/* Formatting library for C++ Copyright (c) 2012 - present, Victor Zverovich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. --- Optional exception to the license --- As an exception, if, as a result of your compiling your source code, portions of this Software are embedded into a machine-executable object form of such source code, you may redistribute such embedded portions in such object form without including the above copyright and permission notices. */ #ifndef FMT_FORMAT_H_ #define FMT_FORMAT_H_ #include #include #include // std::byte #include #include #include #include #include #include // std::swap #include "core.h" #ifdef __INTEL_COMPILER # define FMT_ICC_VERSION __INTEL_COMPILER #elif defined(__ICL) # define FMT_ICC_VERSION __ICL #else # define FMT_ICC_VERSION 0 #endif #ifdef __NVCC__ # define FMT_CUDA_VERSION (__CUDACC_VER_MAJOR__ * 100 + __CUDACC_VER_MINOR__) #else # define FMT_CUDA_VERSION 0 #endif #ifdef __has_builtin # define FMT_HAS_BUILTIN(x) __has_builtin(x) #else # define FMT_HAS_BUILTIN(x) 0 #endif #if FMT_GCC_VERSION || FMT_CLANG_VERSION # define FMT_NOINLINE __attribute__((noinline)) #else # define FMT_NOINLINE #endif #if FMT_GCC_VERSION # define FMT_GCC_VISIBILITY_HIDDEN __attribute__((visibility("hidden"))) #else # define FMT_GCC_VISIBILITY_HIDDEN #endif #if __cplusplus == 201103L || __cplusplus == 201402L # if defined(__INTEL_COMPILER) || defined(__PGI) # define FMT_FALLTHROUGH # elif defined(__clang__) # define FMT_FALLTHROUGH [[clang::fallthrough]] # elif FMT_GCC_VERSION >= 700 && \ (!defined(__EDG_VERSION__) || __EDG_VERSION__ >= 520) # define FMT_FALLTHROUGH [[gnu::fallthrough]] # else # define FMT_FALLTHROUGH # endif #elif FMT_HAS_CPP17_ATTRIBUTE(fallthrough) || \ (defined(_MSVC_LANG) && _MSVC_LANG >= 201703L) # define FMT_FALLTHROUGH [[fallthrough]] #else # define FMT_FALLTHROUGH #endif #ifndef FMT_MAYBE_UNUSED # if FMT_HAS_CPP17_ATTRIBUTE(maybe_unused) # define FMT_MAYBE_UNUSED [[maybe_unused]] # else # define FMT_MAYBE_UNUSED # endif #endif #ifndef FMT_THROW # if FMT_EXCEPTIONS # if FMT_MSC_VER || FMT_NVCC FMT_BEGIN_NAMESPACE namespace detail { template inline void do_throw(const Exception& x) { // Silence unreachable code warnings in MSVC and NVCC because these // are nearly impossible to fix in a generic code. volatile bool b = true; if (b) throw x; } } // namespace detail FMT_END_NAMESPACE # define FMT_THROW(x) detail::do_throw(x) # else # define FMT_THROW(x) throw x # endif # else # define FMT_THROW(x) \ do { \ FMT_ASSERT(false, (x).what()); \ } while (false) # endif #endif #if FMT_EXCEPTIONS # define FMT_TRY try # define FMT_CATCH(x) catch (x) #else # define FMT_TRY if (true) # define FMT_CATCH(x) if (false) #endif #ifndef FMT_USE_USER_DEFINED_LITERALS // EDG based compilers (Intel, NVIDIA, Elbrus, etc), GCC and MSVC support UDLs. # if (FMT_HAS_FEATURE(cxx_user_literals) || FMT_GCC_VERSION >= 407 || \ FMT_MSC_VER >= 1900) && \ (!defined(__EDG_VERSION__) || __EDG_VERSION__ >= /* UDL feature */ 480) # define FMT_USE_USER_DEFINED_LITERALS 1 # else # define FMT_USE_USER_DEFINED_LITERALS 0 # endif #endif #ifndef FMT_USE_UDL_TEMPLATE // EDG frontend based compilers (icc, nvcc, PGI, etc) and GCC < 6.4 do not // properly support UDL templates and GCC >= 9 warns about them. # if FMT_USE_USER_DEFINED_LITERALS && \ (!defined(__EDG_VERSION__) || __EDG_VERSION__ >= 501) && \ ((FMT_GCC_VERSION >= 604 && __cplusplus >= 201402L) || \ FMT_CLANG_VERSION >= 304) && \ !defined(__PGI) && !defined(__NVCC__) # define FMT_USE_UDL_TEMPLATE 1 # else # define FMT_USE_UDL_TEMPLATE 0 # endif #endif #ifndef FMT_USE_FLOAT # define FMT_USE_FLOAT 1 #endif #ifndef FMT_USE_DOUBLE # define FMT_USE_DOUBLE 1 #endif #ifndef FMT_USE_LONG_DOUBLE # define FMT_USE_LONG_DOUBLE 1 #endif // Defining FMT_REDUCE_INT_INSTANTIATIONS to 1, will reduce the number of // int_writer template instances to just one by only using the largest integer // type. This results in a reduction in binary size but will cause a decrease in // integer formatting performance. #if !defined(FMT_REDUCE_INT_INSTANTIATIONS) # define FMT_REDUCE_INT_INSTANTIATIONS 0 #endif // __builtin_clz is broken in clang with Microsoft CodeGen: // https://github.com/fmtlib/fmt/issues/519 #if (FMT_GCC_VERSION || FMT_HAS_BUILTIN(__builtin_clz)) && !FMT_MSC_VER # define FMT_BUILTIN_CLZ(n) __builtin_clz(n) #endif #if (FMT_GCC_VERSION || FMT_HAS_BUILTIN(__builtin_clzll)) && !FMT_MSC_VER # define FMT_BUILTIN_CLZLL(n) __builtin_clzll(n) #endif #if (FMT_GCC_VERSION || FMT_HAS_BUILTIN(__builtin_ctz)) # define FMT_BUILTIN_CTZ(n) __builtin_ctz(n) #endif #if (FMT_GCC_VERSION || FMT_HAS_BUILTIN(__builtin_ctzll)) # define FMT_BUILTIN_CTZLL(n) __builtin_ctzll(n) #endif #if FMT_MSC_VER # include // _BitScanReverse[64], _BitScanForward[64], _umul128 #endif // Some compilers masquerade as both MSVC and GCC-likes or otherwise support // __builtin_clz and __builtin_clzll, so only define FMT_BUILTIN_CLZ using the // MSVC intrinsics if the clz and clzll builtins are not available. #if FMT_MSC_VER && !defined(FMT_BUILTIN_CLZLL) && \ !defined(FMT_BUILTIN_CTZLL) && !defined(_MANAGED) FMT_BEGIN_NAMESPACE namespace detail { // Avoid Clang with Microsoft CodeGen's -Wunknown-pragmas warning. # ifndef __clang__ # pragma intrinsic(_BitScanForward) # pragma intrinsic(_BitScanReverse) # endif # if defined(_WIN64) && !defined(__clang__) # pragma intrinsic(_BitScanForward64) # pragma intrinsic(_BitScanReverse64) # endif inline int clz(uint32_t x) { unsigned long r = 0; _BitScanReverse(&r, x); FMT_ASSERT(x != 0, ""); // Static analysis complains about using uninitialized data // "r", but the only way that can happen is if "x" is 0, // which the callers guarantee to not happen. FMT_MSC_WARNING(suppress : 6102) return 31 ^ static_cast(r); } # define FMT_BUILTIN_CLZ(n) detail::clz(n) inline int clzll(uint64_t x) { unsigned long r = 0; # ifdef _WIN64 _BitScanReverse64(&r, x); # else // Scan the high 32 bits. if (_BitScanReverse(&r, static_cast(x >> 32))) return 63 ^ (r + 32); // Scan the low 32 bits. _BitScanReverse(&r, static_cast(x)); # endif FMT_ASSERT(x != 0, ""); FMT_MSC_WARNING(suppress : 6102) // Suppress a bogus static analysis warning. return 63 ^ static_cast(r); } # define FMT_BUILTIN_CLZLL(n) detail::clzll(n) inline int ctz(uint32_t x) { unsigned long r = 0; _BitScanForward(&r, x); FMT_ASSERT(x != 0, ""); FMT_MSC_WARNING(suppress : 6102) // Suppress a bogus static analysis warning. return static_cast(r); } # define FMT_BUILTIN_CTZ(n) detail::ctz(n) inline int ctzll(uint64_t x) { unsigned long r = 0; FMT_ASSERT(x != 0, ""); FMT_MSC_WARNING(suppress : 6102) // Suppress a bogus static analysis warning. # ifdef _WIN64 _BitScanForward64(&r, x); # else // Scan the low 32 bits. if (_BitScanForward(&r, static_cast(x))) return static_cast(r); // Scan the high 32 bits. _BitScanForward(&r, static_cast(x >> 32)); r += 32; # endif return static_cast(r); } # define FMT_BUILTIN_CTZLL(n) detail::ctzll(n) } // namespace detail FMT_END_NAMESPACE #endif // Enable the deprecated numeric alignment. #ifndef FMT_DEPRECATED_NUMERIC_ALIGN # define FMT_DEPRECATED_NUMERIC_ALIGN 0 #endif FMT_BEGIN_NAMESPACE namespace detail { #if __cplusplus >= 202002L || \ (__cplusplus >= 201709L && FMT_GCC_VERSION >= 1002) # define FMT_CONSTEXPR20 constexpr #else # define FMT_CONSTEXPR20 #endif // An equivalent of `*reinterpret_cast(&source)` that doesn't have // undefined behavior (e.g. due to type aliasing). // Example: uint64_t d = bit_cast(2.718); template inline Dest bit_cast(const Source& source) { static_assert(sizeof(Dest) == sizeof(Source), "size mismatch"); Dest dest; std::memcpy(&dest, &source, sizeof(dest)); return dest; } inline bool is_big_endian() { const auto u = 1u; struct bytes { char data[sizeof(u)]; }; return bit_cast(u).data[0] == 0; } // A fallback implementation of uintptr_t for systems that lack it. struct fallback_uintptr { unsigned char value[sizeof(void*)]; fallback_uintptr() = default; explicit fallback_uintptr(const void* p) { *this = bit_cast(p); if (is_big_endian()) { for (size_t i = 0, j = sizeof(void*) - 1; i < j; ++i, --j) std::swap(value[i], value[j]); } } }; #ifdef UINTPTR_MAX using uintptr_t = ::uintptr_t; inline uintptr_t to_uintptr(const void* p) { return bit_cast(p); } #else using uintptr_t = fallback_uintptr; inline fallback_uintptr to_uintptr(const void* p) { return fallback_uintptr(p); } #endif // Returns the largest possible value for type T. Same as // std::numeric_limits::max() but shorter and not affected by the max macro. template constexpr T max_value() { return (std::numeric_limits::max)(); } template constexpr int num_bits() { return std::numeric_limits::digits; } // std::numeric_limits::digits may return 0 for 128-bit ints. template <> constexpr int num_bits() { return 128; } template <> constexpr int num_bits() { return 128; } template <> constexpr int num_bits() { return static_cast(sizeof(void*) * std::numeric_limits::digits); } FMT_INLINE void assume(bool condition) { (void)condition; #if FMT_HAS_BUILTIN(__builtin_assume) __builtin_assume(condition); #endif } // An approximation of iterator_t for pre-C++20 systems. template using iterator_t = decltype(std::begin(std::declval())); template using sentinel_t = decltype(std::end(std::declval())); // A workaround for std::string not having mutable data() until C++17. template inline Char* get_data(std::basic_string& s) { return &s[0]; } template inline typename Container::value_type* get_data(Container& c) { return c.data(); } #if defined(_SECURE_SCL) && _SECURE_SCL // Make a checked iterator to avoid MSVC warnings. template using checked_ptr = stdext::checked_array_iterator; template checked_ptr make_checked(T* p, size_t size) { return {p, size}; } #else template using checked_ptr = T*; template inline T* make_checked(T* p, size_t) { return p; } #endif template ::value)> #if FMT_CLANG_VERSION >= 307 __attribute__((no_sanitize("undefined"))) #endif inline checked_ptr reserve(std::back_insert_iterator it, size_t n) { Container& c = get_container(it); size_t size = c.size(); c.resize(size + n); return make_checked(get_data(c) + size, n); } template inline buffer_appender reserve(buffer_appender it, size_t n) { buffer& buf = get_container(it); buf.try_reserve(buf.size() + n); return it; } template constexpr Iterator& reserve(Iterator& it, size_t) { return it; } template constexpr T* to_pointer(OutputIt, size_t) { return nullptr; } template T* to_pointer(buffer_appender it, size_t n) { buffer& buf = get_container(it); auto size = buf.size(); if (buf.capacity() < size + n) return nullptr; buf.try_resize(size + n); return buf.data() + size; } template ::value)> inline std::back_insert_iterator base_iterator( std::back_insert_iterator& it, checked_ptr) { return it; } template constexpr Iterator base_iterator(Iterator, Iterator it) { return it; } // An output iterator that counts the number of objects written to it and // discards them. class counting_iterator { private: size_t count_; public: using iterator_category = std::output_iterator_tag; using difference_type = std::ptrdiff_t; using pointer = void; using reference = void; using _Unchecked_type = counting_iterator; // Mark iterator as checked. struct value_type { template void operator=(const T&) {} }; counting_iterator() : count_(0) {} size_t count() const { return count_; } counting_iterator& operator++() { ++count_; return *this; } counting_iterator operator++(int) { auto it = *this; ++*this; return it; } friend counting_iterator operator+(counting_iterator it, difference_type n) { it.count_ += static_cast(n); return it; } value_type operator*() const { return {}; } }; // is spectacularly slow to compile in C++20 so use a simple fill_n // instead (#1998). template FMT_CONSTEXPR OutputIt fill_n(OutputIt out, Size count, const T& value) { for (Size i = 0; i < count; ++i) *out++ = value; return out; } template FMT_CONSTEXPR20 T* fill_n(T* out, Size count, char value) { if (is_constant_evaluated()) { return fill_n(out, count, value); } std::memset(out, value, to_unsigned(count)); return out + count; } template using needs_conversion = bool_constant< std::is_same::value_type, char>::value && std::is_same::value>; template ::value)> FMT_CONSTEXPR OutputIt copy_str(InputIt begin, InputIt end, OutputIt it) { while (begin != end) *it++ = *begin++; return it; } template ::value)> FMT_CONSTEXPR20 OutChar* copy_str(InputIt begin, InputIt end, OutChar* out) { if (is_constant_evaluated()) { return copy_str(begin, end, out); } return std::uninitialized_copy(begin, end, out); } template ::value)> OutputIt copy_str(InputIt begin, InputIt end, OutputIt it) { while (begin != end) *it++ = static_cast(*begin++); return it; } template ::value)> buffer_appender copy_str(InputIt begin, InputIt end, buffer_appender out) { get_container(out).append(begin, end); return out; } template inline counting_iterator copy_str(InputIt begin, InputIt end, counting_iterator it) { return it + (end - begin); } template FMT_CONSTEXPR int code_point_length(const Char* begin) { if (const_check(sizeof(Char) != 1)) return 1; constexpr char lengths[] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 3, 3, 4, 0}; int len = lengths[static_cast(*begin) >> 3]; // Compute the pointer to the next character early so that the next // iteration can start working on the next character. Neither Clang // nor GCC figure out this reordering on their own. return len + !len; } // A public domain branchless UTF-8 decoder by Christopher Wellons: // https://github.com/skeeto/branchless-utf8 /* Decode the next character, c, from s, reporting errors in e. * * Since this is a branchless decoder, four bytes will be read from the * buffer regardless of the actual length of the next character. This * means the buffer _must_ have at least three bytes of zero padding * following the end of the data stream. * * Errors are reported in e, which will be non-zero if the parsed * character was somehow invalid: invalid byte sequence, non-canonical * encoding, or a surrogate half. * * The function returns a pointer to the next character. When an error * occurs, this pointer will be a guess that depends on the particular * error, but it will always advance at least one byte. */ FMT_CONSTEXPR inline const char* utf8_decode(const char* s, uint32_t* c, int* e) { constexpr const int masks[] = {0x00, 0x7f, 0x1f, 0x0f, 0x07}; constexpr const uint32_t mins[] = {4194304, 0, 128, 2048, 65536}; constexpr const int shiftc[] = {0, 18, 12, 6, 0}; constexpr const int shifte[] = {0, 6, 4, 2, 0}; int len = code_point_length(s); const char* next = s + len; // Assume a four-byte character and load four bytes. Unused bits are // shifted out. *c = uint32_t(s[0] & masks[len]) << 18; *c |= uint32_t(s[1] & 0x3f) << 12; *c |= uint32_t(s[2] & 0x3f) << 6; *c |= uint32_t(s[3] & 0x3f) << 0; *c >>= shiftc[len]; // Accumulate the various error conditions. using uchar = unsigned char; *e = (*c < mins[len]) << 6; // non-canonical encoding *e |= ((*c >> 11) == 0x1b) << 7; // surrogate half? *e |= (*c > 0x10FFFF) << 8; // out of range? *e |= (uchar(s[1]) & 0xc0) >> 2; *e |= (uchar(s[2]) & 0xc0) >> 4; *e |= uchar(s[3]) >> 6; *e ^= 0x2a; // top two bits of each tail byte correct? *e >>= shifte[len]; return next; } template FMT_CONSTEXPR void for_each_codepoint(string_view s, F f) { auto decode = [f](const char* p) { auto cp = uint32_t(); auto error = 0; p = utf8_decode(p, &cp, &error); f(cp, error); return p; }; auto p = s.data(); const size_t block_size = 4; // utf8_decode always reads blocks of 4 chars. if (s.size() >= block_size) { for (auto end = p + s.size() - block_size + 1; p < end;) p = decode(p); } if (auto num_chars_left = s.data() + s.size() - p) { char buf[2 * block_size - 1] = {}; copy_str(p, p + num_chars_left, buf); p = buf; do { p = decode(p); } while (p - buf < num_chars_left); } } template inline size_t compute_width(basic_string_view s) { return s.size(); } // Computes approximate display width of a UTF-8 string. FMT_CONSTEXPR inline size_t compute_width(string_view s) { size_t num_code_points = 0; // It is not a lambda for compatibility with C++14. struct count_code_points { size_t* count; FMT_CONSTEXPR void operator()(uint32_t cp, int error) const { *count += 1 + (error == 0 && cp >= 0x1100 && (cp <= 0x115f || // Hangul Jamo init. consonants cp == 0x2329 || // LEFT-POINTING ANGLE BRACKET〈 cp == 0x232a || // RIGHT-POINTING ANGLE BRACKET 〉 // CJK ... Yi except Unicode Character “〿”: (cp >= 0x2e80 && cp <= 0xa4cf && cp != 0x303f) || (cp >= 0xac00 && cp <= 0xd7a3) || // Hangul Syllables (cp >= 0xf900 && cp <= 0xfaff) || // CJK Compatibility Ideographs (cp >= 0xfe10 && cp <= 0xfe19) || // Vertical Forms (cp >= 0xfe30 && cp <= 0xfe6f) || // CJK Compatibility Forms (cp >= 0xff00 && cp <= 0xff60) || // Fullwidth Forms (cp >= 0xffe0 && cp <= 0xffe6) || // Fullwidth Forms (cp >= 0x20000 && cp <= 0x2fffd) || // CJK (cp >= 0x30000 && cp <= 0x3fffd) || // Miscellaneous Symbols and Pictographs + Emoticons: (cp >= 0x1f300 && cp <= 0x1f64f) || // Supplemental Symbols and Pictographs: (cp >= 0x1f900 && cp <= 0x1f9ff))); } }; for_each_codepoint(s, count_code_points{&num_code_points}); return num_code_points; } inline size_t compute_width(basic_string_view s) { return compute_width(basic_string_view( reinterpret_cast(s.data()), s.size())); } template inline size_t code_point_index(basic_string_view s, size_t n) { size_t size = s.size(); return n < size ? n : size; } // Calculates the index of the nth code point in a UTF-8 string. inline size_t code_point_index(basic_string_view s, size_t n) { const char8_type* data = s.data(); size_t num_code_points = 0; for (size_t i = 0, size = s.size(); i != size; ++i) { if ((data[i] & 0xc0) != 0x80 && ++num_code_points > n) return i; } return s.size(); } template using is_fast_float = bool_constant::is_iec559 && sizeof(T) <= sizeof(double)>; #ifndef FMT_USE_FULL_CACHE_DRAGONBOX # define FMT_USE_FULL_CACHE_DRAGONBOX 0 #endif template template void buffer::append(const U* begin, const U* end) { do { auto count = to_unsigned(end - begin); try_reserve(size_ + count); auto free_cap = capacity_ - size_; if (free_cap < count) count = free_cap; std::uninitialized_copy_n(begin, count, make_checked(ptr_ + size_, count)); size_ += count; begin += count; } while (begin != end); } template void iterator_buffer::flush() { auto size = this->size(); this->clear(); out_ = copy_str(data_, data_ + this->limit(size), out_); } } // namespace detail // The number of characters to store in the basic_memory_buffer object itself // to avoid dynamic memory allocation. enum { inline_buffer_size = 500 }; /** \rst A dynamically growing memory buffer for trivially copyable/constructible types with the first ``SIZE`` elements stored in the object itself. You can use one of the following type aliases for common character types: +----------------+------------------------------+ | Type | Definition | +================+==============================+ | memory_buffer | basic_memory_buffer | +----------------+------------------------------+ | wmemory_buffer | basic_memory_buffer | +----------------+------------------------------+ **Example**:: fmt::memory_buffer out; format_to(out, "The answer is {}.", 42); This will append the following output to the ``out`` object: .. code-block:: none The answer is 42. The output can be converted to an ``std::string`` with ``to_string(out)``. \endrst */ template > class basic_memory_buffer final : public detail::buffer { private: T store_[SIZE]; // Don't inherit from Allocator avoid generating type_info for it. Allocator alloc_; // Deallocate memory allocated by the buffer. void deallocate() { T* data = this->data(); if (data != store_) alloc_.deallocate(data, this->capacity()); } protected: void grow(size_t size) final FMT_OVERRIDE; public: using value_type = T; using const_reference = const T&; explicit basic_memory_buffer(const Allocator& alloc = Allocator()) : alloc_(alloc) { this->set(store_, SIZE); } ~basic_memory_buffer() { deallocate(); } private: // Move data from other to this buffer. void move(basic_memory_buffer& other) { alloc_ = std::move(other.alloc_); T* data = other.data(); size_t size = other.size(), capacity = other.capacity(); if (data == other.store_) { this->set(store_, capacity); std::uninitialized_copy(other.store_, other.store_ + size, detail::make_checked(store_, capacity)); } else { this->set(data, capacity); // Set pointer to the inline array so that delete is not called // when deallocating. other.set(other.store_, 0); } this->resize(size); } public: /** \rst Constructs a :class:`fmt::basic_memory_buffer` object moving the content of the other object to it. \endrst */ basic_memory_buffer(basic_memory_buffer&& other) FMT_NOEXCEPT { move(other); } /** \rst Moves the content of the other ``basic_memory_buffer`` object to this one. \endrst */ basic_memory_buffer& operator=(basic_memory_buffer&& other) FMT_NOEXCEPT { FMT_ASSERT(this != &other, ""); deallocate(); move(other); return *this; } // Returns a copy of the allocator associated with this buffer. Allocator get_allocator() const { return alloc_; } /** Resizes the buffer to contain *count* elements. If T is a POD type new elements may not be initialized. */ void resize(size_t count) { this->try_resize(count); } /** Increases the buffer capacity to *new_capacity*. */ void reserve(size_t new_capacity) { this->try_reserve(new_capacity); } // Directly append data into the buffer using detail::buffer::append; template void append(const ContiguousRange& range) { append(range.data(), range.data() + range.size()); } }; template void basic_memory_buffer::grow(size_t size) { #ifdef FMT_FUZZ if (size > 5000) throw std::runtime_error("fuzz mode - won't grow that much"); #endif const size_t max_size = std::allocator_traits::max_size(alloc_); size_t old_capacity = this->capacity(); size_t new_capacity = old_capacity + old_capacity / 2; if (size > new_capacity) new_capacity = size; else if (new_capacity > max_size) new_capacity = size > max_size ? size : max_size; T* old_data = this->data(); T* new_data = std::allocator_traits::allocate(alloc_, new_capacity); // The following code doesn't throw, so the raw pointer above doesn't leak. std::uninitialized_copy(old_data, old_data + this->size(), detail::make_checked(new_data, new_capacity)); this->set(new_data, new_capacity); // deallocate must not throw according to the standard, but even if it does, // the buffer already uses the new storage and will deallocate it in // destructor. if (old_data != store_) alloc_.deallocate(old_data, old_capacity); } using memory_buffer = basic_memory_buffer; using wmemory_buffer = basic_memory_buffer; template struct is_contiguous> : std::true_type { }; /** A formatting error such as invalid format string. */ FMT_CLASS_API class FMT_API format_error : public std::runtime_error { public: explicit format_error(const char* message) : std::runtime_error(message) {} explicit format_error(const std::string& message) : std::runtime_error(message) {} format_error(const format_error&) = default; format_error& operator=(const format_error&) = default; format_error(format_error&&) = default; format_error& operator=(format_error&&) = default; ~format_error() FMT_NOEXCEPT FMT_OVERRIDE; }; namespace detail { template using is_signed = std::integral_constant::is_signed || std::is_same::value>; // Returns true if value is negative, false otherwise. // Same as `value < 0` but doesn't produce warnings if T is an unsigned type. template ::value)> FMT_CONSTEXPR bool is_negative(T value) { return value < 0; } template ::value)> FMT_CONSTEXPR bool is_negative(T) { return false; } template ::value)> FMT_CONSTEXPR bool is_supported_floating_point(T) { return (std::is_same::value && FMT_USE_FLOAT) || (std::is_same::value && FMT_USE_DOUBLE) || (std::is_same::value && FMT_USE_LONG_DOUBLE); } // Smallest of uint32_t, uint64_t, uint128_t that is large enough to // represent all values of an integral type T. template using uint32_or_64_or_128_t = conditional_t() <= 32 && !FMT_REDUCE_INT_INSTANTIATIONS, uint32_t, conditional_t() <= 64, uint64_t, uint128_t>>; // 128-bit integer type used internally struct FMT_EXTERN_TEMPLATE_API uint128_wrapper { uint128_wrapper() = default; #if FMT_USE_INT128 uint128_t internal_; uint128_wrapper(uint64_t high, uint64_t low) FMT_NOEXCEPT : internal_{static_cast(low) | (static_cast(high) << 64)} {} uint128_wrapper(uint128_t u) : internal_{u} {} uint64_t high() const FMT_NOEXCEPT { return uint64_t(internal_ >> 64); } uint64_t low() const FMT_NOEXCEPT { return uint64_t(internal_); } uint128_wrapper& operator+=(uint64_t n) FMT_NOEXCEPT { internal_ += n; return *this; } #else uint64_t high_; uint64_t low_; uint128_wrapper(uint64_t high, uint64_t low) FMT_NOEXCEPT : high_{high}, low_{low} {} uint64_t high() const FMT_NOEXCEPT { return high_; } uint64_t low() const FMT_NOEXCEPT { return low_; } uint128_wrapper& operator+=(uint64_t n) FMT_NOEXCEPT { # if defined(_MSC_VER) && defined(_M_X64) unsigned char carry = _addcarry_u64(0, low_, n, &low_); _addcarry_u64(carry, high_, 0, &high_); return *this; # else uint64_t sum = low_ + n; high_ += (sum < low_ ? 1 : 0); low_ = sum; return *this; # endif } #endif }; // Table entry type for divisibility test used internally template struct FMT_EXTERN_TEMPLATE_API divtest_table_entry { T mod_inv; T max_quotient; }; // Static data is placed in this class template for the header-only config. template struct FMT_EXTERN_TEMPLATE_API basic_data { static const uint64_t powers_of_10_64[]; static const uint32_t zero_or_powers_of_10_32_new[]; static const uint64_t zero_or_powers_of_10_64_new[]; static const uint64_t grisu_pow10_significands[]; static const int16_t grisu_pow10_exponents[]; static const divtest_table_entry divtest_table_for_pow5_32[]; static const divtest_table_entry divtest_table_for_pow5_64[]; static const uint64_t dragonbox_pow10_significands_64[]; static const uint128_wrapper dragonbox_pow10_significands_128[]; // log10(2) = 0x0.4d104d427de7fbcc... static const uint64_t log10_2_significand = 0x4d104d427de7fbcc; #if !FMT_USE_FULL_CACHE_DRAGONBOX static const uint64_t powers_of_5_64[]; static const uint32_t dragonbox_pow10_recovery_errors[]; #endif // GCC generates slightly better code for pairs than chars. using digit_pair = char[2]; static const digit_pair digits[]; static constexpr const char hex_digits[] = "0123456789abcdef"; static const char foreground_color[]; static const char background_color[]; static const char reset_color[5]; static const wchar_t wreset_color[5]; static const char signs[]; static constexpr const char left_padding_shifts[5] = {31, 31, 0, 1, 0}; static constexpr const char right_padding_shifts[5] = {0, 31, 0, 1, 0}; // DEPRECATED! These are for ABI compatibility. static const uint32_t zero_or_powers_of_10_32[]; static const uint64_t zero_or_powers_of_10_64[]; }; // Maps bsr(n) to ceil(log10(pow(2, bsr(n) + 1) - 1)). // This is a function instead of an array to workaround a bug in GCC10 (#1810). FMT_INLINE uint16_t bsr2log10(int bsr) { static constexpr uint16_t data[] = { 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 19, 20}; return data[bsr]; } #ifndef FMT_EXPORTED FMT_EXTERN template struct basic_data; #endif // This is a struct rather than an alias to avoid shadowing warnings in gcc. struct data : basic_data<> {}; template FMT_CONSTEXPR int count_digits_fallback(T n) { int count = 1; for (;;) { // Integer division is slow so do it for a group of four digits instead // of for every digit. The idea comes from the talk by Alexandrescu // "Three Optimization Tips for C++". See speed-test for a comparison. if (n < 10) return count; if (n < 100) return count + 1; if (n < 1000) return count + 2; if (n < 10000) return count + 3; n /= 10000u; count += 4; } } #ifdef FMT_BUILTIN_CLZLL // Returns the number of decimal digits in n. Leading zeros are not counted // except for n == 0 in which case count_digits returns 1. FMT_CONSTEXPR20 inline int count_digits(uint64_t n) { if (is_constant_evaluated()) { return count_digits_fallback(n); } // https://github.com/fmtlib/format-benchmark/blob/master/digits10 auto t = bsr2log10(FMT_BUILTIN_CLZLL(n | 1) ^ 63); return t - (n < data::zero_or_powers_of_10_64_new[t]); } #else // Fallback version of count_digits used when __builtin_clz is not available. FMT_CONSTEXPR inline int count_digits(uint64_t n) { return count_digits_fallback(n); } #endif #if FMT_USE_INT128 FMT_CONSTEXPR inline int count_digits(uint128_t n) { int count = 1; for (;;) { // Integer division is slow so do it for a group of four digits instead // of for every digit. The idea comes from the talk by Alexandrescu // "Three Optimization Tips for C++". See speed-test for a comparison. if (n < 10) return count; if (n < 100) return count + 1; if (n < 1000) return count + 2; if (n < 10000) return count + 3; n /= 10000U; count += 4; } } #endif // Counts the number of digits in n. BITS = log2(radix). template FMT_CONSTEXPR int count_digits(UInt n) { int num_digits = 0; do { ++num_digits; } while ((n >>= BITS) != 0); return num_digits; } template <> int count_digits<4>(detail::fallback_uintptr n); #if FMT_GCC_VERSION || FMT_CLANG_VERSION # define FMT_ALWAYS_INLINE inline __attribute__((always_inline)) #elif FMT_MSC_VER # define FMT_ALWAYS_INLINE __forceinline #else # define FMT_ALWAYS_INLINE inline #endif #ifdef FMT_BUILTIN_CLZ // Optional version of count_digits for better performance on 32-bit platforms. FMT_CONSTEXPR20 inline int count_digits(uint32_t n) { if (is_constant_evaluated()) { return count_digits_fallback(n); } auto t = bsr2log10(FMT_BUILTIN_CLZ(n | 1) ^ 31); return t - (n < data::zero_or_powers_of_10_32_new[t]); } #endif template constexpr int digits10() FMT_NOEXCEPT { return std::numeric_limits::digits10; } template <> constexpr int digits10() FMT_NOEXCEPT { return 38; } template <> constexpr int digits10() FMT_NOEXCEPT { return 38; } template FMT_API std::string grouping_impl(locale_ref loc); template inline std::string grouping(locale_ref loc) { return grouping_impl(loc); } template <> inline std::string grouping(locale_ref loc) { return grouping_impl(loc); } template FMT_API Char thousands_sep_impl(locale_ref loc); template inline Char thousands_sep(locale_ref loc) { return Char(thousands_sep_impl(loc)); } template <> inline wchar_t thousands_sep(locale_ref loc) { return thousands_sep_impl(loc); } template FMT_API Char decimal_point_impl(locale_ref loc); template inline Char decimal_point(locale_ref loc) { return Char(decimal_point_impl(loc)); } template <> inline wchar_t decimal_point(locale_ref loc) { return decimal_point_impl(loc); } // Compares two characters for equality. template bool equal2(const Char* lhs, const char* rhs) { return lhs[0] == rhs[0] && lhs[1] == rhs[1]; } inline bool equal2(const char* lhs, const char* rhs) { return memcmp(lhs, rhs, 2) == 0; } // Copies two characters from src to dst. template void copy2(Char* dst, const char* src) { *dst++ = static_cast(*src++); *dst = static_cast(*src); } FMT_INLINE void copy2(char* dst, const char* src) { memcpy(dst, src, 2); } template struct format_decimal_result { Iterator begin; Iterator end; }; // Formats a decimal unsigned integer value writing into out pointing to a // buffer of specified size. The caller must ensure that the buffer is large // enough. template FMT_CONSTEXPR20 format_decimal_result format_decimal(Char* out, UInt value, int size) { FMT_ASSERT(size >= count_digits(value), "invalid digit count"); out += size; Char* end = out; if (is_constant_evaluated()) { while (value >= 10) { *--out = static_cast('0' + value % 10); value /= 10; } *--out = static_cast('0' + value); return {out, end}; } while (value >= 100) { // Integer division is slow so do it for a group of two digits instead // of for every digit. The idea comes from the talk by Alexandrescu // "Three Optimization Tips for C++". See speed-test for a comparison. out -= 2; copy2(out, data::digits[value % 100]); value /= 100; } if (value < 10) { *--out = static_cast('0' + value); return {out, end}; } out -= 2; copy2(out, data::digits[value]); return {out, end}; } template >::value)> inline format_decimal_result format_decimal(Iterator out, UInt value, int size) { // Buffer is large enough to hold all digits (digits10 + 1). Char buffer[digits10() + 1]; auto end = format_decimal(buffer, value, size).end; return {out, detail::copy_str(buffer, end, out)}; } template FMT_CONSTEXPR Char* format_uint(Char* buffer, UInt value, int num_digits, bool upper = false) { buffer += num_digits; Char* end = buffer; do { const char* digits = upper ? "0123456789ABCDEF" : data::hex_digits; unsigned digit = (value & ((1 << BASE_BITS) - 1)); *--buffer = static_cast(BASE_BITS < 4 ? static_cast('0' + digit) : digits[digit]); } while ((value >>= BASE_BITS) != 0); return end; } template Char* format_uint(Char* buffer, detail::fallback_uintptr n, int num_digits, bool = false) { auto char_digits = std::numeric_limits::digits / 4; int start = (num_digits + char_digits - 1) / char_digits - 1; if (int start_digits = num_digits % char_digits) { unsigned value = n.value[start--]; buffer = format_uint(buffer, value, start_digits); } for (; start >= 0; --start) { unsigned value = n.value[start]; buffer += char_digits; auto p = buffer; for (int i = 0; i < char_digits; ++i) { unsigned digit = (value & ((1 << BASE_BITS) - 1)); *--p = static_cast(data::hex_digits[digit]); value >>= BASE_BITS; } } return buffer; } template inline It format_uint(It out, UInt value, int num_digits, bool upper = false) { if (auto ptr = to_pointer(out, to_unsigned(num_digits))) { format_uint(ptr, value, num_digits, upper); return out; } // Buffer should be large enough to hold all digits (digits / BASE_BITS + 1). char buffer[num_bits() / BASE_BITS + 1]; format_uint(buffer, value, num_digits, upper); return detail::copy_str(buffer, buffer + num_digits, out); } // A converter from UTF-8 to UTF-16. class utf8_to_utf16 { private: wmemory_buffer buffer_; public: FMT_API explicit utf8_to_utf16(string_view s); operator wstring_view() const { return {&buffer_[0], size()}; } size_t size() const { return buffer_.size() - 1; } const wchar_t* c_str() const { return &buffer_[0]; } std::wstring str() const { return {&buffer_[0], size()}; } }; template struct null {}; // Workaround an array initialization issue in gcc 4.8. template struct fill_t { private: enum { max_size = 4 }; Char data_[max_size] = {Char(' '), Char(0), Char(0), Char(0)}; unsigned char size_ = 1; public: FMT_CONSTEXPR void operator=(basic_string_view s) { auto size = s.size(); if (size > max_size) { FMT_THROW(format_error("invalid fill")); return; } for (size_t i = 0; i < size; ++i) data_[i] = s[i]; size_ = static_cast(size); } constexpr size_t size() const { return size_; } constexpr const Char* data() const { return data_; } FMT_CONSTEXPR Char& operator[](size_t index) { return data_[index]; } FMT_CONSTEXPR const Char& operator[](size_t index) const { return data_[index]; } }; } // namespace detail // We cannot use enum classes as bit fields because of a gcc bug // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=61414. namespace align { enum type { none, left, right, center, numeric }; } using align_t = align::type; namespace sign { enum type { none, minus, plus, space }; } using sign_t = sign::type; // Format specifiers for built-in and string types. template struct basic_format_specs { int width; int precision; char type; align_t align : 4; sign_t sign : 3; bool alt : 1; // Alternate form ('#'). bool localized : 1; detail::fill_t fill; constexpr basic_format_specs() : width(0), precision(-1), type(0), align(align::none), sign(sign::none), alt(false), localized(false) {} }; using format_specs = basic_format_specs; namespace detail { namespace dragonbox { // Type-specific information that Dragonbox uses. template struct float_info; template <> struct float_info { using carrier_uint = uint32_t; static const int significand_bits = 23; static const int exponent_bits = 8; static const int min_exponent = -126; static const int max_exponent = 127; static const int exponent_bias = -127; static const int decimal_digits = 9; static const int kappa = 1; static const int big_divisor = 100; static const int small_divisor = 10; static const int min_k = -31; static const int max_k = 46; static const int cache_bits = 64; static const int divisibility_check_by_5_threshold = 39; static const int case_fc_pm_half_lower_threshold = -1; static const int case_fc_pm_half_upper_threshold = 6; static const int case_fc_lower_threshold = -2; static const int case_fc_upper_threshold = 6; static const int case_shorter_interval_left_endpoint_lower_threshold = 2; static const int case_shorter_interval_left_endpoint_upper_threshold = 3; static const int shorter_interval_tie_lower_threshold = -35; static const int shorter_interval_tie_upper_threshold = -35; static const int max_trailing_zeros = 7; }; template <> struct float_info { using carrier_uint = uint64_t; static const int significand_bits = 52; static const int exponent_bits = 11; static const int min_exponent = -1022; static const int max_exponent = 1023; static const int exponent_bias = -1023; static const int decimal_digits = 17; static const int kappa = 2; static const int big_divisor = 1000; static const int small_divisor = 100; static const int min_k = -292; static const int max_k = 326; static const int cache_bits = 128; static const int divisibility_check_by_5_threshold = 86; static const int case_fc_pm_half_lower_threshold = -2; static const int case_fc_pm_half_upper_threshold = 9; static const int case_fc_lower_threshold = -4; static const int case_fc_upper_threshold = 9; static const int case_shorter_interval_left_endpoint_lower_threshold = 2; static const int case_shorter_interval_left_endpoint_upper_threshold = 3; static const int shorter_interval_tie_lower_threshold = -77; static const int shorter_interval_tie_upper_threshold = -77; static const int max_trailing_zeros = 16; }; template struct decimal_fp { using significand_type = typename float_info::carrier_uint; significand_type significand; int exponent; }; template FMT_API decimal_fp to_decimal(T x) FMT_NOEXCEPT; } // namespace dragonbox template constexpr typename dragonbox::float_info::carrier_uint exponent_mask() { using uint = typename dragonbox::float_info::carrier_uint; return ((uint(1) << dragonbox::float_info::exponent_bits) - 1) << dragonbox::float_info::significand_bits; } // A floating-point presentation format. enum class float_format : unsigned char { general, // General: exponent notation or fixed point based on magnitude. exp, // Exponent notation with the default precision of 6, e.g. 1.2e-3. fixed, // Fixed point with the default precision of 6, e.g. 0.0012. hex }; struct float_specs { int precision; float_format format : 8; sign_t sign : 8; bool upper : 1; bool locale : 1; bool binary32 : 1; bool use_grisu : 1; bool showpoint : 1; }; // Writes the exponent exp in the form "[+-]d{2,3}" to buffer. template It write_exponent(int exp, It it) { FMT_ASSERT(-10000 < exp && exp < 10000, "exponent out of range"); if (exp < 0) { *it++ = static_cast('-'); exp = -exp; } else { *it++ = static_cast('+'); } if (exp >= 100) { const char* top = data::digits[exp / 100]; if (exp >= 1000) *it++ = static_cast(top[0]); *it++ = static_cast(top[1]); exp %= 100; } const char* d = data::digits[exp]; *it++ = static_cast(d[0]); *it++ = static_cast(d[1]); return it; } template int format_float(T value, int precision, float_specs specs, buffer& buf); // Formats a floating-point number with snprintf. template int snprintf_float(T value, int precision, float_specs specs, buffer& buf); template T promote_float(T value) { return value; } inline double promote_float(float value) { return static_cast(value); } template FMT_CONSTEXPR void handle_int_type_spec(char spec, Handler&& handler) { switch (spec) { case 0: case 'd': handler.on_dec(); break; case 'x': case 'X': handler.on_hex(); break; case 'b': case 'B': handler.on_bin(); break; case 'o': handler.on_oct(); break; #ifdef FMT_DEPRECATED_N_SPECIFIER case 'n': handler.on_num(); break; #endif case 'c': handler.on_chr(); break; default: handler.on_error(); } } template FMT_CONSTEXPR void handle_bool_type_spec(const basic_format_specs* specs, Handler&& handler) { if (!specs) return handler.on_str(); if (specs->type && specs->type != 's') return handler.on_int(); handler.on_str(); } template FMT_CONSTEXPR float_specs parse_float_type_spec( const basic_format_specs& specs, ErrorHandler&& eh = {}) { auto result = float_specs(); result.showpoint = specs.alt; result.locale = specs.localized; switch (specs.type) { case 0: result.format = float_format::general; break; case 'G': result.upper = true; FMT_FALLTHROUGH; case 'g': result.format = float_format::general; break; case 'E': result.upper = true; FMT_FALLTHROUGH; case 'e': result.format = float_format::exp; result.showpoint |= specs.precision != 0; break; case 'F': result.upper = true; FMT_FALLTHROUGH; case 'f': result.format = float_format::fixed; result.showpoint |= specs.precision != 0; break; case 'A': result.upper = true; FMT_FALLTHROUGH; case 'a': result.format = float_format::hex; break; #ifdef FMT_DEPRECATED_N_SPECIFIER case 'n': result.locale = true; break; #endif default: eh.on_error("invalid type specifier"); break; } return result; } template FMT_CONSTEXPR void handle_char_specs(const basic_format_specs* specs, Handler&& handler) { if (!specs) return handler.on_char(); if (specs->type && specs->type != 'c') return handler.on_int(); if (specs->align == align::numeric || specs->sign != sign::none || specs->alt) handler.on_error("invalid format specifier for char"); handler.on_char(); } template FMT_CONSTEXPR void handle_cstring_type_spec(Char spec, Handler&& handler) { if (spec == 0 || spec == 's') handler.on_string(); else if (spec == 'p') handler.on_pointer(); else handler.on_error("invalid type specifier"); } template FMT_CONSTEXPR void check_string_type_spec(Char spec, ErrorHandler&& eh) { if (spec != 0 && spec != 's') eh.on_error("invalid type specifier"); } template FMT_CONSTEXPR void check_pointer_type_spec(Char spec, ErrorHandler&& eh) { if (spec != 0 && spec != 'p') eh.on_error("invalid type specifier"); } template class int_type_checker : private ErrorHandler { public: FMT_CONSTEXPR explicit int_type_checker(ErrorHandler eh) : ErrorHandler(eh) {} FMT_CONSTEXPR void on_dec() {} FMT_CONSTEXPR void on_hex() {} FMT_CONSTEXPR void on_bin() {} FMT_CONSTEXPR void on_oct() {} FMT_CONSTEXPR void on_num() {} FMT_CONSTEXPR void on_chr() {} FMT_CONSTEXPR void on_error() { ErrorHandler::on_error("invalid type specifier"); } }; template class char_specs_checker : public ErrorHandler { private: char type_; public: FMT_CONSTEXPR char_specs_checker(char type, ErrorHandler eh) : ErrorHandler(eh), type_(type) {} FMT_CONSTEXPR void on_int() { handle_int_type_spec(type_, int_type_checker(*this)); } FMT_CONSTEXPR void on_char() {} }; template class cstring_type_checker : public ErrorHandler { public: FMT_CONSTEXPR explicit cstring_type_checker(ErrorHandler eh) : ErrorHandler(eh) {} FMT_CONSTEXPR void on_string() {} FMT_CONSTEXPR void on_pointer() {} }; template class bool_type_checker : private ErrorHandler { private: char type_; public: FMT_CONSTEXPR explicit bool_type_checker(char type, ErrorHandler eh) : ErrorHandler(eh), type_(type) {} FMT_CONSTEXPR void on_int() { handle_int_type_spec(type_, int_type_checker(*this)); } FMT_CONSTEXPR void on_str() {} }; template FMT_NOINLINE FMT_CONSTEXPR OutputIt fill(OutputIt it, size_t n, const fill_t& fill) { auto fill_size = fill.size(); if (fill_size == 1) return detail::fill_n(it, n, fill[0]); auto data = fill.data(); for (size_t i = 0; i < n; ++i) it = copy_str(data, data + fill_size, it); return it; } // Writes the output of f, padded according to format specifications in specs. // size: output size in code units. // width: output display width in (terminal) column positions. template FMT_CONSTEXPR OutputIt write_padded(OutputIt out, const basic_format_specs& specs, size_t size, size_t width, F&& f) { static_assert(align == align::left || align == align::right, ""); unsigned spec_width = to_unsigned(specs.width); size_t padding = spec_width > width ? spec_width - width : 0; size_t left_padding = 0; auto* shifts = align == align::left ? data::left_padding_shifts : data::right_padding_shifts; left_padding = padding >> shifts[specs.align]; auto it = reserve(out, size + padding * specs.fill.size()); it = fill(it, left_padding, specs.fill); it = f(it); it = fill(it, padding - left_padding, specs.fill); return base_iterator(out, it); } template constexpr OutputIt write_padded(OutputIt out, const basic_format_specs& specs, size_t size, F&& f) { return write_padded(out, specs, size, size, f); } template OutputIt write_bytes(OutputIt out, string_view bytes, const basic_format_specs& specs) { using iterator = remove_reference_t; return write_padded(out, specs, bytes.size(), [bytes](iterator it) { const char* data = bytes.data(); return copy_str(data, data + bytes.size(), it); }); } template constexpr OutputIt write_char(OutputIt out, Char value, const basic_format_specs& specs) { using iterator = remove_reference_t; return write_padded(out, specs, 1, [=](iterator it) { *it++ = value; return it; }); } // Data for write_int that doesn't depend on output iterator type. It is used to // avoid template code bloat. template struct write_int_data { size_t size; size_t padding; FMT_CONSTEXPR write_int_data(int num_digits, string_view prefix, const basic_format_specs& specs) : size(prefix.size() + to_unsigned(num_digits)), padding(0) { if (specs.align == align::numeric) { auto width = to_unsigned(specs.width); if (width > size) { padding = width - size; size = width; } } else if (specs.precision > num_digits) { size = prefix.size() + to_unsigned(specs.precision); padding = to_unsigned(specs.precision - num_digits); } } }; // Writes an integer in the format // // where are written by f(it). template FMT_CONSTEXPR OutputIt write_int(OutputIt out, int num_digits, string_view prefix, const basic_format_specs& specs, F f) { auto data = write_int_data(num_digits, prefix, specs); using iterator = remove_reference_t; return write_padded(out, specs, data.size, [=](iterator it) { if (prefix.size() != 0) it = copy_str(prefix.begin(), prefix.end(), it); it = detail::fill_n(it, data.padding, static_cast('0')); return f(it); }); } template FMT_CONSTEXPR OutputIt write(OutputIt out, basic_string_view s, const basic_format_specs& specs) { auto data = s.data(); auto size = s.size(); if (specs.precision >= 0 && to_unsigned(specs.precision) < size) size = code_point_index(s, to_unsigned(specs.precision)); auto width = specs.width != 0 ? compute_width(basic_string_view(data, size)) : 0; using iterator = remove_reference_t; return write_padded(out, specs, size, width, [=](iterator it) { return copy_str(data, data + size, it); }); } // The handle_int_type_spec handler that writes an integer. template struct int_writer { OutputIt out; locale_ref locale; const basic_format_specs& specs; UInt abs_value; char prefix[4]; unsigned prefix_size; using iterator = remove_reference_t(), 0))>; constexpr string_view get_prefix() const { return string_view(prefix, prefix_size); } FMT_CONSTEXPR void write_dec() { auto num_digits = count_digits(abs_value); out = write_int( out, num_digits, get_prefix(), specs, [this, num_digits](iterator it) { return format_decimal(it, abs_value, num_digits).end; }); } template FMT_CONSTEXPR int_writer(OutputIt output, locale_ref loc, Int value, const basic_format_specs& s) : out(output), locale(loc), specs(s), abs_value(static_cast(value)), prefix_size(0) { static_assert(std::is_same, UInt>::value, ""); if (is_negative(value)) { prefix[0] = '-'; ++prefix_size; abs_value = 0 - abs_value; } else if (specs.sign != sign::none && specs.sign != sign::minus) { prefix[0] = specs.sign == sign::plus ? '+' : ' '; ++prefix_size; } } FMT_CONSTEXPR void on_dec() { if (specs.localized) return on_num(); write_dec(); } FMT_CONSTEXPR void on_hex() { if (specs.alt) { prefix[prefix_size++] = '0'; prefix[prefix_size++] = specs.type; } int num_digits = count_digits<4>(abs_value); out = write_int(out, num_digits, get_prefix(), specs, [this, num_digits](iterator it) { return format_uint<4, Char>(it, abs_value, num_digits, specs.type != 'x'); }); } FMT_CONSTEXPR void on_bin() { if (specs.alt) { prefix[prefix_size++] = '0'; prefix[prefix_size++] = static_cast(specs.type); } int num_digits = count_digits<1>(abs_value); out = write_int(out, num_digits, get_prefix(), specs, [this, num_digits](iterator it) { return format_uint<1, Char>(it, abs_value, num_digits); }); } FMT_CONSTEXPR void on_oct() { int num_digits = count_digits<3>(abs_value); if (specs.alt && specs.precision <= num_digits && abs_value != 0) { // Octal prefix '0' is counted as a digit, so only add it if precision // is not greater than the number of digits. prefix[prefix_size++] = '0'; } out = write_int(out, num_digits, get_prefix(), specs, [this, num_digits](iterator it) { return format_uint<3, Char>(it, abs_value, num_digits); }); } enum { sep_size = 1 }; void on_num() { std::string groups = grouping(locale); if (groups.empty()) return write_dec(); auto sep = thousands_sep(locale); if (!sep) return write_dec(); int num_digits = count_digits(abs_value); int size = num_digits, n = num_digits; std::string::const_iterator group = groups.cbegin(); while (group != groups.cend() && n > *group && *group > 0 && *group != max_value()) { size += sep_size; n -= *group; ++group; } if (group == groups.cend()) size += sep_size * ((n - 1) / groups.back()); char digits[40]; format_decimal(digits, abs_value, num_digits); basic_memory_buffer buffer; size += static_cast(prefix_size); const auto usize = to_unsigned(size); buffer.resize(usize); basic_string_view s(&sep, sep_size); // Index of a decimal digit with the least significant digit having index 0. int digit_index = 0; group = groups.cbegin(); auto p = buffer.data() + size - 1; for (int i = num_digits - 1; i > 0; --i) { *p-- = static_cast(digits[i]); if (*group <= 0 || ++digit_index % *group != 0 || *group == max_value()) continue; if (group + 1 != groups.cend()) { digit_index = 0; ++group; } std::uninitialized_copy(s.data(), s.data() + s.size(), make_checked(p, s.size())); p -= s.size(); } *p-- = static_cast(*digits); if (prefix_size != 0) *p = static_cast(prefix[0]); auto data = buffer.data(); out = write_padded( out, specs, usize, usize, [=](iterator it) { return copy_str(data, data + size, it); }); } void on_chr() { out = write_char(out, static_cast(abs_value), specs); } FMT_NORETURN void on_error() { FMT_THROW(format_error("invalid type specifier")); } }; template OutputIt write_nonfinite(OutputIt out, bool isinf, const basic_format_specs& specs, const float_specs& fspecs) { auto str = isinf ? (fspecs.upper ? "INF" : "inf") : (fspecs.upper ? "NAN" : "nan"); constexpr size_t str_size = 3; auto sign = fspecs.sign; auto size = str_size + (sign ? 1 : 0); using iterator = remove_reference_t; return write_padded(out, specs, size, [=](iterator it) { if (sign) *it++ = static_cast(data::signs[sign]); return copy_str(str, str + str_size, it); }); } // A decimal floating-point number significand * pow(10, exp). struct big_decimal_fp { const char* significand; int significand_size; int exponent; }; inline int get_significand_size(const big_decimal_fp& fp) { return fp.significand_size; } template inline int get_significand_size(const dragonbox::decimal_fp& fp) { return count_digits(fp.significand); } template inline OutputIt write_significand(OutputIt out, const char* significand, int& significand_size) { return copy_str(significand, significand + significand_size, out); } template inline OutputIt write_significand(OutputIt out, UInt significand, int significand_size) { return format_decimal(out, significand, significand_size).end; } template ::value)> inline Char* write_significand(Char* out, UInt significand, int significand_size, int integral_size, Char decimal_point) { if (!decimal_point) return format_decimal(out, significand, significand_size).end; auto end = format_decimal(out + 1, significand, significand_size).end; if (integral_size == 1) out[0] = out[1]; else std::uninitialized_copy_n(out + 1, integral_size, out); out[integral_size] = decimal_point; return end; } template >::value)> inline OutputIt write_significand(OutputIt out, UInt significand, int significand_size, int integral_size, Char decimal_point) { // Buffer is large enough to hold digits (digits10 + 1) and a decimal point. Char buffer[digits10() + 2]; auto end = write_significand(buffer, significand, significand_size, integral_size, decimal_point); return detail::copy_str(buffer, end, out); } template inline OutputIt write_significand(OutputIt out, const char* significand, int significand_size, int integral_size, Char decimal_point) { out = detail::copy_str(significand, significand + integral_size, out); if (!decimal_point) return out; *out++ = decimal_point; return detail::copy_str(significand + integral_size, significand + significand_size, out); } template OutputIt write_float(OutputIt out, const DecimalFP& fp, const basic_format_specs& specs, float_specs fspecs, Char decimal_point) { auto significand = fp.significand; int significand_size = get_significand_size(fp); static const Char zero = static_cast('0'); auto sign = fspecs.sign; size_t size = to_unsigned(significand_size) + (sign ? 1 : 0); using iterator = remove_reference_t; int output_exp = fp.exponent + significand_size - 1; auto use_exp_format = [=]() { if (fspecs.format == float_format::exp) return true; if (fspecs.format != float_format::general) return false; // Use the fixed notation if the exponent is in [exp_lower, exp_upper), // e.g. 0.0001 instead of 1e-04. Otherwise use the exponent notation. const int exp_lower = -4, exp_upper = 16; return output_exp < exp_lower || output_exp >= (fspecs.precision > 0 ? fspecs.precision : exp_upper); }; if (use_exp_format()) { int num_zeros = 0; if (fspecs.showpoint) { num_zeros = fspecs.precision - significand_size; if (num_zeros < 0) num_zeros = 0; size += to_unsigned(num_zeros); } else if (significand_size == 1) { decimal_point = Char(); } auto abs_output_exp = output_exp >= 0 ? output_exp : -output_exp; int exp_digits = 2; if (abs_output_exp >= 100) exp_digits = abs_output_exp >= 1000 ? 4 : 3; size += to_unsigned((decimal_point ? 1 : 0) + 2 + exp_digits); char exp_char = fspecs.upper ? 'E' : 'e'; auto write = [=](iterator it) { if (sign) *it++ = static_cast(data::signs[sign]); // Insert a decimal point after the first digit and add an exponent. it = write_significand(it, significand, significand_size, 1, decimal_point); if (num_zeros > 0) it = detail::fill_n(it, num_zeros, zero); *it++ = static_cast(exp_char); return write_exponent(output_exp, it); }; return specs.width > 0 ? write_padded(out, specs, size, write) : base_iterator(out, write(reserve(out, size))); } int exp = fp.exponent + significand_size; if (fp.exponent >= 0) { // 1234e5 -> 123400000[.0+] size += to_unsigned(fp.exponent); int num_zeros = fspecs.precision - exp; #ifdef FMT_FUZZ if (num_zeros > 5000) throw std::runtime_error("fuzz mode - avoiding excessive cpu use"); #endif if (fspecs.showpoint) { if (num_zeros <= 0 && fspecs.format != float_format::fixed) num_zeros = 1; if (num_zeros > 0) size += to_unsigned(num_zeros) + 1; } return write_padded(out, specs, size, [&](iterator it) { if (sign) *it++ = static_cast(data::signs[sign]); it = write_significand(it, significand, significand_size); it = detail::fill_n(it, fp.exponent, zero); if (!fspecs.showpoint) return it; *it++ = decimal_point; return num_zeros > 0 ? detail::fill_n(it, num_zeros, zero) : it; }); } else if (exp > 0) { // 1234e-2 -> 12.34[0+] int num_zeros = fspecs.showpoint ? fspecs.precision - significand_size : 0; size += 1 + to_unsigned(num_zeros > 0 ? num_zeros : 0); return write_padded(out, specs, size, [&](iterator it) { if (sign) *it++ = static_cast(data::signs[sign]); it = write_significand(it, significand, significand_size, exp, decimal_point); return num_zeros > 0 ? detail::fill_n(it, num_zeros, zero) : it; }); } // 1234e-6 -> 0.001234 int num_zeros = -exp; if (significand_size == 0 && fspecs.precision >= 0 && fspecs.precision < num_zeros) { num_zeros = fspecs.precision; } bool pointy = num_zeros != 0 || significand_size != 0 || fspecs.showpoint; size += 1 + (pointy ? 1 : 0) + to_unsigned(num_zeros); return write_padded(out, specs, size, [&](iterator it) { if (sign) *it++ = static_cast(data::signs[sign]); *it++ = zero; if (!pointy) return it; *it++ = decimal_point; it = detail::fill_n(it, num_zeros, zero); return write_significand(it, significand, significand_size); }); } template ::value)> OutputIt write(OutputIt out, T value, basic_format_specs specs, locale_ref loc = {}) { if (const_check(!is_supported_floating_point(value))) return out; float_specs fspecs = parse_float_type_spec(specs); fspecs.sign = specs.sign; if (std::signbit(value)) { // value < 0 is false for NaN so use signbit. fspecs.sign = sign::minus; value = -value; } else if (fspecs.sign == sign::minus) { fspecs.sign = sign::none; } if (!std::isfinite(value)) return write_nonfinite(out, std::isinf(value), specs, fspecs); if (specs.align == align::numeric && fspecs.sign) { auto it = reserve(out, 1); *it++ = static_cast(data::signs[fspecs.sign]); out = base_iterator(out, it); fspecs.sign = sign::none; if (specs.width != 0) --specs.width; } memory_buffer buffer; if (fspecs.format == float_format::hex) { if (fspecs.sign) buffer.push_back(data::signs[fspecs.sign]); snprintf_float(promote_float(value), specs.precision, fspecs, buffer); return write_bytes(out, {buffer.data(), buffer.size()}, specs); } int precision = specs.precision >= 0 || !specs.type ? specs.precision : 6; if (fspecs.format == float_format::exp) { if (precision == max_value()) FMT_THROW(format_error("number is too big")); else ++precision; } if (const_check(std::is_same())) fspecs.binary32 = true; fspecs.use_grisu = is_fast_float(); int exp = format_float(promote_float(value), precision, fspecs, buffer); fspecs.precision = precision; Char point = fspecs.locale ? decimal_point(loc) : static_cast('.'); auto fp = big_decimal_fp{buffer.data(), static_cast(buffer.size()), exp}; return write_float(out, fp, specs, fspecs, point); } template ::value)> OutputIt write(OutputIt out, T value) { if (const_check(!is_supported_floating_point(value))) return out; using floaty = conditional_t::value, double, T>; using uint = typename dragonbox::float_info::carrier_uint; auto bits = bit_cast(value); auto fspecs = float_specs(); auto sign_bit = bits & (uint(1) << (num_bits() - 1)); if (sign_bit != 0) { fspecs.sign = sign::minus; value = -value; } static const auto specs = basic_format_specs(); uint mask = exponent_mask(); if ((bits & mask) == mask) return write_nonfinite(out, std::isinf(value), specs, fspecs); auto dec = dragonbox::to_decimal(static_cast(value)); return write_float(out, dec, specs, fspecs, static_cast('.')); } template ::value && !is_fast_float::value)> inline OutputIt write(OutputIt out, T value) { return write(out, value, basic_format_specs()); } template OutputIt write_ptr(OutputIt out, UIntPtr value, const basic_format_specs* specs) { int num_digits = count_digits<4>(value); auto size = to_unsigned(num_digits) + size_t(2); using iterator = remove_reference_t; auto write = [=](iterator it) { *it++ = static_cast('0'); *it++ = static_cast('x'); return format_uint<4, Char>(it, value, num_digits); }; return specs ? write_padded(out, *specs, size, write) : base_iterator(out, write(reserve(out, size))); } template struct is_integral : std::is_integral {}; template <> struct is_integral : std::true_type {}; template <> struct is_integral : std::true_type {}; template OutputIt write(OutputIt out, monostate) { FMT_ASSERT(false, ""); return out; } template ::value)> OutputIt write(OutputIt out, string_view value) { auto it = reserve(out, value.size()); it = copy_str(value.begin(), value.end(), it); return base_iterator(out, it); } template FMT_CONSTEXPR OutputIt write(OutputIt out, basic_string_view value) { auto it = reserve(out, value.size()); it = copy_str(value.begin(), value.end(), it); return base_iterator(out, it); } template ::value && !std::is_same::value && !std::is_same::value)> FMT_CONSTEXPR OutputIt write(OutputIt out, T value) { auto abs_value = static_cast>(value); bool negative = is_negative(value); // Don't do -abs_value since it trips unsigned-integer-overflow sanitizer. if (negative) abs_value = ~abs_value + 1; int num_digits = count_digits(abs_value); auto size = (negative ? 1 : 0) + static_cast(num_digits); auto it = reserve(out, size); if (auto ptr = to_pointer(it, size)) { if (negative) *ptr++ = static_cast('-'); format_decimal(ptr, abs_value, num_digits); return out; } if (negative) *it++ = static_cast('-'); it = format_decimal(it, abs_value, num_digits).end; return base_iterator(out, it); } // FMT_ENABLE_IF() condition separated to workaround MSVC bug template < typename Char, typename OutputIt, typename T, bool check = std::is_enum::value && !std::is_same::value && mapped_type_constant>::value != type::custom_type, FMT_ENABLE_IF(check)> FMT_CONSTEXPR OutputIt write(OutputIt out, T value) { return write( out, static_cast::type>(value)); } template constexpr OutputIt write(OutputIt out, bool value) { return write(out, string_view(value ? "true" : "false")); } template FMT_CONSTEXPR OutputIt write(OutputIt out, Char value) { auto it = reserve(out, 1); *it++ = value; return base_iterator(out, it); } template FMT_CONSTEXPR OutputIt write(OutputIt out, const Char* value) { if (!value) { FMT_THROW(format_error("string pointer is null")); } else { auto length = std::char_traits::length(value); out = write(out, basic_string_view(value, length)); } return out; } template OutputIt write(OutputIt out, const void* value) { return write_ptr(out, to_uintptr(value), nullptr); } template auto write(OutputIt out, const T& value) -> typename std::enable_if< mapped_type_constant>::value == type::custom_type, OutputIt>::type { using context_type = basic_format_context; using formatter_type = conditional_t::value, typename context_type::template formatter_type, fallback_formatter>; context_type ctx(out, {}, {}); return formatter_type().format(value, ctx); } // An argument visitor that formats the argument and writes it via the output // iterator. It's a class and not a generic lambda for compatibility with C++11. template struct default_arg_formatter { using context = basic_format_context; OutputIt out; basic_format_args args; locale_ref loc; template OutputIt operator()(T value) { return write(out, value); } OutputIt operator()(typename basic_format_arg::handle handle) { basic_format_parse_context parse_ctx({}); basic_format_context format_ctx(out, args, loc); handle.format(parse_ctx, format_ctx); return format_ctx.out(); } }; template class arg_formatter_base { public: using iterator = OutputIt; using char_type = Char; using format_specs = basic_format_specs; private: iterator out_; locale_ref locale_; format_specs* specs_; // Attempts to reserve space for n extra characters in the output range. // Returns a pointer to the reserved range or a reference to out_. auto reserve(size_t n) -> decltype(detail::reserve(out_, n)) { return detail::reserve(out_, n); } using reserve_iterator = remove_reference_t(), 0))>; template FMT_CONSTEXPR void write_int(T value, const format_specs& spec) { using uint_type = uint32_or_64_or_128_t; int_writer w(out_, locale_, value, spec); handle_int_type_spec(spec.type, w); out_ = w.out; } void write(char value) { auto&& it = reserve(1); *it++ = value; } template ::value)> void write(Ch value) { out_ = detail::write(out_, value); } void write(string_view value) { auto&& it = reserve(value.size()); it = copy_str(value.begin(), value.end(), it); } void write(wstring_view value) { static_assert(std::is_same::value, ""); auto&& it = reserve(value.size()); it = copy_str(value.begin(), value.end(), it); } template void write(const Ch* s, size_t size, const format_specs& specs) { auto width = specs.width != 0 ? compute_width(basic_string_view(s, size)) : 0; out_ = write_padded(out_, specs, size, width, [=](reserve_iterator it) { return copy_str(s, s + size, it); }); } template FMT_CONSTEXPR void write(basic_string_view s, const format_specs& specs = {}) { out_ = detail::write(out_, s, specs); } void write_pointer(const void* p) { out_ = write_ptr(out_, to_uintptr(p), specs_); } struct char_spec_handler : ErrorHandler { arg_formatter_base& formatter; Char value; constexpr char_spec_handler(arg_formatter_base& f, Char val) : formatter(f), value(val) {} FMT_CONSTEXPR void on_int() { // char is only formatted as int if there are specs. formatter.write_int(static_cast(value), *formatter.specs_); } FMT_CONSTEXPR void on_char() { if (formatter.specs_) formatter.out_ = write_char(formatter.out_, value, *formatter.specs_); else formatter.write(value); } }; struct cstring_spec_handler : error_handler { arg_formatter_base& formatter; const Char* value; cstring_spec_handler(arg_formatter_base& f, const Char* val) : formatter(f), value(val) {} void on_string() { formatter.write(value); } void on_pointer() { formatter.write_pointer(value); } }; protected: iterator out() { return out_; } format_specs* specs() { return specs_; } FMT_CONSTEXPR void write(bool value) { if (specs_) write(string_view(value ? "true" : "false"), *specs_); else out_ = detail::write(out_, value); } void write(const Char* value) { if (!value) { FMT_THROW(format_error("string pointer is null")); } else { auto length = std::char_traits::length(value); basic_string_view sv(value, length); specs_ ? write(sv, *specs_) : write(sv); } } public: constexpr arg_formatter_base(OutputIt out, format_specs* s, locale_ref loc) : out_(out), locale_(loc), specs_(s) {} iterator operator()(monostate) { FMT_ASSERT(false, "invalid argument type"); return out_; } template ::value)> FMT_CONSTEXPR FMT_INLINE iterator operator()(T value) { if (specs_) write_int(value, *specs_); else out_ = detail::write(out_, value); return out_; } FMT_CONSTEXPR iterator operator()(Char value) { handle_char_specs(specs_, char_spec_handler(*this, static_cast(value))); return out_; } FMT_CONSTEXPR iterator operator()(bool value) { if (specs_ && specs_->type && specs_->type != 's') return (*this)(value ? 1 : 0); write(value != 0); return out_; } template ::value)> iterator operator()(T value) { auto specs = specs_ ? *specs_ : format_specs(); if (const_check(is_supported_floating_point(value))) out_ = detail::write(out_, value, specs, locale_); else FMT_ASSERT(false, "unsupported float argument type"); return out_; } iterator operator()(const Char* value) { if (!specs_) return write(value), out_; handle_cstring_type_spec(specs_->type, cstring_spec_handler(*this, value)); return out_; } FMT_CONSTEXPR iterator operator()(basic_string_view value) { if (specs_) { check_string_type_spec(specs_->type, error_handler()); write(value, *specs_); } else { write(value); } return out_; } iterator operator()(const void* value) { if (specs_) check_pointer_type_spec(specs_->type, error_handler()); write_pointer(value); return out_; } }; /** The default argument formatter. */ template class arg_formatter : public arg_formatter_base { private: using char_type = Char; using base = arg_formatter_base; using context_type = basic_format_context; context_type& ctx_; basic_format_parse_context* parse_ctx_; const Char* ptr_; public: using iterator = typename base::iterator; using format_specs = typename base::format_specs; /** \rst Constructs an argument formatter object. *ctx* is a reference to the formatting context, *specs* contains format specifier information for standard argument types. \endrst */ constexpr explicit arg_formatter( context_type& ctx, basic_format_parse_context* parse_ctx = nullptr, format_specs* specs = nullptr, const Char* ptr = nullptr) : base(ctx.out(), specs, ctx.locale()), ctx_(ctx), parse_ctx_(parse_ctx), ptr_(ptr) {} using base::operator(); /** Formats an argument of a user-defined type. */ iterator operator()(typename basic_format_arg::handle handle) { if (ptr_) advance_to(*parse_ctx_, ptr_); handle.format(*parse_ctx_, ctx_); return ctx_.out(); } }; template FMT_CONSTEXPR bool is_name_start(Char c) { return ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || '_' == c; } // Parses the range [begin, end) as an unsigned integer. This function assumes // that the range is non-empty and the first character is a digit. template FMT_CONSTEXPR int parse_nonnegative_int(const Char*& begin, const Char* end, ErrorHandler&& eh) { FMT_ASSERT(begin != end && '0' <= *begin && *begin <= '9', ""); unsigned value = 0; // Convert to unsigned to prevent a warning. constexpr unsigned max_int = max_value(); unsigned big = max_int / 10; do { // Check for overflow. if (value > big) { value = max_int + 1; break; } value = value * 10 + unsigned(*begin - '0'); ++begin; } while (begin != end && '0' <= *begin && *begin <= '9'); if (value > max_int) eh.on_error("number is too big"); return static_cast(value); } template class custom_formatter { private: using char_type = typename Context::char_type; basic_format_parse_context& parse_ctx_; Context& ctx_; public: explicit custom_formatter(basic_format_parse_context& parse_ctx, Context& ctx) : parse_ctx_(parse_ctx), ctx_(ctx) {} void operator()(typename basic_format_arg::handle h) const { h.format(parse_ctx_, ctx_); } template void operator()(T) const {} }; template using is_integer = bool_constant::value && !std::is_same::value && !std::is_same::value && !std::is_same::value>; template class width_checker { public: explicit FMT_CONSTEXPR width_checker(ErrorHandler& eh) : handler_(eh) {} template ::value)> FMT_CONSTEXPR unsigned long long operator()(T value) { if (is_negative(value)) handler_.on_error("negative width"); return static_cast(value); } template ::value)> FMT_CONSTEXPR unsigned long long operator()(T) { handler_.on_error("width is not integer"); return 0; } private: ErrorHandler& handler_; }; template class precision_checker { public: explicit FMT_CONSTEXPR precision_checker(ErrorHandler& eh) : handler_(eh) {} template ::value)> FMT_CONSTEXPR unsigned long long operator()(T value) { if (is_negative(value)) handler_.on_error("negative precision"); return static_cast(value); } template ::value)> FMT_CONSTEXPR unsigned long long operator()(T) { handler_.on_error("precision is not integer"); return 0; } private: ErrorHandler& handler_; }; // A format specifier handler that sets fields in basic_format_specs. template class specs_setter { public: explicit FMT_CONSTEXPR specs_setter(basic_format_specs& specs) : specs_(specs) {} FMT_CONSTEXPR specs_setter(const specs_setter& other) : specs_(other.specs_) {} FMT_CONSTEXPR void on_align(align_t align) { specs_.align = align; } FMT_CONSTEXPR void on_fill(basic_string_view fill) { specs_.fill = fill; } FMT_CONSTEXPR void on_plus() { specs_.sign = sign::plus; } FMT_CONSTEXPR void on_minus() { specs_.sign = sign::minus; } FMT_CONSTEXPR void on_space() { specs_.sign = sign::space; } FMT_CONSTEXPR void on_hash() { specs_.alt = true; } FMT_CONSTEXPR void on_localized() { specs_.localized = true; } FMT_CONSTEXPR void on_zero() { specs_.align = align::numeric; specs_.fill[0] = Char('0'); } FMT_CONSTEXPR void on_width(int width) { specs_.width = width; } FMT_CONSTEXPR void on_precision(int precision) { specs_.precision = precision; } FMT_CONSTEXPR void end_precision() {} FMT_CONSTEXPR void on_type(Char type) { specs_.type = static_cast(type); } protected: basic_format_specs& specs_; }; template class numeric_specs_checker { public: FMT_CONSTEXPR numeric_specs_checker(ErrorHandler& eh, detail::type arg_type) : error_handler_(eh), arg_type_(arg_type) {} FMT_CONSTEXPR void require_numeric_argument() { if (!is_arithmetic_type(arg_type_)) error_handler_.on_error("format specifier requires numeric argument"); } FMT_CONSTEXPR void check_sign() { require_numeric_argument(); if (is_integral_type(arg_type_) && arg_type_ != type::int_type && arg_type_ != type::long_long_type && arg_type_ != type::char_type) { error_handler_.on_error("format specifier requires signed argument"); } } FMT_CONSTEXPR void check_precision() { if (is_integral_type(arg_type_) || arg_type_ == type::pointer_type) error_handler_.on_error("precision not allowed for this argument type"); } private: ErrorHandler& error_handler_; detail::type arg_type_; }; // A format specifier handler that checks if specifiers are consistent with the // argument type. template class specs_checker : public Handler { private: numeric_specs_checker checker_; // Suppress an MSVC warning about using this in initializer list. FMT_CONSTEXPR Handler& error_handler() { return *this; } public: FMT_CONSTEXPR specs_checker(const Handler& handler, detail::type arg_type) : Handler(handler), checker_(error_handler(), arg_type) {} FMT_CONSTEXPR specs_checker(const specs_checker& other) : Handler(other), checker_(error_handler(), other.arg_type_) {} FMT_CONSTEXPR void on_align(align_t align) { if (align == align::numeric) checker_.require_numeric_argument(); Handler::on_align(align); } FMT_CONSTEXPR void on_plus() { checker_.check_sign(); Handler::on_plus(); } FMT_CONSTEXPR void on_minus() { checker_.check_sign(); Handler::on_minus(); } FMT_CONSTEXPR void on_space() { checker_.check_sign(); Handler::on_space(); } FMT_CONSTEXPR void on_hash() { checker_.require_numeric_argument(); Handler::on_hash(); } FMT_CONSTEXPR void on_localized() { checker_.require_numeric_argument(); Handler::on_localized(); } FMT_CONSTEXPR void on_zero() { checker_.require_numeric_argument(); Handler::on_zero(); } FMT_CONSTEXPR void end_precision() { checker_.check_precision(); } }; template