/* Formatting library for C++ Copyright (c) 2012 - 2016, Victor Zverovich All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef FMT_FORMAT_H_ #define FMT_FORMAT_H_ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef _SECURE_SCL # define FMT_SECURE_SCL _SECURE_SCL #else # define FMT_SECURE_SCL 0 #endif #if FMT_SECURE_SCL # include #endif #if !defined(FMT_HEADER_ONLY) && defined(_WIN32) # ifdef FMT_EXPORT # define FMT_API __declspec(dllexport) # elif defined(FMT_SHARED) # define FMT_API __declspec(dllimport) # endif #endif #ifndef FMT_API # define FMT_API #endif #ifdef __GNUC__ # define FMT_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) # if FMT_GCC_VERSION >= 406 # pragma GCC diagnostic push // Disable the warning about declaration shadowing because it affects too // many valid cases. # pragma GCC diagnostic ignored "-Wshadow" // Disable the warning about implicit conversions that may change the sign of // an integer; silencing it otherwise would require many explicit casts. # pragma GCC diagnostic ignored "-Wsign-conversion" # endif # if __cplusplus >= 201103L || defined __GXX_EXPERIMENTAL_CXX0X__ # define FMT_HAS_GXX_CXX11 1 # endif #endif #if defined(__INTEL_COMPILER) # define FMT_ICC_VERSION __INTEL_COMPILER #elif defined(__ICL) # define FMT_ICC_VERSION __ICL #endif #if defined(__clang__) && !defined(FMT_ICC_VERSION) # pragma clang diagnostic push # pragma clang diagnostic ignored "-Wdocumentation-unknown-command" # pragma clang diagnostic ignored "-Wpadded" #endif #ifdef __GNUC_LIBSTD__ # define FMT_GNUC_LIBSTD_VERSION (__GNUC_LIBSTD__ * 100 + __GNUC_LIBSTD_MINOR__) #endif #ifdef _MSC_VER # define FMT_MSC_VER _MSC_VER #else # define FMT_MSC_VER 0 #endif #ifdef __has_feature # define FMT_HAS_FEATURE(x) __has_feature(x) #else # define FMT_HAS_FEATURE(x) 0 #endif #ifdef __has_builtin # define FMT_HAS_BUILTIN(x) __has_builtin(x) #else # define FMT_HAS_BUILTIN(x) 0 #endif #ifdef __has_cpp_attribute # define FMT_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x) #else # define FMT_HAS_CPP_ATTRIBUTE(x) 0 #endif // Use the compiler's attribute noreturn. #if defined(__MINGW32__) || defined(__MINGW64__) # define FMT_NORETURN __attribute__((noreturn)) #elif FMT_HAS_CPP_ATTRIBUTE(noreturn) # define FMT_NORETURN [[noreturn]] #else # define FMT_NORETURN #endif #ifndef FMT_USE_RVALUE_REFERENCES // Don't use rvalue references when compiling with clang and an old libstdc++ // as the latter doesn't provide std::move. # if defined(FMT_GNUC_LIBSTD_VERSION) && FMT_GNUC_LIBSTD_VERSION <= 402 # define FMT_USE_RVALUE_REFERENCES 0 # else # define FMT_USE_RVALUE_REFERENCES \ (FMT_HAS_FEATURE(cxx_rvalue_references) || \ (FMT_GCC_VERSION >= 403 && FMT_HAS_GXX_CXX11) || FMT_MSC_VER >= 1600) # endif #endif #if FMT_USE_RVALUE_REFERENCES # include // for std::move #endif // Check if exceptions are disabled. #if defined(__GNUC__) && !defined(__EXCEPTIONS) # define FMT_EXCEPTIONS 0 #endif #if FMT_MSC_VER && !_HAS_EXCEPTIONS # define FMT_EXCEPTIONS 0 #endif #ifndef FMT_EXCEPTIONS # define FMT_EXCEPTIONS 1 #endif #ifndef FMT_THROW # if FMT_EXCEPTIONS # define FMT_THROW(x) throw x # else # define FMT_THROW(x) assert(false) # endif #endif // Define FMT_USE_NOEXCEPT to make fmt use noexcept (C++11 feature). #ifndef FMT_USE_NOEXCEPT # define FMT_USE_NOEXCEPT 0 #endif #ifndef FMT_NOEXCEPT # if FMT_EXCEPTIONS # if FMT_USE_NOEXCEPT || FMT_HAS_FEATURE(cxx_noexcept) || \ (FMT_GCC_VERSION >= 408 && FMT_HAS_GXX_CXX11) || \ FMT_MSC_VER >= 1900 # define FMT_NOEXCEPT noexcept # else # define FMT_NOEXCEPT throw() # endif # else # define FMT_NOEXCEPT # endif #endif // A macro to disallow the copy constructor and operator= functions // This should be used in the private: declarations for a class #ifndef FMT_USE_DELETED_FUNCTIONS # define FMT_USE_DELETED_FUNCTIONS 0 #endif #if FMT_USE_DELETED_FUNCTIONS || FMT_HAS_FEATURE(cxx_deleted_functions) || \ (FMT_GCC_VERSION >= 404 && FMT_HAS_GXX_CXX11) || FMT_MSC_VER >= 1800 # define FMT_DELETED_OR_UNDEFINED = delete # define FMT_DISALLOW_COPY_AND_ASSIGN(TypeName) \ TypeName(const TypeName&) = delete; \ TypeName& operator=(const TypeName&) = delete #else # define FMT_DELETED_OR_UNDEFINED # define FMT_DISALLOW_COPY_AND_ASSIGN(TypeName) \ TypeName(const TypeName&); \ TypeName& operator=(const TypeName&) #endif #ifndef FMT_USE_USER_DEFINED_LITERALS // All compilers which support UDLs also support variadic templates. This // makes the fmt::literals implementation easier. However, an explicit check // for variadic templates is added here just in case. // For Intel's compiler both it and the system gcc/msc must support UDLs. # define FMT_USE_USER_DEFINED_LITERALS \ FMT_USE_RVALUE_REFERENCES && \ (FMT_HAS_FEATURE(cxx_user_literals) || \ (FMT_GCC_VERSION >= 407 && FMT_HAS_GXX_CXX11) || FMT_MSC_VER >= 1900) && \ (!defined(FMT_ICC_VERSION) || FMT_ICC_VERSION >= 1500) #endif #ifndef FMT_ASSERT # define FMT_ASSERT(condition, message) assert((condition) && message) #endif #if FMT_GCC_VERSION >= 400 || FMT_HAS_BUILTIN(__builtin_clz) # define FMT_BUILTIN_CLZ(n) __builtin_clz(n) #endif #if FMT_GCC_VERSION >= 400 || FMT_HAS_BUILTIN(__builtin_clzll) # define FMT_BUILTIN_CLZLL(n) __builtin_clzll(n) #endif // Some compilers masquerade as both MSVC and GCC-likes or otherwise support // __builtin_clz and __builtin_clzll, so only define FMT_BUILTIN_CLZ using the // MSVC intrinsics if the clz and clzll builtins are not available. #if FMT_MSC_VER && !defined(FMT_BUILTIN_CLZLL) # include // _BitScanReverse, _BitScanReverse64 namespace fmt { namespace internal { # pragma intrinsic(_BitScanReverse) inline uint32_t clz(uint32_t x) { unsigned long r = 0; _BitScanReverse(&r, x); assert(x != 0); // Static analysis complains about using uninitialized data // "r", but the only way that can happen is if "x" is 0, // which the callers guarantee to not happen. # pragma warning(suppress: 6102) return 31 - r; } # define FMT_BUILTIN_CLZ(n) fmt::internal::clz(n) # ifdef _WIN64 # pragma intrinsic(_BitScanReverse64) # endif inline uint32_t clzll(uint64_t x) { unsigned long r = 0; # ifdef _WIN64 _BitScanReverse64(&r, x); # else // Scan the high 32 bits. if (_BitScanReverse(&r, static_cast(x >> 32))) return 63 - (r + 32); // Scan the low 32 bits. _BitScanReverse(&r, static_cast(x)); # endif assert(x != 0); // Static analysis complains about using uninitialized data // "r", but the only way that can happen is if "x" is 0, // which the callers guarantee to not happen. # pragma warning(suppress: 6102) return 63 - r; } # define FMT_BUILTIN_CLZLL(n) fmt::internal::clzll(n) } } #endif namespace fmt { namespace internal { struct dummy_int { int data[2]; operator int() const { return 0; } }; typedef std::numeric_limits fputil; // Dummy implementations of system functions such as signbit and ecvt called // if the latter are not available. inline dummy_int signbit(...) { return dummy_int(); } inline dummy_int _ecvt_s(...) { return dummy_int(); } inline dummy_int isinf(...) { return dummy_int(); } inline dummy_int _finite(...) { return dummy_int(); } inline dummy_int isnan(...) { return dummy_int(); } inline dummy_int _isnan(...) { return dummy_int(); } // A helper function to suppress bogus "conditional expression is constant" // warnings. template inline T const_check(T value) { return value; } } } // namespace fmt namespace std { // Standard permits specialization of std::numeric_limits. This specialization // is used to resolve ambiguity between isinf and std::isinf in glibc: // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=48891 // and the same for isnan and signbit. template <> class numeric_limits : public std::numeric_limits { public: // Portable version of isinf. template static bool isinfinity(T x) { using namespace fmt::internal; // The resolution "priority" is: // isinf macro > std::isinf > ::isinf > fmt::internal::isinf if (const_check(sizeof(isinf(x)) == sizeof(bool) || sizeof(isinf(x)) == sizeof(int))) { return isinf(x) != 0; } return !_finite(static_cast(x)); } // Portable version of isnan. template static bool isnotanumber(T x) { using namespace fmt::internal; if (const_check(sizeof(isnan(x)) == sizeof(bool) || sizeof(isnan(x)) == sizeof(int))) { return isnan(x) != 0; } return _isnan(static_cast(x)) != 0; } // Portable version of signbit. static bool isnegative(double x) { using namespace fmt::internal; if (const_check(sizeof(signbit(x)) == sizeof(int))) return signbit(x) != 0; if (x < 0) return true; if (!isnotanumber(x)) return false; int dec = 0, sign = 0; char buffer[2]; // The buffer size must be >= 2 or _ecvt_s will fail. _ecvt_s(buffer, sizeof(buffer), x, 0, &dec, &sign); return sign != 0; } }; } // namespace std namespace fmt { #if FMT_USE_RVALUE_REFERENCES using std::move; #endif template class basic_buffer; typedef basic_buffer buffer; typedef basic_buffer wbuffer; template class basic_writer; template class basic_arg; template class arg_formatter; template class printf_arg_formatter; template class basic_context; typedef basic_context context; typedef basic_context wcontext; /** \rst An implementation of ``std::basic_string_view`` for pre-C++17. It provides a subset of the API. \endrst */ template class basic_string_view { private: const Char *data_; std::size_t size_; public: basic_string_view() : data_(0), size_(0) {} /** Constructs a string reference object from a C string and a size. */ basic_string_view(const Char *s, std::size_t size) : data_(s), size_(size) {} /** \rst Constructs a string reference object from a C string computing the size with ``std::char_traits::length``. \endrst */ basic_string_view(const Char *s) : data_(s), size_(std::char_traits::length(s)) {} /** \rst Constructs a string reference from an ``std::string`` object. \endrst */ basic_string_view(const std::basic_string &s) : data_(s.c_str()), size_(s.size()) {} /** \rst Converts a string reference to an ``std::string`` object. \endrst */ std::basic_string to_string() const { return std::basic_string(data_, size_); } /** Returns a pointer to the string data. */ const Char *data() const { return data_; } /** Returns the string size. */ std::size_t size() const { return size_; } void remove_prefix(size_t n) { data_ += n; size_ -= n; } // Lexicographically compare this string reference to other. int compare(basic_string_view other) const { std::size_t size = size_ < other.size_ ? size_ : other.size_; int result = std::char_traits::compare(data_, other.data_, size); if (result == 0) result = size_ == other.size_ ? 0 : (size_ < other.size_ ? -1 : 1); return result; } friend bool operator==(basic_string_view lhs, basic_string_view rhs) { return lhs.compare(rhs) == 0; } friend bool operator!=(basic_string_view lhs, basic_string_view rhs) { return lhs.compare(rhs) != 0; } friend bool operator<(basic_string_view lhs, basic_string_view rhs) { return lhs.compare(rhs) < 0; } friend bool operator<=(basic_string_view lhs, basic_string_view rhs) { return lhs.compare(rhs) <= 0; } friend bool operator>(basic_string_view lhs, basic_string_view rhs) { return lhs.compare(rhs) > 0; } friend bool operator>=(basic_string_view lhs, basic_string_view rhs) { return lhs.compare(rhs) >= 0; } }; typedef basic_string_view string_view; typedef basic_string_view wstring_view; template inline const Char *begin(basic_string_view s) { return s.data(); } /** A formatting error such as invalid format string. */ class format_error : public std::runtime_error { public: explicit format_error(const char *message) : std::runtime_error(message) {} explicit format_error(const std::string &message) : std::runtime_error(message) {} ~format_error() throw(); }; // A formatter for objects of type T. template struct formatter; namespace internal { // make_unsigned::type gives an unsigned type corresponding to integer // type T. template struct make_unsigned { typedef T type; }; #define FMT_SPECIALIZE_MAKE_UNSIGNED(T, U) \ template <> \ struct make_unsigned { typedef U type; } FMT_SPECIALIZE_MAKE_UNSIGNED(char, unsigned char); FMT_SPECIALIZE_MAKE_UNSIGNED(signed char, unsigned char); FMT_SPECIALIZE_MAKE_UNSIGNED(short, unsigned short); FMT_SPECIALIZE_MAKE_UNSIGNED(int, unsigned); FMT_SPECIALIZE_MAKE_UNSIGNED(long, unsigned long); FMT_SPECIALIZE_MAKE_UNSIGNED(long long, unsigned long long); // Casts nonnegative integer to unsigned. template inline typename make_unsigned::type to_unsigned(Int value) { FMT_ASSERT(value >= 0, "negative value"); return static_cast::type>(value); } // The number of characters to store in the basic_memory_buffer object itself // to avoid dynamic memory allocation. enum { INLINE_BUFFER_SIZE = 500 }; #if FMT_SECURE_SCL // Use checked iterator to avoid warnings on MSVC. template inline stdext::checked_array_iterator make_ptr(T *ptr, std::size_t size) { return stdext::checked_array_iterator(ptr, size); } #else template inline T *make_ptr(T *ptr, std::size_t) { return ptr; } #endif } // namespace internal /** \rst A contiguous memory buffer with an optional growing ability. \endrst */ template class basic_buffer { private: FMT_DISALLOW_COPY_AND_ASSIGN(basic_buffer); T *ptr_; std::size_t size_; std::size_t capacity_; protected: basic_buffer() FMT_NOEXCEPT : ptr_(0), size_(0), capacity_(0) {} /** Sets the buffer data and capacity. */ void set(T* data, std::size_t capacity) FMT_NOEXCEPT { ptr_ = data; capacity_ = capacity; } /** \rst Increases the buffer capacity to hold at least *capacity* elements. \endrst */ virtual void grow(std::size_t capacity) = 0; public: virtual ~basic_buffer() {} /** Returns the size of this buffer. */ std::size_t size() const FMT_NOEXCEPT { return size_; } /** Returns the capacity of this buffer. */ std::size_t capacity() const FMT_NOEXCEPT { return capacity_; } /** Returns a pointer to the buffer data. */ T *data() FMT_NOEXCEPT { return ptr_; } /** Returns a pointer to the buffer data. */ const T *data() const FMT_NOEXCEPT { return ptr_; } /** Resizes the buffer. If T is a POD type new elements may not be initialized. */ void resize(std::size_t new_size) { reserve(new_size); size_ = new_size; } /** \rst Reserves space to store at least *capacity* elements. \endrst */ void reserve(std::size_t capacity) { if (capacity > capacity_) grow(capacity); } void push_back(const T &value) { reserve(size_ + 1); ptr_[size_++] = value; } /** Appends data to the end of the buffer. */ template void append(const U *begin, const U *end); T &operator[](std::size_t index) { return ptr_[index]; } const T &operator[](std::size_t index) const { return ptr_[index]; } virtual std::locale locale() const { return std::locale(); } }; template template void basic_buffer::append(const U *begin, const U *end) { std::size_t new_size = size_ + internal::to_unsigned(end - begin); reserve(new_size); std::uninitialized_copy(begin, end, internal::make_ptr(ptr_, capacity_) + size_); size_ = new_size; } template inline std::basic_string to_string(const basic_buffer& buffer) { return std::basic_string(buffer.data(), buffer.size()); } /** \rst A dynamically growing memory buffer for trivially copyable/constructible types with the first SIZE elements stored in the object itself. You can use one of the following typedefs for common character types: +----------------+------------------------------+ | Type | Definition | +================+==============================+ | memory_buffer | basic_memory_buffer | +----------------+------------------------------+ | wmemory_buffer | basic_memory_buffer | +----------------+------------------------------+ **Example**:: memory_buffer out; format_to(out, "The answer is {}.", 42); This will write the following output to the ``out`` object: .. code-block:: none The answer is 42. The output can be converted to an ``std::string`` with ``to_string(out)``. \endrst */ // template > class basic_memory_buffer : private Allocator, public basic_buffer { private: T store_[SIZE]; // Deallocate memory allocated by the buffer. void deallocate() { T* data = this->data(); if (data != store_) Allocator::deallocate(data, this->capacity()); } protected: void grow(std::size_t size); public: explicit basic_memory_buffer(const Allocator &alloc = Allocator()) : Allocator(alloc) { this->set(store_, SIZE); } ~basic_memory_buffer() { deallocate(); } #if FMT_USE_RVALUE_REFERENCES private: // Move data from other to this buffer. void move(basic_memory_buffer &other) { Allocator &this_alloc = *this, &other_alloc = other; this_alloc = std::move(other_alloc); T* data = other.data(); std::size_t size = other.size(), capacity = other.capacity(); if (data == other.store_) { this->set(store_, capacity); std::uninitialized_copy(other.store_, other.store_ + size, internal::make_ptr(store_, capacity)); } else { this->set(data, capacity); // Set pointer to the inline array so that delete is not called // when deallocating. other.set(other.store_, 0); } this->resize(size); } public: /** \rst Constructs a :class:`fmt::basic_memory_buffer` object moving the content of the other object to it. \endrst */ basic_memory_buffer(basic_memory_buffer &&other) { move(other); } /** \rst Moves the content of the other ``basic_memory_buffer`` object to this one. \endrst */ basic_memory_buffer &operator=(basic_memory_buffer &&other) { assert(this != &other); deallocate(); move(other); return *this; } #endif // Returns a copy of the allocator associated with this buffer. Allocator get_allocator() const { return *this; } }; template void basic_memory_buffer::grow(std::size_t size) { std::size_t old_capacity = this->capacity(); std::size_t new_capacity = old_capacity + old_capacity / 2; if (size > new_capacity) new_capacity = size; T *old_data = this->data(); T *new_data = this->allocate(new_capacity); // The following code doesn't throw, so the raw pointer above doesn't leak. std::uninitialized_copy(old_data, old_data + this->size(), internal::make_ptr(new_data, new_capacity)); this->set(new_data, new_capacity); // deallocate must not throw according to the standard, but even if it does, // the buffer already uses the new storage and will deallocate it in // destructor. if (old_data != store_) Allocator::deallocate(old_data, old_capacity); } typedef basic_memory_buffer memory_buffer; typedef basic_memory_buffer wmemory_buffer; /** \rst A fixed-size memory buffer. For a dynamically growing buffer use :class:`fmt::basic_memory_buffer`. Trying to increase the buffer size past the initial capacity will throw ``std::runtime_error``. \endrst */ template class basic_fixed_buffer : public basic_buffer { public: /** \rst Constructs a :class:`fmt::basic_fixed_buffer` object for *array* of the given size. \endrst */ basic_fixed_buffer(Char *array, std::size_t size) { this->set(array, size); } /** \rst Constructs a :class:`fmt::basic_fixed_buffer` object for *array* of the size known at compile time. \endrst */ template explicit basic_fixed_buffer(Char (&array)[SIZE]) { this->set(array, SIZE); } protected: FMT_API void grow(std::size_t size); }; namespace internal { template class basic_char_traits { public: #if FMT_SECURE_SCL typedef stdext::checked_array_iterator CharPtr; #else typedef Char *CharPtr; #endif static Char cast(int value) { return static_cast(value); } }; template class char_traits; template <> class char_traits : public basic_char_traits { private: // Conversion from wchar_t to char is not allowed. static char convert(wchar_t); public: static char convert(char value) { return value; } // Formats a floating-point number. template FMT_API static int format_float(char *buffer, std::size_t size, const char *format, unsigned width, int precision, T value); }; template <> class char_traits : public basic_char_traits { public: static wchar_t convert(char value) { return value; } static wchar_t convert(wchar_t value) { return value; } template FMT_API static int format_float(wchar_t *buffer, std::size_t size, const wchar_t *format, unsigned width, int precision, T value); }; template struct enable_if {}; template struct enable_if { typedef T type; }; template struct conditional { typedef T type; }; template struct conditional { typedef F type; }; template class null_terminating_iterator; template const Char *pointer_from(null_terminating_iterator it); // An iterator that produces a null terminator on *end. This simplifies parsing // and allows comparing the performance of processing a null-terminated string // vs string_view. template class null_terminating_iterator { public: typedef Char value_type; typedef std::ptrdiff_t difference_type; null_terminating_iterator() : ptr_(0), end_(0) {} null_terminating_iterator(const Char *ptr, const Char *end) : ptr_(ptr), end_(end) {} explicit null_terminating_iterator(basic_string_view s) : ptr_(s.data()), end_(s.data() + s.size()) {} null_terminating_iterator &operator=(const Char *ptr) { assert(ptr <= end_); ptr_ = ptr; return *this; } Char operator*() const { return ptr_ != end_ ? *ptr_ : 0; } null_terminating_iterator operator++() { ++ptr_; return *this; } null_terminating_iterator operator++(int) { null_terminating_iterator result(*this); ++ptr_; return result; } null_terminating_iterator operator--() { --ptr_; return *this; } null_terminating_iterator operator+(difference_type n) { return null_terminating_iterator(ptr_ + n, end_); } null_terminating_iterator operator+=(difference_type n) { ptr_ += n; return *this; } difference_type operator-(null_terminating_iterator other) const { return ptr_ - other.ptr_; } bool operator!=(null_terminating_iterator other) const { return ptr_ != other.ptr_; } bool operator>=(null_terminating_iterator other) const { return ptr_ >= other.ptr_; } friend const Char *pointer_from(null_terminating_iterator it); private: const Char *ptr_; const Char *end_; }; template < typename T, typename Char, typename std::enable_if< std::is_same>::value, int>::type = 0> null_terminating_iterator to_iterator(basic_string_view v) { const Char *s = v.data(); return null_terminating_iterator(s, s + v.size()); } template < typename T, typename Char, typename std::enable_if::value, int>::type = 0> const Char *to_iterator(basic_string_view v) { return v.data(); } template const T *pointer_from(const T *p) { return p; } template const Char *pointer_from(null_terminating_iterator it) { return it.ptr_; } // Returns true if value is negative, false otherwise. // Same as (value < 0) but doesn't produce warnings if T is an unsigned type. template inline typename enable_if::is_signed, bool>::type is_negative(T value) { return value < 0; } template inline typename enable_if::is_signed, bool>::type is_negative(T) { return false; } template struct int_traits { // Smallest of uint32_t and uint64_t that is large enough to represent // all values of T. typedef typename conditional< std::numeric_limits::digits <= 32, uint32_t, uint64_t>::type main_type; }; FMT_API FMT_NORETURN void report_unknown_type(char code, const char *type); // Static data is placed in this class template to allow header-only // configuration. template struct FMT_API basic_data { static const uint32_t POWERS_OF_10_32[]; static const uint64_t POWERS_OF_10_64[]; static const char DIGITS[]; }; #ifndef FMT_USE_EXTERN_TEMPLATES // Clang doesn't have a feature check for extern templates so we check // for variadic templates which were introduced in the same version. # define FMT_USE_EXTERN_TEMPLATES (__clang__) #endif #if FMT_USE_EXTERN_TEMPLATES && !defined(FMT_HEADER_ONLY) extern template struct basic_data; #endif typedef basic_data<> data; #ifdef FMT_BUILTIN_CLZLL // Returns the number of decimal digits in n. Leading zeros are not counted // except for n == 0 in which case count_digits returns 1. inline unsigned count_digits(uint64_t n) { // Based on http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10 // and the benchmark https://github.com/localvoid/cxx-benchmark-count-digits. int t = (64 - FMT_BUILTIN_CLZLL(n | 1)) * 1233 >> 12; return to_unsigned(t) - (n < data::POWERS_OF_10_64[t]) + 1; } #else // Fallback version of count_digits used when __builtin_clz is not available. inline unsigned count_digits(uint64_t n) { unsigned count = 1; for (;;) { // Integer division is slow so do it for a group of four digits instead // of for every digit. The idea comes from the talk by Alexandrescu // "Three Optimization Tips for C++". See speed-test for a comparison. if (n < 10) return count; if (n < 100) return count + 1; if (n < 1000) return count + 2; if (n < 10000) return count + 3; n /= 10000u; count += 4; } } #endif #ifdef FMT_BUILTIN_CLZ // Optional version of count_digits for better performance on 32-bit platforms. inline unsigned count_digits(uint32_t n) { int t = (32 - FMT_BUILTIN_CLZ(n | 1)) * 1233 >> 12; return to_unsigned(t) - (n < data::POWERS_OF_10_32[t]) + 1; } #endif // A functor that doesn't add a thousands separator. struct no_thousands_sep { template void operator()(Char *) {} }; // A functor that adds a thousands separator. template class add_thousands_sep { private: fmt::basic_string_view sep_; // Index of a decimal digit with the least significant digit having index 0. unsigned digit_index_; public: explicit add_thousands_sep(fmt::basic_string_view sep) : sep_(sep), digit_index_(0) {} void operator()(Char *&buffer) { if (++digit_index_ % 3 != 0) return; buffer -= sep_.size(); std::uninitialized_copy(sep_.data(), sep_.data() + sep_.size(), internal::make_ptr(buffer, sep_.size())); } }; // Formats a decimal unsigned integer value writing into buffer. // thousands_sep is a functor that is called after writing each char to // add a thousands separator if necessary. template inline void format_decimal(Char *buffer, UInt value, unsigned num_digits, ThousandsSep thousands_sep) { buffer += num_digits; while (value >= 100) { // Integer division is slow so do it for a group of two digits instead // of for every digit. The idea comes from the talk by Alexandrescu // "Three Optimization Tips for C++". See speed-test for a comparison. unsigned index = static_cast((value % 100) * 2); value /= 100; *--buffer = data::DIGITS[index + 1]; thousands_sep(buffer); *--buffer = data::DIGITS[index]; thousands_sep(buffer); } if (value < 10) { *--buffer = static_cast('0' + value); return; } unsigned index = static_cast(value * 2); *--buffer = data::DIGITS[index + 1]; thousands_sep(buffer); *--buffer = data::DIGITS[index]; } template inline void format_decimal(Char *buffer, UInt value, unsigned num_digits) { return format_decimal(buffer, value, num_digits, no_thousands_sep()); } #ifndef _WIN32 # define FMT_USE_WINDOWS_H 0 #elif !defined(FMT_USE_WINDOWS_H) # define FMT_USE_WINDOWS_H 1 #endif // Define FMT_USE_WINDOWS_H to 0 to disable use of windows.h. // All the functionality that relies on it will be disabled too. #if FMT_USE_WINDOWS_H // A converter from UTF-8 to UTF-16. // It is only provided for Windows since other systems support UTF-8 natively. class utf8_to_utf16 { private: wmemory_buffer buffer_; public: FMT_API explicit utf8_to_utf16(string_view s); operator wstring_view() const { return wstring_view(&buffer_[0], size()); } size_t size() const { return buffer_.size() - 1; } const wchar_t *c_str() const { return &buffer_[0]; } std::wstring str() const { return std::wstring(&buffer_[0], size()); } }; // A converter from UTF-16 to UTF-8. // It is only provided for Windows since other systems support UTF-8 natively. class utf16_to_utf8 { private: memory_buffer buffer_; public: utf16_to_utf8() {} FMT_API explicit utf16_to_utf8(wstring_view s); operator string_view() const { return string_view(&buffer_[0], size()); } size_t size() const { return buffer_.size() - 1; } const char *c_str() const { return &buffer_[0]; } std::string str() const { return std::string(&buffer_[0], size()); } // Performs conversion returning a system error code instead of // throwing exception on conversion error. This method may still throw // in case of memory allocation error. FMT_API int convert(wstring_view s); }; FMT_API void format_windows_error(fmt::buffer &out, int error_code, fmt::string_view message) FMT_NOEXCEPT; #endif template struct null {}; // A helper class template to enable or disable overloads taking wide // characters and strings in value's constructor. template struct wchar_helper { typedef null supported; typedef T unsupported; }; template struct wchar_helper { typedef T supported; typedef null unsupported; }; typedef char yes[1]; typedef char no[2]; template T &get(); yes &convert(unsigned long long); no &convert(...); template struct convert_to_int_impl { enum { value = ENABLE_CONVERSION }; }; template struct convert_to_int_impl2 { enum { value = false }; }; template struct convert_to_int_impl2 { enum { // Don't convert numeric types. value = convert_to_int_impl< T, !std::numeric_limits::is_specialized>::value }; }; template struct convert_to_int { enum { enable_conversion = sizeof(convert(get())) == sizeof(yes) }; enum { value = convert_to_int_impl2::value }; }; #define FMT_DISABLE_CONVERSION_TO_INT(Type) \ template <> \ struct convert_to_int { enum { value = 0 }; } // Silence warnings about convering float to int. FMT_DISABLE_CONVERSION_TO_INT(float); FMT_DISABLE_CONVERSION_TO_INT(double); FMT_DISABLE_CONVERSION_TO_INT(long double); enum Type { NONE, NAMED_ARG, // Integer types should go first, INT, UINT, LONG_LONG, ULONG_LONG, BOOL, CHAR, LAST_INTEGER_TYPE = CHAR, // followed by floating-point types. DOUBLE, LONG_DOUBLE, LAST_NUMERIC_TYPE = LONG_DOUBLE, CSTRING, STRING, TSTRING, POINTER, CUSTOM }; inline bool is_integral(Type type) { FMT_ASSERT(type != internal::NAMED_ARG, "invalid argument type"); return type > internal::NONE && type <= internal::LAST_INTEGER_TYPE; } inline bool is_numeric(Type type) { FMT_ASSERT(type != internal::NAMED_ARG, "invalid argument type"); return type > internal::NONE && type <= internal::LAST_NUMERIC_TYPE; } template struct string_value { const Char *value; std::size_t size; }; template struct custom_value { typedef void (*FormatFunc)( basic_buffer &buffer, const void *arg, basic_string_view& format, void *ctx); const void *value; FormatFunc format; }; template struct named_arg; template struct is_named_arg : std::false_type {}; template struct is_named_arg< named_arg > : std::true_type {}; template constexpr Type gettype() { return is_named_arg::value ? NAMED_ARG : (convert_to_int::value ? INT : CUSTOM); } template <> constexpr Type gettype() { return BOOL; } template <> constexpr Type gettype() { return INT; } template <> constexpr Type gettype() { return UINT; } template <> constexpr Type gettype() { return INT; } template <> constexpr Type gettype() { return UINT; } template <> constexpr Type gettype() { return sizeof(long) == sizeof(int) ? INT : LONG_LONG; } template <> constexpr Type gettype() { return sizeof(unsigned long) == sizeof(unsigned) ? UINT : ULONG_LONG; } template <> constexpr Type gettype() { return LONG_LONG; } template <> constexpr Type gettype() { return ULONG_LONG; } template <> constexpr Type gettype() { return DOUBLE; } template <> constexpr Type gettype() { return DOUBLE; } template <> constexpr Type gettype() { return LONG_DOUBLE; } template <> constexpr Type gettype() { return INT; } template <> constexpr Type gettype() { return UINT; } template <> constexpr Type gettype() { return CHAR; } #if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED) template <> constexpr Type gettype() { return CHAR; } #endif template <> constexpr Type gettype() { return CSTRING; } template <> constexpr Type gettype() { return CSTRING; } template <> constexpr Type gettype() { return CSTRING; } template <> constexpr Type gettype() { return CSTRING; } template <> constexpr Type gettype() { return CSTRING; } template <> constexpr Type gettype() { return CSTRING; } template <> constexpr Type gettype() { return STRING; } template <> constexpr Type gettype() { return STRING; } template <> constexpr Type gettype() { return TSTRING; } template <> constexpr Type gettype() { return TSTRING; } template <> constexpr Type gettype() { return TSTRING; } template <> constexpr Type gettype() { return TSTRING; } template <> constexpr Type gettype() { return POINTER; } template <> constexpr Type gettype() { return POINTER; } template constexpr Type type() { return gettype::type>(); } // A formatting argument value. template class value { public: union { int int_value; unsigned uint_value; long long long_long_value; unsigned long long ulong_long_value; double double_value; long double long_double_value; const void *pointer; string_value string; string_value sstring; string_value ustring; string_value tstring; custom_value custom; }; typedef typename Context::char_type Char; private: // The following two methods are private to disallow formatting of // arbitrary pointers. If you want to output a pointer cast it to // "void *" or "const void *". In particular, this forbids formatting // of "[const] volatile char *" which is printed as bool by iostreams. // Do not implement! template value(const T *value); template value(T *value); // The following methods are private to disallow formatting of wide // characters and strings into narrow strings as in // fmt::format("{}", L"test"); // To fix this, use a wide format string: fmt::format(L"{}", L"test"). #if !FMT_MSC_VER || defined(_NATIVE_WCHAR_T_DEFINED) value(typename wchar_helper::unsupported); #endif value(typename wchar_helper::unsupported); value(typename wchar_helper::unsupported); value(typename wchar_helper::unsupported); value(typename wchar_helper::unsupported); void set_string(string_view str) { this->string.value = str.data(); this->string.size = str.size(); } void set_string(wstring_view str) { this->tstring.value = str.data(); this->tstring.size = str.size(); } // Formats an argument of a custom type, such as a user-defined class. template static void format_custom_arg( basic_buffer &buffer, const void *arg, basic_string_view &format, void *context) { Context &ctx = *static_cast(context); // Get the formatter type through the context to allow different contexts // have different extension points, e.g. `formatter` for `format` and // `printf_formatter` for `printf`. typename Context::template formatter_type f; auto it = f.parse(format); format.remove_prefix(it - begin(format)); f.format(buffer, *static_cast(arg), ctx); } public: value() {} #define FMT_MAKE_VALUE_(Type, field, TYPE, rhs) \ value(Type value) { \ static_assert(internal::type() == internal::TYPE, "invalid type"); \ this->field = rhs; \ } #define FMT_MAKE_VALUE(Type, field, TYPE) \ FMT_MAKE_VALUE_(Type, field, TYPE, value) FMT_MAKE_VALUE(bool, int_value, BOOL) FMT_MAKE_VALUE(short, int_value, INT) FMT_MAKE_VALUE(unsigned short, uint_value, UINT) FMT_MAKE_VALUE(int, int_value, INT) FMT_MAKE_VALUE(unsigned, uint_value, UINT) value(long value) { // To minimize the number of types we need to deal with, long is // translated either to int or to long long depending on its size. if (const_check(sizeof(long) == sizeof(int))) this->int_value = static_cast(value); else this->long_long_value = value; } value(unsigned long value) { if (const_check(sizeof(unsigned long) == sizeof(unsigned))) this->uint_value = static_cast(value); else this->ulong_long_value = value; } FMT_MAKE_VALUE(long long, long_long_value, LONG_LONG) FMT_MAKE_VALUE(unsigned long long, ulong_long_value, ULONG_LONG) FMT_MAKE_VALUE(float, double_value, DOUBLE) FMT_MAKE_VALUE(double, double_value, DOUBLE) FMT_MAKE_VALUE(long double, long_double_value, LONG_DOUBLE) FMT_MAKE_VALUE(signed char, int_value, INT) FMT_MAKE_VALUE(unsigned char, uint_value, UINT) FMT_MAKE_VALUE(char, int_value, CHAR) #if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED) typedef typename wchar_helper::supported WChar; value(WChar value) { static_assert(internal::type() == internal::CHAR, "invalid type"); this->int_value = value; } #endif #define FMT_MAKE_STR_VALUE(Type, TYPE) \ value(Type value) { \ static_assert(internal::type() == internal::TYPE, "invalid type"); \ set_string(value); \ } FMT_MAKE_VALUE(char *, string.value, CSTRING) FMT_MAKE_VALUE(const char *, string.value, CSTRING) FMT_MAKE_VALUE(signed char *, sstring.value, CSTRING) FMT_MAKE_VALUE(const signed char *, sstring.value, CSTRING) FMT_MAKE_VALUE(unsigned char *, ustring.value, CSTRING) FMT_MAKE_VALUE(const unsigned char *, ustring.value, CSTRING) FMT_MAKE_STR_VALUE(const std::string &, STRING) FMT_MAKE_STR_VALUE(string_view, STRING) #define FMT_MAKE_WSTR_VALUE(Type, TYPE) \ value(typename wchar_helper::supported value) { \ static_assert(internal::type() == internal::TYPE, "invalid type"); \ set_string(value); \ } FMT_MAKE_WSTR_VALUE(wchar_t *, TSTRING) FMT_MAKE_WSTR_VALUE(const wchar_t *, TSTRING) FMT_MAKE_WSTR_VALUE(const std::wstring &, TSTRING) FMT_MAKE_WSTR_VALUE(wstring_view, TSTRING) FMT_MAKE_VALUE(void *, pointer, POINTER) FMT_MAKE_VALUE(const void *, pointer, POINTER) template value(const T &value, typename enable_if::value, int>::type = 0) { static_assert(internal::type() == internal::CUSTOM, "invalid type"); this->custom.value = &value; this->custom.format = &format_custom_arg; } template value(const T &value, typename enable_if::value, int>::type = 0) { static_assert(internal::type() == internal::INT, "invalid type"); this->int_value = value; } // Additional template param `Char_` is needed here because make_type always // uses char. template value(const named_arg &value) { static_assert( internal::type &>() == internal::NAMED_ARG, "invalid type"); this->pointer = &value; } }; template class arg_map; template basic_arg make_arg(const T &value); } // namespace internal struct monostate {}; template class basic_args; // A formatting argument. It is a trivially copyable/constructible type to // allow storage in basic_memory_buffer. template class basic_arg { private: internal::value value_; internal::Type type_; template friend basic_arg internal::make_arg(const T &value); template friend typename std::result_of::type visit(Visitor &&vis, basic_arg arg); friend class basic_args; friend class internal::arg_map; public: basic_arg() : type_(internal::NONE) {} explicit operator bool() const noexcept { return type_ != internal::NONE; } internal::Type type() const { return type_; } bool is_integral() const { return internal::is_integral(type_); } bool is_numeric() const { return internal::is_numeric(type_); } bool is_pointer() const { return type_ == internal::POINTER; } }; /** \rst Visits an argument dispatching to the appropriate visit method based on the argument type. For example, if the argument type is ``double`` then ``vis(value)`` will be called with the value of type ``double``. \endrst */ template typename std::result_of::type visit(Visitor &&vis, basic_arg arg) { typedef typename Context::char_type Char; switch (arg.type_) { case internal::NONE: return vis(monostate()); case internal::NAMED_ARG: FMT_ASSERT(false, "invalid argument type"); break; case internal::INT: return vis(arg.value_.int_value); case internal::UINT: return vis(arg.value_.uint_value); case internal::LONG_LONG: return vis(arg.value_.long_long_value); case internal::ULONG_LONG: return vis(arg.value_.ulong_long_value); case internal::BOOL: return vis(arg.value_.int_value != 0); case internal::CHAR: return vis(static_cast(arg.value_.int_value)); case internal::DOUBLE: return vis(arg.value_.double_value); case internal::LONG_DOUBLE: return vis(arg.value_.long_double_value); case internal::CSTRING: return vis(arg.value_.string.value); case internal::STRING: return vis(string_view(arg.value_.string.value, arg.value_.string.size)); case internal::TSTRING: return vis(basic_string_view( arg.value_.tstring.value, arg.value_.tstring.size)); case internal::POINTER: return vis(arg.value_.pointer); case internal::CUSTOM: return vis(arg.value_.custom); } return typename std::result_of::type(); } namespace internal { template basic_arg make_arg(const T &value) { basic_arg arg; arg.type_ = internal::type(); arg.value_ = value; return arg; } #define FMT_CONCAT(a, b) a##b #if FMT_GCC_VERSION >= 407 # define FMT_UNUSED __attribute__((unused)) #else # define FMT_UNUSED #endif #ifndef FMT_USE_STATIC_ASSERT # define FMT_USE_STATIC_ASSERT 0 #endif #if FMT_USE_STATIC_ASSERT || FMT_HAS_FEATURE(cxx_static_assert) || \ (FMT_GCC_VERSION >= 403 && FMT_HAS_GXX_CXX11) || _MSC_VER >= 1600 # define FMT_STATIC_ASSERT(cond, message) static_assert(cond, message) #else # define FMT_CONCAT_(a, b) FMT_CONCAT(a, b) # define FMT_STATIC_ASSERT(cond, message) \ typedef int FMT_CONCAT_(Assert, __LINE__)[(cond) ? 1 : -1] FMT_UNUSED #endif template struct named_arg : basic_arg { typedef typename Context::char_type Char; basic_string_view name; template named_arg(basic_string_view argname, const T &value) : basic_arg(make_arg(value)), name(argname) {} }; template constexpr uint64_t make_type() { return type() | (make_type() << 4); } template <> constexpr uint64_t make_type() { return 0; } // Maximum number of arguments with packed types. enum { MAX_PACKED_ARGS = 15 }; template inline typename std::enable_if>::type make_arg(const T& value) { return value; } template inline typename std::enable_if>::type make_arg(const T& value) { return make_arg(value); } } // namespace internal template class arg_store { private: static const size_t NUM_ARGS = sizeof...(Args); // Packed is a macro on MinGW so use IS_PACKED instead. static const bool IS_PACKED = NUM_ARGS < internal::MAX_PACKED_ARGS; typedef typename Context::char_type char_type; typedef typename std::conditional, basic_arg>::type value_type; // If the arguments are not packed, add one more element to mark the end. typedef std::array Array; Array data_; public: static const uint64_t TYPES = NUM_ARGS <= internal::MAX_PACKED_ARGS ? internal::make_type() : -static_cast(NUM_ARGS); arg_store(const Args &... args) : data_(Array{{internal::make_arg(args)...}}) {} const value_type *data() const { return data_.data(); } }; template inline arg_store make_args(const Args & ... args) { return arg_store(args...); } template inline arg_store make_args(const Args & ... args) { return arg_store(args...); } /** Formatting arguments. */ template class basic_args { public: typedef unsigned size_type; typedef basic_arg format_arg; private: // To reduce compiled code size per formatting function call, types of first // MAX_PACKED_ARGS arguments are passed in the types_ field. uint64_t types_; union { // If the number of arguments is less than MAX_PACKED_ARGS, the argument // values are stored in values_, otherwise they are stored in args_. // This is done to reduce compiled code size as storing larger objects // may require more code (at least on x86-64) even if the same amount of // data is actually copied to stack. It saves ~10% on the bloat test. const internal::value *values_; const format_arg *args_; }; typename internal::Type type(unsigned index) const { unsigned shift = index * 4; uint64_t mask = 0xf; return static_cast( (types_ & (mask << shift)) >> shift); } friend class internal::arg_map; void set_data(const internal::value *values) { values_ = values; } void set_data(const format_arg *args) { args_ = args; } format_arg get(size_type index) const { int64_t signed_types = static_cast(types_); if (signed_types < 0) { uint64_t num_args = -signed_types; return index < num_args ? args_[index] : format_arg(); } format_arg arg; if (index > internal::MAX_PACKED_ARGS) return arg; arg.type_ = type(index); if (arg.type_ == internal::NONE) return arg; internal::value &val = arg.value_; val = values_[index]; return arg; } public: basic_args() : types_(0) {} template basic_args(const arg_store &store) : types_(store.TYPES) { set_data(store.data()); } /** Returns the argument at specified index. */ format_arg operator[](size_type index) const { format_arg arg = get(index); return arg.type_ == internal::NAMED_ARG ? *static_cast(arg.value_.pointer) : arg; } }; typedef basic_args args; typedef basic_args wargs; enum alignment { ALIGN_DEFAULT, ALIGN_LEFT, ALIGN_RIGHT, ALIGN_CENTER, ALIGN_NUMERIC }; // Flags. enum { SIGN_FLAG = 1, PLUS_FLAG = 2, MINUS_FLAG = 4, HASH_FLAG = 8, CHAR_FLAG = 0x10 // Argument has char type - used in error reporting. }; enum format_spec_tag {fill_tag, align_tag, width_tag, type_tag}; // Format specifier. template class format_spec { private: T value_; public: typedef T value_type; explicit format_spec(T value) : value_(value) {} T value() const { return value_; } }; // template // using fill_spec = format_spec; template class fill_spec : public format_spec { public: explicit fill_spec(Char value) : format_spec(value) {} }; typedef format_spec width_spec; typedef format_spec type_spec; class fill_spec_factory { public: constexpr fill_spec_factory() {} template fill_spec operator=(Char value) const { return fill_spec(value); } }; template class format_spec_factory { public: constexpr format_spec_factory() {} FormatSpec operator=(typename FormatSpec::value_type value) const { return FormatSpec(value); } }; constexpr fill_spec_factory fill; constexpr format_spec_factory width; constexpr format_spec_factory type; // An empty format specifier. struct empty_spec {}; // An alignment specifier. struct AlignSpec : empty_spec { unsigned width_; // Fill is always wchar_t and cast to char if necessary to avoid having // two specialization of AlignSpec and its subclasses. wchar_t fill_; alignment align_; AlignSpec(unsigned width, wchar_t fill, alignment align = ALIGN_DEFAULT) : width_(width), fill_(fill), align_(align) {} unsigned width() const { return width_; } wchar_t fill() const { return fill_; } alignment align() const { return align_; } int precision() const { return -1; } }; // Format specifiers. template class basic_format_specs : public AlignSpec { private: template typename std::enable_if::value || std::is_same::value, void>::type set(fill_spec fill) { fill_ = fill.value(); } void set(width_spec width) { width_ = width.value(); } void set(type_spec type) { type_ = type.value(); } template void set(Spec spec, Specs... tail) { set(spec); set(tail...); } public: unsigned flags_; int precision_; char type_; basic_format_specs(unsigned width = 0, char type = 0, wchar_t fill = ' ') : AlignSpec(width, fill), flags_(0), precision_(-1), type_(type) {} template explicit basic_format_specs(FormatSpecs... specs) : AlignSpec(0, ' '), flags_(0), precision_(-1), type_(0){ set(specs...); } bool flag(unsigned f) const { return (flags_ & f) != 0; } int precision() const { return precision_; } char type() const { return type_; } }; typedef basic_format_specs format_specs; namespace internal { template class arg_map { private: typedef typename Context::char_type Char; typedef std::vector< std::pair, basic_arg > > MapType; typedef typename MapType::value_type Pair; MapType map_; public: void init(const basic_args &args); const basic_arg *find(const fmt::basic_string_view &name) const { // The list is unsorted, so just return the first matching name. for (typename MapType::const_iterator it = map_.begin(), end = map_.end(); it != end; ++it) { if (it->first == name) return &it->second; } return 0; } }; template void arg_map::init(const basic_args &args) { if (!map_.empty()) return; typedef internal::named_arg NamedArg; const NamedArg *named_arg = 0; bool use_values = args.type(MAX_PACKED_ARGS - 1) == internal::NONE; if (use_values) { for (unsigned i = 0;/*nothing*/; ++i) { internal::Type arg_type = args.type(i); switch (arg_type) { case internal::NONE: return; case internal::NAMED_ARG: named_arg = static_cast(args.values_[i].pointer); map_.push_back(Pair(named_arg->name, *named_arg)); break; default: /*nothing*/; } } return; } for (unsigned i = 0; i != MAX_PACKED_ARGS; ++i) { internal::Type arg_type = args.type(i); if (arg_type == internal::NAMED_ARG) { named_arg = static_cast(args.args_[i].value_.pointer); map_.push_back(Pair(named_arg->name, *named_arg)); } } for (unsigned i = MAX_PACKED_ARGS; ; ++i) { switch (args.args_[i].type_) { case internal::NONE: return; case internal::NAMED_ARG: named_arg = static_cast(args.args_[i].value_.pointer); map_.push_back(Pair(named_arg->name, *named_arg)); break; default: /*nothing*/; } } } template class arg_formatter_base { public: typedef basic_format_specs format_specs; private: basic_writer writer_; format_specs &spec_; FMT_DISALLOW_COPY_AND_ASSIGN(arg_formatter_base); void write_pointer(const void *p) { spec_.flags_ = HASH_FLAG; spec_.type_ = 'x'; writer_.write_int(reinterpret_cast(p), spec_); } template typename enable_if< std::is_same::value && std::is_same::value>::type write_str(basic_string_view value) { writer_.write_str(value, spec_); } template typename enable_if< !std::is_same::value || !std::is_same::value>::type write_str(basic_string_view ) { // Do nothing. } protected: basic_writer &writer() { return writer_; } format_specs &spec() { return spec_; } void write(bool value) { writer_.write_str(string_view(value ? "true" : "false"), spec_); } void write(const char *value) { writer_.write_str( string_view(value, value != 0 ? std::strlen(value) : 0), spec_); } public: typedef Char char_type; arg_formatter_base(basic_buffer &b, format_specs &s) : writer_(b), spec_(s) {} void operator()(monostate) { FMT_ASSERT(false, "invalid argument type"); } template typename std::enable_if::value>::type operator()(T value) { writer_.write_int(value, spec_); } template typename std::enable_if::value>::type operator()(T value) { writer_.write_double(value, spec_); } void operator()(bool value) { if (spec_.type_) return (*this)(value ? 1 : 0); write(value); } void operator()(Char value) { if (spec_.type_ && spec_.type_ != 'c') { spec_.flags_ |= CHAR_FLAG; writer_.write_int(value, spec_); return; } if (spec_.align_ == ALIGN_NUMERIC || spec_.flags_ != 0) FMT_THROW(format_error("invalid format specifier for char")); typedef typename basic_writer::CharPtr CharPtr; Char fill = internal::char_traits::cast(spec_.fill()); CharPtr out = CharPtr(); const unsigned CHAR_WIDTH = 1; if (spec_.width_ > CHAR_WIDTH) { out = writer_.grow_buffer(spec_.width_); if (spec_.align_ == ALIGN_RIGHT) { std::uninitialized_fill_n(out, spec_.width_ - CHAR_WIDTH, fill); out += spec_.width_ - CHAR_WIDTH; } else if (spec_.align_ == ALIGN_CENTER) { out = writer_.fill_padding(out, spec_.width_, internal::const_check(CHAR_WIDTH), fill); } else { std::uninitialized_fill_n(out + CHAR_WIDTH, spec_.width_ - CHAR_WIDTH, fill); } } else { out = writer_.grow_buffer(CHAR_WIDTH); } *out = internal::char_traits::cast(value); } void operator()(const char *value) { if (spec_.type_ == 'p') return write_pointer(value); write(value); } void operator()(string_view value) { writer_.write_str(value, spec_); } void operator()(basic_string_view value) { write_str(value); } void operator()(const void *value) { if (spec_.type_ && spec_.type_ != 'p') report_unknown_type(spec_.type_, "pointer"); write_pointer(value); } }; template class context_base { private: basic_args args_; int next_arg_index_; protected: typedef basic_arg format_arg; explicit context_base(basic_args args) : args_(args), next_arg_index_(0) {} ~context_base() {} basic_args args() const { return args_; } // Returns the argument with specified index. format_arg do_get_arg(unsigned arg_index, const char *&error) { format_arg arg = args_[arg_index]; if (!arg && !error) error = "argument index out of range"; return arg; } // Checks if manual indexing is used and returns the argument with // specified index. format_arg get_arg(unsigned arg_index, const char *&error) { return this->check_no_auto_index(error) ? this->do_get_arg(arg_index, error) : format_arg(); } // Returns the next argument index. unsigned next_arg_index(const char *&error) { if (next_arg_index_ >= 0) return internal::to_unsigned(next_arg_index_++); error = "cannot switch from manual to automatic argument indexing"; return 0; } bool check_no_auto_index(const char *&error) { if (next_arg_index_ > 0) { error = "cannot switch from automatic to manual argument indexing"; return false; } next_arg_index_ = -1; return true; } }; } // namespace internal /** The default argument formatter. */ template class arg_formatter : public internal::arg_formatter_base { private: basic_context &ctx_; typedef internal::arg_formatter_base Base; public: typedef typename Base::format_specs format_specs; /** \rst Constructs an argument formatter object. *buffer* is a reference to the buffer to be used for output, *ctx* is a reference to the formatting context, *spec* contains format specifier information for standard argument types. \endrst */ arg_formatter(basic_buffer &buffer, basic_context &ctx, format_specs &spec) : internal::arg_formatter_base(buffer, spec), ctx_(ctx) {} using internal::arg_formatter_base::operator(); /** Formats an argument of a custom (user-defined) type. */ void operator()(internal::custom_value c) { basic_string_view format_str; c.format(this->writer().buffer(), c.value, format_str, &ctx_); } }; template class basic_context : public internal::context_base> { public: /** The character type for the output. */ using char_type = Char; template using formatter_type = formatter; private: internal::arg_map> map_; FMT_DISALLOW_COPY_AND_ASSIGN(basic_context); typedef internal::context_base> Base; typedef typename Base::format_arg format_arg; using Base::get_arg; public: /** \rst Constructs a ``basic_context`` object. References to the arguments are stored in the object so make sure they have appropriate lifetimes. \endrst */ basic_context(basic_args args): Base(args) {} format_arg next_arg() { const char *error = 0; format_arg arg = this->do_get_arg(this->next_arg_index(error), error); if (error) FMT_THROW(format_error(error)); return arg; } format_arg get_arg(unsigned arg_index) { const char *error = 0; this->check_no_auto_index(error); format_arg arg = this->do_get_arg(arg_index, error); if (error) FMT_THROW(format_error(error)); return arg; } // Checks if manual indexing is used and returns the argument with // specified name. format_arg get_arg(basic_string_view name); }; /** An error returned by an operating system or a language runtime, for example a file opening error. */ class system_error : public std::runtime_error { private: void init(int err_code, string_view format_str, args args); protected: int error_code_; system_error() : std::runtime_error("") {} public: /** \rst Constructs a :class:`fmt::system_error` object with a description formatted with `fmt::format_system_error`. *message* and additional arguments passed into the constructor are formatted similarly to `fmt::format`. **Example**:: // This throws a system_error with the description // cannot open file 'madeup': No such file or directory // or similar (system message may vary). const char *filename = "madeup"; std::FILE *file = std::fopen(filename, "r"); if (!file) throw fmt::system_error(errno, "cannot open file '{}'", filename); \endrst */ template system_error(int error_code, string_view message, const Args & ... args) : std::runtime_error("") { init(error_code, message, make_args(args...)); } ~system_error() throw(); int error_code() const { return error_code_; } }; /** \rst Formats an error returned by an operating system or a language runtime, for example a file opening error, and writes it to *out* in the following form: .. parsed-literal:: **: ** where ** is the passed message and ** is the system message corresponding to the error code. *error_code* is a system error code as given by ``errno``. If *error_code* is not a valid error code such as -1, the system message may look like "Unknown error -1" and is platform-dependent. \endrst */ FMT_API void format_system_error(fmt::buffer &out, int error_code, fmt::string_view message) FMT_NOEXCEPT; namespace internal { // Named format specifier. template class named_format_spec { public: constexpr named_format_spec() {} }; constexpr named_format_spec width; } /** \rst This template provides operations for formatting and writing data into a character buffer. The output buffer is specified by a subclass such as :class:`fmt::BasicMemoryWriter`. You can use one of the following typedefs for common character types: +---------+-----------------------+ | Type | Definition | +=========+=======================+ | writer | basic_writer | +---------+-----------------------+ | wwriter | basic_writer | +---------+-----------------------+ \endrst */ template class basic_writer { public: typedef basic_format_specs format_specs; private: // Output buffer. basic_buffer &buffer_; FMT_DISALLOW_COPY_AND_ASSIGN(basic_writer); typedef typename internal::char_traits::CharPtr CharPtr; #if FMT_SECURE_SCL // Returns pointer value. static Char *get(CharPtr p) { return p.base(); } #else static Char *get(Char *p) { return p; } #endif // Fills the padding around the content and returns the pointer to the // content area. static CharPtr fill_padding(CharPtr buffer, unsigned total_size, std::size_t content_size, wchar_t fill); // Grows the buffer by n characters and returns a pointer to the newly // allocated area. CharPtr grow_buffer(std::size_t n) { std::size_t size = buffer_.size(); buffer_.resize(size + n); return internal::make_ptr(&buffer_[size], n); } // Writes an unsigned decimal integer. template Char *write_unsigned_decimal(UInt value, unsigned prefix_size = 0) { unsigned num_digits = internal::count_digits(value); Char *ptr = get(grow_buffer(prefix_size + num_digits)); internal::format_decimal(ptr + prefix_size, value, num_digits); return ptr; } // Writes a decimal integer. template void write_decimal(Int value) { typedef typename internal::int_traits::main_type main_type; main_type abs_value = static_cast(value); if (internal::is_negative(value)) { abs_value = 0 - abs_value; *write_unsigned_decimal(abs_value, 1) = '-'; } else { write_unsigned_decimal(abs_value, 0); } } // Prepare a buffer for integer formatting. CharPtr prepare_int_buffer(unsigned num_digits, const empty_spec &, const char *prefix, unsigned prefix_size) { unsigned size = prefix_size + num_digits; CharPtr p = grow_buffer(size); std::uninitialized_copy(prefix, prefix + prefix_size, p); return p + size - 1; } template CharPtr prepare_int_buffer(unsigned num_digits, const Spec &spec, const char *prefix, unsigned prefix_size); // Writes a formatted integer. template void write_int(T value, const Spec& spec); // Formats a floating-point number (double or long double). template void write_double(T value, const format_specs &spec); // Writes a formatted string. template CharPtr write_str(const StrChar *s, std::size_t size, const AlignSpec &spec); template void write_str(basic_string_view str, const format_specs &spec); // This following methods are private to disallow writing wide characters // and strings to a char buffer. If you want to print a wide string as a // pointer as std::ostream does, cast it to const void*. // Do not implement! void operator<<(typename internal::wchar_helper::unsupported); void operator<<( typename internal::wchar_helper::unsupported); // Appends floating-point length specifier to the format string. // The second argument is only used for overload resolution. void append_float_length(Char *&format_ptr, long double) { *format_ptr++ = 'L'; } template void append_float_length(Char *&, T) {} template friend class internal::arg_formatter_base; template friend class printf_arg_formatter; public: /** Constructs a ``basic_writer`` object. */ explicit basic_writer(basic_buffer &b) : buffer_(b) {} /** \rst Destroys the ``basic_writer`` object. \endrst */ virtual ~basic_writer() {} /** Returns the total number of characters written. */ std::size_t size() const { return buffer_.size(); } /** Returns a pointer to the output buffer content. No terminating null character is appended. */ const Char *data() const FMT_NOEXCEPT { return &buffer_[0]; } /** Returns a pointer to the output buffer content with terminating null character appended. */ const Char *c_str() const { std::size_t size = buffer_.size(); buffer_.reserve(size + 1); buffer_[size] = '\0'; return &buffer_[0]; } /** \rst Returns the content of the output buffer as an `std::string`. \endrst */ std::basic_string str() const { return std::basic_string(&buffer_[0], buffer_.size()); } void write(int value) { write_decimal(value); } void write(long value) { write_decimal(value); } void write(long long value) { write_decimal(value); } /** \rst Formats *value* and writes it to the buffer. \endrst */ template typename std::enable_if::value, void>::type write(T value, FormatSpecs... specs) { write_int(value, format_specs(specs...)); } void write(double value) { write_double(value, format_specs()); } /** \rst Formats *value* using the general format for floating-point numbers (``'g'``) and writes it to the buffer. \endrst */ void write(long double value) { write_double(value, format_specs()); } /** Writes a character to the buffer. */ void write(char value) { buffer_.push_back(value); } void write(typename internal::wchar_helper::supported value) { buffer_.push_back(value); } /** \rst Writes *value* to the buffer. \endrst */ void write(basic_string_view value) { const Char *str = value.data(); buffer_.append(str, str + value.size()); } void write( typename internal::wchar_helper::supported value) { const char *str = value.data(); buffer_.append(str, str + value.size()); } template void write(basic_string_view str, FormatSpecs... specs) { write_str(str, format_specs(specs...)); } void clear() FMT_NOEXCEPT { buffer_.resize(0); } basic_buffer &buffer() FMT_NOEXCEPT { return buffer_; } }; template template typename basic_writer::CharPtr basic_writer::write_str( const StrChar *s, std::size_t size, const AlignSpec &spec) { CharPtr out = CharPtr(); if (spec.width() > size) { out = grow_buffer(spec.width()); Char fill = internal::char_traits::cast(spec.fill()); if (spec.align() == ALIGN_RIGHT) { std::uninitialized_fill_n(out, spec.width() - size, fill); out += spec.width() - size; } else if (spec.align() == ALIGN_CENTER) { out = fill_padding(out, spec.width(), size, fill); } else { std::uninitialized_fill_n(out + size, spec.width() - size, fill); } } else { out = grow_buffer(size); } std::uninitialized_copy(s, s + size, out); return out; } template template void basic_writer::write_str( basic_string_view s, const format_specs &spec) { // Check if StrChar is convertible to Char. internal::char_traits::convert(StrChar()); if (spec.type_ && spec.type_ != 's') internal::report_unknown_type(spec.type_, "string"); const StrChar *str_value = s.data(); std::size_t str_size = s.size(); if (str_size == 0) { if (!str_value) { FMT_THROW(format_error("string pointer is null")); } } std::size_t precision = static_cast(spec.precision_); if (spec.precision_ >= 0 && precision < str_size) str_size = precision; write_str(str_value, str_size, spec); } template typename basic_writer::CharPtr basic_writer::fill_padding( CharPtr buffer, unsigned total_size, std::size_t content_size, wchar_t fill) { std::size_t padding = total_size - content_size; std::size_t left_padding = padding / 2; Char fill_char = internal::char_traits::cast(fill); std::uninitialized_fill_n(buffer, left_padding, fill_char); buffer += left_padding; CharPtr content = buffer; std::uninitialized_fill_n(buffer + content_size, padding - left_padding, fill_char); return content; } template template typename basic_writer::CharPtr basic_writer::prepare_int_buffer( unsigned num_digits, const Spec &spec, const char *prefix, unsigned prefix_size) { unsigned width = spec.width(); alignment align = spec.align(); Char fill = internal::char_traits::cast(spec.fill()); if (spec.precision() > static_cast(num_digits)) { // Octal prefix '0' is counted as a digit, so ignore it if precision // is specified. if (prefix_size > 0 && prefix[prefix_size - 1] == '0') --prefix_size; unsigned number_size = prefix_size + internal::to_unsigned(spec.precision()); AlignSpec subspec(number_size, '0', ALIGN_NUMERIC); if (number_size >= width) return prepare_int_buffer(num_digits, subspec, prefix, prefix_size); buffer_.reserve(width); unsigned fill_size = width - number_size; if (align != ALIGN_LEFT) { CharPtr p = grow_buffer(fill_size); std::uninitialized_fill(p, p + fill_size, fill); } CharPtr result = prepare_int_buffer( num_digits, subspec, prefix, prefix_size); if (align == ALIGN_LEFT) { CharPtr p = grow_buffer(fill_size); std::uninitialized_fill(p, p + fill_size, fill); } return result; } unsigned size = prefix_size + num_digits; if (width <= size) { CharPtr p = grow_buffer(size); std::uninitialized_copy(prefix, prefix + prefix_size, p); return p + size - 1; } CharPtr p = grow_buffer(width); CharPtr end = p + width; if (align == ALIGN_LEFT) { std::uninitialized_copy(prefix, prefix + prefix_size, p); p += size; std::uninitialized_fill(p, end, fill); } else if (align == ALIGN_CENTER) { p = fill_padding(p, width, size, fill); std::uninitialized_copy(prefix, prefix + prefix_size, p); p += size; } else { if (align == ALIGN_NUMERIC) { if (prefix_size != 0) { p = std::uninitialized_copy(prefix, prefix + prefix_size, p); size -= prefix_size; } } else { std::uninitialized_copy(prefix, prefix + prefix_size, end - size); } std::uninitialized_fill(p, end - size, fill); p = end; } return p - 1; } template template void basic_writer::write_int(T value, const Spec& spec) { unsigned prefix_size = 0; typedef typename internal::int_traits::main_type UnsignedType; UnsignedType abs_value = static_cast(value); char prefix[4] = ""; if (internal::is_negative(value)) { prefix[0] = '-'; ++prefix_size; abs_value = 0 - abs_value; } else if (spec.flag(SIGN_FLAG)) { prefix[0] = spec.flag(PLUS_FLAG) ? '+' : ' '; ++prefix_size; } switch (spec.type()) { case 0: case 'd': { unsigned num_digits = internal::count_digits(abs_value); CharPtr p = prepare_int_buffer(num_digits, spec, prefix, prefix_size) + 1; internal::format_decimal(get(p), abs_value, 0); break; } case 'x': case 'X': { UnsignedType n = abs_value; if (spec.flag(HASH_FLAG)) { prefix[prefix_size++] = '0'; prefix[prefix_size++] = spec.type(); } unsigned num_digits = 0; do { ++num_digits; } while ((n >>= 4) != 0); Char *p = get(prepare_int_buffer( num_digits, spec, prefix, prefix_size)); n = abs_value; const char *digits = spec.type() == 'x' ? "0123456789abcdef" : "0123456789ABCDEF"; do { *p-- = digits[n & 0xf]; } while ((n >>= 4) != 0); break; } case 'b': case 'B': { UnsignedType n = abs_value; if (spec.flag(HASH_FLAG)) { prefix[prefix_size++] = '0'; prefix[prefix_size++] = spec.type(); } unsigned num_digits = 0; do { ++num_digits; } while ((n >>= 1) != 0); Char *p = get(prepare_int_buffer(num_digits, spec, prefix, prefix_size)); n = abs_value; do { *p-- = static_cast('0' + (n & 1)); } while ((n >>= 1) != 0); break; } case 'o': { UnsignedType n = abs_value; if (spec.flag(HASH_FLAG)) prefix[prefix_size++] = '0'; unsigned num_digits = 0; do { ++num_digits; } while ((n >>= 3) != 0); Char *p = get(prepare_int_buffer(num_digits, spec, prefix, prefix_size)); n = abs_value; do { *p-- = static_cast('0' + (n & 7)); } while ((n >>= 3) != 0); break; } case 'n': { unsigned num_digits = internal::count_digits(abs_value); std::locale loc = buffer_.locale(); Char thousands_sep = std::use_facet>(loc).thousands_sep(); fmt::basic_string_view sep(&thousands_sep, 1); unsigned size = static_cast( num_digits + sep.size() * ((num_digits - 1) / 3)); CharPtr p = prepare_int_buffer(size, spec, prefix, prefix_size) + 1; internal::format_decimal(get(p), abs_value, 0, internal::add_thousands_sep(sep)); break; } default: internal::report_unknown_type( spec.type(), spec.flag(CHAR_FLAG) ? "char" : "integer"); break; } } template template void basic_writer::write_double(T value, const format_specs &spec) { // Check type. char type = spec.type(); bool upper = false; switch (type) { case 0: type = 'g'; break; case 'e': case 'f': case 'g': case 'a': break; case 'F': #if FMT_MSC_VER // MSVC's printf doesn't support 'F'. type = 'f'; #endif // Fall through. case 'E': case 'G': case 'A': upper = true; break; default: internal::report_unknown_type(type, "double"); break; } char sign = 0; // Use isnegative instead of value < 0 because the latter is always // false for NaN. if (internal::fputil::isnegative(static_cast(value))) { sign = '-'; value = -value; } else if (spec.flag(SIGN_FLAG)) { sign = spec.flag(PLUS_FLAG) ? '+' : ' '; } if (internal::fputil::isnotanumber(value)) { // Format NaN ourselves because sprintf's output is not consistent // across platforms. std::size_t nan_size = 4; const char *nan = upper ? " NAN" : " nan"; if (!sign) { --nan_size; ++nan; } CharPtr out = write_str(nan, nan_size, spec); if (sign) *out = sign; return; } if (internal::fputil::isinfinity(value)) { // Format infinity ourselves because sprintf's output is not consistent // across platforms. std::size_t inf_size = 4; const char *inf = upper ? " INF" : " inf"; if (!sign) { --inf_size; ++inf; } CharPtr out = write_str(inf, inf_size, spec); if (sign) *out = sign; return; } std::size_t offset = buffer_.size(); unsigned width = spec.width(); if (sign) { buffer_.reserve(buffer_.size() + (width > 1u ? width : 1u)); if (width > 0) --width; ++offset; } // Build format string. enum { MAX_FORMAT_SIZE = 10}; // longest format: %#-*.*Lg Char format[MAX_FORMAT_SIZE]; Char *format_ptr = format; *format_ptr++ = '%'; unsigned width_for_sprintf = width; if (spec.flag(HASH_FLAG)) *format_ptr++ = '#'; if (spec.align() == ALIGN_CENTER) { width_for_sprintf = 0; } else { if (spec.align() == ALIGN_LEFT) *format_ptr++ = '-'; if (width != 0) *format_ptr++ = '*'; } if (spec.precision() >= 0) { *format_ptr++ = '.'; *format_ptr++ = '*'; } append_float_length(format_ptr, value); *format_ptr++ = type; *format_ptr = '\0'; // Format using snprintf. Char fill = internal::char_traits::cast(spec.fill()); unsigned n = 0; Char *start = 0; for (;;) { std::size_t buffer_size = buffer_.capacity() - offset; #if FMT_MSC_VER // MSVC's vsnprintf_s doesn't work with zero size, so reserve // space for at least one extra character to make the size non-zero. // Note that the buffer's capacity will increase by more than 1. if (buffer_size == 0) { buffer_.reserve(offset + 1); buffer_size = buffer_.capacity() - offset; } #endif start = &buffer_[offset]; int result = internal::char_traits::format_float( start, buffer_size, format, width_for_sprintf, spec.precision(), value); if (result >= 0) { n = internal::to_unsigned(result); if (offset + n < buffer_.capacity()) break; // The buffer is large enough - continue with formatting. buffer_.reserve(offset + n + 1); } else { // If result is negative we ask to increase the capacity by at least 1, // but as std::vector, the buffer grows exponentially. buffer_.reserve(buffer_.capacity() + 1); } } if (sign) { if ((spec.align() != ALIGN_RIGHT && spec.align() != ALIGN_DEFAULT) || *start != ' ') { *(start - 1) = sign; sign = 0; } else { *(start - 1) = fill; } ++n; } if (spec.align() == ALIGN_CENTER && spec.width() > n) { width = spec.width(); CharPtr p = grow_buffer(width); std::memmove(get(p) + (width - n) / 2, get(p), n * sizeof(Char)); fill_padding(p, spec.width(), n, fill); return; } if (spec.fill() != ' ' || sign) { while (*start == ' ') *start++ = fill; if (sign) *(start - 1) = sign; } grow_buffer(n); } // Reports a system error without throwing an exception. // Can be used to report errors from destructors. FMT_API void report_system_error(int error_code, string_view message) FMT_NOEXCEPT; #if FMT_USE_WINDOWS_H /** A Windows error. */ class windows_error : public system_error { private: FMT_API void init(int error_code, string_view format_str, args args); public: /** \rst Constructs a :class:`fmt::windows_error` object with the description of the form .. parsed-literal:: **: ** where ** is the formatted message and ** is the system message corresponding to the error code. *error_code* is a Windows error code as given by ``GetLastError``. If *error_code* is not a valid error code such as -1, the system message will look like "error -1". **Example**:: // This throws a windows_error with the description // cannot open file 'madeup': The system cannot find the file specified. // or similar (system message may vary). const char *filename = "madeup"; LPOFSTRUCT of = LPOFSTRUCT(); HFILE file = OpenFile(filename, &of, OF_READ); if (file == HFILE_ERROR) { throw fmt::windows_error(GetLastError(), "cannot open file '{}'", filename); } \endrst */ template windows_error(int error_code, string_view message, const Args & ... args) { init(error_code, message, make_args(args...)); } }; // Reports a Windows error without throwing an exception. // Can be used to report errors from destructors. FMT_API void report_windows_error(int error_code, string_view message) FMT_NOEXCEPT; #endif enum Color { BLACK, RED, GREEN, YELLOW, BLUE, MAGENTA, CYAN, WHITE }; FMT_API void vprint_colored(Color c, string_view format, args args); /** Formats a string and prints it to stdout using ANSI escape sequences to specify color (experimental). Example: print_colored(fmt::RED, "Elapsed time: {0:.2f} seconds", 1.23); */ template inline void print_colored(Color c, string_view format_str, const Args & ... args) { vprint_colored(c, format_str, make_args(args...)); } template void vformat_to(basic_buffer &buffer, basic_string_view format_str, basic_args args); inline void vformat_to(buffer &buf, string_view format_str, args args) { vformat_to>(buf, format_str, args); } inline void vformat_to(wbuffer &buf, wstring_view format_str, wargs args) { vformat_to>(buf, format_str, args); } template inline void format_to(buffer &buf, string_view format_str, const Args & ... args) { vformat_to(buf, format_str, make_args(args...)); } template inline void format_to(wbuffer &buf, wstring_view format_str, const Args & ... args) { vformat_to(buf, format_str, make_args(args...)); } inline std::string vformat(string_view format_str, args args) { memory_buffer buffer; vformat_to(buffer, format_str, args); return to_string(buffer); } /** \rst Formats arguments and returns the result as a string. **Example**:: std::string message = format("The answer is {}", 42); \endrst */ template inline std::string format(string_view format_str, const Args & ... args) { return vformat(format_str, make_args(args...)); } inline std::wstring vformat(wstring_view format_str, wargs args) { wmemory_buffer buffer; vformat_to(buffer, format_str, args); return to_string(buffer); } template inline std::wstring format(wstring_view format_str, const Args & ... args) { return vformat(format_str, make_args(args...)); } FMT_API void vprint(std::FILE *f, string_view format_str, args args); /** \rst Prints formatted data to the file *f*. **Example**:: print(stderr, "Don't {}!", "panic"); \endrst */ template inline void print(std::FILE *f, string_view format_str, const Args & ... args) { vprint(f, format_str, make_args(args...)); } FMT_API void vprint(string_view format_str, args args); /** \rst Prints formatted data to ``stdout``. **Example**:: print("Elapsed time: {0:.2f} seconds", 1.23); \endrst */ template inline void print(string_view format_str, const Args & ... args) { vprint(format_str, make_args(args...)); } /** Fast integer formatter. */ class FormatInt { private: // Buffer should be large enough to hold all digits (digits10 + 1), // a sign and a null character. enum {BUFFER_SIZE = std::numeric_limits::digits10 + 3}; mutable char buffer_[BUFFER_SIZE]; char *str_; // Formats value in reverse and returns the number of digits. char *format_decimal(unsigned long long value) { char *buffer_end = buffer_ + BUFFER_SIZE - 1; while (value >= 100) { // Integer division is slow so do it for a group of two digits instead // of for every digit. The idea comes from the talk by Alexandrescu // "Three Optimization Tips for C++". See speed-test for a comparison. unsigned index = static_cast((value % 100) * 2); value /= 100; *--buffer_end = internal::data::DIGITS[index + 1]; *--buffer_end = internal::data::DIGITS[index]; } if (value < 10) { *--buffer_end = static_cast('0' + value); return buffer_end; } unsigned index = static_cast(value * 2); *--buffer_end = internal::data::DIGITS[index + 1]; *--buffer_end = internal::data::DIGITS[index]; return buffer_end; } void FormatSigned(long long value) { unsigned long long abs_value = static_cast(value); bool negative = value < 0; if (negative) abs_value = 0 - abs_value; str_ = format_decimal(abs_value); if (negative) *--str_ = '-'; } public: explicit FormatInt(int value) { FormatSigned(value); } explicit FormatInt(long value) { FormatSigned(value); } explicit FormatInt(long long value) { FormatSigned(value); } explicit FormatInt(unsigned value) : str_(format_decimal(value)) {} explicit FormatInt(unsigned long value) : str_(format_decimal(value)) {} explicit FormatInt(unsigned long long value) : str_(format_decimal(value)) {} /** Returns the number of characters written to the output buffer. */ std::size_t size() const { return internal::to_unsigned(buffer_ - str_ + BUFFER_SIZE - 1); } /** Returns a pointer to the output buffer content. No terminating null character is appended. */ const char *data() const { return str_; } /** Returns a pointer to the output buffer content with terminating null character appended. */ const char *c_str() const { buffer_[BUFFER_SIZE - 1] = '\0'; return str_; } /** \rst Returns the content of the output buffer as an ``std::string``. \endrst */ std::string str() const { return std::string(str_, size()); } }; // Formats a decimal integer value writing into buffer and returns // a pointer to the end of the formatted string. This function doesn't // write a terminating null character. template inline void format_decimal(char *&buffer, T value) { typedef typename internal::int_traits::main_type main_type; main_type abs_value = static_cast(value); if (internal::is_negative(value)) { *buffer++ = '-'; abs_value = 0 - abs_value; } if (abs_value < 100) { if (abs_value < 10) { *buffer++ = static_cast('0' + abs_value); return; } unsigned index = static_cast(abs_value * 2); *buffer++ = internal::data::DIGITS[index]; *buffer++ = internal::data::DIGITS[index + 1]; return; } unsigned num_digits = internal::count_digits(abs_value); internal::format_decimal(buffer, abs_value, num_digits); buffer += num_digits; } /** \rst Returns a named argument for formatting functions. **Example**:: print("Elapsed time: {s:.2f} seconds", arg("s", 1.23)); \endrst */ template inline internal::named_arg arg(string_view name, const T &arg) { return internal::named_arg(name, arg); } template inline internal::named_arg arg(wstring_view name, const T &arg) { return internal::named_arg(name, arg); } // The following two functions are deleted intentionally to disable // nested named arguments as in ``format("{}", arg("a", arg("b", 42)))``. template void arg(string_view, const internal::named_arg&) FMT_DELETED_OR_UNDEFINED; template void arg(wstring_view, const internal::named_arg&) FMT_DELETED_OR_UNDEFINED; } namespace fmt { namespace internal { template inline bool is_name_start(Char c) { return ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || '_' == c; } // Parses an unsigned integer advancing it to the end of the parsed input. // This function assumes that the first character of it is a digit and a // presence of a non-digit character at the end. template unsigned parse_nonnegative_int(Iterator &it) { assert('0' <= *it && *it <= '9'); unsigned value = 0; do { unsigned new_value = value * 10 + (*it++ - '0'); // Check if value wrapped around. if (new_value < value) { value = (std::numeric_limits::max)(); break; } value = new_value; } while ('0' <= *it && *it <= '9'); // Convert to unsigned to prevent a warning. unsigned max_int = (std::numeric_limits::max)(); if (value > max_int) FMT_THROW(format_error("number is too big")); return value; } inline void require_numeric_argument(Type type, char spec) { if (!is_numeric(type)) { FMT_THROW(fmt::format_error( fmt::format("format specifier '{}' requires numeric argument", spec))); } } template void check_sign(Iterator &it, Type type) { char sign = static_cast(*it); require_numeric_argument(type, sign); if (is_integral(type) && type != INT && type != LONG_LONG && type != CHAR) { FMT_THROW(format_error(fmt::format( "format specifier '{}' requires signed argument", sign))); } ++it; } template class custom_formatter { private: basic_buffer &buffer_; basic_string_view &format_; Context &ctx_; public: custom_formatter(basic_buffer &buffer, basic_string_view &format, Context &ctx) : buffer_(buffer), format_(format), ctx_(ctx) {} bool operator()(internal::custom_value custom) { custom.format(buffer_, custom.value, format_, &ctx_); return true; } template bool operator()(T) { return false; } }; template struct is_integer { enum { value = std::is_integral::value && !std::is_same::value && !std::is_same::value && !std::is_same::value }; }; struct width_handler { template typename std::enable_if::value, unsigned long long>::type operator()(T value) { if (is_negative(value)) FMT_THROW(format_error("negative width")); return value; } template typename std::enable_if::value, unsigned long long>::type operator()(T value) { FMT_THROW(format_error("width is not integer")); return 0; } }; struct precision_handler { template typename std::enable_if::value, unsigned long long>::type operator()(T value) { if (is_negative(value)) FMT_THROW(format_error("negative precision")); return value; } template typename std::enable_if::value, unsigned long long>::type operator()(T value) { FMT_THROW(format_error("precision is not integer")); return 0; } }; template class specs_handler_base { public: explicit specs_handler_base(basic_format_specs &specs) : specs_(specs) {} void on_align(alignment align) { specs_.align_ = align; } void on_fill(Char fill) { specs_.fill_ = fill; } void on_plus() { specs_.flags_ |= SIGN_FLAG | PLUS_FLAG; } void on_minus() { specs_.flags_ |= MINUS_FLAG; } void on_space() { specs_.flags_ |= SIGN_FLAG; } void on_hash() { specs_.flags_ |= HASH_FLAG; } void on_zero() { specs_.align_ = ALIGN_NUMERIC; specs_.fill_ = '0'; } void on_width(unsigned width) { specs_.width_ = width; } void on_precision(unsigned precision) { specs_.precision_ = precision; } void on_type(char type) { specs_.type_ = type; } protected: ~specs_handler_base() {} basic_format_specs &specs_; }; template inline void set_dynamic_spec(T &value, basic_arg arg) { unsigned long long big_value = visit(Handler(), arg); if (big_value > (std::numeric_limits::max)()) FMT_THROW(format_error("number is too big")); value = static_cast(big_value); } template class specs_handler : public specs_handler_base { public: typedef typename Context::char_type char_type; specs_handler(basic_format_specs &specs, Context &ctx) : specs_handler_base(specs), context_(ctx) {} template void on_dynamic_width(Id arg_id) { set_dynamic_spec( this->specs_.width_, get_arg(arg_id)); } template void on_dynamic_precision(Id arg_id) { set_dynamic_spec( this->specs_.precision_, get_arg(arg_id)); } private: basic_arg get_arg(monostate) { return context_.next_arg(); } template basic_arg get_arg(Id arg_id) { return context_.get_arg(arg_id); } Context &context_; }; // An argument reference. template struct arg_ref { enum Kind { NONE, INDEX, NAME }; arg_ref() : kind(NONE) {} explicit arg_ref(unsigned index) : kind(INDEX), index(index) {} explicit arg_ref(basic_string_view name) : kind(NAME), name(name) {} Kind kind; union { unsigned index; basic_string_view name; }; }; template struct dynamic_format_specs : basic_format_specs { arg_ref width_ref; arg_ref precision_ref; }; template class dynamic_specs_handler : public specs_handler_base { public: explicit dynamic_specs_handler(dynamic_format_specs &specs) : specs_handler_base(specs), specs_(specs) {} template void on_dynamic_width(Id arg_id) { set(specs_.width_ref, arg_id); } template void on_dynamic_precision(Id arg_id) { set(specs_.precision_ref, arg_id); } private: template void set(arg_ref &ref, Id arg_id) { ref = arg_ref(arg_id); } void set(arg_ref &ref, monostate) { ref.kind = arg_ref::NONE; } dynamic_format_specs &specs_; }; template Iterator parse_arg_id(Iterator it, Handler handler) { typedef typename Iterator::value_type char_type; char_type c = *it; if (c == '}' || c == ':') { handler(); return it; } if (c >= '0' && c <= '9') { unsigned index = parse_nonnegative_int(it); if (*it != '}' && *it != ':') FMT_THROW(format_error("invalid format string")); handler(index); return it; } if (!is_name_start(c)) FMT_THROW(format_error("invalid format string")); auto start = it; do { c = *++it; } while (is_name_start(c) || ('0' <= c && c <= '9')); handler(basic_string_view(pointer_from(start), it - start)); return it; } // Parses standard format specifiers and sends notifications about parsed // components to handler. // it: an iterator pointing to the beginning of a null-terminated range of // characters, possibly emulated via null_terminating_iterator, representing // format specifiers. template Iterator parse_format_specs(Iterator it, Type arg_type, Handler &handler) { typedef typename Iterator::value_type char_type; // Parse fill and alignment. if (char_type c = *it) { auto p = it + 1; alignment align = ALIGN_DEFAULT; do { switch (*p) { case '<': align = ALIGN_LEFT; break; case '>': align = ALIGN_RIGHT; break; case '=': align = ALIGN_NUMERIC; break; case '^': align = ALIGN_CENTER; break; } if (align != ALIGN_DEFAULT) { handler.on_align(align); if (p != it) { if (c == '}') break; if (c == '{') FMT_THROW(format_error("invalid fill character '{'")); it += 2; handler.on_fill(c); } else ++it; if (align == ALIGN_NUMERIC) require_numeric_argument(arg_type, '='); break; } } while (--p >= it); } // Parse sign. switch (*it) { case '+': check_sign(it, arg_type); handler.on_plus(); break; case '-': check_sign(it, arg_type); handler.on_minus(); break; case ' ': check_sign(it, arg_type); handler.on_space(); break; } if (*it == '#') { require_numeric_argument(arg_type, '#'); handler.on_hash(); ++it; } // Parse zero flag. if (*it == '0') { require_numeric_argument(arg_type, '0'); handler.on_zero(); ++it; } // Parse width. if ('0' <= *it && *it <= '9') { handler.on_width(parse_nonnegative_int(it)); } else if (*it == '{') { struct width_handler { explicit width_handler(Handler &h) : handler(h) {} void operator()() { handler.on_dynamic_width(monostate()); } void operator()(unsigned id) { handler.on_dynamic_width(id); } void operator()(basic_string_view id) { handler.on_dynamic_width(id); } Handler &handler; }; it = parse_arg_id(it + 1, width_handler(handler)); if (*it++ != '}') FMT_THROW(format_error("invalid format string")); } // Parse precision. if (*it == '.') { ++it; if ('0' <= *it && *it <= '9') { handler.on_precision(parse_nonnegative_int(it)); } else if (*it == '{') { struct precision_handler { explicit precision_handler(Handler &h) : handler(h) {} void operator()() { handler.on_dynamic_precision(monostate()); } void operator()(unsigned id) { handler.on_dynamic_precision(id); } void operator()(basic_string_view id) { handler.on_dynamic_precision(id); } Handler &handler; }; it = parse_arg_id(it + 1, precision_handler(handler)); if (*it++ != '}') FMT_THROW(format_error("invalid format string")); } else { FMT_THROW(format_error("missing precision specifier")); } if (is_integral(arg_type) || arg_type == POINTER) { FMT_THROW(format_error( fmt::format("precision not allowed in {} format specifier", arg_type == POINTER ? "pointer" : "integer"))); } } // Parse type. if (*it != '}' && *it) handler.on_type(static_cast(*it++)); return it; } // Formats a single argument. template const Char *do_format_arg(basic_buffer &buffer, const basic_arg &arg, basic_string_view format, Context &ctx) { auto it = null_terminating_iterator(format); basic_format_specs specs; if (*it == ':') { format.remove_prefix(1); if (visit(custom_formatter(buffer, format, ctx), arg)) return begin(format); specs_handler handler(specs, ctx); it = parse_format_specs(it + 1, arg.type(), handler); } if (*it != '}') FMT_THROW(format_error("missing '}' in format string")); // Format argument. visit(ArgFormatter(buffer, ctx, specs), arg); return pointer_from(it); } // Specifies whether to format T using the standard formatter. // It is not possible to use gettype in formatter specialization directly // because of a bug in MSVC. template struct format_type : std::integral_constant() != CUSTOM> {}; // Specifies whether to format enums. template struct format_enum : std::integral_constant::value> {}; } // namespace internal // Formatter of objects of type T. template struct formatter::value>::type> { // Parses format specifiers stopping either at the end of the range or at the // terminating '}'. template auto parse(Range format) -> decltype(begin(format)) { auto it = internal::null_terminating_iterator(format); internal::dynamic_specs_handler handler(specs_); it = parse_format_specs(it, internal::gettype(), handler); return pointer_from(it); } void format(basic_buffer &buf, const T &val, basic_context &ctx) { handle_dynamic_spec( specs_.width_, specs_.width_ref, ctx); handle_dynamic_spec( specs_.precision_, specs_.precision_ref, ctx); visit(arg_formatter(buf, ctx, specs_), internal::make_arg>(val)); } private: using arg_ref = internal::arg_ref; template static void handle_dynamic_spec( Spec &value, arg_ref ref, basic_context &ctx) { switch (ref.kind) { case arg_ref::NONE: // Do nothing. break; case arg_ref::INDEX: internal::set_dynamic_spec(value, ctx.get_arg(ref.index)); break; case arg_ref::NAME: internal::set_dynamic_spec(value, ctx.get_arg(ref.name)); break; // TODO: handle automatic numbering } } internal::dynamic_format_specs specs_; }; template struct formatter::value>::type> : public formatter { template auto parse(Range format) -> decltype(begin(format)) { return begin(format); } }; template inline typename basic_context::format_arg basic_context::get_arg(basic_string_view name) { const char *error = 0; if (this->check_no_auto_index(error)) { map_.init(this->args()); if (const format_arg *arg = map_.find(name)) return *arg; error = "argument not found"; } if (error) FMT_THROW(format_error(error)); return format_arg(); } /** Formats arguments and writes the output to the buffer. */ template void vformat_to(basic_buffer &buffer, basic_string_view format_str, basic_args args) { basic_context ctx(args); auto start = internal::null_terminating_iterator(format_str); auto it = start; using internal::pointer_from; while (*it) { Char c = *it++; if (c != '{' && c != '}') continue; if (*it == c) { buffer.append(pointer_from(start), pointer_from(it)); start = ++it; continue; } if (c == '}') FMT_THROW(format_error("unmatched '}' in format string")); buffer.append(pointer_from(start), pointer_from(it) - 1); basic_arg arg; struct id_handler { explicit id_handler(Context &ctx, basic_arg &arg) : context(ctx), arg(arg) {} void operator()() { arg = context.next_arg(); } void operator()(unsigned id) { arg = context.get_arg(id); } void operator()(basic_string_view id) { arg = context.get_arg(id); } Context &context; basic_arg &arg; } handler(ctx, arg); it = parse_arg_id(it, handler); format_str.remove_prefix(pointer_from(it) - format_str.data()); it = internal::do_format_arg(buffer, arg, format_str, ctx); if (*it != '}') FMT_THROW(format_error(fmt::format("unknown format specifier"))); start = ++it; } buffer.append(pointer_from(start), pointer_from(it)); } } // namespace fmt #if FMT_USE_USER_DEFINED_LITERALS namespace fmt { namespace internal { template struct udl_format { const Char *str; template auto operator()(Args && ... args) const -> decltype(format(str, std::forward(args)...)) { return format(str, std::forward(args)...); } }; template struct UdlArg { const Char *str; template named_arg> operator=(T &&value) const { return {str, std::forward(value)}; } }; } // namespace internal inline namespace literals { /** \rst C++11 literal equivalent of :func:`fmt::format`. **Example**:: using namespace fmt::literals; std::string message = "The answer is {}"_format(42); \endrst */ inline internal::udl_format operator"" _format(const char *s, std::size_t) { return {s}; } inline internal::udl_format operator"" _format(const wchar_t *s, std::size_t) { return {s}; } /** \rst C++11 literal equivalent of :func:`fmt::arg`. **Example**:: using namespace fmt::literals; print("Elapsed time: {s:.2f} seconds", "s"_a=1.23); \endrst */ inline internal::UdlArg operator"" _a(const char *s, std::size_t) { return {s}; } inline internal::UdlArg operator"" _a(const wchar_t *s, std::size_t) { return {s}; } } // inline namespace literals } // namespace fmt #endif // FMT_USE_USER_DEFINED_LITERALS #ifdef FMT_HEADER_ONLY # define FMT_FUNC inline # include "format.cc" #else # define FMT_FUNC #endif // Restore warnings. #if FMT_GCC_VERSION >= 406 # pragma GCC diagnostic pop #endif #if defined(__clang__) && !defined(FMT_ICC_VERSION) # pragma clang diagnostic pop #endif #endif // FMT_FORMAT_H_