/* Formatting library for C++ Copyright (c) 2012 - present, Victor Zverovich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. --- Optional exception to the license --- As an exception, if, as a result of your compiling your source code, portions of this Software are embedded into a machine-executable object form of such source code, you may redistribute such embedded portions in such object form without including the above copyright and permission notices. */ #ifndef FMT_FORMAT_H_ #define FMT_FORMAT_H_ #include // std::signbit #include // uint32_t #include // std::numeric_limits #include // std::uninitialized_copy #include // std::runtime_error #include // std::system_error #include // std::swap #include "core.h" #ifdef __INTEL_COMPILER # define FMT_ICC_VERSION __INTEL_COMPILER #elif defined(__ICL) # define FMT_ICC_VERSION __ICL #else # define FMT_ICC_VERSION 0 #endif #ifdef __NVCC__ # define FMT_CUDA_VERSION (__CUDACC_VER_MAJOR__ * 100 + __CUDACC_VER_MINOR__) #else # define FMT_CUDA_VERSION 0 #endif #ifdef __has_builtin # define FMT_HAS_BUILTIN(x) __has_builtin(x) #else # define FMT_HAS_BUILTIN(x) 0 #endif #if FMT_GCC_VERSION || FMT_CLANG_VERSION # define FMT_NOINLINE __attribute__((noinline)) #else # define FMT_NOINLINE #endif #if FMT_MSC_VER # define FMT_MSC_DEFAULT = default #else # define FMT_MSC_DEFAULT #endif #ifndef FMT_THROW # if FMT_EXCEPTIONS # if FMT_MSC_VER || FMT_NVCC FMT_BEGIN_NAMESPACE namespace detail { template inline void do_throw(const Exception& x) { // Silence unreachable code warnings in MSVC and NVCC because these // are nearly impossible to fix in a generic code. volatile bool b = true; if (b) throw x; } } // namespace detail FMT_END_NAMESPACE # define FMT_THROW(x) detail::do_throw(x) # else # define FMT_THROW(x) throw x # endif # else # define FMT_THROW(x) \ do { \ FMT_ASSERT(false, (x).what()); \ } while (false) # endif #endif #if FMT_EXCEPTIONS # define FMT_TRY try # define FMT_CATCH(x) catch (x) #else # define FMT_TRY if (true) # define FMT_CATCH(x) if (false) #endif #ifndef FMT_DEPRECATED # if FMT_HAS_CPP14_ATTRIBUTE(deprecated) || FMT_MSC_VER >= 1900 # define FMT_DEPRECATED [[deprecated]] # else # if (defined(__GNUC__) && !defined(__LCC__)) || defined(__clang__) # define FMT_DEPRECATED __attribute__((deprecated)) # elif FMT_MSC_VER # define FMT_DEPRECATED __declspec(deprecated) # else # define FMT_DEPRECATED /* deprecated */ # endif # endif #endif // Workaround broken [[deprecated]] in the Intel, PGI and NVCC compilers. #if FMT_ICC_VERSION || defined(__PGI) || FMT_NVCC # define FMT_DEPRECATED_ALIAS #else # define FMT_DEPRECATED_ALIAS FMT_DEPRECATED #endif #ifndef FMT_USE_USER_DEFINED_LITERALS // EDG based compilers (Intel, NVIDIA, Elbrus, etc), GCC and MSVC support UDLs. # if (FMT_HAS_FEATURE(cxx_user_literals) || FMT_GCC_VERSION >= 407 || \ FMT_MSC_VER >= 1900) && \ (!defined(__EDG_VERSION__) || __EDG_VERSION__ >= /* UDL feature */ 480) # define FMT_USE_USER_DEFINED_LITERALS 1 # else # define FMT_USE_USER_DEFINED_LITERALS 0 # endif #endif // Defining FMT_REDUCE_INT_INSTANTIATIONS to 1, will reduce the number of // integer formatter template instantiations to just one by only using the // largest integer type. This results in a reduction in binary size but will // cause a decrease in integer formatting performance. #if !defined(FMT_REDUCE_INT_INSTANTIATIONS) # define FMT_REDUCE_INT_INSTANTIATIONS 0 #endif // __builtin_clz is broken in clang with Microsoft CodeGen: // https://github.com/fmtlib/fmt/issues/519 #if (FMT_GCC_VERSION || FMT_HAS_BUILTIN(__builtin_clz)) && !FMT_MSC_VER # define FMT_BUILTIN_CLZ(n) __builtin_clz(n) #endif #if (FMT_GCC_VERSION || FMT_HAS_BUILTIN(__builtin_clzll)) && !FMT_MSC_VER # define FMT_BUILTIN_CLZLL(n) __builtin_clzll(n) #endif #if (FMT_GCC_VERSION || FMT_HAS_BUILTIN(__builtin_ctz)) # define FMT_BUILTIN_CTZ(n) __builtin_ctz(n) #endif #if (FMT_GCC_VERSION || FMT_HAS_BUILTIN(__builtin_ctzll)) # define FMT_BUILTIN_CTZLL(n) __builtin_ctzll(n) #endif #if FMT_MSC_VER # include // _BitScanReverse[64], _BitScanForward[64], _umul128 #endif // Some compilers masquerade as both MSVC and GCC-likes or otherwise support // __builtin_clz and __builtin_clzll, so only define FMT_BUILTIN_CLZ using the // MSVC intrinsics if the clz and clzll builtins are not available. #if FMT_MSC_VER && !defined(FMT_BUILTIN_CLZLL) && !defined(FMT_BUILTIN_CTZLL) FMT_BEGIN_NAMESPACE namespace detail { // Avoid Clang with Microsoft CodeGen's -Wunknown-pragmas warning. # if !defined(__clang__) # pragma managed(push, off) # pragma intrinsic(_BitScanForward) # pragma intrinsic(_BitScanReverse) # if defined(_WIN64) # pragma intrinsic(_BitScanForward64) # pragma intrinsic(_BitScanReverse64) # endif # endif inline int clz(uint32_t x) { unsigned long r = 0; _BitScanReverse(&r, x); FMT_ASSERT(x != 0, ""); // Static analysis complains about using uninitialized data // "r", but the only way that can happen is if "x" is 0, // which the callers guarantee to not happen. FMT_MSC_WARNING(suppress : 6102) return 31 ^ static_cast(r); } # define FMT_BUILTIN_CLZ(n) detail::clz(n) inline int clzll(uint64_t x) { unsigned long r = 0; # ifdef _WIN64 _BitScanReverse64(&r, x); # else // Scan the high 32 bits. if (_BitScanReverse(&r, static_cast(x >> 32))) return 63 ^ (r + 32); // Scan the low 32 bits. _BitScanReverse(&r, static_cast(x)); # endif FMT_ASSERT(x != 0, ""); FMT_MSC_WARNING(suppress : 6102) // Suppress a bogus static analysis warning. return 63 ^ static_cast(r); } # define FMT_BUILTIN_CLZLL(n) detail::clzll(n) inline int ctz(uint32_t x) { unsigned long r = 0; _BitScanForward(&r, x); FMT_ASSERT(x != 0, ""); FMT_MSC_WARNING(suppress : 6102) // Suppress a bogus static analysis warning. return static_cast(r); } # define FMT_BUILTIN_CTZ(n) detail::ctz(n) inline int ctzll(uint64_t x) { unsigned long r = 0; FMT_ASSERT(x != 0, ""); FMT_MSC_WARNING(suppress : 6102) // Suppress a bogus static analysis warning. # ifdef _WIN64 _BitScanForward64(&r, x); # else // Scan the low 32 bits. if (_BitScanForward(&r, static_cast(x))) return static_cast(r); // Scan the high 32 bits. _BitScanForward(&r, static_cast(x >> 32)); r += 32; # endif return static_cast(r); } # define FMT_BUILTIN_CTZLL(n) detail::ctzll(n) # if !defined(__clang__) # pragma managed(pop) # endif } // namespace detail FMT_END_NAMESPACE #endif FMT_BEGIN_NAMESPACE namespace detail { #if __cplusplus >= 202002L || \ (__cplusplus >= 201709L && FMT_GCC_VERSION >= 1002) # define FMT_CONSTEXPR20 constexpr #else # define FMT_CONSTEXPR20 #endif // An equivalent of `*reinterpret_cast(&source)` that doesn't have // undefined behavior (e.g. due to type aliasing). // Example: uint64_t d = bit_cast(2.718); template inline Dest bit_cast(const Source& source) { static_assert(sizeof(Dest) == sizeof(Source), "size mismatch"); Dest dest; std::memcpy(&dest, &source, sizeof(dest)); return dest; } inline bool is_big_endian() { const auto u = 1u; struct bytes { char data[sizeof(u)]; }; return bit_cast(u).data[0] == 0; } // A fallback implementation of uintptr_t for systems that lack it. struct fallback_uintptr { unsigned char value[sizeof(void*)]; fallback_uintptr() = default; explicit fallback_uintptr(const void* p) { *this = bit_cast(p); if (is_big_endian()) { for (size_t i = 0, j = sizeof(void*) - 1; i < j; ++i, --j) std::swap(value[i], value[j]); } } }; #ifdef UINTPTR_MAX using uintptr_t = ::uintptr_t; inline uintptr_t to_uintptr(const void* p) { return bit_cast(p); } #else using uintptr_t = fallback_uintptr; inline fallback_uintptr to_uintptr(const void* p) { return fallback_uintptr(p); } #endif // Returns the largest possible value for type T. Same as // std::numeric_limits::max() but shorter and not affected by the max macro. template constexpr T max_value() { return (std::numeric_limits::max)(); } template constexpr int num_bits() { return std::numeric_limits::digits; } // std::numeric_limits::digits may return 0 for 128-bit ints. template <> constexpr int num_bits() { return 128; } template <> constexpr int num_bits() { return 128; } template <> constexpr int num_bits() { return static_cast(sizeof(void*) * std::numeric_limits::digits); } FMT_INLINE void assume(bool condition) { (void)condition; #if FMT_HAS_BUILTIN(__builtin_assume) __builtin_assume(condition); #endif } // An approximation of iterator_t for pre-C++20 systems. template using iterator_t = decltype(std::begin(std::declval())); template using sentinel_t = decltype(std::end(std::declval())); // A workaround for std::string not having mutable data() until C++17. template inline Char* get_data(std::basic_string& s) { return &s[0]; } template inline typename Container::value_type* get_data(Container& c) { return c.data(); } #if defined(_SECURE_SCL) && _SECURE_SCL // Make a checked iterator to avoid MSVC warnings. template using checked_ptr = stdext::checked_array_iterator; template checked_ptr make_checked(T* p, size_t size) { return {p, size}; } #else template using checked_ptr = T*; template inline T* make_checked(T* p, size_t) { return p; } #endif // Attempts to reserve space for n extra characters in the output range. // Returns a pointer to the reserved range or a reference to it. template ::value)> #if FMT_CLANG_VERSION >= 307 && !FMT_ICC_VERSION __attribute__((no_sanitize("undefined"))) #endif inline checked_ptr reserve(std::back_insert_iterator it, size_t n) { Container& c = get_container(it); size_t size = c.size(); c.resize(size + n); return make_checked(get_data(c) + size, n); } template inline buffer_appender reserve(buffer_appender it, size_t n) { buffer& buf = get_container(it); buf.try_reserve(buf.size() + n); return it; } template constexpr Iterator& reserve(Iterator& it, size_t) { return it; } template using reserve_iterator = remove_reference_t(), 0))>; template constexpr T* to_pointer(OutputIt, size_t) { return nullptr; } template T* to_pointer(buffer_appender it, size_t n) { buffer& buf = get_container(it); auto size = buf.size(); if (buf.capacity() < size + n) return nullptr; buf.try_resize(size + n); return buf.data() + size; } template ::value)> inline std::back_insert_iterator base_iterator( std::back_insert_iterator& it, checked_ptr) { return it; } template constexpr Iterator base_iterator(Iterator, Iterator it) { return it; } // is spectacularly slow to compile in C++20 so use a simple fill_n // instead (#1998). template FMT_CONSTEXPR OutputIt fill_n(OutputIt out, Size count, const T& value) { for (Size i = 0; i < count; ++i) *out++ = value; return out; } template FMT_CONSTEXPR20 T* fill_n(T* out, Size count, char value) { if (is_constant_evaluated()) { return fill_n(out, count, value); } std::memset(out, value, to_unsigned(count)); return out + count; } #ifdef __cpp_char8_t using char8_type = char8_t; #else enum char8_type : unsigned char {}; #endif template using needs_conversion = bool_constant< std::is_same::value_type, char>::value && std::is_same::value>; template ::value)> FMT_CONSTEXPR OutputIt copy_str(InputIt begin, InputIt end, OutputIt out) { while (begin != end) *out++ = *begin++; return out; } template ::value)> FMT_CONSTEXPR20 OutChar* copy_str(InputIt begin, InputIt end, OutChar* out) { if (is_constant_evaluated()) { return copy_str(begin, end, out); } auto size = to_unsigned(end - begin); std::uninitialized_copy(begin, end, make_checked(out, size)); return out + size; } template ::value)> OutputIt copy_str(InputIt begin, InputIt end, OutputIt out) { while (begin != end) *out++ = static_cast(*begin++); return out; } template ::value)> appender copy_str(InputIt begin, InputIt end, appender out) { get_container(out).append(begin, end); return out; } template FMT_CONSTEXPR FMT_NOINLINE OutputIt copy_str_noinline(InputIt begin, InputIt end, OutputIt out) { return copy_str(begin, end, out); } // A public domain branchless UTF-8 decoder by Christopher Wellons: // https://github.com/skeeto/branchless-utf8 /* Decode the next character, c, from s, reporting errors in e. * * Since this is a branchless decoder, four bytes will be read from the * buffer regardless of the actual length of the next character. This * means the buffer _must_ have at least three bytes of zero padding * following the end of the data stream. * * Errors are reported in e, which will be non-zero if the parsed * character was somehow invalid: invalid byte sequence, non-canonical * encoding, or a surrogate half. * * The function returns a pointer to the next character. When an error * occurs, this pointer will be a guess that depends on the particular * error, but it will always advance at least one byte. */ FMT_CONSTEXPR inline const char* utf8_decode(const char* s, uint32_t* c, int* e) { constexpr const int masks[] = {0x00, 0x7f, 0x1f, 0x0f, 0x07}; constexpr const uint32_t mins[] = {4194304, 0, 128, 2048, 65536}; constexpr const int shiftc[] = {0, 18, 12, 6, 0}; constexpr const int shifte[] = {0, 6, 4, 2, 0}; int len = code_point_length(s); const char* next = s + len; // Assume a four-byte character and load four bytes. Unused bits are // shifted out. *c = uint32_t(s[0] & masks[len]) << 18; *c |= uint32_t(s[1] & 0x3f) << 12; *c |= uint32_t(s[2] & 0x3f) << 6; *c |= uint32_t(s[3] & 0x3f) << 0; *c >>= shiftc[len]; // Accumulate the various error conditions. using uchar = unsigned char; *e = (*c < mins[len]) << 6; // non-canonical encoding *e |= ((*c >> 11) == 0x1b) << 7; // surrogate half? *e |= (*c > 0x10FFFF) << 8; // out of range? *e |= (uchar(s[1]) & 0xc0) >> 2; *e |= (uchar(s[2]) & 0xc0) >> 4; *e |= uchar(s[3]) >> 6; *e ^= 0x2a; // top two bits of each tail byte correct? *e >>= shifte[len]; return next; } template FMT_CONSTEXPR void for_each_codepoint(string_view s, F f) { auto decode = [f](const char* p) { auto cp = uint32_t(); auto error = 0; p = utf8_decode(p, &cp, &error); f(cp, error); return p; }; auto p = s.data(); const size_t block_size = 4; // utf8_decode always reads blocks of 4 chars. if (s.size() >= block_size) { for (auto end = p + s.size() - block_size + 1; p < end;) p = decode(p); } if (auto num_chars_left = s.data() + s.size() - p) { char buf[2 * block_size - 1] = {}; copy_str(p, p + num_chars_left, buf); p = buf; do { p = decode(p); } while (p - buf < num_chars_left); } } template inline size_t compute_width(basic_string_view s) { return s.size(); } // Computes approximate display width of a UTF-8 string. FMT_CONSTEXPR inline size_t compute_width(string_view s) { size_t num_code_points = 0; // It is not a lambda for compatibility with C++14. struct count_code_points { size_t* count; FMT_CONSTEXPR void operator()(uint32_t cp, int error) const { *count += detail::to_unsigned(1 + (error == 0 && cp >= 0x1100 && (cp <= 0x115f || // Hangul Jamo init. consonants cp == 0x2329 || // LEFT-POINTING ANGLE BRACKET〈 cp == 0x232a || // RIGHT-POINTING ANGLE BRACKET 〉 // CJK ... Yi except Unicode Character “〿”: (cp >= 0x2e80 && cp <= 0xa4cf && cp != 0x303f) || (cp >= 0xac00 && cp <= 0xd7a3) || // Hangul Syllables (cp >= 0xf900 && cp <= 0xfaff) || // CJK Compatibility Ideographs (cp >= 0xfe10 && cp <= 0xfe19) || // Vertical Forms (cp >= 0xfe30 && cp <= 0xfe6f) || // CJK Compatibility Forms (cp >= 0xff00 && cp <= 0xff60) || // Fullwidth Forms (cp >= 0xffe0 && cp <= 0xffe6) || // Fullwidth Forms (cp >= 0x20000 && cp <= 0x2fffd) || // CJK (cp >= 0x30000 && cp <= 0x3fffd) || // Miscellaneous Symbols and Pictographs + Emoticons: (cp >= 0x1f300 && cp <= 0x1f64f) || // Supplemental Symbols and Pictographs: (cp >= 0x1f900 && cp <= 0x1f9ff)))); } }; for_each_codepoint(s, count_code_points{&num_code_points}); return num_code_points; } inline size_t compute_width(basic_string_view s) { return compute_width(basic_string_view( reinterpret_cast(s.data()), s.size())); } template inline size_t code_point_index(basic_string_view s, size_t n) { size_t size = s.size(); return n < size ? n : size; } // Calculates the index of the nth code point in a UTF-8 string. inline size_t code_point_index(basic_string_view s, size_t n) { const char8_type* data = s.data(); size_t num_code_points = 0; for (size_t i = 0, size = s.size(); i != size; ++i) { if ((data[i] & 0xc0) != 0x80 && ++num_code_points > n) return i; } return s.size(); } template using is_fast_float = bool_constant::is_iec559 && sizeof(T) <= sizeof(double)>; #ifndef FMT_USE_FULL_CACHE_DRAGONBOX # define FMT_USE_FULL_CACHE_DRAGONBOX 0 #endif template template void buffer::append(const U* begin, const U* end) { while (begin != end) { auto count = to_unsigned(end - begin); try_reserve(size_ + count); auto free_cap = capacity_ - size_; if (free_cap < count) count = free_cap; std::uninitialized_copy_n(begin, count, make_checked(ptr_ + size_, count)); size_ += count; begin += count; } } template void iterator_buffer::flush() { auto size = this->size(); this->clear(); out_ = copy_str(data_, data_ + this->limit(size), out_); } template struct is_locale : std::false_type {}; template struct is_locale> : std::true_type {}; } // namespace detail FMT_MODULE_EXPORT_BEGIN template <> struct is_char : std::true_type {}; template <> struct is_char : std::true_type {}; template <> struct is_char : std::true_type {}; template <> struct is_char : std::true_type {}; // The number of characters to store in the basic_memory_buffer object itself // to avoid dynamic memory allocation. enum { inline_buffer_size = 500 }; /** \rst A dynamically growing memory buffer for trivially copyable/constructible types with the first ``SIZE`` elements stored in the object itself. You can use one of the following type aliases for common character types: +----------------+------------------------------+ | Type | Definition | +================+==============================+ | memory_buffer | basic_memory_buffer | +----------------+------------------------------+ | wmemory_buffer | basic_memory_buffer | +----------------+------------------------------+ **Example**:: fmt::memory_buffer out; format_to(out, "The answer is {}.", 42); This will append the following output to the ``out`` object: .. code-block:: none The answer is 42. The output can be converted to an ``std::string`` with ``to_string(out)``. \endrst */ template > class basic_memory_buffer final : public detail::buffer { private: T store_[SIZE]; // Don't inherit from Allocator avoid generating type_info for it. Allocator alloc_; // Deallocate memory allocated by the buffer. void deallocate() { T* data = this->data(); if (data != store_) alloc_.deallocate(data, this->capacity()); } protected: void grow(size_t size) final FMT_OVERRIDE; public: using value_type = T; using const_reference = const T&; explicit basic_memory_buffer(const Allocator& alloc = Allocator()) : alloc_(alloc) { this->set(store_, SIZE); } ~basic_memory_buffer() { deallocate(); } private: // Move data from other to this buffer. void move(basic_memory_buffer& other) { alloc_ = std::move(other.alloc_); T* data = other.data(); size_t size = other.size(), capacity = other.capacity(); if (data == other.store_) { this->set(store_, capacity); std::uninitialized_copy(other.store_, other.store_ + size, detail::make_checked(store_, capacity)); } else { this->set(data, capacity); // Set pointer to the inline array so that delete is not called // when deallocating. other.set(other.store_, 0); } this->resize(size); } public: /** \rst Constructs a :class:`fmt::basic_memory_buffer` object moving the content of the other object to it. \endrst */ basic_memory_buffer(basic_memory_buffer&& other) FMT_NOEXCEPT { move(other); } /** \rst Moves the content of the other ``basic_memory_buffer`` object to this one. \endrst */ basic_memory_buffer& operator=(basic_memory_buffer&& other) FMT_NOEXCEPT { FMT_ASSERT(this != &other, ""); deallocate(); move(other); return *this; } // Returns a copy of the allocator associated with this buffer. Allocator get_allocator() const { return alloc_; } /** Resizes the buffer to contain *count* elements. If T is a POD type new elements may not be initialized. */ void resize(size_t count) { this->try_resize(count); } /** Increases the buffer capacity to *new_capacity*. */ void reserve(size_t new_capacity) { this->try_reserve(new_capacity); } // Directly append data into the buffer using detail::buffer::append; template void append(const ContiguousRange& range) { append(range.data(), range.data() + range.size()); } }; template void basic_memory_buffer::grow(size_t size) { #ifdef FMT_FUZZ if (size > 5000) throw std::runtime_error("fuzz mode - won't grow that much"); #endif const size_t max_size = std::allocator_traits::max_size(alloc_); size_t old_capacity = this->capacity(); size_t new_capacity = old_capacity + old_capacity / 2; if (size > new_capacity) new_capacity = size; else if (new_capacity > max_size) new_capacity = size > max_size ? size : max_size; T* old_data = this->data(); T* new_data = std::allocator_traits::allocate(alloc_, new_capacity); // The following code doesn't throw, so the raw pointer above doesn't leak. std::uninitialized_copy(old_data, old_data + this->size(), detail::make_checked(new_data, new_capacity)); this->set(new_data, new_capacity); // deallocate must not throw according to the standard, but even if it does, // the buffer already uses the new storage and will deallocate it in // destructor. if (old_data != store_) alloc_.deallocate(old_data, old_capacity); } using memory_buffer = basic_memory_buffer; using wmemory_buffer = basic_memory_buffer; template struct is_contiguous> : std::true_type { }; namespace detail { FMT_API void print(std::FILE*, string_view); } /** A formatting error such as invalid format string. */ FMT_CLASS_API class FMT_API format_error : public std::runtime_error { public: explicit format_error(const char* message) : std::runtime_error(message) {} explicit format_error(const std::string& message) : std::runtime_error(message) {} format_error(const format_error&) = default; format_error& operator=(const format_error&) = default; format_error(format_error&&) = default; format_error& operator=(format_error&&) = default; ~format_error() FMT_NOEXCEPT FMT_OVERRIDE FMT_MSC_DEFAULT; }; /** \rst Constructs a `~fmt::format_arg_store` object that contains references to arguments and can be implicitly converted to `~fmt::format_args`. If ``fmt`` is a compile-time string then `make_args_checked` checks its validity at compile time. \endrst */ template > FMT_INLINE auto make_args_checked(const S& fmt, const remove_reference_t&... args) -> format_arg_store, remove_reference_t...> { static_assert( detail::count<( std::is_base_of>::value && std::is_reference::value)...>() == 0, "passing views as lvalues is disallowed"); detail::check_format_string(fmt); return {args...}; } FMT_BEGIN_DETAIL_NAMESPACE inline void throw_format_error(const char* message) { FMT_THROW(format_error(message)); } template struct is_integral : std::is_integral {}; template <> struct is_integral : std::true_type {}; template <> struct is_integral : std::true_type {}; template using is_signed = std::integral_constant::is_signed || std::is_same::value>; // Returns true if value is negative, false otherwise. // Same as `value < 0` but doesn't produce warnings if T is an unsigned type. template ::value)> FMT_CONSTEXPR bool is_negative(T value) { return value < 0; } template ::value)> FMT_CONSTEXPR bool is_negative(T) { return false; } template ::value)> FMT_CONSTEXPR bool is_supported_floating_point(T) { return (std::is_same::value && FMT_USE_FLOAT) || (std::is_same::value && FMT_USE_DOUBLE) || (std::is_same::value && FMT_USE_LONG_DOUBLE); } // Smallest of uint32_t, uint64_t, uint128_t that is large enough to // represent all values of an integral type T. template using uint32_or_64_or_128_t = conditional_t() <= 32 && !FMT_REDUCE_INT_INSTANTIATIONS, uint32_t, conditional_t() <= 64, uint64_t, uint128_t>>; template using uint64_or_128_t = conditional_t() <= 64, uint64_t, uint128_t>; #define FMT_POWERS_OF_10(factor) \ factor * 10, (factor)*100, (factor)*1000, (factor)*10000, (factor)*100000, \ (factor)*1000000, (factor)*10000000, (factor)*100000000, \ (factor)*1000000000 // Static data is placed in this class template for the header-only config. template struct basic_data { // log10(2) = 0x0.4d104d427de7fbcc... static const uint64_t log10_2_significand = 0x4d104d427de7fbcc; // GCC generates slightly better code for pairs than chars. using digit_pair = char[2]; FMT_API static constexpr const digit_pair digits[] = { {'0', '0'}, {'0', '1'}, {'0', '2'}, {'0', '3'}, {'0', '4'}, {'0', '5'}, {'0', '6'}, {'0', '7'}, {'0', '8'}, {'0', '9'}, {'1', '0'}, {'1', '1'}, {'1', '2'}, {'1', '3'}, {'1', '4'}, {'1', '5'}, {'1', '6'}, {'1', '7'}, {'1', '8'}, {'1', '9'}, {'2', '0'}, {'2', '1'}, {'2', '2'}, {'2', '3'}, {'2', '4'}, {'2', '5'}, {'2', '6'}, {'2', '7'}, {'2', '8'}, {'2', '9'}, {'3', '0'}, {'3', '1'}, {'3', '2'}, {'3', '3'}, {'3', '4'}, {'3', '5'}, {'3', '6'}, {'3', '7'}, {'3', '8'}, {'3', '9'}, {'4', '0'}, {'4', '1'}, {'4', '2'}, {'4', '3'}, {'4', '4'}, {'4', '5'}, {'4', '6'}, {'4', '7'}, {'4', '8'}, {'4', '9'}, {'5', '0'}, {'5', '1'}, {'5', '2'}, {'5', '3'}, {'5', '4'}, {'5', '5'}, {'5', '6'}, {'5', '7'}, {'5', '8'}, {'5', '9'}, {'6', '0'}, {'6', '1'}, {'6', '2'}, {'6', '3'}, {'6', '4'}, {'6', '5'}, {'6', '6'}, {'6', '7'}, {'6', '8'}, {'6', '9'}, {'7', '0'}, {'7', '1'}, {'7', '2'}, {'7', '3'}, {'7', '4'}, {'7', '5'}, {'7', '6'}, {'7', '7'}, {'7', '8'}, {'7', '9'}, {'8', '0'}, {'8', '1'}, {'8', '2'}, {'8', '3'}, {'8', '4'}, {'8', '5'}, {'8', '6'}, {'8', '7'}, {'8', '8'}, {'8', '9'}, {'9', '0'}, {'9', '1'}, {'9', '2'}, {'9', '3'}, {'9', '4'}, {'9', '5'}, {'9', '6'}, {'9', '7'}, {'9', '8'}, {'9', '9'}}; FMT_API static constexpr const char hex_digits[] = "0123456789abcdef"; FMT_API static constexpr const char signs[] = {0, '-', '+', ' '}; FMT_API static constexpr const unsigned prefixes[4] = {0, 0, 0x1000000u | '+', 0x1000000u | ' '}; FMT_API static constexpr const char left_padding_shifts[] = {31, 31, 0, 1, 0}; FMT_API static constexpr const char right_padding_shifts[] = {0, 31, 0, 1, 0}; }; #ifndef FMT_HEADER_ONLY // Required for -flto, -fivisibility=hidden and -shared to work extern template struct basic_data; #endif // This is a struct rather than an alias to avoid shadowing warnings in gcc. struct data : basic_data<> {}; // Maps bsr(n) to ceil(log10(pow(2, bsr(n) + 1) - 1)). // This is a function instead of an array to workaround a bug in GCC10 (#1810). FMT_INLINE uint16_t bsr2log10(int bsr) { static constexpr uint16_t data[] = { 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 19, 20}; return data[bsr]; } template FMT_CONSTEXPR int count_digits_fallback(T n) { int count = 1; for (;;) { // Integer division is slow so do it for a group of four digits instead // of for every digit. The idea comes from the talk by Alexandrescu // "Three Optimization Tips for C++". See speed-test for a comparison. if (n < 10) return count; if (n < 100) return count + 1; if (n < 1000) return count + 2; if (n < 10000) return count + 3; n /= 10000u; count += 4; } } #if FMT_USE_INT128 FMT_CONSTEXPR inline int count_digits(uint128_t n) { return count_digits_fallback(n); } #endif // Returns the number of decimal digits in n. Leading zeros are not counted // except for n == 0 in which case count_digits returns 1. FMT_CONSTEXPR20 inline int count_digits(uint64_t n) { if (is_constant_evaluated()) { return count_digits_fallback(n); } #ifdef FMT_BUILTIN_CLZLL // https://github.com/fmtlib/format-benchmark/blob/master/digits10 auto t = bsr2log10(FMT_BUILTIN_CLZLL(n | 1) ^ 63); constexpr const uint64_t zero_or_powers_of_10[] = { 0, 0, FMT_POWERS_OF_10(1U), FMT_POWERS_OF_10(1000000000ULL), 10000000000000000000ULL}; return t - (n < zero_or_powers_of_10[t]); #else return count_digits_fallback(n); #endif } // Counts the number of digits in n. BITS = log2(radix). template FMT_CONSTEXPR int count_digits(UInt n) { #ifdef FMT_BUILTIN_CLZ if (num_bits() == 32) return (FMT_BUILTIN_CLZ(static_cast(n) | 1) ^ 31) / BITS + 1; #endif int num_digits = 0; do { ++num_digits; } while ((n >>= BITS) != 0); return num_digits; } template <> int count_digits<4>(detail::fallback_uintptr n); #if FMT_GCC_VERSION || FMT_CLANG_VERSION # define FMT_ALWAYS_INLINE inline __attribute__((always_inline)) #elif FMT_MSC_VER # define FMT_ALWAYS_INLINE __forceinline #else # define FMT_ALWAYS_INLINE inline #endif #ifdef FMT_BUILTIN_CLZ // Optional version of count_digits for better performance on 32-bit platforms. FMT_CONSTEXPR20 inline int count_digits(uint32_t n) { if (is_constant_evaluated()) { return count_digits_fallback(n); } auto t = bsr2log10(FMT_BUILTIN_CLZ(n | 1) ^ 31); constexpr const uint32_t zero_or_powers_of_10[] = {0, 0, FMT_POWERS_OF_10(1U)}; return t - (n < zero_or_powers_of_10[t]); } #endif template constexpr int digits10() FMT_NOEXCEPT { return std::numeric_limits::digits10; } template <> constexpr int digits10() FMT_NOEXCEPT { return 38; } template <> constexpr int digits10() FMT_NOEXCEPT { return 38; } // DEPRECATED! grouping will be merged into thousands_sep. template FMT_API std::string grouping_impl(locale_ref loc); template inline std::string grouping(locale_ref loc) { return grouping_impl(loc); } template <> inline std::string grouping(locale_ref loc) { return grouping_impl(loc); } template FMT_API Char thousands_sep_impl(locale_ref loc); template inline Char thousands_sep(locale_ref loc) { return Char(thousands_sep_impl(loc)); } template <> inline wchar_t thousands_sep(locale_ref loc) { return thousands_sep_impl(loc); } template FMT_API Char decimal_point_impl(locale_ref loc); template inline Char decimal_point(locale_ref loc) { return Char(decimal_point_impl(loc)); } template <> inline wchar_t decimal_point(locale_ref loc) { return decimal_point_impl(loc); } // Compares two characters for equality. template bool equal2(const Char* lhs, const char* rhs) { return lhs[0] == rhs[0] && lhs[1] == rhs[1]; } inline bool equal2(const char* lhs, const char* rhs) { return memcmp(lhs, rhs, 2) == 0; } // Copies two characters from src to dst. template void copy2(Char* dst, const char* src) { *dst++ = static_cast(*src++); *dst = static_cast(*src); } FMT_INLINE void copy2(char* dst, const char* src) { memcpy(dst, src, 2); } template struct format_decimal_result { Iterator begin; Iterator end; }; // Formats a decimal unsigned integer value writing into out pointing to a // buffer of specified size. The caller must ensure that the buffer is large // enough. template FMT_CONSTEXPR20 format_decimal_result format_decimal(Char* out, UInt value, int size) { FMT_ASSERT(size >= count_digits(value), "invalid digit count"); out += size; Char* end = out; if (is_constant_evaluated()) { while (value >= 10) { *--out = static_cast('0' + value % 10); value /= 10; } *--out = static_cast('0' + value); return {out, end}; } while (value >= 100) { // Integer division is slow so do it for a group of two digits instead // of for every digit. The idea comes from the talk by Alexandrescu // "Three Optimization Tips for C++". See speed-test for a comparison. out -= 2; copy2(out, data::digits[value % 100]); value /= 100; } if (value < 10) { *--out = static_cast('0' + value); return {out, end}; } out -= 2; copy2(out, data::digits[value]); return {out, end}; } template >::value)> inline format_decimal_result format_decimal(Iterator out, UInt value, int size) { // Buffer is large enough to hold all digits (digits10 + 1). Char buffer[digits10() + 1]; auto end = format_decimal(buffer, value, size).end; return {out, detail::copy_str_noinline(buffer, end, out)}; } template FMT_CONSTEXPR Char* format_uint(Char* buffer, UInt value, int num_digits, bool upper = false) { buffer += num_digits; Char* end = buffer; do { const char* digits = upper ? "0123456789ABCDEF" : data::hex_digits; unsigned digit = (value & ((1 << BASE_BITS) - 1)); *--buffer = static_cast(BASE_BITS < 4 ? static_cast('0' + digit) : digits[digit]); } while ((value >>= BASE_BITS) != 0); return end; } template Char* format_uint(Char* buffer, detail::fallback_uintptr n, int num_digits, bool = false) { auto char_digits = std::numeric_limits::digits / 4; int start = (num_digits + char_digits - 1) / char_digits - 1; if (int start_digits = num_digits % char_digits) { unsigned value = n.value[start--]; buffer = format_uint(buffer, value, start_digits); } for (; start >= 0; --start) { unsigned value = n.value[start]; buffer += char_digits; auto p = buffer; for (int i = 0; i < char_digits; ++i) { unsigned digit = (value & ((1 << BASE_BITS) - 1)); *--p = static_cast(data::hex_digits[digit]); value >>= BASE_BITS; } } return buffer; } template inline It format_uint(It out, UInt value, int num_digits, bool upper = false) { if (auto ptr = to_pointer(out, to_unsigned(num_digits))) { format_uint(ptr, value, num_digits, upper); return out; } // Buffer should be large enough to hold all digits (digits / BASE_BITS + 1). char buffer[num_bits() / BASE_BITS + 1]; format_uint(buffer, value, num_digits, upper); return detail::copy_str_noinline(buffer, buffer + num_digits, out); } // A converter from UTF-8 to UTF-16. class utf8_to_utf16 { private: wmemory_buffer buffer_; public: FMT_API explicit utf8_to_utf16(string_view s); operator basic_string_view() const { return {&buffer_[0], size()}; } size_t size() const { return buffer_.size() - 1; } const wchar_t* c_str() const { return &buffer_[0]; } std::wstring str() const { return {&buffer_[0], size()}; } }; namespace dragonbox { // Type-specific information that Dragonbox uses. template struct float_info; template <> struct float_info { using carrier_uint = uint32_t; static const int significand_bits = 23; static const int exponent_bits = 8; static const int min_exponent = -126; static const int max_exponent = 127; static const int exponent_bias = -127; static const int decimal_digits = 9; static const int kappa = 1; static const int big_divisor = 100; static const int small_divisor = 10; static const int min_k = -31; static const int max_k = 46; static const int cache_bits = 64; static const int divisibility_check_by_5_threshold = 39; static const int case_fc_pm_half_lower_threshold = -1; static const int case_fc_pm_half_upper_threshold = 6; static const int case_fc_lower_threshold = -2; static const int case_fc_upper_threshold = 6; static const int case_shorter_interval_left_endpoint_lower_threshold = 2; static const int case_shorter_interval_left_endpoint_upper_threshold = 3; static const int shorter_interval_tie_lower_threshold = -35; static const int shorter_interval_tie_upper_threshold = -35; static const int max_trailing_zeros = 7; }; template <> struct float_info { using carrier_uint = uint64_t; static const int significand_bits = 52; static const int exponent_bits = 11; static const int min_exponent = -1022; static const int max_exponent = 1023; static const int exponent_bias = -1023; static const int decimal_digits = 17; static const int kappa = 2; static const int big_divisor = 1000; static const int small_divisor = 100; static const int min_k = -292; static const int max_k = 326; static const int cache_bits = 128; static const int divisibility_check_by_5_threshold = 86; static const int case_fc_pm_half_lower_threshold = -2; static const int case_fc_pm_half_upper_threshold = 9; static const int case_fc_lower_threshold = -4; static const int case_fc_upper_threshold = 9; static const int case_shorter_interval_left_endpoint_lower_threshold = 2; static const int case_shorter_interval_left_endpoint_upper_threshold = 3; static const int shorter_interval_tie_lower_threshold = -77; static const int shorter_interval_tie_upper_threshold = -77; static const int max_trailing_zeros = 16; }; template struct decimal_fp { using significand_type = typename float_info::carrier_uint; significand_type significand; int exponent; }; template FMT_API decimal_fp to_decimal(T x) FMT_NOEXCEPT; } // namespace dragonbox template constexpr typename dragonbox::float_info::carrier_uint exponent_mask() { using uint = typename dragonbox::float_info::carrier_uint; return ((uint(1) << dragonbox::float_info::exponent_bits) - 1) << dragonbox::float_info::significand_bits; } // Writes the exponent exp in the form "[+-]d{2,3}" to buffer. template It write_exponent(int exp, It it) { FMT_ASSERT(-10000 < exp && exp < 10000, "exponent out of range"); if (exp < 0) { *it++ = static_cast('-'); exp = -exp; } else { *it++ = static_cast('+'); } if (exp >= 100) { const char* top = data::digits[exp / 100]; if (exp >= 1000) *it++ = static_cast(top[0]); *it++ = static_cast(top[1]); exp %= 100; } const char* d = data::digits[exp]; *it++ = static_cast(d[0]); *it++ = static_cast(d[1]); return it; } template int format_float(T value, int precision, float_specs specs, buffer& buf); // Formats a floating-point number with snprintf. template int snprintf_float(T value, int precision, float_specs specs, buffer& buf); template T promote_float(T value) { return value; } inline double promote_float(float value) { return static_cast(value); } template FMT_NOINLINE FMT_CONSTEXPR OutputIt fill(OutputIt it, size_t n, const fill_t& fill) { auto fill_size = fill.size(); if (fill_size == 1) return detail::fill_n(it, n, fill[0]); auto data = fill.data(); for (size_t i = 0; i < n; ++i) it = copy_str(data, data + fill_size, it); return it; } // Writes the output of f, padded according to format specifications in specs. // size: output size in code units. // width: output display width in (terminal) column positions. template FMT_CONSTEXPR OutputIt write_padded(OutputIt out, const basic_format_specs& specs, size_t size, size_t width, F&& f) { static_assert(align == align::left || align == align::right, ""); unsigned spec_width = to_unsigned(specs.width); size_t padding = spec_width > width ? spec_width - width : 0; auto* shifts = align == align::left ? data::left_padding_shifts : data::right_padding_shifts; size_t left_padding = padding >> shifts[specs.align]; size_t right_padding = padding - left_padding; auto it = reserve(out, size + padding * specs.fill.size()); if (left_padding != 0) it = fill(it, left_padding, specs.fill); it = f(it); if (right_padding != 0) it = fill(it, right_padding, specs.fill); return base_iterator(out, it); } template constexpr OutputIt write_padded(OutputIt out, const basic_format_specs& specs, size_t size, F&& f) { return write_padded(out, specs, size, size, f); } template FMT_CONSTEXPR OutputIt write_bytes(OutputIt out, string_view bytes, const basic_format_specs& specs) { return write_padded( out, specs, bytes.size(), [bytes](reserve_iterator it) { const char* data = bytes.data(); return copy_str(data, data + bytes.size(), it); }); } template OutputIt write_ptr(OutputIt out, UIntPtr value, const basic_format_specs* specs) { int num_digits = count_digits<4>(value); auto size = to_unsigned(num_digits) + size_t(2); auto write = [=](reserve_iterator it) { *it++ = static_cast('0'); *it++ = static_cast('x'); return format_uint<4, Char>(it, value, num_digits); }; return specs ? write_padded(out, *specs, size, write) : base_iterator(out, write(reserve(out, size))); } template FMT_CONSTEXPR OutputIt write_char(OutputIt out, Char value, const basic_format_specs& specs) { return write_padded(out, specs, 1, [=](reserve_iterator it) { *it++ = value; return it; }); } template FMT_CONSTEXPR OutputIt write(OutputIt out, Char value, const basic_format_specs& specs, locale_ref loc = {}) { return check_char_specs(specs) ? write_char(out, value, specs) : write(out, static_cast(value), specs, loc); } // Data for write_int that doesn't depend on output iterator type. It is used to // avoid template code bloat. template struct write_int_data { size_t size; size_t padding; FMT_CONSTEXPR write_int_data(int num_digits, unsigned prefix, const basic_format_specs& specs) : size((prefix >> 24) + to_unsigned(num_digits)), padding(0) { if (specs.align == align::numeric) { auto width = to_unsigned(specs.width); if (width > size) { padding = width - size; size = width; } } else if (specs.precision > num_digits) { size = (prefix >> 24) + to_unsigned(specs.precision); padding = to_unsigned(specs.precision - num_digits); } } }; // Writes an integer in the format // // where are written by write_digits(it). // prefix contains chars in three lower bytes and the size in the fourth byte. template FMT_CONSTEXPR FMT_INLINE OutputIt write_int(OutputIt out, int num_digits, unsigned prefix, const basic_format_specs& specs, W write_digits) { // Slightly faster check for specs.width == 0 && specs.precision == -1. if ((specs.width | (specs.precision + 1)) == 0) { auto it = reserve(out, to_unsigned(num_digits) + (prefix >> 24)); if (prefix != 0) { for (unsigned p = prefix & 0xffffff; p != 0; p >>= 8) *it++ = static_cast(p & 0xff); } return base_iterator(out, write_digits(it)); } auto data = write_int_data(num_digits, prefix, specs); return write_padded( out, specs, data.size, [=](reserve_iterator it) { for (unsigned p = prefix & 0xffffff; p != 0; p >>= 8) *it++ = static_cast(p & 0xff); it = detail::fill_n(it, data.padding, static_cast('0')); return write_digits(it); }); } template bool write_int_localized(OutputIt& out, UInt value, unsigned prefix, const basic_format_specs& specs, locale_ref loc) { static_assert(std::is_same, UInt>::value, ""); const auto sep_size = 1; std::string groups = grouping(loc); if (groups.empty()) return false; auto sep = thousands_sep(loc); if (!sep) return false; int num_digits = count_digits(value); int size = num_digits, n = num_digits; std::string::const_iterator group = groups.cbegin(); while (group != groups.cend() && n > *group && *group > 0 && *group != max_value()) { size += sep_size; n -= *group; ++group; } if (group == groups.cend()) size += sep_size * ((n - 1) / groups.back()); char digits[40]; format_decimal(digits, value, num_digits); basic_memory_buffer buffer; if (prefix != 0) ++size; const auto usize = to_unsigned(size); buffer.resize(usize); basic_string_view s(&sep, sep_size); // Index of a decimal digit with the least significant digit having index 0. int digit_index = 0; group = groups.cbegin(); auto p = buffer.data() + size - 1; for (int i = num_digits - 1; i > 0; --i) { *p-- = static_cast(digits[i]); if (*group <= 0 || ++digit_index % *group != 0 || *group == max_value()) continue; if (group + 1 != groups.cend()) { digit_index = 0; ++group; } std::uninitialized_copy(s.data(), s.data() + s.size(), make_checked(p, s.size())); p -= s.size(); } *p-- = static_cast(*digits); if (prefix != 0) *p = static_cast(prefix); auto data = buffer.data(); out = write_padded( out, specs, usize, usize, [=](reserve_iterator it) { return copy_str(data, data + size, it); }); return true; } FMT_CONSTEXPR inline void prefix_append(unsigned& prefix, unsigned value) { prefix |= prefix != 0 ? value << 8 : value; prefix += (1u + (value > 0xff ? 1 : 0)) << 24; } template struct write_int_arg { UInt abs_value; unsigned prefix; }; template FMT_CONSTEXPR auto make_write_int_arg(T value, sign_t sign) -> write_int_arg> { auto prefix = 0u; auto abs_value = static_cast>(value); if (is_negative(value)) { prefix = 0x01000000 | '-'; abs_value = 0 - abs_value; } else { prefix = data::prefixes[sign]; } return {abs_value, prefix}; } template FMT_CONSTEXPR FMT_INLINE auto write_int(OutputIt out, write_int_arg arg, const basic_format_specs& specs, locale_ref loc) -> OutputIt { static_assert(std::is_same>::value, ""); auto abs_value = arg.abs_value; auto prefix = arg.prefix; auto utype = static_cast(specs.type); switch (specs.type) { case 0: case 'd': { if (specs.localized && write_int_localized(out, static_cast>(abs_value), prefix, specs, loc)) { return out; } auto num_digits = count_digits(abs_value); return write_int( out, num_digits, prefix, specs, [=](reserve_iterator it) { return format_decimal(it, abs_value, num_digits).end; }); } case 'x': case 'X': { if (specs.alt) prefix_append(prefix, (utype << 8) | '0'); bool upper = specs.type != 'x'; int num_digits = count_digits<4>(abs_value); return write_int( out, num_digits, prefix, specs, [=](reserve_iterator it) { return format_uint<4, Char>(it, abs_value, num_digits, upper); }); } case 'b': case 'B': { if (specs.alt) prefix_append(prefix, (utype << 8) | '0'); int num_digits = count_digits<1>(abs_value); return write_int(out, num_digits, prefix, specs, [=](reserve_iterator it) { return format_uint<1, Char>(it, abs_value, num_digits); }); } case 'o': { int num_digits = count_digits<3>(abs_value); if (specs.alt && specs.precision <= num_digits && abs_value != 0) { // Octal prefix '0' is counted as a digit, so only add it if precision // is not greater than the number of digits. prefix_append(prefix, '0'); } return write_int(out, num_digits, prefix, specs, [=](reserve_iterator it) { return format_uint<3, Char>(it, abs_value, num_digits); }); } case 'c': return write_char(out, static_cast(abs_value), specs); default: FMT_THROW(format_error("invalid type specifier")); } return out; } template ::value && !std::is_same::value && std::is_same>::value)> FMT_CONSTEXPR OutputIt write(OutputIt out, T value, const basic_format_specs& specs, locale_ref loc) { return write_int(out, make_write_int_arg(value, specs.sign), specs, loc); } // An inlined version of write used in format string compilation. template ::value && !std::is_same::value && !std::is_same>::value)> FMT_CONSTEXPR FMT_INLINE OutputIt write(OutputIt out, T value, const basic_format_specs& specs, locale_ref loc) { return write_int(out, make_write_int_arg(value, specs.sign), specs, loc); } template FMT_CONSTEXPR OutputIt write(OutputIt out, basic_string_view s, const basic_format_specs& specs) { auto data = s.data(); auto size = s.size(); if (specs.precision >= 0 && to_unsigned(specs.precision) < size) size = code_point_index(s, to_unsigned(specs.precision)); auto width = specs.width != 0 ? compute_width(basic_string_view(data, size)) : 0; return write_padded(out, specs, size, width, [=](reserve_iterator it) { return copy_str(data, data + size, it); }); } template FMT_CONSTEXPR OutputIt write(OutputIt out, basic_string_view> s, const basic_format_specs& specs, locale_ref) { return write(out, s, specs); } template FMT_CONSTEXPR OutputIt write(OutputIt out, const Char* s, const basic_format_specs& specs, locale_ref) { return check_cstring_type_spec(specs.type) ? write(out, basic_string_view(s), specs, {}) : write_ptr(out, to_uintptr(s), &specs); } template OutputIt write_nonfinite(OutputIt out, bool isinf, basic_format_specs specs, const float_specs& fspecs) { auto str = isinf ? (fspecs.upper ? "INF" : "inf") : (fspecs.upper ? "NAN" : "nan"); constexpr size_t str_size = 3; auto sign = fspecs.sign; auto size = str_size + (sign ? 1 : 0); // Replace '0'-padding with space for non-finite values. const bool is_zero_fill = specs.fill.size() == 1 && *specs.fill.data() == static_cast('0'); if (is_zero_fill) specs.fill[0] = static_cast(' '); return write_padded(out, specs, size, [=](reserve_iterator it) { if (sign) *it++ = static_cast(data::signs[sign]); return copy_str(str, str + str_size, it); }); } // A decimal floating-point number significand * pow(10, exp). struct big_decimal_fp { const char* significand; int significand_size; int exponent; }; inline int get_significand_size(const big_decimal_fp& fp) { return fp.significand_size; } template inline int get_significand_size(const dragonbox::decimal_fp& fp) { return count_digits(fp.significand); } template inline OutputIt write_significand(OutputIt out, const char* significand, int& significand_size) { return copy_str(significand, significand + significand_size, out); } template inline OutputIt write_significand(OutputIt out, UInt significand, int significand_size) { return format_decimal(out, significand, significand_size).end; } template ::value)> inline Char* write_significand(Char* out, UInt significand, int significand_size, int integral_size, Char decimal_point) { if (!decimal_point) return format_decimal(out, significand, significand_size).end; auto end = format_decimal(out + 1, significand, significand_size).end; if (integral_size == 1) { out[0] = out[1]; } else { std::uninitialized_copy_n(out + 1, integral_size, make_checked(out, to_unsigned(integral_size))); } out[integral_size] = decimal_point; return end; } template >::value)> inline OutputIt write_significand(OutputIt out, UInt significand, int significand_size, int integral_size, Char decimal_point) { // Buffer is large enough to hold digits (digits10 + 1) and a decimal point. Char buffer[digits10() + 2]; auto end = write_significand(buffer, significand, significand_size, integral_size, decimal_point); return detail::copy_str_noinline(buffer, end, out); } template inline OutputIt write_significand(OutputIt out, const char* significand, int significand_size, int integral_size, Char decimal_point) { out = detail::copy_str_noinline(significand, significand + integral_size, out); if (!decimal_point) return out; *out++ = decimal_point; return detail::copy_str_noinline(significand + integral_size, significand + significand_size, out); } template OutputIt write_float(OutputIt out, const DecimalFP& fp, const basic_format_specs& specs, float_specs fspecs, Char decimal_point) { auto significand = fp.significand; int significand_size = get_significand_size(fp); static const Char zero = static_cast('0'); auto sign = fspecs.sign; size_t size = to_unsigned(significand_size) + (sign ? 1 : 0); using iterator = reserve_iterator; int output_exp = fp.exponent + significand_size - 1; auto use_exp_format = [=]() { if (fspecs.format == float_format::exp) return true; if (fspecs.format != float_format::general) return false; // Use the fixed notation if the exponent is in [exp_lower, exp_upper), // e.g. 0.0001 instead of 1e-04. Otherwise use the exponent notation. const int exp_lower = -4, exp_upper = 16; return output_exp < exp_lower || output_exp >= (fspecs.precision > 0 ? fspecs.precision : exp_upper); }; if (use_exp_format()) { int num_zeros = 0; if (fspecs.showpoint) { num_zeros = fspecs.precision - significand_size; if (num_zeros < 0) num_zeros = 0; size += to_unsigned(num_zeros); } else if (significand_size == 1) { decimal_point = Char(); } auto abs_output_exp = output_exp >= 0 ? output_exp : -output_exp; int exp_digits = 2; if (abs_output_exp >= 100) exp_digits = abs_output_exp >= 1000 ? 4 : 3; size += to_unsigned((decimal_point ? 1 : 0) + 2 + exp_digits); char exp_char = fspecs.upper ? 'E' : 'e'; auto write = [=](iterator it) { if (sign) *it++ = static_cast(data::signs[sign]); // Insert a decimal point after the first digit and add an exponent. it = write_significand(it, significand, significand_size, 1, decimal_point); if (num_zeros > 0) it = detail::fill_n(it, num_zeros, zero); *it++ = static_cast(exp_char); return write_exponent(output_exp, it); }; return specs.width > 0 ? write_padded(out, specs, size, write) : base_iterator(out, write(reserve(out, size))); } int exp = fp.exponent + significand_size; if (fp.exponent >= 0) { // 1234e5 -> 123400000[.0+] size += to_unsigned(fp.exponent); int num_zeros = fspecs.precision - exp; #ifdef FMT_FUZZ if (num_zeros > 5000) throw std::runtime_error("fuzz mode - avoiding excessive cpu use"); #endif if (fspecs.showpoint) { if (num_zeros <= 0 && fspecs.format != float_format::fixed) num_zeros = 1; if (num_zeros > 0) size += to_unsigned(num_zeros) + 1; } return write_padded(out, specs, size, [&](iterator it) { if (sign) *it++ = static_cast(data::signs[sign]); it = write_significand(it, significand, significand_size); it = detail::fill_n(it, fp.exponent, zero); if (!fspecs.showpoint) return it; *it++ = decimal_point; return num_zeros > 0 ? detail::fill_n(it, num_zeros, zero) : it; }); } else if (exp > 0) { // 1234e-2 -> 12.34[0+] int num_zeros = fspecs.showpoint ? fspecs.precision - significand_size : 0; size += 1 + to_unsigned(num_zeros > 0 ? num_zeros : 0); return write_padded(out, specs, size, [&](iterator it) { if (sign) *it++ = static_cast(data::signs[sign]); it = write_significand(it, significand, significand_size, exp, decimal_point); return num_zeros > 0 ? detail::fill_n(it, num_zeros, zero) : it; }); } // 1234e-6 -> 0.001234 int num_zeros = -exp; if (significand_size == 0 && fspecs.precision >= 0 && fspecs.precision < num_zeros) { num_zeros = fspecs.precision; } bool pointy = num_zeros != 0 || significand_size != 0 || fspecs.showpoint; size += 1 + (pointy ? 1 : 0) + to_unsigned(num_zeros); return write_padded(out, specs, size, [&](iterator it) { if (sign) *it++ = static_cast(data::signs[sign]); *it++ = zero; if (!pointy) return it; *it++ = decimal_point; it = detail::fill_n(it, num_zeros, zero); return write_significand(it, significand, significand_size); }); } template ::value)> OutputIt write(OutputIt out, T value, basic_format_specs specs, locale_ref loc = {}) { if (const_check(!is_supported_floating_point(value))) return out; float_specs fspecs = parse_float_type_spec(specs); fspecs.sign = specs.sign; if (std::signbit(value)) { // value < 0 is false for NaN so use signbit. fspecs.sign = sign::minus; value = -value; } else if (fspecs.sign == sign::minus) { fspecs.sign = sign::none; } if (!std::isfinite(value)) return write_nonfinite(out, std::isinf(value), specs, fspecs); if (specs.align == align::numeric && fspecs.sign) { auto it = reserve(out, 1); *it++ = static_cast(data::signs[fspecs.sign]); out = base_iterator(out, it); fspecs.sign = sign::none; if (specs.width != 0) --specs.width; } memory_buffer buffer; if (fspecs.format == float_format::hex) { if (fspecs.sign) buffer.push_back(data::signs[fspecs.sign]); snprintf_float(promote_float(value), specs.precision, fspecs, buffer); return write_bytes(out, {buffer.data(), buffer.size()}, specs); } int precision = specs.precision >= 0 || !specs.type ? specs.precision : 6; if (fspecs.format == float_format::exp) { if (precision == max_value()) FMT_THROW(format_error("number is too big")); else ++precision; } if (const_check(std::is_same())) fspecs.binary32 = true; fspecs.use_grisu = is_fast_float(); int exp = format_float(promote_float(value), precision, fspecs, buffer); fspecs.precision = precision; Char point = fspecs.locale ? decimal_point(loc) : static_cast('.'); auto fp = big_decimal_fp{buffer.data(), static_cast(buffer.size()), exp}; return write_float(out, fp, specs, fspecs, point); } template ::value)> OutputIt write(OutputIt out, T value) { if (const_check(!is_supported_floating_point(value))) return out; using floaty = conditional_t::value, double, T>; using uint = typename dragonbox::float_info::carrier_uint; auto bits = bit_cast(value); auto fspecs = float_specs(); auto sign_bit = bits & (uint(1) << (num_bits() - 1)); if (sign_bit != 0) { fspecs.sign = sign::minus; value = -value; } static const auto specs = basic_format_specs(); uint mask = exponent_mask(); if ((bits & mask) == mask) return write_nonfinite(out, std::isinf(value), specs, fspecs); auto dec = dragonbox::to_decimal(static_cast(value)); return write_float(out, dec, specs, fspecs, static_cast('.')); } template ::value && !is_fast_float::value)> inline OutputIt write(OutputIt out, T value) { return write(out, value, basic_format_specs()); } template OutputIt write(OutputIt out, monostate, basic_format_specs = {}, locale_ref = {}) { FMT_ASSERT(false, ""); return out; } template FMT_CONSTEXPR OutputIt write(OutputIt out, basic_string_view value) { auto it = reserve(out, value.size()); it = copy_str_noinline(value.begin(), value.end(), it); return base_iterator(out, it); } template ::value)> constexpr OutputIt write(OutputIt out, const T& value) { return write(out, to_string_view(value)); } template ::value && !std::is_same::value && !std::is_same::value)> FMT_CONSTEXPR OutputIt write(OutputIt out, T value) { auto abs_value = static_cast>(value); bool negative = is_negative(value); // Don't do -abs_value since it trips unsigned-integer-overflow sanitizer. if (negative) abs_value = ~abs_value + 1; int num_digits = count_digits(abs_value); auto size = (negative ? 1 : 0) + static_cast(num_digits); auto it = reserve(out, size); if (auto ptr = to_pointer(it, size)) { if (negative) *ptr++ = static_cast('-'); format_decimal(ptr, abs_value, num_digits); return out; } if (negative) *it++ = static_cast('-'); it = format_decimal(it, abs_value, num_digits).end; return base_iterator(out, it); } // FMT_ENABLE_IF() condition separated to workaround MSVC bug template < typename Char, typename OutputIt, typename T, bool check = std::is_enum::value && !std::is_same::value && mapped_type_constant>::value != type::custom_type, FMT_ENABLE_IF(check)> FMT_CONSTEXPR OutputIt write(OutputIt out, T value) { return write( out, static_cast::type>(value)); } template ::value)> FMT_CONSTEXPR OutputIt write(OutputIt out, T value, const basic_format_specs& specs = {}, locale_ref = {}) { return specs.type && specs.type != 's' ? write(out, value ? 1 : 0, specs, {}) : write_bytes(out, value ? "true" : "false", specs); } template FMT_CONSTEXPR OutputIt write(OutputIt out, Char value) { auto it = reserve(out, 1); *it++ = value; return base_iterator(out, it); } template FMT_CONSTEXPR_CHAR_TRAITS OutputIt write(OutputIt out, const Char* value) { if (!value) { FMT_THROW(format_error("string pointer is null")); } else { auto length = std::char_traits::length(value); out = write(out, basic_string_view(value, length)); } return out; } template ::value)> OutputIt write(OutputIt out, const T* value, const basic_format_specs& specs = {}, locale_ref = {}) { check_pointer_type_spec(specs.type, error_handler()); return write_ptr(out, to_uintptr(value), &specs); } template auto write(OutputIt out, const T& value) -> typename std::enable_if< mapped_type_constant>::value == type::custom_type, OutputIt>::type { using context_type = basic_format_context; using formatter_type = conditional_t::value, typename context_type::template formatter_type, fallback_formatter>; context_type ctx(out, {}, {}); return formatter_type().format(value, ctx); } // An argument visitor that formats the argument and writes it via the output // iterator. It's a class and not a generic lambda for compatibility with C++11. template struct default_arg_formatter { using iterator = buffer_appender; using context = buffer_context; iterator out; basic_format_args args; locale_ref loc; template auto operator()(T value) -> iterator { return write(out, value); } auto operator()(typename basic_format_arg::handle h) -> iterator { basic_format_parse_context parse_ctx({}); context format_ctx(out, args, loc); h.format(parse_ctx, format_ctx); return format_ctx.out(); } }; template struct arg_formatter { using iterator = buffer_appender; using context = buffer_context; iterator out; const basic_format_specs& specs; locale_ref locale; template FMT_CONSTEXPR FMT_INLINE auto operator()(T value) -> iterator { return detail::write(out, value, specs, locale); } auto operator()(typename basic_format_arg::handle) -> iterator { // User-defined types are handled separately because they require access // to the parse context. return out; } }; template struct custom_formatter { basic_format_parse_context& parse_ctx; buffer_context& ctx; void operator()( typename basic_format_arg>::handle h) const { h.format(parse_ctx, ctx); } template void operator()(T) const {} }; template using is_integer = bool_constant::value && !std::is_same::value && !std::is_same::value && !std::is_same::value>; template class width_checker { public: explicit FMT_CONSTEXPR width_checker(ErrorHandler& eh) : handler_(eh) {} template ::value)> FMT_CONSTEXPR unsigned long long operator()(T value) { if (is_negative(value)) handler_.on_error("negative width"); return static_cast(value); } template ::value)> FMT_CONSTEXPR unsigned long long operator()(T) { handler_.on_error("width is not integer"); return 0; } private: ErrorHandler& handler_; }; template class precision_checker { public: explicit FMT_CONSTEXPR precision_checker(ErrorHandler& eh) : handler_(eh) {} template ::value)> FMT_CONSTEXPR unsigned long long operator()(T value) { if (is_negative(value)) handler_.on_error("negative precision"); return static_cast(value); } template ::value)> FMT_CONSTEXPR unsigned long long operator()(T) { handler_.on_error("precision is not integer"); return 0; } private: ErrorHandler& handler_; }; template