<Char>(part_.val.arg_index)
: arg_ref<Char>(part_.val.str);
auto replacement_part = part::make_replacement(repl);
replacement_part.arg_id_end = begin;
handler_(replacement_part);
2019-09-01 19:12:19 +00:00
return it;
}
};
2019-09-01 16:05:24 +00:00
// Compiles a format string and invokes handler(part) for each parsed part.
template <bool IS_CONSTEXPR, typename Char, typename PartHandler>
FMT_CONSTEXPR void compile_format_string(basic_string_view<Char> format_str,
PartHandler handler) {
parse_format_string<IS_CONSTEXPR>(
format_str,
format_string_compiler<Char, PartHandler>(format_str, handler));
}
2020-05-30 04:30:20 +00:00
template <typename OutputIt, typename Context, typename Id>
void format_arg(
2020-05-30 04:30:20 +00:00
basic_format_parse_context<typename Context::char_type>& parse_ctx,
Context& ctx, Id arg_id) {
2021-03-10 17:18:52 +00:00
auto arg = ctx.arg(arg_id);
if (arg.type() == type::custom_type) {
visit_format_arg(custom_formatter<Context>(parse_ctx, ctx), arg);
} else {
ctx.advance_to(visit_format_arg(
arg_formatter<OutputIt, typename Context::char_type>(ctx), arg));
}
2019-09-01 19:12:19 +00:00
}
2019-09-01 19:12:19 +00:00
// vformat_to is defined in a subnamespace to prevent ADL.
namespace cf {
2020-05-30 04:30:20 +00:00
template <typename Context, typename OutputIt, typename CompiledFormat>
2020-06-06 14:13:38 +00:00
auto vformat_to(OutputIt out, CompiledFormat& cf,
basic_format_args<Context> args) -> typename Context::iterator {
2019-09-01 19:12:19 +00:00
using char_type = typename Context::char_type;
basic_format_parse_context<char_type> parse_ctx(
to_string_view(cf.format_str_));
2020-05-30 04:30:20 +00:00
Context ctx(out, args);
2019-09-01 19:12:19 +00:00
2019-09-01 21:57:36 +00:00
const auto& parts = cf.parts();
for (auto part_it = std::begin(parts); part_it != std::end(parts);
++part_it) {
2019-09-01 19:12:19 +00:00
const auto& part = *part_it;
const auto& value = part.val;
using format_part_t = format_part<char_type>;
switch (part.part_kind) {
case format_part_t::kind::text: {
const auto text = value.str;
auto output = ctx.out();
auto&& it = reserve(output, text.size());
it = std::copy_n(text.begin(), text.size(), it);
ctx.advance_to(output);
2019-09-01 21:57:36 +00:00
break;
}
2019-09-01 19:12:19 +00:00
case format_part_t::kind::arg_index:
advance_to(parse_ctx, part.arg_id_end);
2020-05-30 04:30:20 +00:00
detail::format_arg<OutputIt>(parse_ctx, ctx, value.arg_index);
2019-09-01 19:12:19 +00:00
break;
case format_part_t::kind::arg_name:
advance_to(parse_ctx, part.arg_id_end);
2020-05-30 04:30:20 +00:00
detail::format_arg<OutputIt>(parse_ctx, ctx, value.str);
2019-09-01 19:12:19 +00:00
break;
case format_part_t::kind::replacement: {
const auto& arg_id_value = value.repl.arg_id.val;
const auto arg = value.repl.arg_id.kind == arg_id_kind::index
? ctx.arg(arg_id_value.index)
: ctx.arg(arg_id_value.name);
auto specs = value.repl.specs;
handle_dynamic_spec<width_checker>(specs.width, specs.width_ref, ctx);
handle_dynamic_spec<precision_checker>(specs.precision,
specs.precision_ref, ctx);
error_handler h;
numeric_specs_checker<error_handler> checker(h, arg.type());
if (specs.align == align::numeric) checker.require_numeric_argument();
if (specs.sign != sign::none) checker.check_sign();
if (specs.alt) checker.require_numeric_argument();
if (specs.precision >= 0) checker.check_precision();
advance_to(parse_ctx, part.arg_id_end);
2020-06-06 14:13:38 +00:00
ctx.advance_to(
visit_format_arg(arg_formatter<OutputIt, typename Context::char_type>(
2021-03-10 17:18:52 +00:00
ctx, &specs),
2020-06-06 14:13:38 +00:00
arg));
2019-09-01 21:57:36 +00:00
break;
}
}
}
2019-09-01 19:12:19 +00:00
return ctx.out();
}
} // namespace cf
struct basic_compiled_format {};
template <typename S, typename = void>
struct compiled_format_base : basic_compiled_format {
2019-09-01 19:12:19 +00:00
using char_type = char_t<S>;
2020-05-10 14:25:42 +00:00
using parts_container = std::vector<detail::format_part<char_type>>;
2019-09-01 21:57:36 +00:00
parts_container compiled_parts;
2019-09-01 21:57:36 +00:00
explicit compiled_format_base(basic_string_view<char_type> format_str) {
compile_format_string<false>(format_str,
[this](const format_part<char_type>& part) {
compiled_parts.push_back(part);
});
}
2019-09-01 21:57:36 +00:00
const parts_container& parts() const { return compiled_parts; }
};
2019-09-01 21:57:36 +00:00
template <typename Char, unsigned N> struct format_part_array {
format_part<Char> data[N] = {};
FMT_CONSTEXPR format_part_array() = default;
};
2019-09-01 21:57:36 +00:00
template <typename Char, unsigned N>
FMT_CONSTEXPR format_part_array<Char, N> compile_to_parts(
basic_string_view<Char> format_str) {
format_part_array<Char, N> parts;
unsigned counter = 0;
2019-09-01 16:05:24 +00:00
// This is not a lambda for compatibility with older compilers.
2019-09-01 21:57:36 +00:00
struct {
format_part<Char>* parts;
unsigned* counter;
2019-09-01 16:05:24 +00:00
FMT_CONSTEXPR void operator()(const format_part<Char>& part) {
2019-09-01 21:57:36 +00:00
parts[(*counter)++] = part;
2019-09-01 16:05:24 +00:00
}
2019-09-01 21:57:36 +00:00
} collector{parts.data, &counter};
compile_format_string<true>(format_str, collector);
if (counter < N) {
parts.data[counter] =
format_part<Char>::make_text(basic_string_view<Char>());
}
return parts;
}
2019-09-01 21:57:36 +00:00
template <typename T> constexpr const T& constexpr_max(const T& a, const T& b) {
return (a < b) ? b : a;
}
2019-09-01 21:57:36 +00:00
template <typename S>
struct compiled_format_base<S, enable_if_t<is_compile_string<S>::value>>
: basic_compiled_format {
2019-09-01 21:57:36 +00:00
using char_type = char_t<S>;
2019-09-01 21:57:36 +00:00
FMT_CONSTEXPR explicit compiled_format_base(basic_string_view<char_type>) {}
2019-09-01 21:57:36 +00:00
// Workaround for old compilers. Format string compilation will not be
// performed there anyway.
#if FMT_USE_CONSTEXPR
static FMT_CONSTEXPR_DECL const unsigned num_format_parts =
constexpr_max(count_parts(to_string_view(S())), 1u);
#else
static const unsigned num_format_parts = 1;
#endif
2019-08-31 17:23:42 +00:00
2019-09-01 21:57:36 +00:00
using parts_container = format_part<char_type>[num_format_parts];
2019-08-31 17:23:42 +00:00
const parts_container& parts() const {
2019-09-01 21:57:36 +00:00
static FMT_CONSTEXPR_DECL const auto compiled_parts =
compile_to_parts<char_type, num_format_parts>(
2020-05-10 14:25:42 +00:00
detail::to_string_view(S()));
2019-09-01 21:57:36 +00:00
return compiled_parts.data;
}
};
2019-09-01 21:57:36 +00:00
template <typename S, typename... Args>
class compiled_format : private compiled_format_base<S> {
public:
using typename compiled_format_base<S>::char_type;
private:
basic_string_view<char_type> format_str_;
2020-05-30 04:30:20 +00:00
template <typename Context, typename OutputIt, typename CompiledFormat>
friend auto cf::vformat_to(OutputIt out, CompiledFormat& cf,
2019-09-01 21:57:36 +00:00
basic_format_args<Context> args) ->
typename Context::iterator;
public:
compiled_format() = delete;
explicit constexpr compiled_format(basic_string_view<char_type> format_str)
: compiled_format_base<S>(format_str), format_str_(format_str) {}
};
#ifdef __cpp_if_constexpr
template <typename... Args> struct type_list {};
// Returns a reference to the argument at index N from [first, rest...].
template <int N, typename T, typename... Args>
constexpr const auto& get([[maybe_unused]] const T& first,
[[maybe_unused]] const Args&... rest) {
2019-09-24 09:53:55 +00:00
static_assert(N < 1 + sizeof...(Args), "index is out of bounds");
if constexpr (N == 0)
return first;
else
2019-09-24 09:53:55 +00:00
return get<N - 1>(rest...);
}
template <int N, typename> struct get_type_impl;
template <int N, typename... Args> struct get_type_impl<N, type_list<Args...>> {
using type = remove_cvref_t<decltype(get<N>(std::declval<Args>()...))>;
};
template <int N, typename T>
using get_type = typename get_type_impl<N, T>::type;
template <typename T> struct is_compiled_format : std::false_type {};
template <typename Char> struct text {
basic_string_view<Char> data;
using char_type = Char;
template <typename OutputIt, typename... Args>
constexpr OutputIt format(OutputIt out, const Args&...) const {
2020-06-14 18:04:41 +00:00
return write<Char>(out, data);
}
};
template <typename Char>
struct is_compiled_format<text<Char>> : std::true_type {};
template <typename Char>
constexpr text<Char> make_text(basic_string_view<Char> s, size_t pos,
size_t size) {
return {{&s[pos], size}};
}
template <typename Char> struct code_unit {
Char value;
using char_type = Char;
template <typename OutputIt, typename... Args>
constexpr OutputIt format(OutputIt out, const Args&...) const {
return write<Char>(out, value);
}
};
template <typename Char>
struct is_compiled_format<code_unit<Char>> : std::true_type {};
// A replacement field that refers to argument N.
template <typename Char, typename T, int N> struct field {
using char_type = Char;
template <typename OutputIt, typename... Args>
constexpr OutputIt format(OutputIt out, const Args&... args) const {
if constexpr (is_named_arg<typename std::remove_cv<T>::type>::value) {
2021-02-20 16:08:16 +00:00
const auto& arg = get<N>(args...).value;
return write<Char>(out, arg);
} else {
// This ensures that the argument type is convertile to `const T&`.
const T& arg = get<N>(args...);
return write<Char>(out, arg);
}
}
};
template <typename Char, typename T, int N>
struct is_compiled_format<field<Char, T, N>> : std::true_type {};
// A replacement field that refers to argument with name.
template <typename Char> struct runtime_named_field {
using char_type = Char;
basic_string_view<Char> name;
template <typename OutputIt, typename T>
constexpr static bool try_format_argument(OutputIt& out,
basic_string_view<Char> arg_name,
const T& arg) {
if constexpr (is_named_arg<typename std::remove_cv<T>::type>::value) {
if (arg_name == arg.name) {
out = write<Char>(out, arg.value);
return true;
}
}
return false;
}
template <typename OutputIt, typename... Args>
constexpr OutputIt format(OutputIt out, const Args&... args) const {
bool found = (try_format_argument(out, name, args) || ...);
if (!found) {
throw format_error("argument with specified name is not found");
}
return out;
}
};
template <typename Char>
struct is_compiled_format<runtime_named_field<Char>> : std::true_type {};
// A replacement field that refers to argument N and has format specifiers.
template <typename Char, typename T, int N> struct spec_field {
using char_type = Char;
formatter<T, Char> fmt;
template <typename OutputIt, typename... Args>
constexpr OutputIt format(OutputIt out, const Args&... args) const {
// This ensures that the argument type is convertile to `const T&`.
const T& arg = get<N>(args...);
const auto& vargs =
make_format_args<basic_format_context<OutputIt, Char>>(args...);
basic_format_context<OutputIt, Char> ctx(out, vargs);
return fmt.format(arg, ctx);
}
};
template <typename Char, typename T, int N>
struct is_compiled_format<spec_field<Char, T, N>> : std::true_type {};
template <typename L, typename R> struct concat {
L lhs;
R rhs;
using char_type = typename L::char_type;
template <typename OutputIt, typename... Args>
constexpr OutputIt format(OutputIt out, const Args&... args) const {
out = lhs.format(out, args...);
return rhs.format(out, args...);
}
};
template <typename L, typename R>
struct is_compiled_format<concat<L, R>> : std::true_type {};
template <typename L, typename R>
constexpr concat<L, R> make_concat(L lhs, R rhs) {
return {lhs, rhs};
}
2019-09-24 09:54:32 +00:00
struct unknown_format {};
template <typename Char>
constexpr size_t parse_text(basic_string_view<Char> str, size_t pos) {
for (size_t size = str.size(); pos != size; ++pos) {
if (str[pos] == '{' || str[pos] == '}') break;
}
return pos;
}
template <typename Args, size_t POS, int ID, typename S>
constexpr auto compile_format_string(S format_str);
template <typename Args, size_t POS, int ID, typename T, typename S>
constexpr auto parse_tail(T head, S format_str) {
if constexpr (POS !=
basic_string_view<typename S::char_type>(format_str).size()) {
constexpr auto tail = compile_format_string<Args, POS, ID>(format_str);
2019-09-24 09:54:32 +00:00
if constexpr (std::is_same<remove_cvref_t<decltype(tail)>,
unknown_format>())
return tail;
else
return make_concat(head, tail);
} else {
return head;
}
}
template <typename T, typename Char> struct parse_specs_result {
formatter<T, Char> fmt;
size_t end;
int next_arg_id;
};
constexpr int manual_indexing_id = -1;
template <typename T, typename Char>
constexpr parse_specs_result<T, Char> parse_specs(basic_string_view<Char> str,
size_t pos, int next_arg_id) {
str.remove_prefix(pos);
auto ctx = basic_format_parse_context<Char>(str, {}, next_arg_id);
auto f = formatter<T, Char>();
auto end = f.parse(ctx);
:bug: Implicit sign conversion warning in clang in c++17 and 20 modes (#2009) Problem: - On Apple clang version 11.0.3 (clang-1103.0.32.62) in C++17 and C++20 mode, clang 11.0.0 in C++17 and C++20 mode, and clang 9.0.1 in C++17 mode, the following error is generated: In file included from test/compile-test.cc:16: include/fmt/compile.h:518:25: error: implicit conversion changes signedness: 'long' to 'unsigned long' [-Werror,-Wsign-conversion] return {f, pos + (end - str.data()) + 1, ctx.next_arg_id()}; ~ ~~~~^~~~~~~~~~~~ include/fmt/compile.h:538:31: note: in instantiation of function template specialization 'fmt::v7::detail::parse_specs<int, char>' requested here constexpr auto result = parse_specs<id_type>(str, POS + 2, ID); ^ include/fmt/compile.h:569:17: note: in instantiation of function template specialization 'fmt::v7::detail::compile_format_string<fmt::v7::detail::type_list<int>, 0, 0, FMT_COMPILE_STRING>' requested here detail::compile_format_string<detail::type_list<Args...>, 0, 0>( ^ include/fmt/compile.h:648:37: note: in instantiation of function template specialization 'fmt::v7::detail::compile<int, FMT_COMPILE_STRING, 0>' requested here constexpr auto compiled = detail::compile<Args...>(S()); ^ test/compile-test.cc:140:24: note: in instantiation of function template specialization 'fmt::v7::format<FMT_COMPILE_STRING, int, 0>' requested here EXPECT_EQ("42", fmt::format(FMT_COMPILE("{:x}"), 0x42)); ^ In file included from test/compile-test.cc:16: include/fmt/compile.h:518:25: error: implicit conversion changes signedness: 'long' to 'unsigned long' [-Werror,-Wsign-conversion] return {f, pos + (end - str.data()) + 1, ctx.next_arg_id()}; ~ ~~~~^~~~~~~~~~~~ include/fmt/compile.h:538:31: note: in instantiation of function template specialization 'fmt::v7::detail::parse_specs<char [4], char>' requested here constexpr auto result = parse_specs<id_type>(str, POS + 2, ID); ^ include/fmt/compile.h:494:27: note: in instantiation of function template specialization 'fmt::v7::detail::compile_format_string<fmt::v7::detail::type_list<int, int, char const (&)[4], int>, 5, 2, FMT_COMPILE_STRING>' requested here constexpr auto tail = compile_format_string<Args, POS, ID>(format_str); ^ include/fmt/compile.h:539:14: note: in instantiation of function template specialization 'fmt::v7::detail::parse_tail<fmt::v7::detail::type_list<int, int, char const (&)[4], int>, 5, 2, fmt::v7::detail::spec_field<char, int, 0>, FMT_COMPILE_STRING>' requested here return parse_tail<Args, result.end, result.next_arg_id>( ^ include/fmt/compile.h:569:17: note: in instantiation of function template specialization 'fmt::v7::detail::compile_format_string<fmt::v7::detail::type_list<int, int, char const (&)[4], int>, 0, 0, FMT_COMPILE_STRING>' requested here detail::compile_format_string<detail::type_list<Args...>, 0, 0>( ^ include/fmt/compile.h:648:37: note: in instantiation of function template specialization 'fmt::v7::detail::compile<int, int, char const (&)[4], int, FMT_COMPILE_STRING, 0>' requested here constexpr auto compiled = detail::compile<Args...>(S()); ^ test/compile-test.cc:145:18: note: in instantiation of function template specialization 'fmt::v7::format<FMT_COMPILE_STRING, int, int, char const (&)[4], int, 0>' requested here fmt::format(FMT_COMPILE("{:{}}{:{}}"), 42, 4, "foo", 5)); ^ 2 errors generated. Solution: - Explicitly cast the result of the subtraction to the (unsigned) outer type. Co-authored-by: Jonathan Gopel <jgopel@quantlab.com>
2020-11-11 15:57:52 +00:00
return {f, pos + fmt::detail::to_unsigned(end - str.data()) + 1,
next_arg_id == 0 ? manual_indexing_id : ctx.next_arg_id()};
}
template <typename Char> struct arg_id_handler {
constexpr void on_error(const char* message) { throw format_error(message); }
constexpr int on_arg_id() {
FMT_ASSERT(false, "handler cannot be used with automatic indexing");
return 0;
}
constexpr int on_arg_id(int id) {
arg_id = arg_ref<Char>(id);
return 0;
}
constexpr int on_arg_id(basic_string_view<Char> id) {
arg_id = arg_ref<Char>(id);
return 0;
}
arg_ref<Char> arg_id;
};
template <typename Char> struct parse_arg_id_result {
arg_ref<Char> arg_id;
const Char* arg_id_end;
};
template <int ID, typename Char>
constexpr auto parse_arg_id(const Char* begin, const Char* end) {
auto handler = arg_id_handler<Char>{arg_ref<Char>{}};
auto adapter = id_adapter<arg_id_handler<Char>, Char>{handler, 0};
auto arg_id_end = parse_arg_id(begin, end, adapter);
return parse_arg_id_result<Char>{handler.arg_id, arg_id_end};
}
// Compiles a non-empty format string and returns the compiled representation
2019-09-24 09:54:32 +00:00
// or unknown_format() on unrecognized input.
template <typename Args, size_t POS, int ID, typename S>
constexpr auto compile_format_string(S format_str) {
using char_type = typename S::char_type;
constexpr basic_string_view<char_type> str = format_str;
if constexpr (str[POS] == '{') {
if constexpr (POS + 1 == str.size())
throw format_error("unmatched '{' in format string");
if constexpr (str[POS + 1] == '{') {
return parse_tail<Args, POS + 2, ID>(make_text(str, POS, 1), format_str);
} else if constexpr (str[POS + 1] == '}' || str[POS + 1] == ':') {
static_assert(ID != manual_indexing_id,
"cannot switch from manual to automatic argument indexing");
using id_type = get_type<ID, Args>;
if constexpr (str[POS + 1] == '}') {
constexpr auto next_id =
ID != manual_indexing_id ? ID + 1 : manual_indexing_id;
return parse_tail<Args, POS + 2, next_id>(
field<char_type, id_type, ID>(), format_str);
} else {
constexpr auto result = parse_specs<id_type>(str, POS + 2, ID + 1);
return parse_tail<Args, result.end, result.next_arg_id>(
spec_field<char_type, id_type, ID>{result.fmt}, format_str);
}
} else {
constexpr auto arg_id_result =
parse_arg_id<ID>(str.data() + POS + 1, str.data() + str.size());
constexpr auto arg_id_end_pos = arg_id_result.arg_id_end - str.data();
constexpr char_type c =
arg_id_end_pos != str.size() ? str[arg_id_end_pos] : char_type();
static_assert(c == '}' || c == ':', "missing '}' in format string");
if constexpr (arg_id_result.arg_id.kind == arg_id_kind::index) {
static_assert(
ID == manual_indexing_id || ID == 0,
"cannot switch from automatic to manual argument indexing");
constexpr auto arg_index = arg_id_result.arg_id.val.index;
using id_type = get_type<arg_index, Args>;
if constexpr (c == '}') {
return parse_tail<Args, arg_id_end_pos + 1, manual_indexing_id>(
field<char_type, id_type, arg_index>(), format_str);
} else if constexpr (c == ':') {
constexpr auto result =
parse_specs<id_type>(str, arg_id_end_pos + 1, 0);
return parse_tail<Args, result.end, result.next_arg_id>(
spec_field<char_type, id_type, arg_index>{result.fmt},
format_str);
}
} else if constexpr (arg_id_result.arg_id.kind == arg_id_kind::name) {
if constexpr (c == '}') {
return parse_tail<Args, arg_id_end_pos + 1, ID>(
runtime_named_field<char_type>{arg_id_result.arg_id.val.name},
format_str);
} else if constexpr (c == ':') {
return unknown_format(); // no type info for specs parsing
}
}
}
} else if constexpr (str[POS] == '}') {
if constexpr (POS + 1 == str.size())
throw format_error("unmatched '}' in format string");
return parse_tail<Args, POS + 2, ID>(make_text(str, POS, 1), format_str);
} else {
constexpr auto end = parse_text(str, POS + 1);
if constexpr (end - POS > 1) {
return parse_tail<Args, end, ID>(make_text(str, POS, end - POS),
format_str);
} else {
2020-07-11 15:35:26 +00:00
return parse_tail<Args, end, ID>(code_unit<char_type>{str[POS]},
format_str);
}
}
}
template <typename... Args, typename S,
FMT_ENABLE_IF(is_compile_string<S>::value ||
detail::is_compiled_string<S>::value)>
constexpr auto compile(S format_str) {
constexpr basic_string_view<typename S::char_type> str = format_str;
if constexpr (str.size() == 0) {
2020-05-10 14:25:42 +00:00
return detail::make_text(str, 0, 0);
} else {
constexpr auto result =
2020-05-10 14:25:42 +00:00
detail::compile_format_string<detail::type_list<Args...>, 0, 0>(
format_str);
return result;
}
}
2020-06-23 21:03:37 +00:00
#else
template <typename... Args, typename S,
FMT_ENABLE_IF(is_compile_string<S>::value)>
constexpr auto compile(S format_str) -> detail::compiled_format<S, Args...> {
return detail::compiled_format<S, Args...>(to_string_view(format_str));
}
#endif // __cpp_if_constexpr
// Compiles the format string which must be a string literal.
template <typename... Args, typename Char, size_t N>
auto compile(const Char (&format_str)[N])
-> detail::compiled_format<const Char*, Args...> {
return detail::compiled_format<const Char*, Args...>(
basic_string_view<Char>(format_str, N - 1));
}
} // namespace detail
// DEPRECATED! use FMT_COMPILE instead.
template <typename... Args>
2020-06-25 14:14:55 +00:00
FMT_DEPRECATED auto compile(const Args&... args)
-> decltype(detail::compile(args...)) {
2020-06-23 21:03:37 +00:00
return detail::compile(args...);
}
#if FMT_USE_CONSTEXPR
# ifdef __cpp_if_constexpr
template <typename CompiledFormat, typename... Args,
typename Char = typename CompiledFormat::char_type,
2020-05-10 14:25:42 +00:00
FMT_ENABLE_IF(detail::is_compiled_format<CompiledFormat>::value)>
2020-06-14 18:38:39 +00:00
FMT_INLINE std::basic_string<Char> format(const CompiledFormat& cf,
const Args&... args) {
basic_memory_buffer<Char> buffer;
2020-07-10 14:50:37 +00:00
cf.format(detail::buffer_appender<Char>(buffer), args...);
return to_string(buffer);
}
template <typename OutputIt, typename CompiledFormat, typename... Args,
2020-05-10 14:25:42 +00:00
FMT_ENABLE_IF(detail::is_compiled_format<CompiledFormat>::value)>
constexpr OutputIt format_to(OutputIt out, const CompiledFormat& cf,
const Args&... args) {
return cf.format(out, args...);
}
# endif // __cpp_if_constexpr
#endif // FMT_USE_CONSTEXPR
2019-08-03 13:28:31 +00:00
template <typename CompiledFormat, typename... Args,
typename Char = typename CompiledFormat::char_type,
2020-05-10 14:25:42 +00:00
FMT_ENABLE_IF(std::is_base_of<detail::basic_compiled_format,
CompiledFormat>::value)>
2019-08-03 13:28:31 +00:00
std::basic_string<Char> format(const CompiledFormat& cf, const Args&... args) {
basic_memory_buffer<Char> buffer;
using context = buffer_context<Char>;
detail::cf::vformat_to<context>(detail::buffer_appender<Char>(buffer), cf,
2020-05-10 14:25:42 +00:00
make_format_args<context>(args...));
2019-08-03 13:28:31 +00:00
return to_string(buffer);
}
template <typename S, typename... Args,
FMT_ENABLE_IF(detail::is_compiled_string<S>::value)>
2020-06-20 15:50:02 +00:00
FMT_INLINE std::basic_string<typename S::char_type> format(const S&,
Args&&... args) {
#ifdef __cpp_if_constexpr
if constexpr (std::is_same<typename S::char_type, char>::value) {
constexpr basic_string_view<typename S::char_type> str = S();
if constexpr (str.size() == 2 && str[0] == '{' && str[1] == '}') {
2021-02-20 16:08:16 +00:00
const auto& first = detail::first(args...);
if constexpr (detail::is_named_arg<
remove_cvref_t<decltype(first)>>::value) {
return fmt::to_string(first.value);
} else {
return fmt::to_string(first);
}
}
}
#endif
2020-06-23 21:03:37 +00:00
constexpr auto compiled = detail::compile<Args...>(S());
#ifdef __cpp_if_constexpr
if constexpr (std::is_same<remove_cvref_t<decltype(compiled)>,
detail::unknown_format>()) {
return format(static_cast<basic_string_view<typename S::char_type>>(S()),
std::forward<Args>(args)...);
} else {
return format(compiled, std::forward<Args>(args)...);
}
#else
2020-06-12 20:24:49 +00:00
return format(compiled, std::forward<Args>(args)...);
#endif
}
template <typename OutputIt, typename CompiledFormat, typename... Args,
2020-05-10 14:25:42 +00:00
FMT_ENABLE_IF(std::is_base_of<detail::basic_compiled_format,
CompiledFormat>::value)>
constexpr OutputIt format_to(OutputIt out, const CompiledFormat& cf,
const Args&... args) {
2019-08-03 15:35:02 +00:00
using char_type = typename CompiledFormat::char_type;
using context = format_context_t<OutputIt, char_type>;
2020-05-30 04:30:20 +00:00
return detail::cf::vformat_to<context>(out, cf,
2020-05-10 14:25:42 +00:00
make_format_args<context>(args...));
2019-08-03 15:35:02 +00:00
}
2020-06-20 15:50:02 +00:00
template <typename OutputIt, typename S, typename... Args,
FMT_ENABLE_IF(detail::is_compiled_string<S>::value)>
FMT_CONSTEXPR OutputIt format_to(OutputIt out, const S&, Args&&... args) {
2020-06-23 21:03:37 +00:00
constexpr auto compiled = detail::compile<Args...>(S());
#ifdef __cpp_if_constexpr
if constexpr (std::is_same<remove_cvref_t<decltype(compiled)>,
detail::unknown_format>()) {
return format_to(out,
static_cast<basic_string_view<typename S::char_type>>(S()),
std::forward<Args>(args)...);
} else {
return format_to(out, compiled, std::forward<Args>(args)...);
}
#else
return format_to(out, compiled, std::forward<Args>(args)...);
#endif
2020-06-20 15:50:02 +00:00
}
2020-10-27 08:55:26 +00:00
template <typename OutputIt, typename CompiledFormat, typename... Args>
2020-10-27 14:19:28 +00:00
auto format_to_n(OutputIt out, size_t n, const CompiledFormat& cf,
const Args&... args) ->
typename std::enable_if<
detail::is_output_iterator<OutputIt,
typename CompiledFormat::char_type>::value &&
std::is_base_of<detail::basic_compiled_format,
CompiledFormat>::value,
format_to_n_result<OutputIt>>::type {
auto it =
2020-05-10 14:25:42 +00:00
format_to(detail::truncating_iterator<OutputIt>(out, n), cf, args...);
return {it.base(), it.count()};
}
template <typename OutputIt, typename S, typename... Args,
FMT_ENABLE_IF(detail::is_compiled_string<S>::value)>
format_to_n_result<OutputIt> format_to_n(OutputIt out, size_t n, const S&,
Args&&... args) {
auto it = format_to(detail::truncating_iterator<OutputIt>(out, n), S(),
std::forward<Args>(args)...);
return {it.base(), it.count()};
}
template <typename CompiledFormat, typename... Args,
FMT_ENABLE_IF(std::is_base_of<detail::basic_compiled_format,
CompiledFormat>::value ||
detail::is_compiled_string<CompiledFormat>::value)>
2020-05-07 22:59:46 +00:00
size_t formatted_size(const CompiledFormat& cf, const Args&... args) {
2020-05-10 14:25:42 +00:00
return format_to(detail::counting_iterator(), cf, args...).count();
}
#if FMT_USE_NONTYPE_TEMPLATE_PARAMETERS
inline namespace literals {
template <detail::fixed_string Str>
constexpr detail::udl_compiled_string<remove_cvref_t<decltype(Str.data[0])>,
sizeof(Str.data), Str>
operator""_cf() {
return {};
}
} // namespace literals
#endif
FMT_END_NAMESPACE
2019-07-25 16:01:21 +00:00
#endif // FMT_COMPILE_H_