// Formatting library for C++ - the core API // // Copyright (c) 2012 - present, Victor Zverovich // All rights reserved. // // For the license information refer to format.h. #ifndef FMT_CORE_H_ #define FMT_CORE_H_ #include #include #include #include #include #include #ifdef __has_feature # define FMT_HAS_FEATURE(x) __has_feature(x) #else # define FMT_HAS_FEATURE(x) 0 #endif #ifdef __GNUC__ # define FMT_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) #endif #ifdef _MSC_VER # define FMT_MSC_VER _MSC_VER #else # define FMT_MSC_VER 0 #endif // Check if exceptions are disabled. #if defined(__GNUC__) && !defined(__EXCEPTIONS) # define FMT_EXCEPTIONS 0 #elif FMT_MSC_VER && !_HAS_EXCEPTIONS # define FMT_EXCEPTIONS 0 #endif #ifndef FMT_EXCEPTIONS # define FMT_EXCEPTIONS 1 #endif // Define FMT_USE_NOEXCEPT to make fmt use noexcept (C++11 feature). #ifndef FMT_USE_NOEXCEPT # define FMT_USE_NOEXCEPT 0 #endif #ifndef FMT_NOEXCEPT # if FMT_EXCEPTIONS # if FMT_USE_NOEXCEPT || FMT_HAS_FEATURE(cxx_noexcept) || \ FMT_GCC_VERSION >= 408 || FMT_MSC_VER >= 1900 # define FMT_NOEXCEPT noexcept # else # define FMT_NOEXCEPT throw() # endif # else # define FMT_NOEXCEPT # endif #endif #if !defined(FMT_HEADER_ONLY) && defined(_WIN32) # ifdef FMT_EXPORT # define FMT_API __declspec(dllexport) # elif defined(FMT_SHARED) # define FMT_API __declspec(dllimport) # endif #endif #ifndef FMT_API # define FMT_API #endif #ifndef FMT_ASSERT # define FMT_ASSERT(condition, message) assert((condition) && message) #endif #define FMT_DELETED = delete // A macro to disallow the copy construction and assignment. #define FMT_DISALLOW_COPY_AND_ASSIGN(Type) \ Type(const Type &) FMT_DELETED; \ void operator=(const Type &) FMT_DELETED namespace fmt { /** \rst An implementation of ``std::basic_string_view`` for pre-C++17. It provides a subset of the API. \endrst */ template class basic_string_view { private: const Char *data_; size_t size_; public: using char_type = Char; using iterator = const Char *; constexpr basic_string_view() FMT_NOEXCEPT : data_(0), size_(0) {} /** Constructs a string reference object from a C string and a size. */ constexpr basic_string_view(const Char *s, size_t size) FMT_NOEXCEPT : data_(s), size_(size) {} /** \rst Constructs a string reference object from a C string computing the size with ``std::char_traits::length``. \endrst */ basic_string_view(const Char *s) : data_(s), size_(std::char_traits::length(s)) {} /** \rst Constructs a string reference from an ``std::string`` object. \endrst */ constexpr basic_string_view(const std::basic_string &s) FMT_NOEXCEPT : data_(s.c_str()), size_(s.size()) {} /** \rst Converts a string reference to an ``std::string`` object. \endrst */ std::basic_string to_string() const { return std::basic_string(data_, size_); } /** Returns a pointer to the string data. */ const Char *data() const { return data_; } /** Returns the string size. */ constexpr size_t size() const { return size_; } constexpr iterator begin() const { return data_; } constexpr iterator end() const { return data_ + size_; } constexpr void remove_prefix(size_t n) { data_ += n; size_ -= n; } // Lexicographically compare this string reference to other. int compare(basic_string_view other) const { size_t size = size_ < other.size_ ? size_ : other.size_; int result = std::char_traits::compare(data_, other.data_, size); if (result == 0) result = size_ == other.size_ ? 0 : (size_ < other.size_ ? -1 : 1); return result; } friend bool operator==(basic_string_view lhs, basic_string_view rhs) { return lhs.compare(rhs) == 0; } friend bool operator!=(basic_string_view lhs, basic_string_view rhs) { return lhs.compare(rhs) != 0; } friend bool operator<(basic_string_view lhs, basic_string_view rhs) { return lhs.compare(rhs) < 0; } friend bool operator<=(basic_string_view lhs, basic_string_view rhs) { return lhs.compare(rhs) <= 0; } friend bool operator>(basic_string_view lhs, basic_string_view rhs) { return lhs.compare(rhs) > 0; } friend bool operator>=(basic_string_view lhs, basic_string_view rhs) { return lhs.compare(rhs) >= 0; } }; using string_view = basic_string_view; using wstring_view = basic_string_view; template class basic_arg; template class basic_format_args; // A formatter for objects of type T. template struct formatter; namespace internal { /** A contiguous memory buffer with an optional growing ability. */ template class basic_buffer { private: FMT_DISALLOW_COPY_AND_ASSIGN(basic_buffer); T *ptr_; std::size_t size_; std::size_t capacity_; protected: basic_buffer(T *p = 0, std::size_t size = 0, std::size_t capacity = 0) FMT_NOEXCEPT: ptr_(p), size_(size), capacity_(capacity) {} /** Sets the buffer data and capacity. */ void set(T *data, std::size_t capacity) FMT_NOEXCEPT { ptr_ = data; capacity_ = capacity; } /** \rst Increases the buffer capacity to hold at least *capacity* elements. \endrst */ virtual void grow(std::size_t capacity) = 0; public: using value_type = T; virtual ~basic_buffer() {} T *begin() FMT_NOEXCEPT { return ptr_; } T *end() FMT_NOEXCEPT { return ptr_ + size_; } /** Returns the size of this buffer. */ std::size_t size() const FMT_NOEXCEPT { return size_; } /** Returns the capacity of this buffer. */ std::size_t capacity() const FMT_NOEXCEPT { return capacity_; } /** Returns a pointer to the buffer data. */ T *data() FMT_NOEXCEPT { return ptr_; } /** Returns a pointer to the buffer data. */ const T *data() const FMT_NOEXCEPT { return ptr_; } /** Resizes the buffer. If T is a POD type new elements may not be initialized. */ void resize(std::size_t new_size) { reserve(new_size); size_ = new_size; } /** \rst Reserves space to store at least *capacity* elements. \endrst */ void reserve(std::size_t capacity) { if (capacity > capacity_) grow(capacity); } void push_back(const T &value) { reserve(size_ + 1); ptr_[size_++] = value; } /** Appends data to the end of the buffer. */ template void append(const U *begin, const U *end); T &operator[](std::size_t index) { return ptr_[index]; } const T &operator[](std::size_t index) const { return ptr_[index]; } }; using buffer = basic_buffer; using wbuffer = basic_buffer; // A container-backed buffer. template class container_buffer : public basic_buffer { private: Container &container_; protected: virtual void grow(std::size_t capacity) { container_.resize(capacity); this->set(&container_[0], capacity); } public: explicit container_buffer(Container &c) : basic_buffer(&c[0], c.size(), c.size()), container_(c) {} }; // A helper function to suppress bogus "conditional expression is constant" // warnings. template inline T const_check(T value) { return value; } struct error_handler { constexpr error_handler() {} constexpr error_handler(const error_handler &) {} // This function is intentionally not constexpr to give a compile-time error. void on_error(const char *message); }; // Formatting of wide characters and strings into a narrow output is disallowed: // fmt::format("{}", L"test"); // error // To fix this, use a wide format string: // fmt::format(L"{}", L"test"); template inline void require_wchar() { static_assert( std::is_same::value, "formatting of wide characters into a narrow output is disallowed"); } using yes = char[1]; using no = char[2]; yes &convert(unsigned long long); no &convert(...); template struct convert_to_int_impl { enum { value = ENABLE_CONVERSION }; }; template struct convert_to_int_impl2 { enum { value = false }; }; template struct convert_to_int_impl2 { enum { // Don't convert arithmetic types. value = convert_to_int_impl::value>::value }; }; template struct convert_to_int { enum { enable_conversion = sizeof(convert(std::declval())) == sizeof(yes) }; enum { value = convert_to_int_impl2::value }; }; #define FMT_DISABLE_CONVERSION_TO_INT(Type) \ template <> \ struct convert_to_int { enum { value = 0 }; } // Silence warnings about convering float to int. FMT_DISABLE_CONVERSION_TO_INT(float); FMT_DISABLE_CONVERSION_TO_INT(double); FMT_DISABLE_CONVERSION_TO_INT(long double); template struct named_arg_base; template struct named_arg; template struct is_named_arg : std::false_type {}; template struct is_named_arg> : std::true_type {}; enum type { NONE, NAMED_ARG, // Integer types should go first, INT, UINT, LONG_LONG, ULONG_LONG, BOOL, CHAR, LAST_INTEGER_TYPE = CHAR, // followed by floating-point types. DOUBLE, LONG_DOUBLE, LAST_NUMERIC_TYPE = LONG_DOUBLE, CSTRING, STRING, POINTER, CUSTOM }; constexpr bool is_integral(type t) { FMT_ASSERT(t != internal::NAMED_ARG, "invalid argument type"); return t > internal::NONE && t <= internal::LAST_INTEGER_TYPE; } constexpr bool is_arithmetic(type t) { FMT_ASSERT(t != internal::NAMED_ARG, "invalid argument type"); return t > internal::NONE && t <= internal::LAST_NUMERIC_TYPE; } template constexpr type get_type() { return std::is_reference::value || std::is_array::value ? get_type::type>() : (is_named_arg::value ? NAMED_ARG : (convert_to_int::value ? INT : CUSTOM)); } template <> constexpr type get_type() { return BOOL; } template <> constexpr type get_type() { return INT; } template <> constexpr type get_type() { return UINT; } template <> constexpr type get_type() { return INT; } template <> constexpr type get_type() { return UINT; } template <> constexpr type get_type() { return sizeof(long) == sizeof(int) ? INT : LONG_LONG; } template <> constexpr type get_type() { return sizeof(unsigned long) == sizeof(unsigned) ? UINT : ULONG_LONG; } template <> constexpr type get_type() { return LONG_LONG; } template <> constexpr type get_type() { return ULONG_LONG; } template <> constexpr type get_type() { return DOUBLE; } template <> constexpr type get_type() { return DOUBLE; } template <> constexpr type get_type() { return LONG_DOUBLE; } template <> constexpr type get_type() { return INT; } template <> constexpr type get_type() { return UINT; } template <> constexpr type get_type() { return CHAR; } #if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED) template <> constexpr type get_type() { return CHAR; } #endif template <> constexpr type get_type() { return CSTRING; } template <> constexpr type get_type() { return CSTRING; } template <> constexpr type get_type() { return CSTRING; } template <> constexpr type get_type() { return CSTRING; } template <> constexpr type get_type() { return CSTRING; } template <> constexpr type get_type() { return CSTRING; } template <> constexpr type get_type() { return STRING; } template <> constexpr type get_type() { return STRING; } template <> constexpr type get_type() { return CSTRING; } template <> constexpr type get_type() { return CSTRING; } template <> constexpr type get_type() { return STRING; } template <> constexpr type get_type() { return STRING; } template <> constexpr type get_type() { return POINTER; } template <> constexpr type get_type() { return POINTER; } template <> constexpr type get_type() { return POINTER; } template constexpr uint64_t get_types() { return get_type() | (get_types() << 4); } template <> constexpr uint64_t get_types() { return 0; } template constexpr basic_arg make_arg(const T &value); template struct string_value { const Char *value; std::size_t size; }; template struct custom_value { const void *value; void (*format)(const void *arg, Context &ctx); }; // A formatting argument value. template class value { public: using char_type = typename Context::char_type; union { int int_value; unsigned uint_value; long long long_long_value; unsigned long long ulong_long_value; double double_value; long double long_double_value; const void *pointer; string_value string; string_value sstring; string_value ustring; custom_value custom; }; constexpr value() : int_value(0) {} value(bool val) { set(int_value, val); } value(short val) { set(int_value, val); } value(unsigned short val) { set(uint_value, val); } constexpr value(int val) : int_value(val) {} value(unsigned val) { set(uint_value, val); } value(long val) { // To minimize the number of types we need to deal with, long is // translated either to int or to long long depending on its size. if (const_check(sizeof(val) == sizeof(int))) int_value = static_cast(val); else long_long_value = val; } value(unsigned long val) { if (const_check(sizeof(val) == sizeof(unsigned))) uint_value = static_cast(val); else ulong_long_value = val; } value(long long val) { set(long_long_value, val); } value(unsigned long long val) { set(ulong_long_value, val); } value(float val) { set(double_value, val); } value(double val) { set(double_value, val); } value(long double val) { set(long_double_value, val); } value(signed char val) { set(int_value, val); } value(unsigned char val) { set(uint_value, val); } value(char val) { set(int_value, val); } #if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED) value(wchar_t val) { require_wchar(); set(int_value, val); } #endif // Formatting of wide strings into a narrow buffer and multibyte strings // into a wide buffer is disallowed (https://github.com/fmtlib/fmt/pull/606). value(char_type *s) { set(string.value, s); } value(const char_type *s) { set(string.value, s); } value(signed char *s) { set_cstring(sstring.value, s); } value(const signed char *s) { set_cstring(sstring.value, s); } value(unsigned char *s) { set_cstring(ustring.value, s); } value(const unsigned char *s) { set_cstring(ustring.value, s); } value(basic_string_view s) { set_string(s); } value(const std::basic_string &s) { set_string(s); } template value(T *p) { set_pointer(p); } template value(const T *p) { set_pointer(p); } value(std::nullptr_t) { pointer = nullptr; } template value(const T &val, typename std::enable_if::value, int>::type = 0) { static_assert(get_type() == INT, "invalid type"); int_value = val; } template value(const T &val, typename std::enable_if::value, int>::type = 0) { static_assert(get_type() == CUSTOM, "invalid type"); custom.value = &val; custom.format = &format_custom_arg; } template value(const named_arg &val) { static_assert(get_type &>() == NAMED_ARG, "invalid type"); basic_arg arg = make_arg(val.value); std::memcpy(val.data, &arg, sizeof(arg)); pointer = &val; } const named_arg_base &as_named_arg() { return *static_cast*>(pointer); } private: template constexpr void set(T &field, const U &val) { static_assert(get_type() == TYPE, "invalid type"); field = val; } template void set_string(const T &val) { static_assert(get_type() == STRING, "invalid type"); string.value = val.data(); string.size = val.size(); } template constexpr void set_cstring(T &field, const U *str) { static_assert(std::is_same::value, "incompatible string types"); set(field, str); } // Formatting of arbitrary pointers is disallowed. If you want to output a // pointer cast it to "void *" or "const void *". In particular, this forbids // formatting of "[const] volatile char *" which is printed as bool by // iostreams. template void set_pointer(T *p) { using nonconst_type = typename std::remove_const::type; static_assert(std::is_same::value, "formatting of non-void pointers is disallowed"); set(pointer, p); } // Formats an argument of a custom type, such as a user-defined class. template static void format_custom_arg(const void *arg, Context &ctx) { // Get the formatter type through the context to allow different contexts // have different extension points, e.g. `formatter` for `format` and // `printf_formatter` for `printf`. typename Context::template formatter_type f; auto &&parse_ctx = ctx.parse_context(); parse_ctx.advance_to(f.parse(parse_ctx)); f.format(*static_cast(arg), ctx); } }; // Maximum number of arguments with packed types. enum { MAX_PACKED_ARGS = 15 }; template class arg_map; } // A formatting argument. It is a trivially copyable/constructible type to // allow storage in basic_memory_buffer. template class basic_arg { private: internal::value value_; internal::type type_; template friend constexpr basic_arg internal::make_arg(const T &value); template friend constexpr typename std::result_of::type visit(Visitor &&vis, basic_arg arg); friend class basic_format_args; friend class internal::arg_map; using char_type = typename Context::char_type; public: class handle { public: explicit handle(internal::custom_value custom): custom_(custom) {} void format(Context &ctx) { custom_.format(custom_.value, ctx); } private: internal::custom_value custom_; }; constexpr basic_arg() : type_(internal::NONE) {} explicit operator bool() const FMT_NOEXCEPT { return type_ != internal::NONE; } internal::type type() const { return type_; } bool is_integral() const { return internal::is_integral(type_); } bool is_arithmetic() const { return internal::is_arithmetic(type_); } bool is_pointer() const { return type_ == internal::POINTER; } }; // Parsing context consisting of a format string range being parsed and an // argument counter for automatic indexing. template class basic_parse_context : private ErrorHandler { private: basic_string_view format_str_; int next_arg_id_; public: using char_type = Char; using iterator = typename basic_string_view::iterator; explicit constexpr basic_parse_context( basic_string_view format_str, ErrorHandler eh = ErrorHandler()) : ErrorHandler(eh), format_str_(format_str), next_arg_id_(0) {} // Returns an iterator to the beginning of the format string range being // parsed. constexpr iterator begin() const FMT_NOEXCEPT { return format_str_.begin(); } // Returns an iterator past the end of the format string range being parsed. constexpr iterator end() const FMT_NOEXCEPT { return format_str_.end(); } // Advances the begin iterator to ``it``. constexpr void advance_to(iterator it) { format_str_.remove_prefix(it - begin()); } // Returns the next argument index. constexpr unsigned next_arg_id(); constexpr bool check_arg_id(unsigned) { if (next_arg_id_ > 0) { on_error("cannot switch from automatic to manual argument indexing"); return false; } next_arg_id_ = -1; return true; } void check_arg_id(basic_string_view) {} constexpr void on_error(const char *message) { ErrorHandler::on_error(message); } constexpr ErrorHandler error_handler() const { return *this; } }; using parse_context = basic_parse_context; using wparse_context = basic_parse_context; namespace internal { template constexpr basic_arg make_arg(const T &value) { basic_arg arg; arg.type_ = get_type(); arg.value_ = value; return arg; } template inline typename std::enable_if>::type make_arg(const T &value) { return value; } template inline typename std::enable_if>::type make_arg(const T &value) { return make_arg(value); } // A map from argument names to their values for named arguments. template class arg_map { private: FMT_DISALLOW_COPY_AND_ASSIGN(arg_map); using char_type = typename Context::char_type; struct entry { basic_string_view name; basic_arg arg; }; entry *map_ = nullptr; unsigned size_ = 0; void push_back(value val) { const internal::named_arg_base &named = val.as_named_arg(); map_[size_] = entry{named.name, named.template deserialize()}; ++size_; } public: arg_map() {} void init(const basic_format_args &args); ~arg_map() { delete [] map_; } basic_arg find(basic_string_view name) const { // The list is unsorted, so just return the first matching name. for (auto it = map_, end = map_ + size_; it != end; ++it) { if (it->name == name) return it->arg; } return basic_arg(); } }; template class context_base { public: using iterator = decltype(std::declval().begin()); private: basic_parse_context parse_context_; iterator out_; basic_format_args args_; protected: using char_type = typename Range::value_type; using format_arg = basic_arg; context_base(Range r, basic_string_view format_str, basic_format_args args) : parse_context_(format_str), out_(r.begin()), args_(args) {} basic_format_args args() const { return args_; } // Returns the argument with specified index. format_arg do_get_arg(unsigned arg_id) { format_arg arg = args_[arg_id]; if (!arg) parse_context_.on_error("argument index out of range"); return arg; } // Checks if manual indexing is used and returns the argument with // specified index. format_arg get_arg(unsigned arg_id) { return this->parse_context().check_arg_id(arg_id) ? this->do_get_arg(arg_id) : format_arg(); } public: constexpr basic_parse_context &parse_context() { return parse_context_; } internal::error_handler error_handler() { return parse_context_.error_handler(); } void on_error(const char *message) { parse_context_.on_error(message); } // Returns an iterator to the beginning of the output range. auto begin() { return out_; } // Advances the begin iterator to ``it``. void advance_to(iterator it) { out_ = it; } }; // Extracts a reference to the container from back_insert_iterator. template inline Container &get_container(std::back_insert_iterator it) { using iterator = std::back_insert_iterator; struct accessor: iterator { accessor(iterator it) : iterator(it) {} using iterator::container; }; return *accessor(it).container; } } // namespace internal template class output_range { private: OutputIt it_; // Unused yet. using sentinel = void; sentinel end() const; public: using value_type = T; explicit output_range(OutputIt it): it_(it) {} OutputIt begin() const { return it_; } }; // A range where begin() returns back_insert_iterator. template class back_insert_range: public output_range> { using base = output_range>; public: using value_type = typename Container::value_type; using base::base; back_insert_range(Container &c): base(std::back_inserter(c)) {} }; // Formatting context. template class basic_context : public internal::context_base> { public: /** The character type for the output. */ using char_type = typename Range::value_type; template using formatter_type = formatter; using range_type = Range; private: internal::arg_map map_; FMT_DISALLOW_COPY_AND_ASSIGN(basic_context); using base = internal::context_base; using format_arg = typename base::format_arg; using base::get_arg; public: using typename base::iterator; /** \rst Constructs a ``basic_context`` object. References to the arguments are stored in the object so make sure they have appropriate lifetimes. \endrst */ basic_context(Range range, basic_string_view format_str, basic_format_args args) : base(range, format_str, args) {} format_arg next_arg() { return this->do_get_arg(this->parse_context().next_arg_id()); } format_arg get_arg(unsigned arg_id) { return this->do_get_arg(arg_id); } // Checks if manual indexing is used and returns the argument with the // specified name. format_arg get_arg(basic_string_view name); }; using context = basic_context>; using wcontext = basic_context>; template class arg_store { private: static const size_t NUM_ARGS = sizeof...(Args); // Packed is a macro on MinGW so use IS_PACKED instead. static const bool IS_PACKED = NUM_ARGS < internal::MAX_PACKED_ARGS; using value_type = typename std::conditional< IS_PACKED, internal::value, basic_arg>::type; // If the arguments are not packed, add one more element to mark the end. value_type data_[NUM_ARGS + (IS_PACKED && NUM_ARGS != 0 ? 0 : 1)]; public: static const uint64_t TYPES = IS_PACKED ? internal::get_types() : -static_cast(NUM_ARGS); arg_store(const Args &... args) : data_{internal::make_arg(args)...} {} basic_format_args operator*() const { return *this; } const value_type *data() const { return data_; } }; template inline arg_store make_args(const Args & ... args) { return arg_store(args...); } template inline arg_store make_args(const Args & ... args) { return arg_store(args...); } /** Formatting arguments. */ template class basic_format_args { public: using size_type = unsigned; using format_arg = basic_arg ; private: // To reduce compiled code size per formatting function call, types of first // MAX_PACKED_ARGS arguments are passed in the types_ field. uint64_t types_; union { // If the number of arguments is less than MAX_PACKED_ARGS, the argument // values are stored in values_, otherwise they are stored in args_. // This is done to reduce compiled code size as storing larger objects // may require more code (at least on x86-64) even if the same amount of // data is actually copied to stack. It saves ~10% on the bloat test. const internal::value *values_; const format_arg *args_; }; typename internal::type type(unsigned index) const { unsigned shift = index * 4; uint64_t mask = 0xf; return static_cast( (types_ & (mask << shift)) >> shift); } friend class internal::arg_map; void set_data(const internal::value *values) { values_ = values; } void set_data(const format_arg *args) { args_ = args; } format_arg get(size_type index) const { int64_t signed_types = static_cast(types_); if (signed_types < 0) { uint64_t num_args = -signed_types; return index < num_args ? args_[index] : format_arg(); } format_arg arg; if (index > internal::MAX_PACKED_ARGS) return arg; arg.type_ = type(index); if (arg.type_ == internal::NONE) return arg; internal::value &val = arg.value_; val = values_[index]; return arg; } public: basic_format_args() : types_(0) {} template basic_format_args(const arg_store &store) : types_(store.TYPES) { set_data(store.data()); } /** Returns the argument at specified index. */ format_arg operator[](size_type index) const { format_arg arg = get(index); return arg.type_ == internal::NAMED_ARG ? arg.value_.as_named_arg().template deserialize() : arg; } unsigned max_size() const { int64_t signed_types = static_cast(types_); return signed_types < 0 ? -signed_types : static_cast(internal::MAX_PACKED_ARGS); } }; using format_args = basic_format_args; using wformat_args = basic_format_args; namespace internal { template struct named_arg_base { basic_string_view name; // Serialized value. mutable char data[sizeof(basic_arg)]; named_arg_base(basic_string_view nm) : name(nm) {} template basic_arg deserialize() const { basic_arg arg; std::memcpy(&arg, data, sizeof(basic_arg)); return arg; } }; template struct named_arg : named_arg_base { const T &value; named_arg(basic_string_view name, const T &val) : named_arg_base(name), value(val) {} }; } /** \rst Returns a named argument for formatting functions. **Example**:: print("Elapsed time: {s:.2f} seconds", arg("s", 1.23)); \endrst */ template inline internal::named_arg arg(string_view name, const T &arg) { return internal::named_arg(name, arg); } template inline internal::named_arg arg(wstring_view name, const T &arg) { return internal::named_arg(name, arg); } // The following two functions are deleted intentionally to disable // nested named arguments as in ``format("{}", arg("a", arg("b", 42)))``. template void arg(string_view, internal::named_arg) FMT_DELETED; template void arg(wstring_view, internal::named_arg) FMT_DELETED; enum Color { BLACK, RED, GREEN, YELLOW, BLUE, MAGENTA, CYAN, WHITE }; FMT_API void vprint_colored(Color c, string_view format, format_args args); /** Formats a string and prints it to stdout using ANSI escape sequences to specify color (experimental). Example: print_colored(fmt::RED, "Elapsed time: {0:.2f} seconds", 1.23); */ template inline void print_colored(Color c, string_view format_str, const Args & ... args) { vprint_colored(c, format_str, make_args(args...)); } void vformat_to(internal::buffer &buf, string_view format_str, format_args args); void vformat_to(internal::wbuffer &buf, wstring_view format_str, wformat_args args); template struct is_contiguous : std::false_type {}; template struct is_contiguous> : std::true_type {}; template struct is_contiguous> : std::true_type {}; /** Formats a string and writes the output to ``out``. */ template typename std::enable_if::value>::type vformat_to(std::back_insert_iterator out, string_view format_str, format_args args) { internal::container_buffer buf(internal::get_container(out)); vformat_to(buf, format_str, args); } std::string vformat(string_view format_str, format_args args); std::wstring vformat(wstring_view format_str, wformat_args args); /** \rst Formats arguments and returns the result as a string. **Example**:: std::string message = format("The answer is {}", 42); \endrst */ template inline std::string format(string_view format_str, const Args & ... args) { return vformat(format_str, make_args(args...)); } template inline std::wstring format(wstring_view format_str, const Args & ... args) { return vformat(format_str, make_args(args...)); } FMT_API void vprint(std::FILE *f, string_view format_str, format_args args); /** \rst Prints formatted data to the file *f*. **Example**:: print(stderr, "Don't {}!", "panic"); \endrst */ template inline void print(std::FILE *f, string_view format_str, const Args & ... args) { vprint(f, format_str, make_args(args...)); } FMT_API void vprint(string_view format_str, format_args args); /** \rst Prints formatted data to ``stdout``. **Example**:: print("Elapsed time: {0:.2f} seconds", 1.23); \endrst */ template inline void print(string_view format_str, const Args & ... args) { vprint(format_str, make_args(args...)); } } // namespace fmt #endif // FMT_CORE_H_