/* Formatting library for C++ Copyright (c) 2012 - present, Victor Zverovich All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef FMT_FORMAT_H_ #define FMT_FORMAT_H_ #include #include #include #include #include #include #include #include #include "core.h" #ifdef __clang__ # define FMT_CLANG_VERSION (__clang_major__ * 100 + __clang_minor__) #else # define FMT_CLANG_VERSION 0 #endif #ifdef __INTEL_COMPILER # define FMT_ICC_VERSION __INTEL_COMPILER #elif defined(__ICL) # define FMT_ICC_VERSION __ICL #else # define FMT_ICC_VERSION 0 #endif #ifdef __NVCC__ # define FMT_CUDA_VERSION (__CUDACC_VER_MAJOR__ * 100 + __CUDACC_VER_MINOR__) #else # define FMT_CUDA_VERSION 0 #endif #if FMT_GCC_VERSION >= 406 || FMT_CLANG_VERSION # pragma GCC diagnostic push // Disable warning about not handling all enums in switch statement even with // a default case # pragma GCC diagnostic ignored "-Wswitch-enum" // Disable the warning about declaration shadowing because it affects too // many valid cases. # pragma GCC diagnostic ignored "-Wshadow" // Disable the warning about nonliteral format strings because we construct // them dynamically when falling back to snprintf for FP formatting. # pragma GCC diagnostic ignored "-Wformat-nonliteral" #endif #if FMT_CLANG_VERSION # pragma GCC diagnostic ignored "-Wgnu-string-literal-operator-template" #endif #ifdef _SECURE_SCL # define FMT_SECURE_SCL _SECURE_SCL #else # define FMT_SECURE_SCL 0 #endif // Check whether we can use unrestricted unions and use struct if not. #ifndef FMT_UNRESTRICTED_UNION # if FMT_MSC_VER >= 1900 || FMT_GCC_VERSION >= 406 || FMT_CLANG_VERSION >= 303 # define FMT_UNRESTRICTED_UNION union # else # define FMT_UNRESTRICTED_UNION struct # endif #endif #if FMT_SECURE_SCL # include #endif #ifdef __has_builtin # define FMT_HAS_BUILTIN(x) __has_builtin(x) #else # define FMT_HAS_BUILTIN(x) 0 #endif #ifdef __GNUC_LIBSTD__ # define FMT_GNUC_LIBSTD_VERSION \ (__GNUC_LIBSTD__ * 100 + __GNUC_LIBSTD_MINOR__) #endif #ifndef FMT_THROW # if FMT_EXCEPTIONS # if FMT_MSC_VER FMT_BEGIN_NAMESPACE namespace internal { template inline void do_throw(const Exception& x) { // Silence unreachable code warnings in MSVC because these are nearly // impossible to fix in a generic code. volatile bool b = true; if (b) throw x; } } // namespace internal FMT_END_NAMESPACE # define FMT_THROW(x) fmt::internal::do_throw(x) # else # define FMT_THROW(x) throw x # endif # else # define FMT_THROW(x) \ do { \ static_cast(sizeof(x)); \ assert(false); \ } while (false); # endif #endif #ifndef FMT_USE_USER_DEFINED_LITERALS // For Intel's compiler and NVIDIA's compiler both it and the system gcc/msc // must support UDLs. # if (FMT_HAS_FEATURE(cxx_user_literals) || FMT_GCC_VERSION >= 407 || \ FMT_MSC_VER >= 1900) && \ (!(FMT_ICC_VERSION || FMT_CUDA_VERSION) || FMT_ICC_VERSION >= 1500 || \ FMT_CUDA_VERSION >= 700) # define FMT_USE_USER_DEFINED_LITERALS 1 # else # define FMT_USE_USER_DEFINED_LITERALS 0 # endif #endif #ifndef FMT_USE_UDL_TEMPLATE // EDG front end based compilers (icc, nvcc) do not support UDL templates yet // and GCC 9 warns about them. # if FMT_USE_USER_DEFINED_LITERALS && FMT_ICC_VERSION == 0 && \ FMT_CUDA_VERSION == 0 && \ ((FMT_GCC_VERSION >= 600 && FMT_GCC_VERSION <= 900 && \ __cplusplus >= 201402L) || \ (defined(FMT_CLANG_VERSION) && FMT_CLANG_VERSION >= 304)) # define FMT_USE_UDL_TEMPLATE 1 # else # define FMT_USE_UDL_TEMPLATE 0 # endif #endif #ifdef FMT_USE_INT128 // Do nothing. #elif defined(__SIZEOF_INT128__) # define FMT_USE_INT128 1 #else # define FMT_USE_INT128 0 #endif // __builtin_clz is broken in clang with Microsoft CodeGen: // https://github.com/fmtlib/fmt/issues/519 #ifndef _MSC_VER # if FMT_GCC_VERSION >= 400 || FMT_HAS_BUILTIN(__builtin_clz) # define FMT_BUILTIN_CLZ(n) __builtin_clz(n) # endif # if FMT_GCC_VERSION >= 400 || FMT_HAS_BUILTIN(__builtin_clzll) # define FMT_BUILTIN_CLZLL(n) __builtin_clzll(n) # endif #endif // Some compilers masquerade as both MSVC and GCC-likes or otherwise support // __builtin_clz and __builtin_clzll, so only define FMT_BUILTIN_CLZ using the // MSVC intrinsics if the clz and clzll builtins are not available. #if FMT_MSC_VER && !defined(FMT_BUILTIN_CLZLL) && !defined(_MANAGED) # include // _BitScanReverse, _BitScanReverse64 FMT_BEGIN_NAMESPACE namespace internal { // Avoid Clang with Microsoft CodeGen's -Wunknown-pragmas warning. # ifndef __clang__ # pragma intrinsic(_BitScanReverse) # endif inline uint32_t clz(uint32_t x) { unsigned long r = 0; _BitScanReverse(&r, x); assert(x != 0); // Static analysis complains about using uninitialized data // "r", but the only way that can happen is if "x" is 0, // which the callers guarantee to not happen. # pragma warning(suppress : 6102) return 31 - r; } # define FMT_BUILTIN_CLZ(n) fmt::internal::clz(n) # if defined(_WIN64) && !defined(__clang__) # pragma intrinsic(_BitScanReverse64) # endif inline uint32_t clzll(uint64_t x) { unsigned long r = 0; # ifdef _WIN64 _BitScanReverse64(&r, x); # else // Scan the high 32 bits. if (_BitScanReverse(&r, static_cast(x >> 32))) return 63 - (r + 32); // Scan the low 32 bits. _BitScanReverse(&r, static_cast(x)); # endif assert(x != 0); // Static analysis complains about using uninitialized data // "r", but the only way that can happen is if "x" is 0, // which the callers guarantee to not happen. # pragma warning(suppress : 6102) return 63 - r; } # define FMT_BUILTIN_CLZLL(n) fmt::internal::clzll(n) } // namespace internal FMT_END_NAMESPACE #endif FMT_BEGIN_NAMESPACE namespace internal { #ifndef FMT_USE_GRISU # define FMT_USE_GRISU 1 #endif // A fallback implementation of uintptr_t for systems that lack it. struct uintptr { unsigned char value[sizeof(void*)]; }; #ifdef UINTPTR_MAX using uintptr_t = ::uintptr_t; #else using uintptr_t = uintptr; #endif template inline bool use_grisu() { return FMT_USE_GRISU && std::numeric_limits::is_iec559 && sizeof(T) <= sizeof(double); } // An equivalent of `*reinterpret_cast(&source)` that doesn't produce // undefined behavior (e.g. due to type aliasing). // Example: uint64_t d = bit_cast(2.718); template inline Dest bit_cast(const Source& source) { static_assert(sizeof(Dest) == sizeof(Source), "size mismatch"); Dest dest; std::memcpy(&dest, &source, sizeof(dest)); return dest; } // An implementation of begin and end for pre-C++11 compilers such as gcc 4. template FMT_CONSTEXPR auto begin(const C& c) -> decltype(c.begin()) { return c.begin(); } template FMT_CONSTEXPR T* begin(T (&array)[N]) FMT_NOEXCEPT { return array; } template FMT_CONSTEXPR auto end(const C& c) -> decltype(c.end()) { return c.end(); } template FMT_CONSTEXPR T* end(T (&array)[N]) FMT_NOEXCEPT { return array + N; } // An implementation of iterator_t for pre-C++20 compilers such as gcc 4. template struct iterator_t { typedef decltype(internal::begin(std::declval())) type; }; // For std::result_of in gcc 4.4. template struct function { template struct result { typedef Result type; }; }; template typename Allocator::value_type* allocate(Allocator& alloc, std::size_t n) { #if __cplusplus >= 201103L || FMT_MSC_VER >= 1700 return std::allocator_traits::allocate(alloc, n); #else return alloc.allocate(n); #endif } } // namespace internal template class basic_writer; template class output_range { private: OutputIt it_; // Unused yet. typedef void sentinel; sentinel end() const; public: typedef OutputIt iterator; typedef T value_type; explicit output_range(OutputIt it) : it_(it) {} OutputIt begin() const { return it_; } }; // A range where begin() returns back_insert_iterator. template class back_insert_range : public output_range> { typedef output_range> base; public: typedef typename Container::value_type value_type; back_insert_range(Container& c) : base(std::back_inserter(c)) {} back_insert_range(typename base::iterator it) : base(it) {} }; typedef basic_writer>> writer; typedef basic_writer>> wwriter; /** A formatting error such as invalid format string. */ class format_error : public std::runtime_error { public: explicit format_error(const char* message) : std::runtime_error(message) {} explicit format_error(const std::string& message) : std::runtime_error(message) {} }; namespace internal { #if FMT_SECURE_SCL template struct checked { typedef stdext::checked_array_iterator type; }; // Make a checked iterator to avoid warnings on MSVC. template inline stdext::checked_array_iterator make_checked(T* p, std::size_t size) { return {p, size}; } #else template struct checked { typedef T* type; }; template inline T* make_checked(T* p, std::size_t) { return p; } #endif template template void buffer::append(const U* begin, const U* end) { std::size_t new_size = size_ + internal::to_unsigned(end - begin); reserve(new_size); std::uninitialized_copy(begin, end, internal::make_checked(ptr_, capacity_) + size_); size_ = new_size; } } // namespace internal // A UTF-8 string view. class u8string_view : public basic_string_view { public: typedef char8_t char_type; u8string_view(const char* s) : basic_string_view(reinterpret_cast(s)) {} u8string_view(const char* s, size_t count) FMT_NOEXCEPT : basic_string_view(reinterpret_cast(s), count) { } }; #if FMT_USE_USER_DEFINED_LITERALS inline namespace literals { inline u8string_view operator"" _u(const char* s, std::size_t n) { return {s, n}; } } // namespace literals #endif // The number of characters to store in the basic_memory_buffer object itself // to avoid dynamic memory allocation. enum { inline_buffer_size = 500 }; /** \rst A dynamically growing memory buffer for trivially copyable/constructible types with the first ``SIZE`` elements stored in the object itself. You can use one of the following typedefs for common character types: +----------------+------------------------------+ | Type | Definition | +================+==============================+ | memory_buffer | basic_memory_buffer | +----------------+------------------------------+ | wmemory_buffer | basic_memory_buffer | +----------------+------------------------------+ **Example**:: fmt::memory_buffer out; format_to(out, "The answer is {}.", 42); This will append the following output to the ``out`` object: .. code-block:: none The answer is 42. The output can be converted to an ``std::string`` with ``to_string(out)``. \endrst */ template > class basic_memory_buffer : private Allocator, public internal::buffer { private: T store_[SIZE]; // Deallocate memory allocated by the buffer. void deallocate() { T* data = this->data(); if (data != store_) Allocator::deallocate(data, this->capacity()); } protected: void grow(std::size_t size) FMT_OVERRIDE; public: typedef T value_type; typedef const T& const_reference; explicit basic_memory_buffer(const Allocator& alloc = Allocator()) : Allocator(alloc) { this->set(store_, SIZE); } ~basic_memory_buffer() { deallocate(); } private: // Move data from other to this buffer. void move(basic_memory_buffer& other) { Allocator &this_alloc = *this, &other_alloc = other; this_alloc = std::move(other_alloc); T* data = other.data(); std::size_t size = other.size(), capacity = other.capacity(); if (data == other.store_) { this->set(store_, capacity); std::uninitialized_copy(other.store_, other.store_ + size, internal::make_checked(store_, capacity)); } else { this->set(data, capacity); // Set pointer to the inline array so that delete is not called // when deallocating. other.set(other.store_, 0); } this->resize(size); } public: /** \rst Constructs a :class:`fmt::basic_memory_buffer` object moving the content of the other object to it. \endrst */ basic_memory_buffer(basic_memory_buffer&& other) { move(other); } /** \rst Moves the content of the other ``basic_memory_buffer`` object to this one. \endrst */ basic_memory_buffer& operator=(basic_memory_buffer&& other) { assert(this != &other); deallocate(); move(other); return *this; } // Returns a copy of the allocator associated with this buffer. Allocator get_allocator() const { return *this; } }; template void basic_memory_buffer::grow(std::size_t size) { std::size_t old_capacity = this->capacity(); std::size_t new_capacity = old_capacity + old_capacity / 2; if (size > new_capacity) new_capacity = size; T* old_data = this->data(); T* new_data = internal::allocate(*this, new_capacity); // The following code doesn't throw, so the raw pointer above doesn't leak. std::uninitialized_copy(old_data, old_data + this->size(), internal::make_checked(new_data, new_capacity)); this->set(new_data, new_capacity); // deallocate must not throw according to the standard, but even if it does, // the buffer already uses the new storage and will deallocate it in // destructor. if (old_data != store_) Allocator::deallocate(old_data, old_capacity); } typedef basic_memory_buffer memory_buffer; typedef basic_memory_buffer wmemory_buffer; namespace internal { // A workaround for std::string not having mutable data() until C++17. template inline Char* get_data(std::basic_string& s) { return &s[0]; } template inline typename Container::value_type* get_data(Container& c) { return c.data(); } template ::value)> inline typename checked::type reserve( std::back_insert_iterator& it, std::size_t n) { Container& c = internal::get_container(it); std::size_t size = c.size(); c.resize(size + n); return make_checked(get_data(c) + size, n); } template inline Iterator& reserve(Iterator& it, std::size_t) { return it; } template class null_terminating_iterator; template FMT_CONSTEXPR_DECL const Char* pointer_from(null_terminating_iterator it); // An output iterator that counts the number of objects written to it and // discards them. template class counting_iterator { private: std::size_t count_; mutable T blackhole_; public: typedef std::output_iterator_tag iterator_category; typedef T value_type; typedef std::ptrdiff_t difference_type; typedef T* pointer; typedef T& reference; typedef counting_iterator _Unchecked_type; // Mark iterator as checked. counting_iterator() : count_(0) {} std::size_t count() const { return count_; } counting_iterator& operator++() { ++count_; return *this; } counting_iterator operator++(int) { auto it = *this; ++*this; return it; } T& operator*() const { return blackhole_; } }; template class truncating_iterator_base { protected: OutputIt out_; std::size_t limit_; std::size_t count_; truncating_iterator_base(OutputIt out, std::size_t limit) : out_(out), limit_(limit), count_(0) {} public: typedef std::output_iterator_tag iterator_category; typedef void difference_type; typedef void pointer; typedef void reference; typedef truncating_iterator_base _Unchecked_type; // Mark iterator as checked. OutputIt base() const { return out_; } std::size_t count() const { return count_; } }; // An output iterator that truncates the output and counts the number of objects // written to it. template ::value_type>::type> class truncating_iterator; template class truncating_iterator : public truncating_iterator_base { typedef std::iterator_traits traits; mutable typename traits::value_type blackhole_; public: typedef typename traits::value_type value_type; truncating_iterator(OutputIt out, std::size_t limit) : truncating_iterator_base(out, limit) {} truncating_iterator& operator++() { if (this->count_++ < this->limit_) ++this->out_; return *this; } truncating_iterator operator++(int) { auto it = *this; ++*this; return it; } value_type& operator*() const { return this->count_ < this->limit_ ? *this->out_ : blackhole_; } }; template class truncating_iterator : public truncating_iterator_base { public: typedef typename OutputIt::container_type::value_type value_type; truncating_iterator(OutputIt out, std::size_t limit) : truncating_iterator_base(out, limit) {} truncating_iterator& operator=(value_type val) { if (this->count_++ < this->limit_) this->out_ = val; return *this; } truncating_iterator& operator++() { return *this; } truncating_iterator& operator++(int) { return *this; } truncating_iterator& operator*() { return *this; } }; // Returns true if value is negative, false otherwise. // Same as (value < 0) but doesn't produce warnings if T is an unsigned type. template ::is_signed)> FMT_CONSTEXPR bool is_negative(T value) { return value < 0; } template ::is_signed)> FMT_CONSTEXPR bool is_negative(T) { return false; } template struct int_traits { // Smallest of uint32_t and uint64_t that is large enough to represent // all values of T. using main_type = conditional_t::digits <= 32, uint32_t, uint64_t>; }; // Static data is placed in this class template to allow header-only // configuration. template struct FMT_EXTERN_TEMPLATE_API basic_data { static const uint64_t POWERS_OF_10_64[]; static const uint32_t ZERO_OR_POWERS_OF_10_32[]; static const uint64_t ZERO_OR_POWERS_OF_10_64[]; static const uint64_t POW10_SIGNIFICANDS[]; static const int16_t POW10_EXPONENTS[]; static const char DIGITS[]; static const char HEX_DIGITS[]; static const char FOREGROUND_COLOR[]; static const char BACKGROUND_COLOR[]; static const char RESET_COLOR[5]; static const wchar_t WRESET_COLOR[5]; }; FMT_EXTERN template struct basic_data; // This is a struct rather than a typedef to avoid shadowing warnings in gcc. struct data : basic_data<> {}; #ifdef FMT_BUILTIN_CLZLL // Returns the number of decimal digits in n. Leading zeros are not counted // except for n == 0 in which case count_digits returns 1. inline int count_digits(uint64_t n) { // Based on http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10 // and the benchmark https://github.com/localvoid/cxx-benchmark-count-digits. int t = (64 - FMT_BUILTIN_CLZLL(n | 1)) * 1233 >> 12; return t - (n < data::ZERO_OR_POWERS_OF_10_64[t]) + 1; } #else // Fallback version of count_digits used when __builtin_clz is not available. inline int count_digits(uint64_t n) { int count = 1; for (;;) { // Integer division is slow so do it for a group of four digits instead // of for every digit. The idea comes from the talk by Alexandrescu // "Three Optimization Tips for C++". See speed-test for a comparison. if (n < 10) return count; if (n < 100) return count + 1; if (n < 1000) return count + 2; if (n < 10000) return count + 3; n /= 10000u; count += 4; } } #endif // Counts the number of digits in n. BITS = log2(radix). template inline int count_digits(UInt n) { int num_digits = 0; do { ++num_digits; } while ((n >>= BITS) != 0); return num_digits; } template <> int count_digits<4>(internal::uintptr n); template inline size_t count_code_points(basic_string_view s) { return s.size(); } // Counts the number of code points in a UTF-8 string. inline size_t count_code_points(basic_string_view s) { const char8_t* data = s.data(); size_t num_code_points = 0; for (size_t i = 0, size = s.size(); i != size; ++i) { if ((data[i] & 0xc0) != 0x80) ++num_code_points; } return num_code_points; } inline char8_t to_char8_t(char c) { return static_cast(c); } template struct needs_conversion : bool_constant< std::is_same::value_type, char>::value && std::is_same::value> {}; template ::value)> OutputIt copy_str(InputIt begin, InputIt end, OutputIt it) { return std::copy(begin, end, it); } template ::value)> OutputIt copy_str(InputIt begin, InputIt end, OutputIt it) { return std::transform(begin, end, it, to_char8_t); } #if FMT_HAS_CPP_ATTRIBUTE(always_inline) # define FMT_ALWAYS_INLINE __attribute__((always_inline)) #else # define FMT_ALWAYS_INLINE #endif template inline char* lg(uint32_t n, Handler h) FMT_ALWAYS_INLINE; // Computes g = floor(log10(n)) and calls h.on(n); template inline char* lg(uint32_t n, Handler h) { return n < 100 ? n < 10 ? h.template on<0>(n) : h.template on<1>(n) : n < 1000000 ? n < 10000 ? n < 1000 ? h.template on<2>(n) : h.template on<3>(n) : n < 100000 ? h.template on<4>(n) : h.template on<5>(n) : n < 100000000 ? n < 10000000 ? h.template on<6>(n) : h.template on<7>(n) : n < 1000000000 ? h.template on<8>(n) : h.template on<9>(n); } // An lg handler that formats a decimal number. // Usage: lg(n, decimal_formatter(buffer)); class decimal_formatter { private: char* buffer_; void write_pair(unsigned N, uint32_t index) { std::memcpy(buffer_ + N, data::DIGITS + index * 2, 2); } public: explicit decimal_formatter(char* buf) : buffer_(buf) {} template char* on(uint32_t u) { if (N == 0) { *buffer_ = static_cast(u) + '0'; } else if (N == 1) { write_pair(0, u); } else { // The idea of using 4.32 fixed-point numbers is based on // https://github.com/jeaiii/itoa unsigned n = N - 1; unsigned a = n / 5 * n * 53 / 16; uint64_t t = ((1ULL << (32 + a)) / data::ZERO_OR_POWERS_OF_10_32[n] + 1 - n / 9); t = ((t * u) >> a) + n / 5 * 4; write_pair(0, t >> 32); for (unsigned i = 2; i < N; i += 2) { t = 100ULL * static_cast(t); write_pair(i, t >> 32); } if (N % 2 == 0) { buffer_[N] = static_cast((10ULL * static_cast(t)) >> 32) + '0'; } } return buffer_ += N + 1; } }; // An lg handler that formats a decimal number with a terminating null. class decimal_formatter_null : public decimal_formatter { public: explicit decimal_formatter_null(char* buf) : decimal_formatter(buf) {} template char* on(uint32_t u) { char* buf = decimal_formatter::on(u); *buf = '\0'; return buf; } }; #ifdef FMT_BUILTIN_CLZ // Optional version of count_digits for better performance on 32-bit platforms. inline int count_digits(uint32_t n) { int t = (32 - FMT_BUILTIN_CLZ(n | 1)) * 1233 >> 12; return t - (n < data::ZERO_OR_POWERS_OF_10_32[t]) + 1; } #endif // A functor that doesn't add a thousands separator. struct no_thousands_sep { typedef char char_type; template void operator()(Char*) {} enum { size = 0 }; }; // A functor that adds a thousands separator. template class add_thousands_sep { private: basic_string_view sep_; // Index of a decimal digit with the least significant digit having index 0. unsigned digit_index_; public: typedef Char char_type; explicit add_thousands_sep(basic_string_view sep) : sep_(sep), digit_index_(0) {} void operator()(Char*& buffer) { if (++digit_index_ % 3 != 0) return; buffer -= sep_.size(); std::uninitialized_copy(sep_.data(), sep_.data() + sep_.size(), internal::make_checked(buffer, sep_.size())); } enum { size = 1 }; }; template FMT_API Char thousands_sep_impl(locale_ref loc); template inline Char thousands_sep(locale_ref loc) { return Char(thousands_sep_impl(loc)); } template <> inline wchar_t thousands_sep(locale_ref loc) { return thousands_sep_impl(loc); } // Formats a decimal unsigned integer value writing into buffer. // thousands_sep is a functor that is called after writing each char to // add a thousands separator if necessary. template inline Char* format_decimal(Char* buffer, UInt value, int num_digits, ThousandsSep thousands_sep) { FMT_ASSERT(num_digits >= 0, "invalid digit count"); buffer += num_digits; Char* end = buffer; while (value >= 100) { // Integer division is slow so do it for a group of two digits instead // of for every digit. The idea comes from the talk by Alexandrescu // "Three Optimization Tips for C++". See speed-test for a comparison. unsigned index = static_cast((value % 100) * 2); value /= 100; *--buffer = static_cast(data::DIGITS[index + 1]); thousands_sep(buffer); *--buffer = static_cast(data::DIGITS[index]); thousands_sep(buffer); } if (value < 10) { *--buffer = static_cast('0' + value); return end; } unsigned index = static_cast(value * 2); *--buffer = static_cast(data::DIGITS[index + 1]); thousands_sep(buffer); *--buffer = static_cast(data::DIGITS[index]); return end; } template inline Iterator format_decimal(Iterator out, UInt value, int num_digits, ThousandsSep sep) { FMT_ASSERT(num_digits >= 0, "invalid digit count"); typedef typename ThousandsSep::char_type char_type; // Buffer should be large enough to hold all digits (<= digits10 + 1). enum { max_size = std::numeric_limits::digits10 + 1 }; FMT_ASSERT(ThousandsSep::size <= 1, "invalid separator"); char_type buffer[max_size + max_size / 3]; auto end = format_decimal(buffer, value, num_digits, sep); return internal::copy_str(buffer, end, out); } template inline It format_decimal(It out, UInt value, int num_digits) { return format_decimal(out, value, num_digits, no_thousands_sep()); } template inline Char* format_uint(Char* buffer, UInt value, int num_digits, bool upper = false) { buffer += num_digits; Char* end = buffer; do { const char* digits = upper ? "0123456789ABCDEF" : data::HEX_DIGITS; unsigned digit = (value & ((1 << BASE_BITS) - 1)); *--buffer = static_cast(BASE_BITS < 4 ? static_cast('0' + digit) : digits[digit]); } while ((value >>= BASE_BITS) != 0); return end; } template Char* format_uint(Char* buffer, internal::uintptr n, int num_digits, bool = false) { auto char_digits = std::numeric_limits::digits / 4; int start = (num_digits + char_digits - 1) / char_digits - 1; if (int start_digits = num_digits % char_digits) { unsigned value = n.value[start--]; buffer = format_uint(buffer, value, start_digits); } for (; start >= 0; --start) { unsigned value = n.value[start]; buffer += char_digits; auto p = buffer; for (int i = 0; i < char_digits; ++i) { unsigned digit = (value & ((1 << BASE_BITS) - 1)); *--p = static_cast(data::HEX_DIGITS[digit]); value >>= BASE_BITS; } } return buffer; } template inline It format_uint(It out, UInt value, int num_digits, bool upper = false) { // Buffer should be large enough to hold all digits (digits / BASE_BITS + 1) // and null. char buffer[std::numeric_limits::digits / BASE_BITS + 2]; format_uint(buffer, value, num_digits, upper); return internal::copy_str(buffer, buffer + num_digits, out); } #ifndef _WIN32 # define FMT_USE_WINDOWS_H 0 #elif !defined(FMT_USE_WINDOWS_H) # define FMT_USE_WINDOWS_H 1 #endif // Define FMT_USE_WINDOWS_H to 0 to disable use of windows.h. // All the functionality that relies on it will be disabled too. #if FMT_USE_WINDOWS_H // A converter from UTF-8 to UTF-16. // It is only provided for Windows since other systems support UTF-8 natively. class utf8_to_utf16 { private: wmemory_buffer buffer_; public: FMT_API explicit utf8_to_utf16(string_view s); operator wstring_view() const { return wstring_view(&buffer_[0], size()); } size_t size() const { return buffer_.size() - 1; } const wchar_t* c_str() const { return &buffer_[0]; } std::wstring str() const { return std::wstring(&buffer_[0], size()); } }; // A converter from UTF-16 to UTF-8. // It is only provided for Windows since other systems support UTF-8 natively. class utf16_to_utf8 { private: memory_buffer buffer_; public: utf16_to_utf8() {} FMT_API explicit utf16_to_utf8(wstring_view s); operator string_view() const { return string_view(&buffer_[0], size()); } size_t size() const { return buffer_.size() - 1; } const char* c_str() const { return &buffer_[0]; } std::string str() const { return std::string(&buffer_[0], size()); } // Performs conversion returning a system error code instead of // throwing exception on conversion error. This method may still throw // in case of memory allocation error. FMT_API int convert(wstring_view s); }; FMT_API void format_windows_error(fmt::internal::buffer& out, int error_code, fmt::string_view message) FMT_NOEXCEPT; #endif template struct null {}; } // namespace internal enum alignment { ALIGN_DEFAULT, ALIGN_LEFT, ALIGN_RIGHT, ALIGN_CENTER, ALIGN_NUMERIC }; // Flags. enum { SIGN_FLAG = 1, PLUS_FLAG = 2, MINUS_FLAG = 4, HASH_FLAG = 8 }; // An alignment specifier. struct align_spec { unsigned width_; // Fill is always wchar_t and cast to char if necessary to avoid having // two specialization of AlignSpec and its subclasses. wchar_t fill_; alignment align_; FMT_CONSTEXPR align_spec() : width_(0), fill_(' '), align_(ALIGN_DEFAULT) {} FMT_CONSTEXPR unsigned width() const { return width_; } FMT_CONSTEXPR wchar_t fill() const { return fill_; } FMT_CONSTEXPR alignment align() const { return align_; } }; struct core_format_specs { int precision; uint_least8_t flags; char type; FMT_CONSTEXPR core_format_specs() : precision(-1), flags(0), type(0) {} FMT_CONSTEXPR bool has(unsigned f) const { return (flags & f) != 0; } FMT_CONSTEXPR bool has_precision() const { return precision != -1; } }; // Format specifiers. template struct basic_format_specs : align_spec, core_format_specs { FMT_CONSTEXPR basic_format_specs() {} }; typedef basic_format_specs format_specs; namespace internal { namespace grisu_options { enum { fixed = 1, grisu3 = 2 }; } // Formats value using the Grisu algorithm: // https://www.cs.tufts.edu/~nr/cs257/archive/florian-loitsch/printf.pdf template FMT_API bool grisu_format(Double, buffer&, int, unsigned, int&); template inline bool grisu_format(Double, buffer&, int, unsigned, int&) { return false; } struct gen_digits_params { int num_digits; bool fixed; bool upper; bool trailing_zeros; }; // Writes the exponent exp in the form "[+-]d{2,3}" to buffer. template It write_exponent(int exp, It it) { FMT_ASSERT(-1000 < exp && exp < 1000, "exponent out of range"); if (exp < 0) { *it++ = static_cast('-'); exp = -exp; } else { *it++ = static_cast('+'); } if (exp >= 100) { *it++ = static_cast(static_cast('0' + exp / 100)); exp %= 100; const char* d = data::DIGITS + exp * 2; *it++ = static_cast(d[0]); *it++ = static_cast(d[1]); } else { const char* d = data::DIGITS + exp * 2; *it++ = static_cast(d[0]); *it++ = static_cast(d[1]); } return it; } // The number is given as v = digits * pow(10, exp). template It grisu_prettify(const char* digits, int size, int exp, It it, gen_digits_params params) { // pow(10, full_exp - 1) <= v <= pow(10, full_exp). int full_exp = size + exp; if (!params.fixed) { // Insert a decimal point after the first digit and add an exponent. *it++ = static_cast(*digits); if (size > 1) *it++ = static_cast('.'); exp += size - 1; it = copy_str(digits + 1, digits + size, it); if (size < params.num_digits) it = std::fill_n(it, params.num_digits - size, static_cast('0')); *it++ = static_cast(params.upper ? 'E' : 'e'); return write_exponent(exp, it); } if (size <= full_exp) { // 1234e7 -> 12340000000[.0+] it = copy_str(digits, digits + size, it); it = std::fill_n(it, full_exp - size, static_cast('0')); int num_zeros = (std::max)(params.num_digits - full_exp, 1); if (params.trailing_zeros) { *it++ = static_cast('.'); it = std::fill_n(it, num_zeros, static_cast('0')); } } else if (full_exp > 0) { // 1234e-2 -> 12.34[0+] it = copy_str(digits, digits + full_exp, it); if (!params.trailing_zeros) { // Remove trailing zeros. while (size > full_exp && digits[size - 1] == '0') --size; if (size != full_exp) *it++ = static_cast('.'); return copy_str(digits + full_exp, digits + size, it); } *it++ = static_cast('.'); it = copy_str(digits + full_exp, digits + size, it); if (params.num_digits > size) { // Add trailing zeros. int num_zeros = params.num_digits - size; it = std::fill_n(it, num_zeros, static_cast('0')); } } else { // 1234e-6 -> 0.001234 *it++ = static_cast('0'); *it++ = static_cast('.'); int num_zeros = -full_exp; if (params.num_digits >= 0 && params.num_digits < num_zeros) num_zeros = params.num_digits; it = std::fill_n(it, num_zeros, static_cast('0')); if (!params.trailing_zeros) while (size > 0 && digits[size - 1] == '0') --size; it = copy_str(digits, digits + size, it); } return it; } template void sprintf_format(Double, internal::buffer&, core_format_specs); template FMT_CONSTEXPR void handle_int_type_spec(char spec, Handler&& handler) { switch (spec) { case 0: case 'd': handler.on_dec(); break; case 'x': case 'X': handler.on_hex(); break; case 'b': case 'B': handler.on_bin(); break; case 'o': handler.on_oct(); break; case 'n': handler.on_num(); break; default: handler.on_error(); } } template FMT_CONSTEXPR void handle_float_type_spec(char spec, Handler&& handler) { switch (spec) { case 0: case 'g': case 'G': handler.on_general(); break; case 'e': case 'E': handler.on_exp(); break; case 'f': case 'F': handler.on_fixed(); break; case '%': handler.on_percent(); break; case 'a': case 'A': handler.on_hex(); break; default: handler.on_error(); break; } } template FMT_CONSTEXPR void handle_char_specs(const basic_format_specs* specs, Handler&& handler) { if (!specs) return handler.on_char(); if (specs->type && specs->type != 'c') return handler.on_int(); if (specs->align() == ALIGN_NUMERIC || specs->flags != 0) handler.on_error("invalid format specifier for char"); handler.on_char(); } template FMT_CONSTEXPR void handle_cstring_type_spec(Char spec, Handler&& handler) { if (spec == 0 || spec == 's') handler.on_string(); else if (spec == 'p') handler.on_pointer(); else handler.on_error("invalid type specifier"); } template FMT_CONSTEXPR void check_string_type_spec(Char spec, ErrorHandler&& eh) { if (spec != 0 && spec != 's') eh.on_error("invalid type specifier"); } template FMT_CONSTEXPR void check_pointer_type_spec(Char spec, ErrorHandler&& eh) { if (spec != 0 && spec != 'p') eh.on_error("invalid type specifier"); } template class int_type_checker : private ErrorHandler { public: FMT_CONSTEXPR explicit int_type_checker(ErrorHandler eh) : ErrorHandler(eh) {} FMT_CONSTEXPR void on_dec() {} FMT_CONSTEXPR void on_hex() {} FMT_CONSTEXPR void on_bin() {} FMT_CONSTEXPR void on_oct() {} FMT_CONSTEXPR void on_num() {} FMT_CONSTEXPR void on_error() { ErrorHandler::on_error("invalid type specifier"); } }; template class float_type_checker : private ErrorHandler { public: FMT_CONSTEXPR explicit float_type_checker(ErrorHandler eh) : ErrorHandler(eh) {} FMT_CONSTEXPR void on_general() {} FMT_CONSTEXPR void on_exp() {} FMT_CONSTEXPR void on_fixed() {} FMT_CONSTEXPR void on_percent() {} FMT_CONSTEXPR void on_hex() {} FMT_CONSTEXPR void on_error() { ErrorHandler::on_error("invalid type specifier"); } }; template class char_specs_checker : public ErrorHandler { private: char type_; public: FMT_CONSTEXPR char_specs_checker(char type, ErrorHandler eh) : ErrorHandler(eh), type_(type) {} FMT_CONSTEXPR void on_int() { handle_int_type_spec(type_, int_type_checker(*this)); } FMT_CONSTEXPR void on_char() {} }; template class cstring_type_checker : public ErrorHandler { public: FMT_CONSTEXPR explicit cstring_type_checker(ErrorHandler eh) : ErrorHandler(eh) {} FMT_CONSTEXPR void on_string() {} FMT_CONSTEXPR void on_pointer() {} }; template void arg_map::init(const basic_format_args& args) { if (map_) return; map_ = new entry[args.max_size()]; if (args.is_packed()) { for (unsigned i = 0; /*nothing*/; ++i) { internal::type arg_type = args.type(i); switch (arg_type) { case internal::none_type: return; case internal::named_arg_type: push_back(args.values_[i]); break; default: break; // Do nothing. } } } for (unsigned i = 0;; ++i) { switch (args.args_[i].type_) { case internal::none_type: return; case internal::named_arg_type: push_back(args.args_[i].value_); break; default: break; // Do nothing. } } } template class arg_formatter_base { public: typedef typename Range::value_type char_type; typedef decltype(std::declval().begin()) iterator; typedef basic_format_specs format_specs; private: typedef basic_writer writer_type; writer_type writer_; format_specs* specs_; struct char_writer { char_type value; size_t size() const { return 1; } size_t width() const { return 1; } template void operator()(It&& it) const { *it++ = value; } }; void write_char(char_type value) { if (specs_) writer_.write_padded(*specs_, char_writer{value}); else writer_.write(value); } void write_pointer(const void* p) { writer_.write_pointer(internal::bit_cast(p), specs_); } protected: writer_type& writer() { return writer_; } format_specs* spec() { return specs_; } iterator out() { return writer_.out(); } void write(bool value) { string_view sv(value ? "true" : "false"); specs_ ? writer_.write(sv, *specs_) : writer_.write(sv); } void write(const char_type* value) { if (!value) FMT_THROW(format_error("string pointer is null")); auto length = std::char_traits::length(value); basic_string_view sv(value, length); specs_ ? writer_.write(sv, *specs_) : writer_.write(sv); } public: arg_formatter_base(Range r, format_specs* s, locale_ref loc) : writer_(r, loc), specs_(s) {} iterator operator()(monostate) { FMT_ASSERT(false, "invalid argument type"); return out(); } template ::value)> iterator operator()(T value) { if (specs_) writer_.write_int(value, *specs_); else writer_.write(value); return out(); } iterator operator()(char_type value) { internal::handle_char_specs( specs_, char_spec_handler(*this, static_cast(value))); return out(); } iterator operator()(bool value) { if (specs_ && specs_->type) return (*this)(value ? 1 : 0); write(value != 0); return out(); } template ::value)> iterator operator()(T value) { writer_.write_double(value, specs_ ? *specs_ : format_specs()); return out(); } struct char_spec_handler : ErrorHandler { arg_formatter_base& formatter; char_type value; char_spec_handler(arg_formatter_base& f, char_type val) : formatter(f), value(val) {} void on_int() { if (formatter.specs_) formatter.writer_.write_int(value, *formatter.specs_); else formatter.writer_.write(value); } void on_char() { formatter.write_char(value); } }; struct cstring_spec_handler : internal::error_handler { arg_formatter_base& formatter; const char_type* value; cstring_spec_handler(arg_formatter_base& f, const char_type* val) : formatter(f), value(val) {} void on_string() { formatter.write(value); } void on_pointer() { formatter.write_pointer(value); } }; iterator operator()(const char_type* value) { if (!specs_) return write(value), out(); internal::handle_cstring_type_spec(specs_->type, cstring_spec_handler(*this, value)); return out(); } iterator operator()(basic_string_view value) { if (specs_) { internal::check_string_type_spec(specs_->type, internal::error_handler()); writer_.write(value, *specs_); } else { writer_.write(value); } return out(); } iterator operator()(const void* value) { if (specs_) check_pointer_type_spec(specs_->type, internal::error_handler()); write_pointer(value); return out(); } }; template FMT_CONSTEXPR bool is_name_start(Char c) { return ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || '_' == c; } // Parses the range [begin, end) as an unsigned integer. This function assumes // that the range is non-empty and the first character is a digit. template FMT_CONSTEXPR unsigned parse_nonnegative_int(const Char*& begin, const Char* end, ErrorHandler&& eh) { assert(begin != end && '0' <= *begin && *begin <= '9'); if (*begin == '0') { ++begin; return 0; } unsigned value = 0; // Convert to unsigned to prevent a warning. unsigned max_int = (std::numeric_limits::max)(); unsigned big = max_int / 10; do { // Check for overflow. if (value > big) { value = max_int + 1; break; } value = value * 10 + unsigned(*begin - '0'); ++begin; } while (begin != end && '0' <= *begin && *begin <= '9'); if (value > max_int) eh.on_error("number is too big"); return value; } template class custom_formatter : public function { private: typedef typename Context::char_type char_type; basic_parse_context& parse_ctx_; Context& ctx_; public: explicit custom_formatter(basic_parse_context& parse_ctx, Context& ctx) : parse_ctx_(parse_ctx), ctx_(ctx) {} bool operator()(typename basic_format_arg::handle h) const { h.format(parse_ctx_, ctx_); return true; } template bool operator()(T) const { return false; } }; template struct is_integer { enum { value = std::is_integral::value && !std::is_same::value && !std::is_same::value && !std::is_same::value }; }; template class width_checker : public function { public: explicit FMT_CONSTEXPR width_checker(ErrorHandler& eh) : handler_(eh) {} template ::value)> FMT_CONSTEXPR unsigned long long operator()(T value) { if (is_negative(value)) handler_.on_error("negative width"); return static_cast(value); } template ::value)> FMT_CONSTEXPR unsigned long long operator()(T) { handler_.on_error("width is not integer"); return 0; } private: ErrorHandler& handler_; }; template class precision_checker : public function { public: explicit FMT_CONSTEXPR precision_checker(ErrorHandler& eh) : handler_(eh) {} template ::value)> FMT_CONSTEXPR unsigned long long operator()(T value) { if (is_negative(value)) handler_.on_error("negative precision"); return static_cast(value); } template ::value)> FMT_CONSTEXPR unsigned long long operator()(T) { handler_.on_error("precision is not integer"); return 0; } private: ErrorHandler& handler_; }; // A format specifier handler that sets fields in basic_format_specs. template class specs_setter { public: explicit FMT_CONSTEXPR specs_setter(basic_format_specs& specs) : specs_(specs) {} FMT_CONSTEXPR specs_setter(const specs_setter& other) : specs_(other.specs_) {} FMT_CONSTEXPR void on_align(alignment align) { specs_.align_ = align; } FMT_CONSTEXPR void on_fill(Char fill) { specs_.fill_ = fill; } FMT_CONSTEXPR void on_plus() { specs_.flags |= SIGN_FLAG | PLUS_FLAG; } FMT_CONSTEXPR void on_minus() { specs_.flags |= MINUS_FLAG; } FMT_CONSTEXPR void on_space() { specs_.flags |= SIGN_FLAG; } FMT_CONSTEXPR void on_hash() { specs_.flags |= HASH_FLAG; } FMT_CONSTEXPR void on_zero() { specs_.align_ = ALIGN_NUMERIC; specs_.fill_ = '0'; } FMT_CONSTEXPR void on_width(unsigned width) { specs_.width_ = width; } FMT_CONSTEXPR void on_precision(unsigned precision) { specs_.precision = static_cast(precision); } FMT_CONSTEXPR void end_precision() {} FMT_CONSTEXPR void on_type(Char type) { specs_.type = static_cast(type); } protected: basic_format_specs& specs_; }; template class numeric_specs_checker { public: FMT_CONSTEXPR numeric_specs_checker(ErrorHandler& eh, internal::type arg_type) : error_handler_(eh), arg_type_(arg_type) {} FMT_CONSTEXPR void require_numeric_argument() { if (!is_arithmetic(arg_type_)) error_handler_.on_error("format specifier requires numeric argument"); } FMT_CONSTEXPR void check_sign() { require_numeric_argument(); if (is_integral(arg_type_) && arg_type_ != int_type && arg_type_ != long_long_type && arg_type_ != internal::char_type) { error_handler_.on_error("format specifier requires signed argument"); } } FMT_CONSTEXPR void check_precision() { if (is_integral(arg_type_) || arg_type_ == internal::pointer_type) error_handler_.on_error("precision not allowed for this argument type"); } private: ErrorHandler& error_handler_; internal::type arg_type_; }; // A format specifier handler that checks if specifiers are consistent with the // argument type. template class specs_checker : public Handler { public: FMT_CONSTEXPR specs_checker(const Handler& handler, internal::type arg_type) : Handler(handler), checker_(*this, arg_type) {} FMT_CONSTEXPR specs_checker(const specs_checker& other) : Handler(other), checker_(*this, other.arg_type_) {} FMT_CONSTEXPR void on_align(alignment align) { if (align == ALIGN_NUMERIC) checker_.require_numeric_argument(); Handler::on_align(align); } FMT_CONSTEXPR void on_plus() { checker_.check_sign(); Handler::on_plus(); } FMT_CONSTEXPR void on_minus() { checker_.check_sign(); Handler::on_minus(); } FMT_CONSTEXPR void on_space() { checker_.check_sign(); Handler::on_space(); } FMT_CONSTEXPR void on_hash() { checker_.require_numeric_argument(); Handler::on_hash(); } FMT_CONSTEXPR void on_zero() { checker_.require_numeric_argument(); Handler::on_zero(); } FMT_CONSTEXPR void end_precision() { checker_.check_precision(); } private: numeric_specs_checker checker_; }; template