fmtlegacy/include/fmt/core.h

1181 lines
34 KiB
C
Raw Normal View History

2018-01-06 17:09:50 +00:00
// Formatting library for C++ - the core API
//
// Copyright (c) 2012 - present, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.
#ifndef FMT_CORE_H_
#define FMT_CORE_H_
#include <cassert>
#include <cstdio>
2018-01-06 17:09:50 +00:00
#include <cstring>
2018-01-14 22:15:59 +00:00
#include <iterator>
#include <string>
#include <type_traits>
#ifdef __has_feature
# define FMT_HAS_FEATURE(x) __has_feature(x)
#else
# define FMT_HAS_FEATURE(x) 0
#endif
#ifdef __GNUC__
# define FMT_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
#endif
#ifdef _MSC_VER
# define FMT_MSC_VER _MSC_VER
#else
# define FMT_MSC_VER 0
#endif
// Check if exceptions are disabled.
#if defined(__GNUC__) && !defined(__EXCEPTIONS)
# define FMT_EXCEPTIONS 0
2017-12-30 15:42:56 +00:00
#elif FMT_MSC_VER && !_HAS_EXCEPTIONS
# define FMT_EXCEPTIONS 0
#endif
#ifndef FMT_EXCEPTIONS
# define FMT_EXCEPTIONS 1
#endif
// Define FMT_USE_NOEXCEPT to make fmt use noexcept (C++11 feature).
#ifndef FMT_USE_NOEXCEPT
# define FMT_USE_NOEXCEPT 0
#endif
2018-01-21 01:54:06 +00:00
#if FMT_USE_NOEXCEPT || FMT_HAS_FEATURE(cxx_noexcept) || \
(FMT_GCC_VERSION >= 408 && FMT_HAS_GXX_CXX11) || \
FMT_MSC_VER >= 1900
# define FMT_DETECTED_NOEXCEPT noexcept
#else
# define FMT_DETECTED_NOEXCEPT throw()
#endif
#ifndef FMT_NOEXCEPT
# if FMT_EXCEPTIONS
2018-01-21 01:54:06 +00:00
# define FMT_NOEXCEPT FMT_DETECTED_NOEXCEPT
# else
# define FMT_NOEXCEPT
# endif
#endif
2018-01-21 01:54:06 +00:00
// This is needed because GCC still uses throw() in its headers when exceptions
// are disabled.
#if FMT_GCC_VERSION
# define FMT_DTOR_NOEXCEPT FMT_DETECTED_NOEXCEPT
#else
# define FMT_DTOR_NOEXCEPT FMT_NOEXCEPT
#endif
#if !defined(FMT_HEADER_ONLY) && defined(_WIN32)
# ifdef FMT_EXPORT
# define FMT_API __declspec(dllexport)
# elif defined(FMT_SHARED)
# define FMT_API __declspec(dllimport)
# endif
#endif
#ifndef FMT_API
# define FMT_API
#endif
#ifndef FMT_ASSERT
# define FMT_ASSERT(condition, message) assert((condition) && message)
#endif
2018-01-06 17:09:50 +00:00
#define FMT_DELETED = delete
// A macro to disallow the copy construction and assignment.
2018-01-06 17:09:50 +00:00
#define FMT_DISALLOW_COPY_AND_ASSIGN(Type) \
Type(const Type &) FMT_DELETED; \
void operator=(const Type &) FMT_DELETED
namespace fmt {
/**
\rst
An implementation of ``std::basic_string_view`` for pre-C++17. It provides a
subset of the API.
\endrst
*/
template <typename Char>
class basic_string_view {
private:
const Char *data_;
size_t size_;
public:
using char_type = Char;
using iterator = const Char *;
2018-01-06 17:09:50 +00:00
constexpr basic_string_view() FMT_NOEXCEPT : data_(0), size_(0) {}
/** Constructs a string reference object from a C string and a size. */
2018-01-06 17:09:50 +00:00
constexpr basic_string_view(const Char *s, size_t size) FMT_NOEXCEPT
: data_(s), size_(size) {}
/**
\rst
Constructs a string reference object from a C string computing
the size with ``std::char_traits<Char>::length``.
\endrst
*/
basic_string_view(const Char *s)
: data_(s), size_(std::char_traits<Char>::length(s)) {}
/**
\rst
Constructs a string reference from an ``std::string`` object.
\endrst
*/
2018-01-06 17:09:50 +00:00
constexpr basic_string_view(const std::basic_string<Char> &s) FMT_NOEXCEPT
: data_(s.c_str()), size_(s.size()) {}
/**
\rst
Converts a string reference to an ``std::string`` object.
\endrst
*/
std::basic_string<Char> to_string() const {
return std::basic_string<Char>(data_, size_);
}
/** Returns a pointer to the string data. */
const Char *data() const { return data_; }
/** Returns the string size. */
constexpr size_t size() const { return size_; }
constexpr iterator begin() const { return data_; }
constexpr iterator end() const { return data_ + size_; }
constexpr void remove_prefix(size_t n) {
data_ += n;
size_ -= n;
}
// Lexicographically compare this string reference to other.
int compare(basic_string_view other) const {
size_t size = size_ < other.size_ ? size_ : other.size_;
int result = std::char_traits<Char>::compare(data_, other.data_, size);
if (result == 0)
result = size_ == other.size_ ? 0 : (size_ < other.size_ ? -1 : 1);
return result;
}
friend bool operator==(basic_string_view lhs, basic_string_view rhs) {
return lhs.compare(rhs) == 0;
}
friend bool operator!=(basic_string_view lhs, basic_string_view rhs) {
return lhs.compare(rhs) != 0;
}
friend bool operator<(basic_string_view lhs, basic_string_view rhs) {
return lhs.compare(rhs) < 0;
}
friend bool operator<=(basic_string_view lhs, basic_string_view rhs) {
return lhs.compare(rhs) <= 0;
}
friend bool operator>(basic_string_view lhs, basic_string_view rhs) {
return lhs.compare(rhs) > 0;
}
friend bool operator>=(basic_string_view lhs, basic_string_view rhs) {
return lhs.compare(rhs) >= 0;
}
};
using string_view = basic_string_view<char>;
using wstring_view = basic_string_view<wchar_t>;
2018-01-14 20:25:03 +00:00
template <typename Context>
class basic_arg;
template <typename Context>
class basic_format_args;
// A formatter for objects of type T.
template <typename T, typename Char = char, typename Enable = void>
struct formatter;
namespace internal {
2018-01-06 17:09:50 +00:00
/** A contiguous memory buffer with an optional growing ability. */
template <typename T>
class basic_buffer {
private:
FMT_DISALLOW_COPY_AND_ASSIGN(basic_buffer);
T *ptr_;
std::size_t size_;
std::size_t capacity_;
protected:
2018-01-15 16:22:31 +00:00
basic_buffer(T *p = 0, std::size_t size = 0, std::size_t capacity = 0)
FMT_NOEXCEPT: ptr_(p), size_(size), capacity_(capacity) {}
2018-01-06 17:09:50 +00:00
/** Sets the buffer data and capacity. */
void set(T *data, std::size_t capacity) FMT_NOEXCEPT {
ptr_ = data;
capacity_ = capacity;
}
/**
\rst
Increases the buffer capacity to hold at least *capacity* elements.
\endrst
*/
virtual void grow(std::size_t capacity) = 0;
public:
using value_type = T;
virtual ~basic_buffer() {}
T *begin() FMT_NOEXCEPT { return ptr_; }
T *end() FMT_NOEXCEPT { return ptr_ + size_; }
/** Returns the size of this buffer. */
std::size_t size() const FMT_NOEXCEPT { return size_; }
/** Returns the capacity of this buffer. */
std::size_t capacity() const FMT_NOEXCEPT { return capacity_; }
/** Returns a pointer to the buffer data. */
T *data() FMT_NOEXCEPT { return ptr_; }
/** Returns a pointer to the buffer data. */
const T *data() const FMT_NOEXCEPT { return ptr_; }
/**
Resizes the buffer. If T is a POD type new elements may not be initialized.
*/
void resize(std::size_t new_size) {
reserve(new_size);
size_ = new_size;
}
/**
\rst
Reserves space to store at least *capacity* elements.
\endrst
*/
void reserve(std::size_t capacity) {
if (capacity > capacity_)
grow(capacity);
}
void push_back(const T &value) {
reserve(size_ + 1);
ptr_[size_++] = value;
}
/** Appends data to the end of the buffer. */
template <typename U>
void append(const U *begin, const U *end);
T &operator[](std::size_t index) { return ptr_[index]; }
const T &operator[](std::size_t index) const { return ptr_[index]; }
};
2018-01-15 16:22:31 +00:00
using buffer = basic_buffer<char>;
using wbuffer = basic_buffer<wchar_t>;
2018-01-14 22:15:59 +00:00
2018-01-15 16:22:31 +00:00
// A container-backed buffer.
2018-01-14 22:15:59 +00:00
template <typename Container>
2018-01-15 16:22:31 +00:00
class container_buffer : public basic_buffer<typename Container::value_type> {
2018-01-14 22:15:59 +00:00
private:
Container &container_;
protected:
virtual void grow(std::size_t capacity) {
container_.resize(capacity);
this->set(&container_[0], capacity);
}
public:
2018-01-15 16:22:31 +00:00
explicit container_buffer(Container &c)
: basic_buffer<typename Container::value_type>(&c[0], c.size(), c.size()),
container_(c) {}
2018-01-14 22:15:59 +00:00
};
// A helper function to suppress bogus "conditional expression is constant"
// warnings.
template <typename T>
inline T const_check(T value) { return value; }
struct error_handler {
constexpr error_handler() {}
constexpr error_handler(const error_handler &) {}
// This function is intentionally not constexpr to give a compile-time error.
void on_error(const char *message);
};
// Formatting of wide characters and strings into a narrow output is disallowed:
// fmt::format("{}", L"test"); // error
// To fix this, use a wide format string:
// fmt::format(L"{}", L"test");
template <typename Char>
inline void require_wchar() {
static_assert(
std::is_same<wchar_t, Char>::value,
"formatting of wide characters into a narrow output is disallowed");
}
using yes = char[1];
using no = char[2];
yes &convert(unsigned long long);
no &convert(...);
template<typename T, bool ENABLE_CONVERSION>
struct convert_to_int_impl {
enum { value = ENABLE_CONVERSION };
};
template<typename T, bool ENABLE_CONVERSION>
struct convert_to_int_impl2 {
enum { value = false };
};
template<typename T>
struct convert_to_int_impl2<T, true> {
enum {
2017-12-06 17:18:17 +00:00
// Don't convert arithmetic types.
value = convert_to_int_impl<T, !std::is_arithmetic<T>::value>::value
};
};
template<typename T>
struct convert_to_int {
enum {
enable_conversion = sizeof(convert(std::declval<T>())) == sizeof(yes)
};
enum { value = convert_to_int_impl2<T, enable_conversion>::value };
};
#define FMT_DISABLE_CONVERSION_TO_INT(Type) \
template <> \
struct convert_to_int<Type> { enum { value = 0 }; }
// Silence warnings about convering float to int.
FMT_DISABLE_CONVERSION_TO_INT(float);
FMT_DISABLE_CONVERSION_TO_INT(double);
FMT_DISABLE_CONVERSION_TO_INT(long double);
2018-01-06 17:09:50 +00:00
template <typename Char>
struct named_arg_base;
template <typename T, typename Char>
struct named_arg;
template <typename T>
struct is_named_arg : std::false_type {};
2018-01-06 17:09:50 +00:00
template <typename T, typename Char>
struct is_named_arg<named_arg<T, Char>> : std::true_type {};
enum type {
NONE, NAMED_ARG,
// Integer types should go first,
INT, UINT, LONG_LONG, ULONG_LONG, BOOL, CHAR, LAST_INTEGER_TYPE = CHAR,
// followed by floating-point types.
DOUBLE, LONG_DOUBLE, LAST_NUMERIC_TYPE = LONG_DOUBLE,
CSTRING, STRING, POINTER, CUSTOM
};
constexpr bool is_integral(type t) {
FMT_ASSERT(t != internal::NAMED_ARG, "invalid argument type");
return t > internal::NONE && t <= internal::LAST_INTEGER_TYPE;
}
2017-12-09 14:19:15 +00:00
constexpr bool is_arithmetic(type t) {
FMT_ASSERT(t != internal::NAMED_ARG, "invalid argument type");
return t > internal::NONE && t <= internal::LAST_NUMERIC_TYPE;
}
template <typename T>
constexpr type get_type() {
return std::is_reference<T>::value || std::is_array<T>::value ?
get_type<typename std::decay<T>::type>() :
(is_named_arg<T>::value ?
NAMED_ARG : (convert_to_int<T>::value ? INT : CUSTOM));
}
template <> constexpr type get_type<bool>() { return BOOL; }
template <> constexpr type get_type<short>() { return INT; }
template <> constexpr type get_type<unsigned short>() { return UINT; }
template <> constexpr type get_type<int>() { return INT; }
template <> constexpr type get_type<unsigned>() { return UINT; }
template <> constexpr type get_type<long>() {
return sizeof(long) == sizeof(int) ? INT : LONG_LONG;
}
template <> constexpr type get_type<unsigned long>() {
return sizeof(unsigned long) == sizeof(unsigned) ? UINT : ULONG_LONG;
}
template <> constexpr type get_type<long long>() { return LONG_LONG; }
template <> constexpr type get_type<unsigned long long>() { return ULONG_LONG; }
template <> constexpr type get_type<float>() { return DOUBLE; }
template <> constexpr type get_type<double>() { return DOUBLE; }
template <> constexpr type get_type<long double>() { return LONG_DOUBLE; }
template <> constexpr type get_type<signed char>() { return INT; }
template <> constexpr type get_type<unsigned char>() { return UINT; }
template <> constexpr type get_type<char>() { return CHAR; }
#if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED)
template <> constexpr type get_type<wchar_t>() { return CHAR; }
#endif
template <> constexpr type get_type<char *>() { return CSTRING; }
template <> constexpr type get_type<const char *>() { return CSTRING; }
template <> constexpr type get_type<signed char *>() { return CSTRING; }
template <> constexpr type get_type<const signed char *>() { return CSTRING; }
template <> constexpr type get_type<unsigned char *>() { return CSTRING; }
template <> constexpr type get_type<const unsigned char *>() { return CSTRING; }
template <> constexpr type get_type<std::string>() { return STRING; }
template <> constexpr type get_type<string_view>() { return STRING; }
template <> constexpr type get_type<wchar_t *>() { return CSTRING; }
template <> constexpr type get_type<const wchar_t *>() { return CSTRING; }
template <> constexpr type get_type<std::wstring>() { return STRING; }
template <> constexpr type get_type<wstring_view>() { return STRING; }
template <> constexpr type get_type<void *>() { return POINTER; }
template <> constexpr type get_type<const void *>() { return POINTER; }
template <> constexpr type get_type<std::nullptr_t>() { return POINTER; }
template <typename Arg, typename... Args>
constexpr uint64_t get_types() {
return get_type<Arg>() | (get_types<Args...>() << 4);
}
template <>
constexpr uint64_t get_types<void>() { return 0; }
2018-01-06 17:09:50 +00:00
template <typename Context, typename T>
constexpr basic_arg<Context> make_arg(const T &value);
template <typename Char>
struct string_value {
const Char *value;
std::size_t size;
};
template <typename Context>
struct custom_value {
const void *value;
2018-01-06 17:09:50 +00:00
void (*format)(const void *arg, Context &ctx);
};
// A formatting argument value.
template <typename Context>
class value {
public:
using char_type = typename Context::char_type;
union {
int int_value;
unsigned uint_value;
long long long_long_value;
unsigned long long ulong_long_value;
double double_value;
long double long_double_value;
const void *pointer;
string_value<char_type> string;
string_value<signed char> sstring;
string_value<unsigned char> ustring;
custom_value<Context> custom;
};
constexpr value() : int_value(0) {}
value(bool val) { set<BOOL>(int_value, val); }
value(short val) { set<INT>(int_value, val); }
value(unsigned short val) { set<UINT>(uint_value, val); }
constexpr value(int val) : int_value(val) {}
value(unsigned val) { set<UINT>(uint_value, val); }
value(long val) {
// To minimize the number of types we need to deal with, long is
// translated either to int or to long long depending on its size.
if (const_check(sizeof(val) == sizeof(int)))
int_value = static_cast<int>(val);
else
long_long_value = val;
}
value(unsigned long val) {
if (const_check(sizeof(val) == sizeof(unsigned)))
uint_value = static_cast<unsigned>(val);
else
ulong_long_value = val;
}
value(long long val) { set<LONG_LONG>(long_long_value, val); }
value(unsigned long long val) { set<ULONG_LONG>(ulong_long_value, val); }
value(float val) { set<DOUBLE>(double_value, val); }
value(double val) { set<DOUBLE>(double_value, val); }
value(long double val) { set<LONG_DOUBLE>(long_double_value, val); }
value(signed char val) { set<INT>(int_value, val); }
value(unsigned char val) { set<UINT>(uint_value, val); }
value(char val) { set<CHAR>(int_value, val); }
#if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED)
2018-01-14 15:19:23 +00:00
value(wchar_t val) {
require_wchar<char_type>();
2018-01-14 15:19:23 +00:00
set<CHAR>(int_value, val);
}
#endif
// Formatting of wide strings into a narrow buffer and multibyte strings
// into a wide buffer is disallowed (https://github.com/fmtlib/fmt/pull/606).
value(char_type *s) { set<CSTRING>(string.value, s); }
value(const char_type *s) { set<CSTRING>(string.value, s); }
value(signed char *s) { set_cstring(sstring.value, s); }
value(const signed char *s) { set_cstring(sstring.value, s); }
value(unsigned char *s) { set_cstring(ustring.value, s); }
value(const unsigned char *s) { set_cstring(ustring.value, s); }
value(basic_string_view<char_type> s) { set_string(s); }
value(const std::basic_string<char_type> &s) { set_string(s); }
template <typename T>
value(T *p) { set_pointer(p); }
template <typename T>
value(const T *p) { set_pointer(p); }
value(std::nullptr_t) { pointer = nullptr; }
template <typename T>
2018-01-14 15:19:23 +00:00
value(const T &val,
typename std::enable_if<convert_to_int<T>::value, int>::type = 0) {
static_assert(get_type<T>() == INT, "invalid type");
2018-01-14 15:19:23 +00:00
int_value = val;
}
template <typename T>
2018-01-14 15:19:23 +00:00
value(const T &val,
typename std::enable_if<!convert_to_int<T>::value, int>::type = 0) {
static_assert(get_type<T>() == CUSTOM, "invalid type");
2018-01-14 15:19:23 +00:00
custom.value = &val;
custom.format = &format_custom_arg<T>;
}
2018-01-06 17:09:50 +00:00
template <typename T>
2018-01-14 15:19:23 +00:00
value(const named_arg<T, char_type> &val) {
2018-01-06 17:09:50 +00:00
static_assert(get_type<const named_arg<T, char_type> &>() == NAMED_ARG,
"invalid type");
2018-01-14 15:19:23 +00:00
basic_arg<Context> arg = make_arg<Context>(val.value);
std::memcpy(val.data, &arg, sizeof(arg));
pointer = &val;
2018-01-06 17:09:50 +00:00
}
const named_arg_base<char_type> &as_named_arg() {
return *static_cast<const named_arg_base<char_type>*>(pointer);
}
private:
template <type TYPE, typename T, typename U>
2018-01-14 15:19:23 +00:00
constexpr void set(T &field, const U &val) {
static_assert(get_type<U>() == TYPE, "invalid type");
2018-01-14 15:19:23 +00:00
field = val;
}
template <typename T>
2018-01-14 15:19:23 +00:00
void set_string(const T &val) {
static_assert(get_type<T>() == STRING, "invalid type");
2018-01-14 15:19:23 +00:00
string.value = val.data();
string.size = val.size();
}
template <typename T, typename U>
constexpr void set_cstring(T &field, const U *str) {
static_assert(std::is_same<char, char_type>::value,
"incompatible string types");
set<CSTRING>(field, str);
}
// Formatting of arbitrary pointers is disallowed. If you want to output a
// pointer cast it to "void *" or "const void *". In particular, this forbids
// formatting of "[const] volatile char *" which is printed as bool by
// iostreams.
template <typename T>
void set_pointer(T *p) {
2018-01-14 19:00:27 +00:00
using nonconst_type = typename std::remove_const<T>::type;
static_assert(std::is_same<nonconst_type, void>::value,
"formatting of non-void pointers is disallowed");
set<POINTER>(pointer, p);
}
// Formats an argument of a custom type, such as a user-defined class.
template <typename T>
2018-01-06 17:09:50 +00:00
static void format_custom_arg(const void *arg, Context &ctx) {
// Get the formatter type through the context to allow different contexts
// have different extension points, e.g. `formatter<T>` for `format` and
// `printf_formatter<T>` for `printf`.
typename Context::template formatter_type<T> f;
auto &&parse_ctx = ctx.parse_context();
parse_ctx.advance_to(f.parse(parse_ctx));
2018-01-14 20:25:03 +00:00
f.format(*static_cast<const T*>(arg), ctx);
}
};
// Maximum number of arguments with packed types.
enum { MAX_PACKED_ARGS = 15 };
template <typename Context>
class arg_map;
}
// A formatting argument. It is a trivially copyable/constructible type to
// allow storage in basic_memory_buffer.
template <typename Context>
class basic_arg {
private:
internal::value<Context> value_;
internal::type type_;
template <typename ContextType, typename T>
friend constexpr basic_arg<ContextType> internal::make_arg(const T &value);
template <typename Visitor, typename Ctx>
friend constexpr typename std::result_of<Visitor(int)>::type
visit(Visitor &&vis, basic_arg<Ctx> arg);
friend class basic_format_args<Context>;
friend class internal::arg_map<Context>;
using char_type = typename Context::char_type;
public:
class handle {
public:
2017-12-30 15:42:56 +00:00
explicit handle(internal::custom_value<Context> custom): custom_(custom) {}
2017-12-30 15:42:56 +00:00
void format(Context &ctx) { custom_.format(custom_.value, ctx); }
private:
internal::custom_value<Context> custom_;
};
constexpr basic_arg() : type_(internal::NONE) {}
2018-01-06 17:09:50 +00:00
explicit operator bool() const FMT_NOEXCEPT {
return type_ != internal::NONE;
}
internal::type type() const { return type_; }
bool is_integral() const { return internal::is_integral(type_); }
2017-12-09 14:19:15 +00:00
bool is_arithmetic() const { return internal::is_arithmetic(type_); }
bool is_pointer() const { return type_ == internal::POINTER; }
};
// Parsing context consisting of a format string range being parsed and an
// argument counter for automatic indexing.
template <typename Char, typename ErrorHandler = internal::error_handler>
class basic_parse_context : private ErrorHandler {
private:
basic_string_view<Char> format_str_;
int next_arg_id_;
public:
using char_type = Char;
using iterator = typename basic_string_view<Char>::iterator;
explicit constexpr basic_parse_context(
basic_string_view<Char> format_str, ErrorHandler eh = ErrorHandler())
: ErrorHandler(eh), format_str_(format_str), next_arg_id_(0) {}
// Returns an iterator to the beginning of the format string range being
// parsed.
constexpr iterator begin() const FMT_NOEXCEPT { return format_str_.begin(); }
// Returns an iterator past the end of the format string range being parsed.
constexpr iterator end() const FMT_NOEXCEPT { return format_str_.end(); }
// Advances the begin iterator to ``it``.
constexpr void advance_to(iterator it) {
format_str_.remove_prefix(it - begin());
}
// Returns the next argument index.
constexpr unsigned next_arg_id();
constexpr bool check_arg_id(unsigned) {
if (next_arg_id_ > 0) {
on_error("cannot switch from automatic to manual argument indexing");
return false;
}
next_arg_id_ = -1;
return true;
}
void check_arg_id(basic_string_view<Char>) {}
constexpr void on_error(const char *message) {
ErrorHandler::on_error(message);
}
constexpr ErrorHandler error_handler() const { return *this; }
};
using parse_context = basic_parse_context<char>;
using wparse_context = basic_parse_context<wchar_t>;
namespace internal {
template <typename Context, typename T>
constexpr basic_arg<Context> make_arg(const T &value) {
basic_arg<Context> arg;
arg.type_ = get_type<T>();
arg.value_ = value;
return arg;
}
template <bool IS_PACKED, typename Context, typename T>
inline typename std::enable_if<IS_PACKED, value<Context>>::type
2018-01-06 17:09:50 +00:00
make_arg(const T &value) {
return value;
}
template <bool IS_PACKED, typename Context, typename T>
inline typename std::enable_if<!IS_PACKED, basic_arg<Context>>::type
2018-01-06 17:09:50 +00:00
make_arg(const T &value) {
return make_arg<Context>(value);
}
2018-01-14 19:00:27 +00:00
// A map from argument names to their values for named arguments.
template <typename Context>
class arg_map {
private:
FMT_DISALLOW_COPY_AND_ASSIGN(arg_map);
using char_type = typename Context::char_type;
2018-01-06 17:09:50 +00:00
struct entry {
2017-12-30 15:42:56 +00:00
basic_string_view<char_type> name;
2018-01-06 17:09:50 +00:00
basic_arg<Context> arg;
};
2018-01-06 17:09:50 +00:00
entry *map_ = nullptr;
unsigned size_ = 0;
2018-01-06 17:09:50 +00:00
void push_back(value<Context> val) {
const internal::named_arg_base<char_type> &named = val.as_named_arg();
map_[size_] = entry{named.name, named.template deserialize<Context>()};
++size_;
}
public:
arg_map() {}
void init(const basic_format_args<Context> &args);
~arg_map() { delete [] map_; }
2018-01-06 17:09:50 +00:00
basic_arg<Context> find(basic_string_view<char_type> name) const {
// The list is unsorted, so just return the first matching name.
for (auto it = map_, end = map_ + size_; it != end; ++it) {
if (it->name == name)
2018-01-06 17:09:50 +00:00
return it->arg;
}
2018-01-06 17:09:50 +00:00
return basic_arg<Context>();
}
};
2018-01-06 17:09:50 +00:00
template <typename Range, typename Context>
class context_base {
2018-01-14 19:00:27 +00:00
public:
using iterator = decltype(std::declval<Range>().begin());
private:
basic_parse_context<typename Range::value_type> parse_context_;
2018-01-14 19:00:27 +00:00
iterator out_;
basic_format_args<Context> args_;
protected:
2018-01-06 17:09:50 +00:00
using char_type = typename Range::value_type;
using format_arg = basic_arg<Context>;
2018-01-15 16:22:31 +00:00
context_base(Range r, basic_string_view<char_type> format_str,
basic_format_args<Context> args)
2018-01-15 16:22:31 +00:00
: parse_context_(format_str), out_(r.begin()), args_(args) {}
basic_format_args<Context> args() const { return args_; }
// Returns the argument with specified index.
format_arg do_get_arg(unsigned arg_id) {
format_arg arg = args_[arg_id];
if (!arg)
parse_context_.on_error("argument index out of range");
return arg;
}
// Checks if manual indexing is used and returns the argument with
// specified index.
format_arg get_arg(unsigned arg_id) {
return this->parse_context().check_arg_id(arg_id) ?
this->do_get_arg(arg_id) : format_arg();
}
public:
constexpr basic_parse_context<char_type> &parse_context() {
return parse_context_;
}
internal::error_handler error_handler() {
return parse_context_.error_handler();
}
void on_error(const char *message) { parse_context_.on_error(message); }
2018-01-14 19:00:27 +00:00
// Returns an iterator to the beginning of the output range.
2018-01-15 16:22:31 +00:00
auto begin() { return out_; }
2018-01-14 19:00:27 +00:00
// Advances the begin iterator to ``it``.
void advance_to(iterator it) { out_ = it; }
2018-01-14 15:19:23 +00:00
};
2018-01-15 16:22:31 +00:00
// Extracts a reference to the container from back_insert_iterator.
template <typename Container>
inline Container &get_container(std::back_insert_iterator<Container> it) {
using iterator = std::back_insert_iterator<Container>;
struct accessor: iterator {
accessor(iterator it) : iterator(it) {}
using iterator::container;
};
return *accessor(it).container;
}
} // namespace internal
template <typename OutputIt, typename T = typename OutputIt::value_type>
class output_range {
2018-01-14 15:19:23 +00:00
private:
OutputIt it_;
// Unused yet.
using sentinel = void;
sentinel end() const;
2018-01-14 15:19:23 +00:00
public:
using value_type = T;
2018-01-14 15:19:23 +00:00
explicit output_range(OutputIt it): it_(it) {}
OutputIt begin() const { return it_; }
};
2018-01-14 15:19:23 +00:00
// A range where begin() returns back_insert_iterator.
template <typename Container>
class back_insert_range:
public output_range<std::back_insert_iterator<Container>> {
using base = output_range<std::back_insert_iterator<Container>>;
public:
using value_type = typename Container::value_type;
2018-01-14 15:19:23 +00:00
using base::base;
back_insert_range(Container &c): base(std::back_inserter(c)) {}
};
2018-01-14 15:19:23 +00:00
// Formatting context.
2018-01-06 17:09:50 +00:00
template <typename Range>
class basic_context :
2018-01-06 17:09:50 +00:00
public internal::context_base<Range, basic_context<Range>> {
public:
/** The character type for the output. */
2018-01-06 17:09:50 +00:00
using char_type = typename Range::value_type;
template <typename T>
2018-01-06 17:09:50 +00:00
using formatter_type = formatter<T, char_type>;
2018-01-14 19:00:27 +00:00
using range_type = Range;
private:
2018-01-06 17:09:50 +00:00
internal::arg_map<basic_context> map_;
FMT_DISALLOW_COPY_AND_ASSIGN(basic_context);
2018-01-06 17:09:50 +00:00
using base = internal::context_base<Range, basic_context>;
using format_arg = typename base::format_arg;
using base::get_arg;
public:
2018-01-14 19:00:27 +00:00
using typename base::iterator;
/**
\rst
Constructs a ``basic_context`` object. References to the arguments are
stored in the object so make sure they have appropriate lifetimes.
\endrst
*/
2018-01-14 15:19:23 +00:00
basic_context(Range range, basic_string_view<char_type> format_str,
2018-01-06 17:09:50 +00:00
basic_format_args<basic_context> args)
: base(range, format_str, args) {}
format_arg next_arg() {
return this->do_get_arg(this->parse_context().next_arg_id());
}
format_arg get_arg(unsigned arg_id) { return this->do_get_arg(arg_id); }
2018-01-14 19:00:27 +00:00
// Checks if manual indexing is used and returns the argument with the
// specified name.
2018-01-06 17:09:50 +00:00
format_arg get_arg(basic_string_view<char_type> name);
};
2018-01-15 16:22:31 +00:00
using context = basic_context<back_insert_range<internal::buffer>>;
using wcontext = basic_context<back_insert_range<internal::wbuffer>>;
2018-01-06 17:09:50 +00:00
template <typename Context, typename ...Args>
class arg_store {
private:
static const size_t NUM_ARGS = sizeof...(Args);
// Packed is a macro on MinGW so use IS_PACKED instead.
static const bool IS_PACKED = NUM_ARGS < internal::MAX_PACKED_ARGS;
using value_type = typename std::conditional<
IS_PACKED, internal::value<Context>, basic_arg<Context>>::type;
// If the arguments are not packed, add one more element to mark the end.
2018-01-14 19:00:27 +00:00
value_type data_[NUM_ARGS + (IS_PACKED && NUM_ARGS != 0 ? 0 : 1)];
public:
static const uint64_t TYPES = IS_PACKED ?
internal::get_types<Args..., void>() : -static_cast<int64_t>(NUM_ARGS);
arg_store(const Args &... args)
: data_{internal::make_arg<IS_PACKED, Context>(args)...} {}
2018-01-18 06:04:24 +00:00
basic_format_args<Context> operator*() const { return *this; }
const value_type *data() const { return data_; }
};
template <typename Context, typename ...Args>
inline arg_store<Context, Args...> make_args(const Args & ... args) {
return arg_store<Context, Args...>(args...);
}
template <typename ...Args>
inline arg_store<context, Args...> make_args(const Args & ... args) {
return arg_store<context, Args...>(args...);
}
/** Formatting arguments. */
template <typename Context>
class basic_format_args {
public:
using size_type = unsigned;
using format_arg = basic_arg<Context> ;
private:
// To reduce compiled code size per formatting function call, types of first
// MAX_PACKED_ARGS arguments are passed in the types_ field.
uint64_t types_;
union {
// If the number of arguments is less than MAX_PACKED_ARGS, the argument
// values are stored in values_, otherwise they are stored in args_.
// This is done to reduce compiled code size as storing larger objects
// may require more code (at least on x86-64) even if the same amount of
// data is actually copied to stack. It saves ~10% on the bloat test.
const internal::value<Context> *values_;
const format_arg *args_;
};
typename internal::type type(unsigned index) const {
unsigned shift = index * 4;
uint64_t mask = 0xf;
return static_cast<typename internal::type>(
(types_ & (mask << shift)) >> shift);
}
friend class internal::arg_map<Context>;
void set_data(const internal::value<Context> *values) { values_ = values; }
void set_data(const format_arg *args) { args_ = args; }
format_arg get(size_type index) const {
int64_t signed_types = static_cast<int64_t>(types_);
if (signed_types < 0) {
uint64_t num_args = -signed_types;
return index < num_args ? args_[index] : format_arg();
}
format_arg arg;
if (index > internal::MAX_PACKED_ARGS)
return arg;
arg.type_ = type(index);
if (arg.type_ == internal::NONE)
return arg;
internal::value<Context> &val = arg.value_;
val = values_[index];
return arg;
}
public:
basic_format_args() : types_(0) {}
template <typename... Args>
basic_format_args(const arg_store<Context, Args...> &store)
: types_(store.TYPES) {
set_data(store.data());
}
/** Returns the argument at specified index. */
format_arg operator[](size_type index) const {
format_arg arg = get(index);
return arg.type_ == internal::NAMED_ARG ?
2018-01-06 17:09:50 +00:00
arg.value_.as_named_arg().template deserialize<Context>() : arg;
}
unsigned max_size() const {
int64_t signed_types = static_cast<int64_t>(types_);
return signed_types < 0 ?
-signed_types : static_cast<int64_t>(internal::MAX_PACKED_ARGS);
}
};
using format_args = basic_format_args<context>;
using wformat_args = basic_format_args<wcontext>;
2018-01-06 17:09:50 +00:00
namespace internal {
template <typename Char>
struct named_arg_base {
basic_string_view<Char> name;
// Serialized value<context>.
mutable char data[sizeof(basic_arg<context>)];
2018-01-15 16:22:31 +00:00
named_arg_base(basic_string_view<Char> nm) : name(nm) {}
2018-01-14 19:00:27 +00:00
2018-01-06 17:09:50 +00:00
template <typename Context>
basic_arg<Context> deserialize() const {
basic_arg<Context> arg;
std::memcpy(&arg, data, sizeof(basic_arg<Context>));
return arg;
}
};
template <typename T, typename Char>
struct named_arg : named_arg_base<Char> {
const T &value;
named_arg(basic_string_view<Char> name, const T &val)
2018-01-14 19:00:27 +00:00
: named_arg_base<Char>(name), value(val) {}
2018-01-06 17:09:50 +00:00
};
}
/**
\rst
Returns a named argument for formatting functions.
**Example**::
print("Elapsed time: {s:.2f} seconds", arg("s", 1.23));
\endrst
*/
template <typename T>
2018-01-06 17:09:50 +00:00
inline internal::named_arg<T, char> arg(string_view name, const T &arg) {
return internal::named_arg<T, char>(name, arg);
}
template <typename T>
2018-01-06 17:09:50 +00:00
inline internal::named_arg<T, wchar_t> arg(wstring_view name, const T &arg) {
return internal::named_arg<T, wchar_t>(name, arg);
}
// The following two functions are deleted intentionally to disable
// nested named arguments as in ``format("{}", arg("a", arg("b", 42)))``.
2018-01-06 17:09:50 +00:00
template <typename T>
void arg(string_view, internal::named_arg<T, char>) FMT_DELETED;
template <typename T>
void arg(wstring_view, internal::named_arg<T, wchar_t>) FMT_DELETED;
enum Color { BLACK, RED, GREEN, YELLOW, BLUE, MAGENTA, CYAN, WHITE };
FMT_API void vprint_colored(Color c, string_view format, format_args args);
/**
2017-12-30 15:42:56 +00:00
Formats a string and prints it to stdout using ANSI escape sequences to
specify color (experimental).
Example:
print_colored(fmt::RED, "Elapsed time: {0:.2f} seconds", 1.23);
*/
template <typename... Args>
inline void print_colored(Color c, string_view format_str,
const Args & ... args) {
vprint_colored(c, format_str, make_args(args...));
}
2018-01-14 22:15:59 +00:00
void vformat_to(internal::buffer &buf, string_view format_str,
format_args args);
void vformat_to(internal::wbuffer &buf, wstring_view format_str,
wformat_args args);
2018-01-14 22:15:59 +00:00
template <typename Container>
2018-01-15 16:22:31 +00:00
struct is_contiguous : std::false_type {};
template <typename Char>
struct is_contiguous<std::basic_string<Char>> : std::true_type {};
template <typename Char>
struct is_contiguous<fmt::internal::basic_buffer<Char>> : std::true_type {};
/** Formats a string and writes the output to ``out``. */
template <typename Container>
typename std::enable_if<is_contiguous<Container>::value>::type
vformat_to(std::back_insert_iterator<Container> out,
string_view format_str, format_args args) {
internal::container_buffer<Container> buf(internal::get_container(out));
2018-01-14 22:15:59 +00:00
vformat_to(buf, format_str, args);
}
std::string vformat(string_view format_str, format_args args);
std::wstring vformat(wstring_view format_str, wformat_args args);
/**
\rst
Formats arguments and returns the result as a string.
**Example**::
std::string message = format("The answer is {}", 42);
\endrst
*/
template <typename... Args>
inline std::string format(string_view format_str, const Args & ... args) {
return vformat(format_str, make_args(args...));
}
template <typename... Args>
inline std::wstring format(wstring_view format_str, const Args & ... args) {
return vformat(format_str, make_args<wcontext>(args...));
}
FMT_API void vprint(std::FILE *f, string_view format_str, format_args args);
/**
\rst
Prints formatted data to the file *f*.
**Example**::
print(stderr, "Don't {}!", "panic");
\endrst
*/
template <typename... Args>
inline void print(std::FILE *f, string_view format_str, const Args & ... args) {
vprint(f, format_str, make_args(args...));
}
FMT_API void vprint(string_view format_str, format_args args);
/**
\rst
Prints formatted data to ``stdout``.
**Example**::
print("Elapsed time: {0:.2f} seconds", 1.23);
\endrst
*/
template <typename... Args>
inline void print(string_view format_str, const Args & ... args) {
vprint(format_str, make_args(args...));
}
} // namespace fmt
#endif // FMT_CORE_H_