/* Formatting library for C++ Copyright (c) 2012 - present, Victor Zverovich All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef FMT_FORMAT_H_ #define FMT_FORMAT_H_ #include #include #include #include #include #include #include #include #ifdef __clang__ # define FMT_CLANG_VERSION (__clang_major__ * 100 + __clang_minor__) #else # define FMT_CLANG_VERSION 0 #endif #ifdef __INTEL_COMPILER # define FMT_ICC_VERSION __INTEL_COMPILER #elif defined(__ICL) # define FMT_ICC_VERSION __ICL #else # define FMT_ICC_VERSION 0 #endif #include "core.h" #if FMT_GCC_VERSION >= 406 || FMT_CLANG_VERSION # pragma GCC diagnostic push // Disable the warning about declaration shadowing because it affects too // many valid cases. # pragma GCC diagnostic ignored "-Wshadow" // Disable the warning about implicit conversions that may change the sign of // an integer; silencing it otherwise would require many explicit casts. # pragma GCC diagnostic ignored "-Wsign-conversion" #endif #ifdef _SECURE_SCL # define FMT_SECURE_SCL _SECURE_SCL #else # define FMT_SECURE_SCL 0 #endif #if FMT_SECURE_SCL # include #endif #ifdef __has_builtin # define FMT_HAS_BUILTIN(x) __has_builtin(x) #else # define FMT_HAS_BUILTIN(x) 0 #endif #ifdef __GNUC_LIBSTD__ # define FMT_GNUC_LIBSTD_VERSION (__GNUC_LIBSTD__ * 100 + __GNUC_LIBSTD_MINOR__) #endif #ifndef FMT_THROW # if FMT_EXCEPTIONS # if FMT_MSC_VER FMT_BEGIN_NAMESPACE namespace internal { template inline void do_throw(const Exception &x) { // Silence unreachable code warnings in MSVC because these are nearly // impossible to fix in a generic code. volatile bool b = true; if (b) throw x; } } FMT_END_NAMESPACE # define FMT_THROW(x) fmt::internal::do_throw(x) # else # define FMT_THROW(x) throw x # endif # else # define FMT_THROW(x) do { static_cast(sizeof(x)); assert(false); } while(false); # endif #endif #ifndef FMT_USE_USER_DEFINED_LITERALS // For Intel's compiler both it and the system gcc/msc must support UDLs. # if (FMT_HAS_FEATURE(cxx_user_literals) || \ FMT_GCC_VERSION >= 407 || FMT_MSC_VER >= 1900) && \ (!FMT_ICC_VERSION || FMT_ICC_VERSION >= 1500) # define FMT_USE_USER_DEFINED_LITERALS 1 # else # define FMT_USE_USER_DEFINED_LITERALS 0 # endif #endif #if FMT_USE_USER_DEFINED_LITERALS && !defined(FMT_ICC_VERSION) && \ ((FMT_GCC_VERSION >= 600 && __cplusplus >= 201402L) || \ (defined(FMT_CLANG_VERSION) && FMT_CLANG_VERSION >= 304)) # define FMT_UDL_TEMPLATE 1 #else # define FMT_UDL_TEMPLATE 0 #endif #ifndef FMT_USE_EXTERN_TEMPLATES # ifndef FMT_HEADER_ONLY # define FMT_USE_EXTERN_TEMPLATES \ ((FMT_CLANG_VERSION >= 209 && __cplusplus >= 201103L) || \ (FMT_GCC_VERSION >= 303 && FMT_HAS_GXX_CXX11)) # else # define FMT_USE_EXTERN_TEMPLATES 0 # endif #endif #if FMT_HAS_GXX_CXX11 || FMT_HAS_FEATURE(cxx_trailing_return) || \ FMT_MSC_VER >= 1600 # define FMT_USE_TRAILING_RETURN 1 #else # define FMT_USE_TRAILING_RETURN 0 #endif #if FMT_HAS_GXX_CXX11 || FMT_HAS_FEATURE(cxx_rvalue_references) || \ FMT_MSC_VER >= 1600 # define FMT_USE_RVALUE_REFERENCES 1 #else # define FMT_USE_RVALUE_REFERENCES 0 #endif #ifndef FMT_USE_GRISU # define FMT_USE_GRISU 0 #endif // __builtin_clz is broken in clang with Microsoft CodeGen: // https://github.com/fmtlib/fmt/issues/519 #ifndef _MSC_VER # if FMT_GCC_VERSION >= 400 || FMT_HAS_BUILTIN(__builtin_clz) # define FMT_BUILTIN_CLZ(n) __builtin_clz(n) # endif # if FMT_GCC_VERSION >= 400 || FMT_HAS_BUILTIN(__builtin_clzll) # define FMT_BUILTIN_CLZLL(n) __builtin_clzll(n) # endif #endif // A workaround for gcc 4.4 that doesn't support union members with ctors. #if (FMT_GCC_VERSION && FMT_GCC_VERSION <= 404) || \ (FMT_MSC_VER && FMT_MSC_VER <= 1800) # define FMT_UNION struct #else # define FMT_UNION union #endif // Some compilers masquerade as both MSVC and GCC-likes or otherwise support // __builtin_clz and __builtin_clzll, so only define FMT_BUILTIN_CLZ using the // MSVC intrinsics if the clz and clzll builtins are not available. #if FMT_MSC_VER && !defined(FMT_BUILTIN_CLZLL) && !defined(_MANAGED) # include // _BitScanReverse, _BitScanReverse64 FMT_BEGIN_NAMESPACE namespace internal { // Avoid Clang with Microsoft CodeGen's -Wunknown-pragmas warning. # ifndef __clang__ # pragma intrinsic(_BitScanReverse) # endif inline uint32_t clz(uint32_t x) { unsigned long r = 0; _BitScanReverse(&r, x); assert(x != 0); // Static analysis complains about using uninitialized data // "r", but the only way that can happen is if "x" is 0, // which the callers guarantee to not happen. # pragma warning(suppress: 6102) return 31 - r; } # define FMT_BUILTIN_CLZ(n) fmt::internal::clz(n) # if defined(_WIN64) && !defined(__clang__) # pragma intrinsic(_BitScanReverse64) # endif inline uint32_t clzll(uint64_t x) { unsigned long r = 0; # ifdef _WIN64 _BitScanReverse64(&r, x); # else // Scan the high 32 bits. if (_BitScanReverse(&r, static_cast(x >> 32))) return 63 - (r + 32); // Scan the low 32 bits. _BitScanReverse(&r, static_cast(x)); # endif assert(x != 0); // Static analysis complains about using uninitialized data // "r", but the only way that can happen is if "x" is 0, // which the callers guarantee to not happen. # pragma warning(suppress: 6102) return 63 - r; } # define FMT_BUILTIN_CLZLL(n) fmt::internal::clzll(n) } FMT_END_NAMESPACE #endif FMT_BEGIN_NAMESPACE namespace internal { // An equivalent of `*reinterpret_cast(&source)` that doesn't produce // undefined behavior (e.g. due to type aliasing). // Example: uint64_t d = bit_cast(2.718); template inline Dest bit_cast(const Source& source) { static_assert(sizeof(Dest) == sizeof(Source), "size mismatch"); Dest dest; std::memcpy(&dest, &source, sizeof(dest)); return dest; } // An implementation of begin and end for pre-C++11 compilers such as gcc 4. template FMT_CONSTEXPR auto begin(const C &c) -> decltype(c.begin()) { return c.begin(); } template FMT_CONSTEXPR T *begin(T (&array)[N]) FMT_NOEXCEPT { return array; } template FMT_CONSTEXPR auto end(const C &c) -> decltype(c.end()) { return c.end(); } template FMT_CONSTEXPR T *end(T (&array)[N]) FMT_NOEXCEPT { return array + N; } // For std::result_of in gcc 4.4. template struct function { template struct result { typedef Result type; }; }; struct dummy_int { int data[2]; operator int() const { return 0; } }; typedef std::numeric_limits fputil; // Dummy implementations of system functions such as signbit and ecvt called // if the latter are not available. inline dummy_int signbit(...) { return dummy_int(); } inline dummy_int _ecvt_s(...) { return dummy_int(); } inline dummy_int isinf(...) { return dummy_int(); } inline dummy_int _finite(...) { return dummy_int(); } inline dummy_int isnan(...) { return dummy_int(); } inline dummy_int _isnan(...) { return dummy_int(); } // A handmade floating-point number f * pow(2, e). class fp { private: typedef uint64_t significand_type; // All sizes are in bits. static FMT_CONSTEXPR_DECL const int char_size = std::numeric_limits::digits; // Subtract 1 to account for an implicit most significant bit in the // normalized form. static FMT_CONSTEXPR_DECL const int double_significand_size = std::numeric_limits::digits - 1; static FMT_CONSTEXPR_DECL const uint64_t implicit_bit = 1ull << double_significand_size; public: significand_type f; int e; static FMT_CONSTEXPR_DECL const int significand_size = sizeof(significand_type) * char_size; fp(uint64_t f, int e): f(f), e(e) {} // Constructs fp from an IEEE754 double. It is a template to prevent compile // errors on platforms where double is not IEEE754. template explicit fp(Double d) { // Assume double is in the format [sign][exponent][significand]. typedef std::numeric_limits limits; const int double_size = sizeof(Double) * char_size; const int exponent_size = double_size - double_significand_size - 1; // -1 for sign const uint64_t significand_mask = implicit_bit - 1; const uint64_t exponent_mask = (~0ull >> 1) & ~significand_mask; const int exponent_bias = (1 << exponent_size) - limits::max_exponent - 1; auto u = bit_cast(d); auto biased_e = (u & exponent_mask) >> double_significand_size; f = u & significand_mask; if (biased_e != 0) f += implicit_bit; else biased_e = 1; // Subnormals use biased exponent 1 (min exponent). e = static_cast(biased_e - exponent_bias - double_significand_size); } // Normalizes the value converted from double and multiplied by (1 << SHIFT). template void normalize() { // Handle subnormals. auto shifted_implicit_bit = implicit_bit << SHIFT; while ((f & shifted_implicit_bit) == 0) { f <<= 1; --e; } // Subtract 1 to account for hidden bit. auto offset = significand_size - double_significand_size - SHIFT - 1; f <<= offset; e -= offset; } }; // Returns an fp number representing x - y. Result may not be normalized. inline fp operator-(fp x, fp y) { FMT_ASSERT(x.f >= y.f && x.e == y.e, "invalid operands"); return fp(x.f - y.f, x.e); } // Computes an fp number r with r.f = x.f * y.f / pow(2, 64) rounded to nearest // with half-up tie breaking, r.e = x.e + y.e + 64. Result may not be normalized. FMT_API fp operator*(fp x, fp y); // Returns cached power (of 10) c_k = c_k.f * pow(2, c_k.e) such that its // (binary) exponent satisfies min_exponent <= c_k.e <= min_exponent + 3. FMT_API fp get_cached_power(int min_exponent, int &pow10_exponent); template typename Allocator::value_type *allocate(Allocator& alloc, std::size_t n) { #if __cplusplus >= 201103L || FMT_MSC_VER >= 1700 return std::allocator_traits::allocate(alloc, n); #else return alloc.allocate(n); #endif } // A helper function to suppress bogus "conditional expression is constant" // warnings. template inline T const_check(T value) { return value; } } // namespace internal FMT_END_NAMESPACE namespace std { // Standard permits specialization of std::numeric_limits. This specialization // is used to resolve ambiguity between isinf and std::isinf in glibc: // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=48891 // and the same for isnan and signbit. template <> class numeric_limits : public std::numeric_limits { public: // Portable version of isinf. template static bool isinfinity(T x) { using namespace fmt::internal; // The resolution "priority" is: // isinf macro > std::isinf > ::isinf > fmt::internal::isinf if (const_check(sizeof(isinf(x)) != sizeof(dummy_int))) return isinf(x) != 0; return !_finite(static_cast(x)); } // Portable version of isnan. template static bool isnotanumber(T x) { using namespace fmt::internal; if (const_check(sizeof(isnan(x)) != sizeof(fmt::internal::dummy_int))) return isnan(x) != 0; return _isnan(static_cast(x)) != 0; } // Portable version of signbit. static bool isnegative(double x) { using namespace fmt::internal; if (const_check(sizeof(signbit(x)) != sizeof(fmt::internal::dummy_int))) return signbit(x) != 0; if (x < 0) return true; if (!isnotanumber(x)) return false; int dec = 0, sign = 0; char buffer[2]; // The buffer size must be >= 2 or _ecvt_s will fail. _ecvt_s(buffer, sizeof(buffer), x, 0, &dec, &sign); return sign != 0; } }; } // namespace std FMT_BEGIN_NAMESPACE template class basic_writer; template class output_range { private: OutputIt it_; // Unused yet. typedef void sentinel; sentinel end() const; public: typedef OutputIt iterator; typedef T value_type; explicit output_range(OutputIt it): it_(it) {} OutputIt begin() const { return it_; } }; // A range where begin() returns back_insert_iterator. template class back_insert_range: public output_range> { typedef output_range> base; public: typedef typename Container::value_type value_type; back_insert_range(Container &c): base(std::back_inserter(c)) {} back_insert_range(typename base::iterator it): base(it) {} }; typedef basic_writer> writer; typedef basic_writer> wwriter; /** A formatting error such as invalid format string. */ class format_error : public std::runtime_error { public: explicit format_error(const char *message) : std::runtime_error(message) {} explicit format_error(const std::string &message) : std::runtime_error(message) {} }; namespace internal { #if FMT_SECURE_SCL template struct checked { typedef stdext::checked_array_iterator type; }; // Make a checked iterator to avoid warnings on MSVC. template inline stdext::checked_array_iterator make_checked(T *p, std::size_t size) { return {p, size}; } #else template struct checked { typedef T *type; }; template inline T *make_checked(T *p, std::size_t) { return p; } #endif template template void basic_buffer::append(const U *begin, const U *end) { std::size_t new_size = size_ + internal::to_unsigned(end - begin); reserve(new_size); std::uninitialized_copy(begin, end, internal::make_checked(ptr_, capacity_) + size_); size_ = new_size; } } // namespace internal // A wrapper around std::locale used to reduce compile times since // is very heavy. class locale; class locale_provider { public: virtual ~locale_provider() {} virtual fmt::locale locale(); }; // The number of characters to store in the basic_memory_buffer object itself // to avoid dynamic memory allocation. enum { inline_buffer_size = 500 }; /** \rst A dynamically growing memory buffer for trivially copyable/constructible types with the first ``SIZE`` elements stored in the object itself. You can use one of the following typedefs for common character types: +----------------+------------------------------+ | Type | Definition | +================+==============================+ | memory_buffer | basic_memory_buffer | +----------------+------------------------------+ | wmemory_buffer | basic_memory_buffer | +----------------+------------------------------+ **Example**:: fmt::memory_buffer out; format_to(out, "The answer is {}.", 42); This will write the following output to the ``out`` object: .. code-block:: none The answer is 42. The output can be converted to an ``std::string`` with ``to_string(out)``. \endrst */ template > class basic_memory_buffer: private Allocator, public internal::basic_buffer { private: T store_[SIZE]; // Deallocate memory allocated by the buffer. void deallocate() { T* data = this->data(); if (data != store_) Allocator::deallocate(data, this->capacity()); } protected: void grow(std::size_t size) FMT_OVERRIDE; public: explicit basic_memory_buffer(const Allocator &alloc = Allocator()) : Allocator(alloc) { this->set(store_, SIZE); } ~basic_memory_buffer() { deallocate(); } private: // Move data from other to this buffer. void move(basic_memory_buffer &other) { Allocator &this_alloc = *this, &other_alloc = other; this_alloc = std::move(other_alloc); T* data = other.data(); std::size_t size = other.size(), capacity = other.capacity(); if (data == other.store_) { this->set(store_, capacity); std::uninitialized_copy(other.store_, other.store_ + size, internal::make_checked(store_, capacity)); } else { this->set(data, capacity); // Set pointer to the inline array so that delete is not called // when deallocating. other.set(other.store_, 0); } this->resize(size); } public: /** \rst Constructs a :class:`fmt::basic_memory_buffer` object moving the content of the other object to it. \endrst */ basic_memory_buffer(basic_memory_buffer &&other) { move(other); } /** \rst Moves the content of the other ``basic_memory_buffer`` object to this one. \endrst */ basic_memory_buffer &operator=(basic_memory_buffer &&other) { assert(this != &other); deallocate(); move(other); return *this; } // Returns a copy of the allocator associated with this buffer. Allocator get_allocator() const { return *this; } }; template void basic_memory_buffer::grow(std::size_t size) { std::size_t old_capacity = this->capacity(); std::size_t new_capacity = old_capacity + old_capacity / 2; if (size > new_capacity) new_capacity = size; T *old_data = this->data(); T *new_data = internal::allocate(*this, new_capacity); // The following code doesn't throw, so the raw pointer above doesn't leak. std::uninitialized_copy(old_data, old_data + this->size(), internal::make_checked(new_data, new_capacity)); this->set(new_data, new_capacity); // deallocate must not throw according to the standard, but even if it does, // the buffer already uses the new storage and will deallocate it in // destructor. if (old_data != store_) Allocator::deallocate(old_data, old_capacity); } typedef basic_memory_buffer memory_buffer; typedef basic_memory_buffer wmemory_buffer; /** \rst A fixed-size memory buffer. For a dynamically growing buffer use :class:`fmt::basic_memory_buffer`. Trying to increase the buffer size past the initial capacity will throw ``std::runtime_error``. \endrst */ template class basic_fixed_buffer : public internal::basic_buffer { public: /** \rst Constructs a :class:`fmt::basic_fixed_buffer` object for *array* of the given size. \endrst */ basic_fixed_buffer(Char *array, std::size_t size) { this->set(array, size); } /** \rst Constructs a :class:`fmt::basic_fixed_buffer` object for *array* of the size known at compile time. \endrst */ template explicit basic_fixed_buffer(Char (&array)[SIZE]) { this->set(array, SIZE); } protected: FMT_API void grow(std::size_t size) FMT_OVERRIDE; }; namespace internal { template struct char_traits; template <> struct char_traits { // Formats a floating-point number. template FMT_API static int format_float(char *buffer, std::size_t size, const char *format, int precision, T value); }; template <> struct char_traits { template FMT_API static int format_float(wchar_t *buffer, std::size_t size, const wchar_t *format, int precision, T value); }; #if FMT_USE_EXTERN_TEMPLATES extern template int char_traits::format_float( char *buffer, std::size_t size, const char* format, int precision, double value); extern template int char_traits::format_float( char *buffer, std::size_t size, const char* format, int precision, long double value); extern template int char_traits::format_float( wchar_t *buffer, std::size_t size, const wchar_t* format, int precision, double value); extern template int char_traits::format_float( wchar_t *buffer, std::size_t size, const wchar_t* format, int precision, long double value); #endif template inline typename std::enable_if< is_contiguous::value, typename checked::type>::type reserve(std::back_insert_iterator &it, std::size_t n) { Container &c = internal::get_container(it); std::size_t size = c.size(); c.resize(size + n); return make_checked(&c[size], n); } template inline Iterator &reserve(Iterator &it, std::size_t) { return it; } template class null_terminating_iterator; template FMT_CONSTEXPR_DECL const Char *pointer_from(null_terminating_iterator it); // An iterator that produces a null terminator on *end. This simplifies parsing // and allows comparing the performance of processing a null-terminated string // vs string_view. template class null_terminating_iterator { public: typedef std::ptrdiff_t difference_type; typedef Char value_type; typedef const Char* pointer; typedef const Char& reference; typedef std::random_access_iterator_tag iterator_category; null_terminating_iterator() : ptr_(0), end_(0) {} FMT_CONSTEXPR null_terminating_iterator(const Char *ptr, const Char *end) : ptr_(ptr), end_(end) {} template FMT_CONSTEXPR explicit null_terminating_iterator(const Range &r) : ptr_(r.begin()), end_(r.end()) {} FMT_CONSTEXPR null_terminating_iterator &operator=(const Char *ptr) { assert(ptr <= end_); ptr_ = ptr; return *this; } FMT_CONSTEXPR Char operator*() const { return ptr_ != end_ ? *ptr_ : 0; } FMT_CONSTEXPR null_terminating_iterator operator++() { ++ptr_; return *this; } FMT_CONSTEXPR null_terminating_iterator operator++(int) { null_terminating_iterator result(*this); ++ptr_; return result; } FMT_CONSTEXPR null_terminating_iterator operator--() { --ptr_; return *this; } FMT_CONSTEXPR null_terminating_iterator operator+(difference_type n) { return null_terminating_iterator(ptr_ + n, end_); } FMT_CONSTEXPR null_terminating_iterator operator-(difference_type n) { return null_terminating_iterator(ptr_ - n, end_); } FMT_CONSTEXPR null_terminating_iterator operator+=(difference_type n) { ptr_ += n; return *this; } FMT_CONSTEXPR difference_type operator-( null_terminating_iterator other) const { return ptr_ - other.ptr_; } FMT_CONSTEXPR bool operator!=(null_terminating_iterator other) const { return ptr_ != other.ptr_; } bool operator>=(null_terminating_iterator other) const { return ptr_ >= other.ptr_; } // This should be a friend specialization pointer_from but the latter // doesn't compile by gcc 5.1 due to a compiler bug. template friend FMT_CONSTEXPR_DECL const CharT *pointer_from( null_terminating_iterator it); private: const Char *ptr_; const Char *end_; }; template FMT_CONSTEXPR const T *pointer_from(const T *p) { return p; } template FMT_CONSTEXPR const Char *pointer_from(null_terminating_iterator it) { return it.ptr_; } // An output iterator that counts the number of objects written to it and // discards them. template class counting_iterator { private: std::size_t count_; mutable T blackhole_; public: typedef std::output_iterator_tag iterator_category; typedef T value_type; typedef std::ptrdiff_t difference_type; typedef T* pointer; typedef T& reference; typedef counting_iterator _Unchecked_type; // Mark iterator as checked. counting_iterator(): count_(0) {} std::size_t count() const { return count_; } counting_iterator& operator++() { ++count_; return *this; } counting_iterator operator++(int) { auto it = *this; ++*this; return it; } T &operator*() const { return blackhole_; } }; // An output iterator that truncates the output and counts the number of objects // written to it. template class truncating_iterator { private: typedef std::iterator_traits traits; OutputIt out_; std::size_t limit_; std::size_t count_; mutable typename traits::value_type blackhole_; public: typedef std::output_iterator_tag iterator_category; typedef typename traits::value_type value_type; typedef typename traits::difference_type difference_type; typedef typename traits::pointer pointer; typedef typename traits::reference reference; typedef truncating_iterator _Unchecked_type; // Mark iterator as checked. truncating_iterator(OutputIt out, std::size_t limit) : out_(out), limit_(limit), count_(0) {} OutputIt base() const { return out_; } std::size_t count() const { return count_; } truncating_iterator& operator++() { if (count_++ < limit_) ++out_; return *this; } truncating_iterator operator++(int) { auto it = *this; ++*this; return it; } reference operator*() const { return count_ < limit_ ? *out_ : blackhole_; } }; // Returns true if value is negative, false otherwise. // Same as (value < 0) but doesn't produce warnings if T is an unsigned type. template FMT_CONSTEXPR typename std::enable_if< std::numeric_limits::is_signed, bool>::type is_negative(T value) { return value < 0; } template FMT_CONSTEXPR typename std::enable_if< !std::numeric_limits::is_signed, bool>::type is_negative(T) { return false; } template struct int_traits { // Smallest of uint32_t and uint64_t that is large enough to represent // all values of T. typedef typename std::conditional< std::numeric_limits::digits <= 32, uint32_t, uint64_t>::type main_type; }; // Static data is placed in this class template to allow header-only // configuration. template struct FMT_API basic_data { static const uint32_t POWERS_OF_10_32[]; static const uint64_t POWERS_OF_10_64[]; static const uint64_t POW10_SIGNIFICANDS[]; static const int16_t POW10_EXPONENTS[]; static const char DIGITS[]; static const char RESET_COLOR[]; static const wchar_t WRESET_COLOR[]; }; #if FMT_USE_EXTERN_TEMPLATES extern template struct basic_data; #endif typedef basic_data<> data; #ifdef FMT_BUILTIN_CLZLL // Returns the number of decimal digits in n. Leading zeros are not counted // except for n == 0 in which case count_digits returns 1. inline unsigned count_digits(uint64_t n) { // Based on http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10 // and the benchmark https://github.com/localvoid/cxx-benchmark-count-digits. int t = (64 - FMT_BUILTIN_CLZLL(n | 1)) * 1233 >> 12; return to_unsigned(t) - (n < data::POWERS_OF_10_64[t]) + 1; } #else // Fallback version of count_digits used when __builtin_clz is not available. inline unsigned count_digits(uint64_t n) { unsigned count = 1; for (;;) { // Integer division is slow so do it for a group of four digits instead // of for every digit. The idea comes from the talk by Alexandrescu // "Three Optimization Tips for C++". See speed-test for a comparison. if (n < 10) return count; if (n < 100) return count + 1; if (n < 1000) return count + 2; if (n < 10000) return count + 3; n /= 10000u; count += 4; } } #endif #if FMT_HAS_CPP_ATTRIBUTE(always_inline) # define FMT_ALWAYS_INLINE __attribute__((always_inline)) #else # define FMT_ALWAYS_INLINE #endif template inline char *lg(uint32_t n, Handler h) FMT_ALWAYS_INLINE; // Computes g = floor(log10(n)) and calls h.on(n); template inline char *lg(uint32_t n, Handler h) { return n < 100 ? n < 10 ? h.template on<0>(n) : h.template on<1>(n) : n < 1000000 ? n < 10000 ? n < 1000 ? h.template on<2>(n) : h.template on<3>(n) : n < 100000 ? h.template on<4>(n) : h.template on<5>(n) : n < 100000000 ? n < 10000000 ? h.template on<6>(n) : h.template on<7>(n) : n < 1000000000 ? h.template on<8>(n) : h.template on<9>(n); } // An lg handler that formats a decimal number. // Usage: lg(n, decimal_formatter(buffer)); class decimal_formatter { private: char *buffer_; void write_pair(unsigned N, uint32_t index) { std::memcpy(buffer_ + N, data::DIGITS + index * 2, 2); } public: explicit decimal_formatter(char *buf) : buffer_(buf) {} template char *on(uint32_t u) { if (N == 0) { *buffer_ = static_cast(u) + '0'; } else if (N == 1) { write_pair(0, u); } else { // The idea of using 4.32 fixed-point numbers is based on // https://github.com/jeaiii/itoa unsigned n = N - 1; unsigned a = n / 5 * n * 53 / 16; uint64_t t = ((1ULL << (32 + a)) / data::POWERS_OF_10_32[n] + 1 - n / 9); t = ((t * u) >> a) + n / 5 * 4; write_pair(0, t >> 32); for (unsigned i = 2; i < N; i += 2) { t = 100ULL * static_cast(t); write_pair(i, t >> 32); } if (N % 2 == 0) { buffer_[N] = static_cast( (10ULL * static_cast(t)) >> 32) + '0'; } } return buffer_ += N + 1; } }; // An lg handler that formats a decimal number with a terminating null. class decimal_formatter_null : public decimal_formatter { public: explicit decimal_formatter_null(char *buf) : decimal_formatter(buf) {} template char *on(uint32_t u) { char *buf = decimal_formatter::on(u); *buf = '\0'; return buf; } }; #ifdef FMT_BUILTIN_CLZ // Optional version of count_digits for better performance on 32-bit platforms. inline unsigned count_digits(uint32_t n) { int t = (32 - FMT_BUILTIN_CLZ(n | 1)) * 1233 >> 12; return to_unsigned(t) - (n < data::POWERS_OF_10_32[t]) + 1; } #endif // A functor that doesn't add a thousands separator. struct no_thousands_sep { typedef char char_type; template void operator()(Char *) {} }; // A functor that adds a thousands separator. template class add_thousands_sep { private: basic_string_view sep_; // Index of a decimal digit with the least significant digit having index 0. unsigned digit_index_; public: typedef Char char_type; explicit add_thousands_sep(basic_string_view sep) : sep_(sep), digit_index_(0) {} void operator()(Char *&buffer) { if (++digit_index_ % 3 != 0) return; buffer -= sep_.size(); std::uninitialized_copy(sep_.data(), sep_.data() + sep_.size(), internal::make_checked(buffer, sep_.size())); } }; template FMT_API Char thousands_sep(locale_provider *lp); // Formats a decimal unsigned integer value writing into buffer. // thousands_sep is a functor that is called after writing each char to // add a thousands separator if necessary. template inline Char *format_decimal(Char *buffer, UInt value, unsigned num_digits, ThousandsSep thousands_sep) { buffer += num_digits; Char *end = buffer; while (value >= 100) { // Integer division is slow so do it for a group of two digits instead // of for every digit. The idea comes from the talk by Alexandrescu // "Three Optimization Tips for C++". See speed-test for a comparison. unsigned index = static_cast((value % 100) * 2); value /= 100; *--buffer = data::DIGITS[index + 1]; thousands_sep(buffer); *--buffer = data::DIGITS[index]; thousands_sep(buffer); } if (value < 10) { *--buffer = static_cast('0' + value); return end; } unsigned index = static_cast(value * 2); *--buffer = data::DIGITS[index + 1]; thousands_sep(buffer); *--buffer = data::DIGITS[index]; return end; } template inline Iterator format_decimal( Iterator out, UInt value, unsigned num_digits, ThousandsSep sep) { typedef typename ThousandsSep::char_type char_type; // Buffer should be large enough to hold all digits (digits10 + 1) and null. char_type buffer[std::numeric_limits::digits10 + 2]; format_decimal(buffer, value, num_digits, sep); return std::copy_n(buffer, num_digits, out); } template inline It format_decimal(It out, UInt value, unsigned num_digits) { return format_decimal(out, value, num_digits, no_thousands_sep()); } template inline Char *format_uint(Char *buffer, UInt value, unsigned num_digits, bool upper = false) { buffer += num_digits; Char *end = buffer; do { const char *digits = upper ? "0123456789ABCDEF" : "0123456789abcdef"; unsigned digit = (value & ((1 << BASE_BITS) - 1)); *--buffer = BASE_BITS < 4 ? static_cast('0' + digit) : digits[digit]; } while ((value >>= BASE_BITS) != 0); return end; } template inline It format_uint(It out, UInt value, unsigned num_digits, bool upper = false) { // Buffer should be large enough to hold all digits (digits / BASE_BITS + 1) // and null. char buffer[std::numeric_limits::digits / BASE_BITS + 2]; format_uint(buffer, value, num_digits, upper); return std::copy_n(buffer, num_digits, out); } #ifndef _WIN32 # define FMT_USE_WINDOWS_H 0 #elif !defined(FMT_USE_WINDOWS_H) # define FMT_USE_WINDOWS_H 1 #endif // Define FMT_USE_WINDOWS_H to 0 to disable use of windows.h. // All the functionality that relies on it will be disabled too. #if FMT_USE_WINDOWS_H // A converter from UTF-8 to UTF-16. // It is only provided for Windows since other systems support UTF-8 natively. class utf8_to_utf16 { private: wmemory_buffer buffer_; public: FMT_API explicit utf8_to_utf16(string_view s); operator wstring_view() const { return wstring_view(&buffer_[0], size()); } size_t size() const { return buffer_.size() - 1; } const wchar_t *c_str() const { return &buffer_[0]; } std::wstring str() const { return std::wstring(&buffer_[0], size()); } }; // A converter from UTF-16 to UTF-8. // It is only provided for Windows since other systems support UTF-8 natively. class utf16_to_utf8 { private: memory_buffer buffer_; public: utf16_to_utf8() {} FMT_API explicit utf16_to_utf8(wstring_view s); operator string_view() const { return string_view(&buffer_[0], size()); } size_t size() const { return buffer_.size() - 1; } const char *c_str() const { return &buffer_[0]; } std::string str() const { return std::string(&buffer_[0], size()); } // Performs conversion returning a system error code instead of // throwing exception on conversion error. This method may still throw // in case of memory allocation error. FMT_API int convert(wstring_view s); }; FMT_API void format_windows_error(fmt::internal::buffer &out, int error_code, fmt::string_view message) FMT_NOEXCEPT; #endif template struct null {}; } // namespace internal struct monostate {}; /** \rst Visits an argument dispatching to the appropriate visit method based on the argument type. For example, if the argument type is ``double`` then ``vis(value)`` will be called with the value of type ``double``. \endrst */ template FMT_CONSTEXPR typename internal::result_of::type visit(Visitor &&vis, basic_format_arg arg) { typedef typename Context::char_type char_type; switch (arg.type_) { case internal::none_type: break; case internal::named_arg_type: FMT_ASSERT(false, "invalid argument type"); break; case internal::int_type: return vis(arg.value_.int_value); case internal::uint_type: return vis(arg.value_.uint_value); case internal::long_long_type: return vis(arg.value_.long_long_value); case internal::ulong_long_type: return vis(arg.value_.ulong_long_value); case internal::bool_type: return vis(arg.value_.int_value != 0); case internal::char_type: return vis(static_cast(arg.value_.int_value)); case internal::double_type: return vis(arg.value_.double_value); case internal::long_double_type: return vis(arg.value_.long_double_value); case internal::cstring_type: return vis(arg.value_.string.value); case internal::string_type: return vis(basic_string_view( arg.value_.string.value, arg.value_.string.size)); case internal::pointer_type: return vis(arg.value_.pointer); case internal::custom_type: return vis(typename basic_format_arg::handle(arg.value_.custom)); } return vis(monostate()); } enum alignment { ALIGN_DEFAULT, ALIGN_LEFT, ALIGN_RIGHT, ALIGN_CENTER, ALIGN_NUMERIC }; // Flags. enum {SIGN_FLAG = 1, PLUS_FLAG = 2, MINUS_FLAG = 4, HASH_FLAG = 8}; enum format_spec_tag {fill_tag, align_tag, width_tag, type_tag}; // Format specifier. template class format_spec { private: T value_; public: typedef T value_type; explicit format_spec(T value) : value_(value) {} T value() const { return value_; } }; // template // typedef format_spec fill_spec; template class fill_spec : public format_spec { public: explicit fill_spec(Char value) : format_spec(value) {} }; typedef format_spec width_spec; typedef format_spec type_spec; // An empty format specifier. struct empty_spec {}; // An alignment specifier. struct align_spec : empty_spec { unsigned width_; // Fill is always wchar_t and cast to char if necessary to avoid having // two specialization of AlignSpec and its subclasses. wchar_t fill_; alignment align_; FMT_CONSTEXPR align_spec( unsigned width, wchar_t fill, alignment align = ALIGN_DEFAULT) : width_(width), fill_(fill), align_(align) {} FMT_CONSTEXPR unsigned width() const { return width_; } FMT_CONSTEXPR wchar_t fill() const { return fill_; } FMT_CONSTEXPR alignment align() const { return align_; } int precision() const { return -1; } }; // Format specifiers. template class basic_format_specs : public align_spec { public: unsigned flags_; int precision_; Char type_; FMT_CONSTEXPR basic_format_specs( unsigned width = 0, char type = 0, wchar_t fill = ' ') : align_spec(width, fill), flags_(0), precision_(-1), type_(type) {} FMT_CONSTEXPR bool flag(unsigned f) const { return (flags_ & f) != 0; } FMT_CONSTEXPR int precision() const { return precision_; } FMT_CONSTEXPR Char type() const { return type_; } }; typedef basic_format_specs format_specs; template FMT_CONSTEXPR unsigned basic_parse_context::next_arg_id() { if (next_arg_id_ >= 0) return internal::to_unsigned(next_arg_id_++); on_error("cannot switch from manual to automatic argument indexing"); return 0; } struct format_string {}; namespace internal { template FMT_CONSTEXPR void handle_int_type_spec(Char spec, Handler &&handler) { switch (spec) { case 0: case 'd': handler.on_dec(); break; case 'x': case 'X': handler.on_hex(); break; case 'b': case 'B': handler.on_bin(); break; case 'o': handler.on_oct(); break; case 'n': handler.on_num(); break; default: handler.on_error(); } } template FMT_CONSTEXPR void handle_float_type_spec(Char spec, Handler &&handler) { switch (spec) { case 0: case 'g': case 'G': handler.on_general(); break; case 'e': case 'E': handler.on_exp(); break; case 'f': case 'F': handler.on_fixed(); break; case 'a': case 'A': handler.on_hex(); break; default: handler.on_error(); break; } } template FMT_CONSTEXPR void handle_char_specs( const basic_format_specs &specs, Handler &&handler) { if (specs.type() && specs.type() != 'c') { handler.on_int(); return; } if (specs.align() == ALIGN_NUMERIC || specs.flag(~0u) != 0) handler.on_error("invalid format specifier for char"); handler.on_char(); } template FMT_CONSTEXPR void handle_cstring_type_spec(Char spec, Handler &&handler) { if (spec == 0 || spec == 's') handler.on_string(); else if (spec == 'p') handler.on_pointer(); else handler.on_error("invalid type specifier"); } template FMT_CONSTEXPR void check_string_type_spec(Char spec, ErrorHandler &&eh) { if (spec != 0 && spec != 's') eh.on_error("invalid type specifier"); } template FMT_CONSTEXPR void check_pointer_type_spec(Char spec, ErrorHandler &&eh) { if (spec != 0 && spec != 'p') eh.on_error("invalid type specifier"); } template class int_type_checker : private ErrorHandler { public: FMT_CONSTEXPR explicit int_type_checker(ErrorHandler eh) : ErrorHandler(eh) {} FMT_CONSTEXPR void on_dec() {} FMT_CONSTEXPR void on_hex() {} FMT_CONSTEXPR void on_bin() {} FMT_CONSTEXPR void on_oct() {} FMT_CONSTEXPR void on_num() {} FMT_CONSTEXPR void on_error() { ErrorHandler::on_error("invalid type specifier"); } }; template class float_type_checker : private ErrorHandler { public: FMT_CONSTEXPR explicit float_type_checker(ErrorHandler eh) : ErrorHandler(eh) {} FMT_CONSTEXPR void on_general() {} FMT_CONSTEXPR void on_exp() {} FMT_CONSTEXPR void on_fixed() {} FMT_CONSTEXPR void on_hex() {} FMT_CONSTEXPR void on_error() { ErrorHandler::on_error("invalid type specifier"); } }; template class char_specs_checker : public ErrorHandler { private: CharType type_; public: FMT_CONSTEXPR char_specs_checker(CharType type, ErrorHandler eh) : ErrorHandler(eh), type_(type) {} FMT_CONSTEXPR void on_int() { handle_int_type_spec(type_, int_type_checker(*this)); } FMT_CONSTEXPR void on_char() {} }; template class cstring_type_checker : public ErrorHandler { public: FMT_CONSTEXPR explicit cstring_type_checker(ErrorHandler eh) : ErrorHandler(eh) {} FMT_CONSTEXPR void on_string() {} FMT_CONSTEXPR void on_pointer() {} }; template void arg_map::init(const basic_format_args &args) { if (map_) return; map_ = new entry[args.max_size()]; bool use_values = args.type(max_packed_args - 1) == internal::none_type; if (use_values) { for (unsigned i = 0;/*nothing*/; ++i) { internal::type arg_type = args.type(i); switch (arg_type) { case internal::none_type: return; case internal::named_arg_type: push_back(args.values_[i]); break; default: break; // Do nothing. } } } for (unsigned i = 0; ; ++i) { switch (args.args_[i].type_) { case internal::none_type: return; case internal::named_arg_type: push_back(args.args_[i].value_); break; default: break; // Do nothing. } } } template class arg_formatter_base { public: typedef typename Range::value_type char_type; typedef decltype(internal::declval().begin()) iterator; typedef basic_format_specs format_specs; private: typedef basic_writer writer_type; writer_type writer_; format_specs &specs_; FMT_DISALLOW_COPY_AND_ASSIGN(arg_formatter_base); struct char_writer { char_type value; template void operator()(It &&it) const { *it++ = value; } }; void write_char(char_type value) { writer_.write_padded(1, specs_, char_writer{value}); } void write_pointer(const void *p) { format_specs specs = specs_; specs.flags_ = HASH_FLAG; specs.type_ = 'x'; writer_.write_int(reinterpret_cast(p), specs); } protected: writer_type &writer() { return writer_; } format_specs &spec() { return specs_; } iterator out() { return writer_.out(); } void write(bool value) { writer_.write_str(string_view(value ? "true" : "false"), specs_); } void write(const char_type *value) { if (!value) FMT_THROW(format_error("string pointer is null")); auto length = std::char_traits::length(value); writer_.write_str(basic_string_view(value, length), specs_); } public: arg_formatter_base(Range r, format_specs &s): writer_(r), specs_(s) {} iterator operator()(monostate) { FMT_ASSERT(false, "invalid argument type"); return out(); } template typename std::enable_if::value, iterator>::type operator()(T value) { // MSVC2013 fails to compile separate overloads for bool and char_type so // use std::is_same instead. if (std::is_same::value) { if (specs_.type_) return (*this)(value ? 1 : 0); write(value != 0); } else if (std::is_same::value) { internal::handle_char_specs( specs_, char_spec_handler(*this, static_cast(value))); } else { writer_.write_int(value, specs_); } return out(); } template typename std::enable_if::value, iterator>::type operator()(T value) { writer_.write_double(value, specs_); return out(); } struct char_spec_handler : internal::error_handler { arg_formatter_base &formatter; char_type value; char_spec_handler(arg_formatter_base& f, char_type val) : formatter(f), value(val) {} void on_int() { formatter.writer_.write_int(value, formatter.specs_); } void on_char() { formatter.write_char(value); } }; struct cstring_spec_handler : internal::error_handler { arg_formatter_base &formatter; const char_type *value; cstring_spec_handler(arg_formatter_base &f, const char_type *val) : formatter(f), value(val) {} void on_string() { formatter.write(value); } void on_pointer() { formatter.write_pointer(value); } }; iterator operator()(const char_type *value) { internal::handle_cstring_type_spec( specs_.type_, cstring_spec_handler(*this, value)); return out(); } iterator operator()(basic_string_view value) { internal::check_string_type_spec(specs_.type_, internal::error_handler()); writer_.write_str(value, specs_); return out(); } iterator operator()(const void *value) { check_pointer_type_spec(specs_.type_, internal::error_handler()); write_pointer(value); return out(); } }; template struct is_format_string: std::integral_constant::value> {}; template FMT_CONSTEXPR bool is_name_start(Char c) { return ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || '_' == c; } // Parses the input as an unsigned integer. This function assumes that the // first character is a digit and presence of a non-digit character at the end. // it: an iterator pointing to the beginning of the input range. template FMT_CONSTEXPR unsigned parse_nonnegative_int(Iterator &it, ErrorHandler &&eh) { assert('0' <= *it && *it <= '9'); unsigned value = 0; // Convert to unsigned to prevent a warning. unsigned max_int = (std::numeric_limits::max)(); unsigned big = max_int / 10; do { // Check for overflow. if (value > big) { value = max_int + 1; break; } value = value * 10 + unsigned(*it - '0'); // Workaround for MSVC "setup_exception stack overflow" error: auto next = it; ++next; it = next; } while ('0' <= *it && *it <= '9'); if (value > max_int) eh.on_error("number is too big"); return value; } template class custom_formatter: public function { private: Context &ctx_; public: explicit custom_formatter(Context &ctx): ctx_(ctx) {} bool operator()(typename basic_format_arg::handle h) const { h.format(ctx_); return true; } template bool operator()(T) const { return false; } }; template struct is_integer { enum { value = std::is_integral::value && !std::is_same::value && !std::is_same::value && !std::is_same::value }; }; template class width_checker: public function { public: explicit FMT_CONSTEXPR width_checker(ErrorHandler &eh) : handler_(eh) {} template FMT_CONSTEXPR typename std::enable_if< is_integer::value, unsigned long long>::type operator()(T value) { if (is_negative(value)) handler_.on_error("negative width"); return static_cast(value); } template FMT_CONSTEXPR typename std::enable_if< !is_integer::value, unsigned long long>::type operator()(T) { handler_.on_error("width is not integer"); return 0; } private: ErrorHandler &handler_; }; template class precision_checker: public function { public: explicit FMT_CONSTEXPR precision_checker(ErrorHandler &eh) : handler_(eh) {} template FMT_CONSTEXPR typename std::enable_if< is_integer::value, unsigned long long>::type operator()(T value) { if (is_negative(value)) handler_.on_error("negative precision"); return static_cast(value); } template FMT_CONSTEXPR typename std::enable_if< !is_integer::value, unsigned long long>::type operator()(T) { handler_.on_error("precision is not integer"); return 0; } private: ErrorHandler &handler_; }; // A format specifier handler that sets fields in basic_format_specs. template class specs_setter { public: explicit FMT_CONSTEXPR specs_setter(basic_format_specs &specs): specs_(specs) {} FMT_CONSTEXPR specs_setter(const specs_setter &other) : specs_(other.specs_) {} FMT_CONSTEXPR void on_align(alignment align) { specs_.align_ = align; } FMT_CONSTEXPR void on_fill(Char fill) { specs_.fill_ = fill; } FMT_CONSTEXPR void on_plus() { specs_.flags_ |= SIGN_FLAG | PLUS_FLAG; } FMT_CONSTEXPR void on_minus() { specs_.flags_ |= MINUS_FLAG; } FMT_CONSTEXPR void on_space() { specs_.flags_ |= SIGN_FLAG; } FMT_CONSTEXPR void on_hash() { specs_.flags_ |= HASH_FLAG; } FMT_CONSTEXPR void on_zero() { specs_.align_ = ALIGN_NUMERIC; specs_.fill_ = '0'; } FMT_CONSTEXPR void on_width(unsigned width) { specs_.width_ = width; } FMT_CONSTEXPR void on_precision(unsigned precision) { specs_.precision_ = static_cast(precision); } FMT_CONSTEXPR void end_precision() {} FMT_CONSTEXPR void on_type(Char type) { specs_.type_ = type; } protected: basic_format_specs &specs_; }; // A format specifier handler that checks if specifiers are consistent with the // argument type. template class specs_checker : public Handler { public: FMT_CONSTEXPR specs_checker(const Handler& handler, internal::type arg_type) : Handler(handler), arg_type_(arg_type) {} FMT_CONSTEXPR specs_checker(const specs_checker &other) : Handler(other), arg_type_(other.arg_type_) {} FMT_CONSTEXPR void on_align(alignment align) { if (align == ALIGN_NUMERIC) require_numeric_argument(); Handler::on_align(align); } FMT_CONSTEXPR void on_plus() { check_sign(); Handler::on_plus(); } FMT_CONSTEXPR void on_minus() { check_sign(); Handler::on_minus(); } FMT_CONSTEXPR void on_space() { check_sign(); Handler::on_space(); } FMT_CONSTEXPR void on_hash() { require_numeric_argument(); Handler::on_hash(); } FMT_CONSTEXPR void on_zero() { require_numeric_argument(); Handler::on_zero(); } FMT_CONSTEXPR void end_precision() { if (is_integral(arg_type_) || arg_type_ == pointer_type) this->on_error("precision not allowed for this argument type"); } private: FMT_CONSTEXPR void require_numeric_argument() { if (!is_arithmetic(arg_type_)) this->on_error("format specifier requires numeric argument"); } FMT_CONSTEXPR void check_sign() { require_numeric_argument(); if (is_integral(arg_type_) && arg_type_ != int_type && arg_type_ != long_long_type && arg_type_ != internal::char_type) { this->on_error("format specifier requires signed argument"); } } internal::type arg_type_; }; template