fmtlegacy/include/fmt/prepare.h
Victor Zverovich 2808395481 basic_buffer -> buffer
This reduces symbol sizes and gets rid of shadowing warnings.
2019-04-07 20:32:28 -07:00

785 lines
26 KiB
C++

// Formatting library for C++ - format string compilation
//
// Copyright (c) 2012 - present, Victor Zverovich and fmt contributors
// All rights reserved.
//
// For the license information refer to format.h.
#ifndef FMT_PREPARE_H_
#define FMT_PREPARE_H_
#ifndef FMT_HAS_CONSTRUCTIBLE_TRAITS
# define FMT_HAS_CONSTRUCTIBLE_TRAITS \
(FMT_GCC_VERSION >= 407 || FMT_CLANG_VERSION || FMT_MSC_VER)
#endif
#include "format.h"
#include <vector>
FMT_BEGIN_NAMESPACE
template <typename Char> struct format_part {
public:
struct named_argument_id {
FMT_CONSTEXPR named_argument_id(internal::string_view_metadata id)
: id(id) {}
internal::string_view_metadata id;
};
struct argument_id {
FMT_CONSTEXPR argument_id() : argument_id(0u) {}
FMT_CONSTEXPR argument_id(unsigned id)
: which(which_arg_id::index), val(id) {}
FMT_CONSTEXPR argument_id(internal::string_view_metadata id)
: which(which_arg_id::named_index), val(id) {}
enum class which_arg_id { index, named_index };
which_arg_id which;
FMT_UNRESTRICTED_UNION value {
FMT_CONSTEXPR value() : index(0u) {}
FMT_CONSTEXPR value(unsigned id) : index(id) {}
FMT_CONSTEXPR value(internal::string_view_metadata id)
: named_index(id) {}
unsigned index;
internal::string_view_metadata named_index;
}
val;
};
struct specification {
FMT_CONSTEXPR specification() : arg_id(0u) {}
FMT_CONSTEXPR specification(unsigned id) : arg_id(id) {}
FMT_CONSTEXPR specification(internal::string_view_metadata id)
: arg_id(id) {}
argument_id arg_id;
internal::dynamic_format_specs<Char> parsed_specs;
};
FMT_CONSTEXPR format_part()
: which(which_value::argument_id), end_of_argument_id(0u), val(0u) {}
FMT_CONSTEXPR format_part(internal::string_view_metadata text)
: which(which_value::text), end_of_argument_id(0u), val(text) {}
FMT_CONSTEXPR format_part(unsigned id)
: which(which_value::argument_id), end_of_argument_id(0u), val(id) {}
FMT_CONSTEXPR format_part(named_argument_id arg_id)
: which(which_value::named_argument_id),
end_of_argument_id(0u),
val(arg_id) {}
FMT_CONSTEXPR format_part(specification spec)
: which(which_value::specification), end_of_argument_id(0u), val(spec) {}
enum class which_value {
argument_id,
named_argument_id,
text,
specification
};
which_value which;
std::size_t end_of_argument_id;
FMT_UNRESTRICTED_UNION value {
FMT_CONSTEXPR value() : arg_id(0u) {}
FMT_CONSTEXPR value(unsigned id) : arg_id(id) {}
FMT_CONSTEXPR value(named_argument_id named_id)
: named_arg_id(named_id.id) {}
FMT_CONSTEXPR value(internal::string_view_metadata t) : text(t) {}
FMT_CONSTEXPR value(specification s) : spec(s) {}
unsigned arg_id;
internal::string_view_metadata named_arg_id;
internal::string_view_metadata text;
specification spec;
}
val;
};
namespace internal {
template <typename Char, typename PartsContainer>
class format_preparation_handler : public internal::error_handler {
private:
typedef format_part<Char> part;
public:
typedef internal::null_terminating_iterator<Char> iterator;
FMT_CONSTEXPR format_preparation_handler(basic_string_view<Char> format,
PartsContainer& parts)
: parts_(parts), format_(format), parse_context_(format) {}
FMT_CONSTEXPR void on_text(const Char* begin, const Char* end) {
if (begin == end) {
return;
}
const auto offset = begin - format_.data();
const auto size = end - begin;
parts_.add(part(string_view_metadata(offset, size)));
}
FMT_CONSTEXPR void on_arg_id() {
parts_.add(part(parse_context_.next_arg_id()));
}
FMT_CONSTEXPR void on_arg_id(unsigned id) {
parse_context_.check_arg_id(id);
parts_.add(part(id));
}
FMT_CONSTEXPR void on_arg_id(basic_string_view<Char> id) {
const auto view = string_view_metadata(format_, id);
const auto arg_id = typename part::named_argument_id(view);
parts_.add(part(arg_id));
}
FMT_CONSTEXPR void on_replacement_field(const Char* ptr) {
auto last_part = parts_.last();
last_part.end_of_argument_id = ptr - format_.begin();
parts_.substitute_last(last_part);
}
FMT_CONSTEXPR const Char* on_format_specs(const Char* begin,
const Char* end) {
const auto specs_offset = to_unsigned(begin - format_.begin());
typedef basic_parse_context<Char> parse_context;
internal::dynamic_format_specs<Char> parsed_specs;
dynamic_specs_handler<parse_context> handler(parsed_specs, parse_context_);
begin = parse_format_specs(begin, end, handler);
if (*begin != '}') {
on_error("missing '}' in format string");
}
const auto last_part = parts_.last();
auto specs = last_part.which == part::which_value::argument_id
? typename part::specification(last_part.val.arg_id)
: typename part::specification(last_part.val.named_arg_id);
specs.parsed_specs = parsed_specs;
auto new_part = part(specs);
new_part.end_of_argument_id = specs_offset;
parts_.substitute_last(new_part);
return begin;
}
private:
PartsContainer& parts_;
basic_string_view<Char> format_;
basic_parse_context<Char> parse_context_;
};
template <typename Format, typename PreparedPartsProvider, typename... Args>
class prepared_format {
public:
typedef FMT_CHAR(Format) char_type;
typedef format_part<char_type> format_part_t;
prepared_format(Format f)
: format_(std::move(f)), parts_provider_(to_string_view(format_)) {}
prepared_format() = delete;
std::size_t formatted_size(const Args&... args) const {
const auto it = this->format_to(counting_iterator<char_type>(), args...);
return it.count();
}
template <typename OutputIt,
FMT_ENABLE_IF(internal::is_output_iterator<OutputIt>::value)>
inline format_to_n_result<OutputIt> format_to_n(OutputIt out, unsigned n,
const Args&... args) const {
format_arg_store<typename format_to_n_context<OutputIt, char_type>::type,
Args...>
as(args...);
typedef truncating_iterator<OutputIt> trunc_it;
typedef output_range<trunc_it, char_type> range;
range r(trunc_it(out, n));
auto it = this->vformat_to(
r, typename format_to_n_args<OutputIt, char_type>::type(as));
return {it.base(), it.count()};
}
std::basic_string<char_type> format(const Args&... args) const {
basic_memory_buffer<char_type> buffer;
typedef back_insert_range<internal::buffer<char_type>> range;
this->vformat_to(range(buffer), make_args_checked(format_, args...));
return to_string(buffer);
}
template <typename Container, FMT_ENABLE_IF(is_contiguous<Container>::value)>
inline std::back_insert_iterator<Container> format_to(
std::back_insert_iterator<Container> out, const Args&... args) const {
internal::container_buffer<Container> buffer(internal::get_container(out));
typedef back_insert_range<internal::buffer<char_type>> range;
this->vformat_to(range(buffer), make_args_checked(format_, args...));
return out;
}
template <typename OutputIt>
inline OutputIt format_to(OutputIt out, const Args&... args) const {
typedef typename format_context_t<OutputIt, char_type>::type context;
typedef output_range<OutputIt, char_type> range;
format_arg_store<context, Args...> as(args...);
return this->vformat_to(range(out), basic_format_args<context>(as));
}
template <std::size_t SIZE = inline_buffer_size>
inline typename buffer_context<char_type>::type::iterator format_to(
basic_memory_buffer<char_type, SIZE>& buf, const Args&... args) const {
typedef back_insert_range<internal::buffer<char_type>> range;
return this->vformat_to(range(buf), make_args_checked(format_, args...));
}
private:
typedef typename buffer_context<char_type>::type context;
template <typename Range>
typename context::iterator vformat_to(Range out,
basic_format_args<context> args) const {
const auto format_view = internal::to_string_view(format_);
basic_parse_context<char_type> parse_ctx(format_view);
context ctx(out.begin(), args);
const auto& parts = parts_provider_.parts();
for (auto part_it = parts.begin(); part_it != parts.end(); ++part_it) {
const auto& part = *part_it;
const auto& value = part.val;
switch (part.which) {
case format_part_t::which_value::text: {
const auto text = value.text.to_view(format_view);
auto output = ctx.out();
auto&& it = internal::reserve(output, text.size());
it = std::copy_n(text.begin(), text.size(), it);
ctx.advance_to(output);
} break;
case format_part_t::which_value::argument_id: {
advance_parse_context_to_specification(parse_ctx, part);
format_arg<Range>(parse_ctx, ctx, value.arg_id);
} break;
case format_part_t::which_value::named_argument_id: {
advance_parse_context_to_specification(parse_ctx, part);
const auto named_arg_id = value.named_arg_id.to_view(format_view);
format_arg<Range>(parse_ctx, ctx, named_arg_id);
} break;
case format_part_t::which_value::specification: {
const auto& arg_id_value = value.spec.arg_id.val;
const auto arg =
value.spec.arg_id.which ==
format_part_t::argument_id::which_arg_id::index
? ctx.arg(arg_id_value.index)
: ctx.arg(arg_id_value.named_index.to_view(format_));
auto specs = value.spec.parsed_specs;
handle_dynamic_spec<internal::width_checker>(
specs.width_, specs.width_ref, ctx, format_view.begin());
handle_dynamic_spec<internal::precision_checker>(
specs.precision, specs.precision_ref, ctx, format_view.begin());
check_prepared_specs(specs, arg.type());
advance_parse_context_to_specification(parse_ctx, part);
ctx.advance_to(
visit_format_arg(arg_formatter<Range>(ctx, FMT_NULL, &specs), arg));
} break;
}
}
return ctx.out();
}
void advance_parse_context_to_specification(
basic_parse_context<char_type>& parse_ctx,
const format_part_t& part) const {
const auto view = to_string_view(format_);
const auto specification_begin = view.data() + part.end_of_argument_id;
parse_ctx.advance_to(specification_begin);
}
template <typename Range, typename Context, typename Id>
void format_arg(basic_parse_context<char_type>& parse_ctx, Context& ctx,
Id arg_id) const {
parse_ctx.check_arg_id(arg_id);
const auto stopped_at =
visit_format_arg(arg_formatter<Range>(ctx), ctx.arg(arg_id));
ctx.advance_to(stopped_at);
}
template <typename Char>
void check_prepared_specs(const basic_format_specs<Char>& specs,
internal::type arg_type) const {
internal::error_handler h;
numeric_specs_checker<internal::error_handler> checker(h, arg_type);
if (specs.align_ == ALIGN_NUMERIC) {
checker.require_numeric_argument();
}
if (specs.has(PLUS_FLAG | MINUS_FLAG | SIGN_FLAG)) {
checker.check_sign();
}
if (specs.has(HASH_FLAG)) {
checker.require_numeric_argument();
}
if (specs.has_precision()) {
checker.check_precision();
}
}
private:
Format format_;
PreparedPartsProvider parts_provider_;
};
template <typename Format> class compiletime_prepared_parts_type_provider {
private:
typedef FMT_CHAR(Format) char_type;
class count_handler {
private:
typedef internal::null_terminating_iterator<char_type> iterator;
public:
FMT_CONSTEXPR count_handler() : counter_(0u) {}
FMT_CONSTEXPR void on_text(const char_type* begin, const char_type* end) {
if (begin != end) {
++counter_;
}
}
FMT_CONSTEXPR void on_arg_id() { ++counter_; }
FMT_CONSTEXPR void on_arg_id(unsigned) { ++counter_; }
FMT_CONSTEXPR void on_arg_id(basic_string_view<char_type>) { ++counter_; }
FMT_CONSTEXPR void on_replacement_field(const char_type*) {}
FMT_CONSTEXPR const char_type* on_format_specs(const char_type* begin,
const char_type* end) {
return find_matching_brace(begin, end);
}
FMT_CONSTEXPR void on_error(const char*) {}
FMT_CONSTEXPR unsigned result() const { return counter_; }
private:
FMT_CONSTEXPR const char_type* find_matching_brace(const char_type* begin,
const char_type* end) {
unsigned braces_counter{0u};
for (; begin != end; ++begin) {
if (*begin == '{') {
++braces_counter;
} else if (*begin == '}') {
if (braces_counter == 0u) {
break;
}
--braces_counter;
}
}
return begin;
}
private:
unsigned counter_;
};
static FMT_CONSTEXPR unsigned count_parts() {
FMT_CONSTEXPR_DECL const auto text = to_string_view(Format{});
count_handler handler;
internal::parse_format_string</*IS_CONSTEXPR=*/true>(text, handler);
return handler.result();
}
// Workaround for old compilers. Compiletime parts preparation will not be
// performed with them anyway.
#if FMT_USE_CONSTEXPR
static FMT_CONSTEXPR_DECL const unsigned number_of_format_parts =
compiletime_prepared_parts_type_provider::count_parts();
#else
static const unsigned number_of_format_parts = 0u;
#endif
public:
template <unsigned N> struct format_parts_array {
typedef format_part<char_type> value_type;
FMT_CONSTEXPR format_parts_array() : arr{} {}
FMT_CONSTEXPR value_type& operator[](unsigned ind) { return arr[ind]; }
FMT_CONSTEXPR const value_type* begin() const { return arr; }
FMT_CONSTEXPR const value_type* end() const { return begin() + N; }
private:
value_type arr[N];
};
struct empty {
// Parts preparator will search for it
typedef format_part<char_type> value_type;
};
typedef typename std::conditional<static_cast<bool>(number_of_format_parts),
format_parts_array<number_of_format_parts>,
empty>::type type;
};
template <typename Parts> class compiletime_prepared_parts_collector {
private:
typedef typename Parts::value_type format_part;
public:
FMT_CONSTEXPR explicit compiletime_prepared_parts_collector(Parts& parts)
: parts_{parts}, counter_{0u} {}
FMT_CONSTEXPR void add(format_part part) { parts_[counter_++] = part; }
FMT_CONSTEXPR void substitute_last(format_part part) {
parts_[counter_ - 1] = part;
}
FMT_CONSTEXPR format_part last() { return parts_[counter_ - 1]; }
private:
Parts& parts_;
unsigned counter_;
};
template <typename PartsContainer, typename Char>
FMT_CONSTEXPR PartsContainer prepare_parts(basic_string_view<Char> format) {
PartsContainer parts;
internal::parse_format_string</*IS_CONSTEXPR=*/false>(
format, format_preparation_handler<Char, PartsContainer>(format, parts));
return parts;
}
template <typename PartsContainer, typename Char>
FMT_CONSTEXPR PartsContainer
prepare_compiletime_parts(basic_string_view<Char> format) {
typedef compiletime_prepared_parts_collector<PartsContainer> collector;
PartsContainer parts;
collector c(parts);
internal::parse_format_string</*IS_CONSTEXPR=*/true>(
format, format_preparation_handler<Char, collector>(format, c));
return parts;
}
template <typename PartsContainer> class runtime_parts_provider {
public:
runtime_parts_provider() = delete;
template <typename Char>
runtime_parts_provider(basic_string_view<Char> format)
: parts_(prepare_parts<PartsContainer>(format)) {}
const PartsContainer& parts() const { return parts_; }
private:
PartsContainer parts_;
};
template <typename Format, typename PartsContainer>
struct compiletime_parts_provider {
compiletime_parts_provider() = delete;
template <typename Char>
FMT_CONSTEXPR compiletime_parts_provider(basic_string_view<Char>) {}
const PartsContainer& parts() const {
static FMT_CONSTEXPR_DECL const PartsContainer prepared_parts =
prepare_compiletime_parts<PartsContainer>(
internal::to_string_view(Format{}));
return prepared_parts;
}
};
template <typename PartsContainer>
struct parts_container_concept_check : std::true_type {
#if FMT_HAS_CONSTRUCTIBLE_TRAITS
static_assert(std::is_copy_constructible<PartsContainer>::value,
"PartsContainer is not copy constructible");
static_assert(std::is_move_constructible<PartsContainer>::value,
"PartsContainer is not move constructible");
#endif
template <typename T, typename = void>
struct has_format_part_type : std::false_type {};
template <typename T>
struct has_format_part_type<
T, typename void_<typename T::format_part_type>::type> : std::true_type {
};
static_assert(has_format_part_type<PartsContainer>::value,
"PartsContainer doesn't provide format_part_type typedef");
struct check_second {};
struct check_first : check_second {};
template <typename T> static std::false_type has_add_check(check_second);
template <typename T>
static decltype(
(void)declval<T>().add(declval<typename T::format_part_type>()),
std::true_type()) has_add_check(check_first);
typedef decltype(has_add_check<PartsContainer>(check_first())) has_add;
static_assert(has_add::value, "PartsContainer doesn't provide add() method");
template <typename T> static std::false_type has_last_check(check_second);
template <typename T>
static decltype((void)declval<T>().last(),
std::true_type()) has_last_check(check_first);
typedef decltype(has_last_check<PartsContainer>(check_first())) has_last;
static_assert(has_last::value,
"PartsContainer doesn't provide last() method");
template <typename T>
static std::false_type has_substitute_last_check(check_second);
template <typename T>
static decltype((void)declval<T>().substitute_last(
declval<typename T::format_part_type>()),
std::true_type()) has_substitute_last_check(check_first);
typedef decltype(has_substitute_last_check<PartsContainer>(
check_first())) has_substitute_last;
static_assert(has_substitute_last::value,
"PartsContainer doesn't provide substitute_last() method");
template <typename T> static std::false_type has_begin_check(check_second);
template <typename T>
static decltype((void)declval<T>().begin(),
std::true_type()) has_begin_check(check_first);
typedef decltype(has_begin_check<PartsContainer>(check_first())) has_begin;
static_assert(has_begin::value,
"PartsContainer doesn't provide begin() method");
template <typename T> static std::false_type has_end_check(check_second);
template <typename T>
static decltype((void)declval<T>().end(),
std::true_type()) has_end_check(check_first);
typedef decltype(has_end_check<PartsContainer>(check_first())) has_end;
static_assert(has_end::value, "PartsContainer doesn't provide end() method");
};
template <bool IS_CONSTEXPR, typename Format, typename /*PartsContainer*/>
struct parts_provider_type {
typedef compiletime_parts_provider<
Format, typename compiletime_prepared_parts_type_provider<Format>::type>
type;
};
template <typename Format, typename PartsContainer>
struct parts_provider_type</*IS_CONSTEXPR=*/false, Format, PartsContainer> {
static_assert(parts_container_concept_check<PartsContainer>::value,
"Parts container doesn't meet the concept");
typedef runtime_parts_provider<PartsContainer> type;
};
template <typename Format, typename PreparedPartsContainer, typename... Args>
struct basic_prepared_format {
typedef internal::prepared_format<Format,
typename internal::parts_provider_type<
is_compile_string<Format>::value,
Format, PreparedPartsContainer>::type,
Args...>
type;
};
template <typename Char>
std::basic_string<Char> to_runtime_format(basic_string_view<Char> format) {
return std::basic_string<Char>(format.begin(), format.size());
}
template <typename Char>
std::basic_string<Char> to_runtime_format(const Char* format) {
return std::basic_string<Char>(format);
}
template <typename Char, typename Container = std::vector<format_part<Char>>>
class parts_container {
public:
typedef format_part<Char> format_part_type;
void add(format_part_type part) { parts_.push_back(std::move(part)); }
void substitute_last(format_part_type part) {
parts_.back() = std::move(part);
}
format_part_type last() { return parts_.back(); }
auto begin() -> decltype(internal::declval<Container>().begin()) {
return parts_.begin();
}
auto begin() const -> decltype(internal::declval<const Container>().begin()) {
return parts_.begin();
}
auto end() -> decltype(internal::declval<Container>().end()) {
return parts_.end();
}
auto end() const -> decltype(internal::declval<const Container>().end()) {
return parts_.end();
}
private:
Container parts_;
};
// Delegate preparing to preparator, to take advantage of a partial
// specialization.
template <typename Format, typename... Args> struct preparator {
typedef parts_container<FMT_CHAR(Format)> container;
typedef typename basic_prepared_format<Format, container, Args...>::type
prepared_format_type;
static auto prepare(Format format) -> prepared_format_type {
return prepared_format_type(std::move(format));
}
};
template <typename PassedFormat, typename PreparedFormatFormat,
typename PartsContainer, typename... Args>
struct preparator<PassedFormat, prepared_format<PreparedFormatFormat,
PartsContainer, Args...>> {
typedef prepared_format<PreparedFormatFormat, PartsContainer, Args...>
prepared_format_type;
static auto prepare(PassedFormat format) -> prepared_format_type {
return prepared_format_type(std::move(format));
}
};
struct compiletime_format_tag {};
struct runtime_format_tag {};
template <typename Format> struct format_tag {
typedef typename std::conditional<is_compile_string<Format>::value,
compiletime_format_tag,
runtime_format_tag>::type type;
};
#if FMT_USE_CONSTEXPR
template <typename Format, typename... Args>
auto do_prepare(runtime_format_tag, Format format) {
return preparator<Format, Args...>::prepare(std::move(format));
}
template <typename Format, typename... Args>
FMT_CONSTEXPR auto do_prepare(compiletime_format_tag, const Format& format) {
return typename basic_prepared_format<Format, void, Args...>::type(format);
}
#else
template <typename Format, typename... Args>
auto do_prepare(const Format& format)
-> decltype(preparator<Format, Args...>::prepare(format)) {
return preparator<Format, Args...>::prepare(format);
}
#endif
} // namespace internal
template <typename Char, typename Container = std::vector<format_part<Char>>>
struct parts_container {
typedef internal::parts_container<Char, Container> type;
};
template <typename Format, typename PartsContainer, typename... Args>
struct basic_prepared_format {
typedef typename internal::basic_prepared_format<Format, PartsContainer,
Args...>::type type;
};
template <typename... Args> struct prepared_format {
typedef typename basic_prepared_format<
std::string, typename parts_container<char>::type, Args...>::type type;
};
template <typename... Args> struct wprepared_format {
typedef
typename basic_prepared_format<std::wstring,
typename parts_container<wchar_t>::type,
Args...>::type type;
};
#if FMT_USE_ALIAS_TEMPLATES
template <typename Char, typename Container = std::vector<format_part<Char>>>
using parts_container_t = typename parts_container<Char, Container>::type;
template <typename Format, typename PreparedPartsContainer, typename... Args>
using basic_prepared_format_t =
typename basic_prepared_format<Format, PreparedPartsContainer,
Args...>::type;
template <typename... Args>
using prepared_format_t =
basic_prepared_format_t<std::string, parts_container<char>, Args...>;
template <typename... Args>
using wprepared_format_t =
basic_prepared_format_t<std::wstring, parts_container<wchar_t>, Args...>;
#endif
#if FMT_USE_CONSTEXPR
template <typename... Args, typename Format>
FMT_CONSTEXPR auto prepare(Format format) {
return internal::do_prepare<Format, Args...>(
typename internal::format_tag<Format>::type{}, std::move(format));
}
#else
template <typename... Args, typename Format>
auto prepare(Format format) ->
typename internal::preparator<Format, Args...>::prepared_format_type {
return internal::preparator<Format, Args...>::prepare(std::move(format));
}
#endif
template <typename... Args, typename Char>
auto prepare(const Char* format) ->
typename internal::preparator<std::basic_string<Char>,
Args...>::prepared_format_type {
return prepare<Args...>(internal::to_runtime_format(format));
}
template <typename... Args, typename Char, unsigned N>
auto prepare(const Char(format)[N]) ->
typename internal::preparator<std::basic_string<Char>,
Args...>::prepared_format_type {
const auto view = basic_string_view<Char>(format, N);
return prepare<Args...>(internal::to_runtime_format(view));
}
template <typename... Args, typename Char>
auto prepare(basic_string_view<Char> format) ->
typename internal::preparator<std::basic_string<Char>,
Args...>::prepared_format_type {
return prepare<Args...>(internal::to_runtime_format(format));
}
FMT_END_NAMESPACE
#endif // FMT_PREPARE_H_