fmtlegacy/include/fmt/printf.h
2019-01-20 15:12:01 -08:00

790 lines
24 KiB
C++

// Formatting library for C++
//
// Copyright (c) 2012 - 2016, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.
#ifndef FMT_PRINTF_H_
#define FMT_PRINTF_H_
#include <algorithm> // std::fill_n
#include <limits> // std::numeric_limits
#include "ostream.h"
FMT_BEGIN_NAMESPACE
namespace internal {
// Checks if a value fits in int - used to avoid warnings about comparing
// signed and unsigned integers.
template <bool IsSigned> struct int_checker {
template <typename T> static bool fits_in_int(T value) {
unsigned max = std::numeric_limits<int>::max();
return value <= max;
}
static bool fits_in_int(bool) { return true; }
};
template <> struct int_checker<true> {
template <typename T> static bool fits_in_int(T value) {
return value >= std::numeric_limits<int>::min() &&
value <= std::numeric_limits<int>::max();
}
static bool fits_in_int(int) { return true; }
};
class printf_precision_handler : public function<int> {
public:
template <typename T>
typename std::enable_if<std::is_integral<T>::value, int>::type operator()(
T value) {
if (!int_checker<std::numeric_limits<T>::is_signed>::fits_in_int(value))
FMT_THROW(format_error("number is too big"));
return static_cast<int>(value);
}
template <typename T>
typename std::enable_if<!std::is_integral<T>::value, int>::type operator()(
T) {
FMT_THROW(format_error("precision is not integer"));
return 0;
}
};
// An argument visitor that returns true iff arg is a zero integer.
class is_zero_int : public function<bool> {
public:
template <typename T>
typename std::enable_if<std::is_integral<T>::value, bool>::type operator()(
T value) {
return value == 0;
}
template <typename T>
typename std::enable_if<!std::is_integral<T>::value, bool>::type operator()(
T) {
return false;
}
};
template <typename T> struct make_unsigned_or_bool : std::make_unsigned<T> {};
template <> struct make_unsigned_or_bool<bool> { typedef bool type; };
template <typename T, typename Context>
class arg_converter : public function<void> {
private:
typedef typename Context::char_type Char;
basic_format_arg<Context>& arg_;
typename Context::char_type type_;
public:
arg_converter(basic_format_arg<Context>& arg, Char type)
: arg_(arg), type_(type) {}
void operator()(bool value) {
if (type_ != 's') operator()<bool>(value);
}
template <typename U>
typename std::enable_if<std::is_integral<U>::value>::type operator()(
U value) {
bool is_signed = type_ == 'd' || type_ == 'i';
typedef typename std::conditional<std::is_same<T, void>::value, U, T>::type
TargetType;
if (const_check(sizeof(TargetType) <= sizeof(int))) {
// Extra casts are used to silence warnings.
if (is_signed) {
arg_ = internal::make_arg<Context>(
static_cast<int>(static_cast<TargetType>(value)));
} else {
typedef typename make_unsigned_or_bool<TargetType>::type Unsigned;
arg_ = internal::make_arg<Context>(
static_cast<unsigned>(static_cast<Unsigned>(value)));
}
} else {
if (is_signed) {
// glibc's printf doesn't sign extend arguments of smaller types:
// std::printf("%lld", -42); // prints "4294967254"
// but we don't have to do the same because it's a UB.
arg_ = internal::make_arg<Context>(static_cast<long long>(value));
} else {
arg_ = internal::make_arg<Context>(
static_cast<typename make_unsigned_or_bool<U>::type>(value));
}
}
}
template <typename U>
typename std::enable_if<!std::is_integral<U>::value>::type operator()(U) {
// No coversion needed for non-integral types.
}
};
// Converts an integer argument to T for printf, if T is an integral type.
// If T is void, the argument is converted to corresponding signed or unsigned
// type depending on the type specifier: 'd' and 'i' - signed, other -
// unsigned).
template <typename T, typename Context, typename Char>
void convert_arg(basic_format_arg<Context>& arg, Char type) {
visit_format_arg(arg_converter<T, Context>(arg, type), arg);
}
// Converts an integer argument to char for printf.
template <typename Context> class char_converter : public function<void> {
private:
basic_format_arg<Context>& arg_;
public:
explicit char_converter(basic_format_arg<Context>& arg) : arg_(arg) {}
template <typename T>
typename std::enable_if<std::is_integral<T>::value>::type operator()(
T value) {
typedef typename Context::char_type Char;
arg_ = internal::make_arg<Context>(static_cast<Char>(value));
}
template <typename T>
typename std::enable_if<!std::is_integral<T>::value>::type operator()(T) {
// No coversion needed for non-integral types.
}
};
// Checks if an argument is a valid printf width specifier and sets
// left alignment if it is negative.
template <typename Char>
class printf_width_handler : public function<unsigned> {
private:
typedef basic_format_specs<Char> format_specs;
format_specs& spec_;
public:
explicit printf_width_handler(format_specs& spec) : spec_(spec) {}
template <typename T>
typename std::enable_if<std::is_integral<T>::value, unsigned>::type
operator()(T value) {
typedef typename internal::int_traits<T>::main_type UnsignedType;
UnsignedType width = static_cast<UnsignedType>(value);
if (internal::is_negative(value)) {
spec_.align_ = ALIGN_LEFT;
width = 0 - width;
}
unsigned int_max = std::numeric_limits<int>::max();
if (width > int_max) FMT_THROW(format_error("number is too big"));
return static_cast<unsigned>(width);
}
template <typename T>
typename std::enable_if<!std::is_integral<T>::value, unsigned>::type
operator()(T) {
FMT_THROW(format_error("width is not integer"));
return 0;
}
};
template <typename Char, typename Context>
void printf(basic_buffer<Char>& buf, basic_string_view<Char> format,
basic_format_args<Context> args) {
Context(std::back_inserter(buf), format, args).format();
}
template <typename OutputIt, typename Char, typename Context>
internal::truncating_iterator<OutputIt> printf(
internal::truncating_iterator<OutputIt> it, basic_string_view<Char> format,
basic_format_args<Context> args) {
return Context(it, format, args).format();
}
} // namespace internal
using internal::printf; // For printing into memory_buffer.
template <typename Range> class printf_arg_formatter;
template <typename OutputIt, typename Char,
typename ArgFormatter = printf_arg_formatter<
back_insert_range<internal::basic_buffer<Char>>>>
class basic_printf_context;
/**
\rst
The ``printf`` argument formatter.
\endrst
*/
template <typename Range>
class printf_arg_formatter
: public internal::function<
typename internal::arg_formatter_base<Range>::iterator>,
public internal::arg_formatter_base<Range> {
private:
typedef typename Range::value_type char_type;
typedef decltype(internal::declval<Range>().begin()) iterator;
typedef internal::arg_formatter_base<Range> base;
typedef basic_printf_context<iterator, char_type, printf_arg_formatter>
context_type;
context_type& context_;
void write_null_pointer(char) {
this->spec()->type = 0;
this->write("(nil)");
}
void write_null_pointer(wchar_t) {
this->spec()->type = 0;
this->write(L"(nil)");
}
public:
typedef typename base::format_specs format_specs;
/**
\rst
Constructs an argument formatter object.
*buffer* is a reference to the output buffer and *spec* contains format
specifier information for standard argument types.
\endrst
*/
printf_arg_formatter(iterator iter, format_specs& spec, context_type& ctx)
: base(Range(iter), &spec, ctx.locale()), context_(ctx) {}
template <typename T>
typename std::enable_if<std::is_integral<T>::value, iterator>::type
operator()(T value) {
// MSVC2013 fails to compile separate overloads for bool and char_type so
// use std::is_same instead.
if (std::is_same<T, bool>::value) {
format_specs& fmt_spec = *this->spec();
if (fmt_spec.type != 's') return base::operator()(value ? 1 : 0);
fmt_spec.type = 0;
this->write(value != 0);
} else if (std::is_same<T, char_type>::value) {
format_specs& fmt_spec = *this->spec();
if (fmt_spec.type && fmt_spec.type != 'c')
return (*this)(static_cast<int>(value));
fmt_spec.flags = 0;
fmt_spec.align_ = ALIGN_RIGHT;
return base::operator()(value);
} else {
return base::operator()(value);
}
return this->out();
}
template <typename T>
typename std::enable_if<std::is_floating_point<T>::value, iterator>::type
operator()(T value) {
return base::operator()(value);
}
/** Formats a null-terminated C string. */
iterator operator()(const char* value) {
if (value)
base::operator()(value);
else if (this->spec()->type == 'p')
write_null_pointer(char_type());
else
this->write("(null)");
return this->out();
}
/** Formats a null-terminated wide C string. */
iterator operator()(const wchar_t* value) {
if (value)
base::operator()(value);
else if (this->spec()->type == 'p')
write_null_pointer(char_type());
else
this->write(L"(null)");
return this->out();
}
iterator operator()(basic_string_view<char_type> value) {
return base::operator()(value);
}
iterator operator()(monostate value) { return base::operator()(value); }
/** Formats a pointer. */
iterator operator()(const void* value) {
if (value) return base::operator()(value);
this->spec()->type = 0;
write_null_pointer(char_type());
return this->out();
}
/** Formats an argument of a custom (user-defined) type. */
iterator operator()(typename basic_format_arg<context_type>::handle handle) {
handle.format(context_);
return this->out();
}
};
template <typename T> struct printf_formatter {
template <typename ParseContext>
auto parse(ParseContext& ctx) -> decltype(ctx.begin()) {
return ctx.begin();
}
template <typename FormatContext>
auto format(const T& value, FormatContext& ctx) -> decltype(ctx.out()) {
internal::format_value(internal::get_container(ctx.out()), value);
return ctx.out();
}
};
/** This template formats data and writes the output to a writer. */
template <typename OutputIt, typename Char, typename ArgFormatter>
class basic_printf_context :
// Inherit publicly as a workaround for the icc bug
// https://software.intel.com/en-us/forums/intel-c-compiler/topic/783476.
public internal::context_base<
OutputIt, basic_printf_context<OutputIt, Char, ArgFormatter>, Char> {
public:
/** The character type for the output. */
typedef Char char_type;
template <typename T> struct formatter_type {
typedef printf_formatter<T> type;
};
private:
typedef internal::context_base<OutputIt, basic_printf_context, Char> base;
typedef typename base::format_arg format_arg;
typedef basic_format_specs<char_type> format_specs;
static void parse_flags(format_specs& spec, const Char*& it, const Char* end);
// Returns the argument with specified index or, if arg_index is equal
// to the maximum unsigned value, the next argument.
format_arg get_arg(unsigned arg_index = std::numeric_limits<unsigned>::max());
// Parses argument index, flags and width and returns the argument index.
unsigned parse_header(const Char*& it, const Char* end, format_specs& spec);
public:
/**
\rst
Constructs a ``printf_context`` object. References to the arguments and
the writer are stored in the context object so make sure they have
appropriate lifetimes.
\endrst
*/
basic_printf_context(OutputIt out, basic_string_view<char_type> format_str,
basic_format_args<basic_printf_context> args)
: base(out, format_str, args) {}
using base::advance_to;
using base::out;
using base::parse_context;
/** Formats stored arguments and writes the output to the range. */
OutputIt format();
};
template <typename OutputIt, typename Char, typename AF>
void basic_printf_context<OutputIt, Char, AF>::parse_flags(format_specs& spec,
const Char*& it,
const Char* end) {
for (; it != end; ++it) {
switch (*it) {
case '-':
spec.align_ = ALIGN_LEFT;
break;
case '+':
spec.flags |= SIGN_FLAG | PLUS_FLAG;
break;
case '0':
spec.fill_ = '0';
break;
case ' ':
spec.flags |= SIGN_FLAG;
break;
case '#':
spec.flags |= HASH_FLAG;
break;
default:
return;
}
}
}
template <typename OutputIt, typename Char, typename AF>
typename basic_printf_context<OutputIt, Char, AF>::format_arg
basic_printf_context<OutputIt, Char, AF>::get_arg(unsigned arg_index) {
if (arg_index == std::numeric_limits<unsigned>::max())
return this->do_get_arg(this->parse_context().next_arg_id());
return base::arg(arg_index - 1);
}
template <typename OutputIt, typename Char, typename AF>
unsigned basic_printf_context<OutputIt, Char, AF>::parse_header(
const Char*& it, const Char* end, format_specs& spec) {
unsigned arg_index = std::numeric_limits<unsigned>::max();
char_type c = *it;
if (c >= '0' && c <= '9') {
// Parse an argument index (if followed by '$') or a width possibly
// preceded with '0' flag(s).
internal::error_handler eh;
unsigned value = parse_nonnegative_int(it, end, eh);
if (it != end && *it == '$') { // value is an argument index
++it;
arg_index = value;
} else {
if (c == '0') spec.fill_ = '0';
if (value != 0) {
// Nonzero value means that we parsed width and don't need to
// parse it or flags again, so return now.
spec.width_ = value;
return arg_index;
}
}
}
parse_flags(spec, it, end);
// Parse width.
if (it != end) {
if (*it >= '0' && *it <= '9') {
internal::error_handler eh;
spec.width_ = parse_nonnegative_int(it, end, eh);
} else if (*it == '*') {
++it;
spec.width_ = visit_format_arg(
internal::printf_width_handler<char_type>(spec), get_arg());
}
}
return arg_index;
}
template <typename OutputIt, typename Char, typename AF>
OutputIt basic_printf_context<OutputIt, Char, AF>::format() {
auto out = this->out();
const auto range = this->parse_context();
const Char* const end = range.end();
const Char* start = range.begin();
auto it = start;
while (it != end) {
char_type c = *it++;
if (c != '%') continue;
if (it != end && *it == c) {
out = std::copy(start, it, out);
start = ++it;
continue;
}
out = std::copy(start, it - 1, out);
format_specs spec;
spec.align_ = ALIGN_RIGHT;
// Parse argument index, flags and width.
unsigned arg_index = parse_header(it, end, spec);
// Parse precision.
if (it != end && *it == '.') {
++it;
c = it != end ? *it : 0;
if ('0' <= c && c <= '9') {
internal::error_handler eh;
spec.precision = static_cast<int>(parse_nonnegative_int(it, end, eh));
} else if (c == '*') {
++it;
spec.precision =
visit_format_arg(internal::printf_precision_handler(), get_arg());
} else {
spec.precision = 0;
}
}
format_arg arg = get_arg(arg_index);
if (spec.has(HASH_FLAG) && visit_format_arg(internal::is_zero_int(), arg))
spec.flags = static_cast<uint_least8_t>(
spec.flags & (~internal::to_unsigned<int>(HASH_FLAG)));
if (spec.fill_ == '0') {
if (arg.is_arithmetic())
spec.align_ = ALIGN_NUMERIC;
else
spec.fill_ = ' '; // Ignore '0' flag for non-numeric types.
}
// Parse length and convert the argument to the required type.
c = it != end ? *it++ : 0;
char_type t = it != end ? *it : 0;
using internal::convert_arg;
switch (c) {
case 'h':
if (t == 'h') {
++it;
t = it != end ? *it : 0;
convert_arg<signed char>(arg, t);
} else {
convert_arg<short>(arg, t);
}
break;
case 'l':
if (t == 'l') {
++it;
t = it != end ? *it : 0;
convert_arg<long long>(arg, t);
} else {
convert_arg<long>(arg, t);
}
break;
case 'j':
convert_arg<intmax_t>(arg, t);
break;
case 'z':
convert_arg<std::size_t>(arg, t);
break;
case 't':
convert_arg<std::ptrdiff_t>(arg, t);
break;
case 'L':
// printf produces garbage when 'L' is omitted for long double, no
// need to do the same.
break;
default:
--it;
convert_arg<void>(arg, c);
}
// Parse type.
if (it == end) FMT_THROW(format_error("invalid format string"));
spec.type = static_cast<char>(*it++);
if (arg.is_integral()) {
// Normalize type.
switch (spec.type) {
case 'i':
case 'u':
spec.type = 'd';
break;
case 'c':
// TODO: handle wchar_t better?
visit_format_arg(internal::char_converter<basic_printf_context>(arg),
arg);
break;
}
}
start = it;
// Format argument.
visit_format_arg(AF(out, spec, *this), arg);
}
return std::copy(start, it, out);
}
template <typename Buffer> struct basic_printf_context_t {
typedef basic_printf_context<std::back_insert_iterator<Buffer>,
typename Buffer::value_type>
type;
};
typedef basic_printf_context_t<internal::buffer>::type printf_context;
typedef basic_printf_context_t<internal::wbuffer>::type wprintf_context;
typedef basic_format_args<printf_context> printf_args;
typedef basic_format_args<wprintf_context> wprintf_args;
template <typename OutputIt, typename Char = typename OutputIt::value_type>
struct basic_printf_n_context_t {
typedef fmt::internal::truncating_iterator<OutputIt> OutputIter;
typedef output_range<OutputIter, Char> Range;
typedef basic_printf_context<OutputIter, Char, printf_arg_formatter<Range>>
type;
};
/**
\rst
Constructs an `~fmt::format_arg_store` object that contains references to
arguments and can be implicitly converted to `~fmt::printf_args`.
\endrst
*/
template <typename... Args>
inline format_arg_store<printf_context, Args...> make_printf_args(
const Args&... args) {
return {args...};
}
/**
\rst
Constructs an `~fmt::format_arg_store` object that contains references to
arguments and can be implicitly converted to `~fmt::wprintf_args`.
\endrst
*/
template <typename... Args>
inline format_arg_store<wprintf_context, Args...> make_wprintf_args(
const Args&... args) {
return {args...};
}
template <typename S, typename Char = FMT_CHAR(S)>
inline std::basic_string<Char> vsprintf(
const S& format,
basic_format_args<
typename basic_printf_context_t<internal::basic_buffer<Char>>::type>
args) {
basic_memory_buffer<Char> buffer;
printf(buffer, to_string_view(format), args);
return to_string(buffer);
}
template <typename OutputIt, typename S, typename Char = FMT_CHAR(S)>
inline typename std::enable_if<internal::is_output_iterator<OutputIt>::value,
format_to_n_result<OutputIt>>::type
vsnprintf(
OutputIt out, std::size_t n, const S& format,
basic_format_args<typename basic_printf_n_context_t<OutputIt, Char>::type>
args) {
typedef internal::truncating_iterator<OutputIt> It;
auto it = printf(It(out, n), to_string_view(format), args);
return {it.base(), it.count()};
}
/**
\rst
Formats arguments and returns the result as a string.
**Example**::
std::string message = fmt::sprintf("The answer is %d", 42);
\endrst
*/
template <typename S, typename... Args>
inline FMT_ENABLE_IF_T(internal::is_string<S>::value,
std::basic_string<FMT_CHAR(S)>)
sprintf(const S& format, const Args&... args) {
internal::check_format_string<Args...>(format);
typedef internal::basic_buffer<FMT_CHAR(S)> buffer;
typedef typename basic_printf_context_t<buffer>::type context;
format_arg_store<context, Args...> as{args...};
return vsprintf(to_string_view(format), basic_format_args<context>(as));
}
/**
\rst
Formats arguments for up to ``n`` characters stored through output iterator
``out``. The function returns the updated iterator and the untruncated amount
of characters.
**Example**::
std::vector<char> out;
typedef fmt::format_to_n_result<
std::back_insert_iterator<std::vector<char>>> res;
res Res = fmt::snprintf(std::back_inserter(out), 5, "The answer is %d", 42);
\endrst
*/
template <typename OutputIt, typename S, typename... Args>
inline FMT_ENABLE_IF_T(internal::is_string<S>::value&&
internal::is_output_iterator<OutputIt>::value,
format_to_n_result<OutputIt>)
snprintf(OutputIt out, std::size_t n, const S& format,
const Args&... args) {
internal::check_format_string<Args...>(format);
typedef FMT_CHAR(S) Char;
typedef typename basic_printf_n_context_t<OutputIt, Char>::type context;
format_arg_store<context, Args...> as{args...};
return vsnprintf(out, n, to_string_view(format),
basic_format_args<context>(as));
}
template <typename S, typename Char = FMT_CHAR(S)>
inline int vfprintf(
std::FILE* f, const S& format,
basic_format_args<
typename basic_printf_context_t<internal::basic_buffer<Char>>::type>
args) {
basic_memory_buffer<Char> buffer;
printf(buffer, to_string_view(format), args);
std::size_t size = buffer.size();
return std::fwrite(buffer.data(), sizeof(Char), size, f) < size
? -1
: static_cast<int>(size);
}
/**
\rst
Prints formatted data to the file *f*.
**Example**::
fmt::fprintf(stderr, "Don't %s!", "panic");
\endrst
*/
template <typename S, typename... Args>
inline FMT_ENABLE_IF_T(internal::is_string<S>::value, int)
fprintf(std::FILE* f, const S& format, const Args&... args) {
internal::check_format_string<Args...>(format);
typedef internal::basic_buffer<FMT_CHAR(S)> buffer;
typedef typename basic_printf_context_t<buffer>::type context;
format_arg_store<context, Args...> as{args...};
return vfprintf(f, to_string_view(format), basic_format_args<context>(as));
}
template <typename S, typename Char = FMT_CHAR(S)>
inline int vprintf(
const S& format,
basic_format_args<
typename basic_printf_context_t<internal::basic_buffer<Char>>::type>
args) {
return vfprintf(stdout, to_string_view(format), args);
}
/**
\rst
Prints formatted data to ``stdout``.
**Example**::
fmt::printf("Elapsed time: %.2f seconds", 1.23);
\endrst
*/
template <typename S, typename... Args>
inline FMT_ENABLE_IF_T(internal::is_string<S>::value, int)
printf(const S& format_str, const Args&... args) {
internal::check_format_string<Args...>(format_str);
typedef internal::basic_buffer<FMT_CHAR(S)> buffer;
typedef typename basic_printf_context_t<buffer>::type context;
format_arg_store<context, Args...> as{args...};
return vprintf(to_string_view(format_str), basic_format_args<context>(as));
}
template <typename S, typename Char = FMT_CHAR(S)>
inline int vfprintf(
std::basic_ostream<Char>& os, const S& format,
basic_format_args<
typename basic_printf_context_t<internal::basic_buffer<Char>>::type>
args) {
basic_memory_buffer<Char> buffer;
printf(buffer, to_string_view(format), args);
internal::write(os, buffer);
return static_cast<int>(buffer.size());
}
/**
\rst
Prints formatted data to the stream *os*.
**Example**::
fmt::fprintf(cerr, "Don't %s!", "panic");
\endrst
*/
template <typename S, typename... Args>
inline FMT_ENABLE_IF_T(internal::is_string<S>::value, int)
fprintf(std::basic_ostream<FMT_CHAR(S)>& os, const S& format_str,
const Args&... args) {
internal::check_format_string<Args...>(format_str);
typedef internal::basic_buffer<FMT_CHAR(S)> buffer;
typedef typename basic_printf_context_t<buffer>::type context;
format_arg_store<context, Args...> as{args...};
return vfprintf(os, to_string_view(format_str),
basic_format_args<context>(as));
}
FMT_END_NAMESPACE
#endif // FMT_PRINTF_H_