fmtlegacy/doc/index.rst
2019-05-18 08:56:49 -07:00

212 lines
6.0 KiB
ReStructuredText
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

Overview
========
**fmt** (formerly cppformat) is an open-source formatting library.
It can be used as a fast and safe alternative to printf and IOStreams.
.. raw:: html
<div class="panel panel-default">
<div class="panel-heading">What users say:</div>
<div class="panel-body">
Thanks for creating this library. Its been a hole in C++ for a long
time. Ive used both boost::format and loki::SPrintf, and neither felt
like the right answer. This does.
</div>
</div>
.. _format-api-intro:
Format API
----------
The replacement-based Format API provides a safe alternative to ``printf``,
``sprintf`` and friends with comparable or `better performance
<http://zverovich.net/2013/09/07/integer-to-string-conversion-in-cplusplus.html>`_.
The `format string syntax <syntax.html>`_ is similar to the one used by
`str.format <http://docs.python.org/3/library/stdtypes.html#str.format>`_
in Python:
.. code:: c++
fmt::format("The answer is {}.", 42);
The ``fmt::format`` function returns a string "The answer is 42.". You can use
``fmt::memory_buffer`` to avoid constructing ``std::string``:
.. code:: c++
fmt::memory_buffer out;
format_to(out, "For a moment, {} happened.", "nothing");
out.data(); // returns a pointer to the formatted data
The ``fmt::print`` function performs formatting and writes the result to a stream:
.. code:: c++
fmt::print(stderr, "System error code = {}\n", errno);
The file argument can be omitted in which case the function prints to
``stdout``:
.. code:: c++
fmt::print("Don't {}\n", "panic");
The Format API also supports positional arguments useful for localization:
.. code:: c++
fmt::print("I'd rather be {1} than {0}.", "right", "happy");
Named arguments can be created with ``fmt::arg``. This makes it easier to track
what goes where when multiple values are being inserted:
.. code:: c++
fmt::print("Hello, {name}! The answer is {number}. Goodbye, {name}.",
fmt::arg("name", "World"), fmt::arg("number", 42));
If your compiler supports C++11 user-defined literals, the suffix ``_a`` offers
an alternative, slightly terser syntax for named arguments:
.. code:: c++
fmt::print("Hello, {name}! The answer is {number}. Goodbye, {name}.",
"name"_a="World", "number"_a=42);
The ``_format`` suffix may be used to format string literals similar to Python:
.. code:: c++
std::string message = "{0}{1}{0}"_format("abra", "cad");
Other than the placement of the format string on the left of the operator,
``_format`` is functionally identical to ``fmt::format``. In order to use the
literal operators, they must be made visible with the directive
``using namespace fmt::literals;``. Note that this brings in only ``_a`` and
``_format`` but nothing else from the ``fmt`` namespace.
.. _safety:
Safety
------
The library is fully type safe, automatic memory management prevents buffer
overflow, errors in format strings are reported using exceptions or at compile
time. For example, the code
.. code:: c++
fmt::format("The answer is {:d}", "forty-two");
throws a ``format_error`` exception with description "unknown format code 'd' for
string", because the argument ``"forty-two"`` is a string while the format code
``d`` only applies to integers, while
.. code:: c++
format(fmt("The answer is {:d}"), "forty-two");
reports a compile-time error for the same reason on compilers that support
relaxed ``constexpr``. See `here <api.html#c.fmt>`_ for how to enable
compile-time checks.
The following code
.. code:: c++
fmt::format("Cyrillic letter {}", L'\x42e');
produces a compile-time error because wide character ``L'\x42e'`` cannot be
formatted into a narrow string. You can use a wide format string instead:
.. code:: c++
fmt::format(L"Cyrillic letter {}", L'\x42e');
For comparison, writing a wide character to ``std::ostream`` results in
its numeric value being written to the stream (i.e. 1070 instead of letter 'ю'
which is represented by ``L'\x42e'`` if we use Unicode) which is rarely what is
needed.
Compact Binary Code
-------------------
The library is designed to produce compact per-call compiled code. For example
(`godbolt <https://godbolt.org/g/TZU4KF>`_),
.. code:: c++
#include <fmt/core.h>
int main() {
fmt::print("The answer is {}.", 42);
}
compiles to just
.. code:: asm
main: # @main
sub rsp, 24
mov qword ptr [rsp], 42
mov rcx, rsp
mov edi, offset .L.str
mov esi, 17
mov edx, 2
call fmt::v5::vprint(fmt::v5::basic_string_view<char>, fmt::v5::format_args)
xor eax, eax
add rsp, 24
ret
.L.str:
.asciz "The answer is {}."
.. _portability:
Portability
-----------
The library is highly portable and relies only on a small set of C++11 features:
* variadic templates
* type traits
* rvalue references
* decltype
* trailing return types
* deleted functions
These are available since GCC 4.4, Clang 2.9 and MSVC 18.0 (2013). For older
compilers use fmt `version 4.x
<https://github.com/fmtlib/fmt/releases/tag/4.1.0>`_ which continues to be
maintained and only requires C++98.
The output of all formatting functions is consistent across platforms. In
particular, formatting a floating-point infinity always gives ``inf`` while the
output of ``printf`` is platform-dependent in this case. For example,
.. code::
fmt::print("{}", std::numeric_limits<double>::infinity());
always prints ``inf``.
.. _ease-of-use:
Ease of Use
-----------
fmt has a small self-contained code base with the core library consisting of
just three header files and no external dependencies.
A permissive BSD `license <https://github.com/fmtlib/fmt#license>`_ allows
using the library both in open-source and commercial projects.
.. raw:: html
<a class="btn btn-success" href="https://github.com/fmtlib/fmt">GitHub Repository</a>
<div class="section footer">
<iframe src="http://ghbtns.com/github-btn.html?user=fmtlib&amp;repo=fmt&amp;type=watch&amp;count=true"
class="github-btn" width="100" height="20"></iframe>
</div>