fmtlegacy/format.h

373 lines
10 KiB
C++

/*
Small, safe and fast string formatting library for C++
Author: Victor Zverovich
*/
#ifndef FORMAT_H_
#define FORMAT_H_
#include <cstddef>
#include <cstdio>
#include <stdexcept>
#include <string>
#include <sstream>
#include <vector>
namespace format {
// A simple array for POD types with the first SIZE elements stored in
// the object itself. It supports a subset of std::vector's operations.
template <typename T, std::size_t SIZE>
class Array {
private:
std::size_t size_;
std::size_t capacity_;
T *ptr_;
T data_[SIZE];
void Grow(std::size_t size);
// Do not implement!
Array(const Array &);
void operator=(const Array &);
public:
Array() : size_(0), capacity_(SIZE), ptr_(data_) {}
~Array() {
if (ptr_ != data_) delete [] ptr_;
}
// Returns the size of this array.
std::size_t size() const { return size_; }
// Returns the capacity of this array.
std::size_t capacity() const { return capacity_; }
// Resizes the array. If T is a POD type new elements are not initialized.
void resize(std::size_t new_size) {
if (new_size > capacity_)
Grow(new_size);
size_ = new_size;
}
void reserve(std::size_t capacity) {
if (capacity > capacity_)
Grow(capacity);
}
void clear() { size_ = 0; }
void push_back(const T &value) {
if (size_ == capacity_)
Grow(size_ + 1);
ptr_[size_++] = value;
}
// Appends data to the end of the array.
void append(const T *begin, const T *end);
T &operator[](std::size_t index) { return ptr_[index]; }
const T &operator[](std::size_t index) const { return ptr_[index]; }
};
template <typename T, std::size_t SIZE>
void Array<T, SIZE>::Grow(std::size_t size) {
capacity_ = std::max(size, capacity_ + capacity_ / 2);
T *p = new T[capacity_];
std::copy(ptr_, ptr_ + size_, p);
if (ptr_ != data_)
delete [] ptr_;
ptr_ = p;
}
template <typename T, std::size_t SIZE>
void Array<T, SIZE>::append(const T *begin, const T *end) {
std::ptrdiff_t num_elements = end - begin;
if (size_ + num_elements > capacity_)
Grow(num_elements);
std::copy(begin, end, ptr_ + size_);
size_ += num_elements;
}
class FormatError : public std::runtime_error {
public:
FormatError(const std::string &message) : std::runtime_error(message) {}
};
class ArgFormatter;
// Formatter provides string formatting functionality similar to Python's
// str.format. The output is stored in a memory buffer that grows dynamically.
// Usage:
//
// Formatter out;
// out("Current point:\n");
// out("(-{:+f}, {:+f})") << 3.14 << -3.14;
//
// This will populate the buffer of the out object with the following output:
//
// Current point:
// (-3.140000, +3.140000)
//
// The buffer can be accessed using Formatter::data() or Formatter::c_str().
class Formatter {
private:
enum { INLINE_BUFFER_SIZE = 500 };
Array<char, INLINE_BUFFER_SIZE> buffer_; // Output buffer.
enum Type {
// Numeric types should go first.
INT, UINT, LONG, ULONG, DOUBLE, LONG_DOUBLE,
LAST_NUMERIC_TYPE = LONG_DOUBLE,
CHAR, STRING, WSTRING, POINTER, CUSTOM
};
typedef void (Formatter::*FormatFunc)(const void *arg, int width);
// A format argument.
class Arg {
private:
// This method is private to disallow formatting of arbitrary pointers.
// If you want to output a pointer cast it to const void*. Do not implement!
template <typename T>
Arg(const T *value);
// This method is private to disallow formatting of arbitrary pointers.
// If you want to output a pointer cast it to void*. Do not implement!
template <typename T>
Arg(T *value);
// This method is private to disallow formatting of wide characters.
// If you want to output a wide character cast it to integer type.
// Do not implement!
Arg(wchar_t value);
public:
Type type;
union {
int int_value;
unsigned uint_value;
double double_value;
long long_value;
unsigned long ulong_value;
long double long_double_value;
const void *pointer_value;
struct {
const char *string_value;
std::size_t size;
};
struct {
const void *custom_value;
FormatFunc format;
};
};
mutable Formatter *formatter;
Arg(int value) : type(INT), int_value(value) {}
Arg(unsigned value) : type(UINT), uint_value(value) {}
Arg(long value) : type(LONG), long_value(value) {}
Arg(unsigned long value) : type(ULONG), ulong_value(value) {}
Arg(double value) : type(DOUBLE), double_value(value) {}
Arg(long double value) : type(LONG_DOUBLE), long_double_value(value) {}
Arg(char value) : type(CHAR), int_value(value) {}
Arg(const char *value) : type(STRING), string_value(value), size(0) {}
Arg(char *value) : type(STRING), string_value(value), size(0) {}
Arg(const void *value) : type(POINTER), pointer_value(value) {}
Arg(void *value) : type(POINTER), pointer_value(value) {}
Arg(const std::string &value)
: type(STRING), string_value(value.c_str()), size(value.size()) {}
template <typename T>
Arg(const T &value)
: type(CUSTOM), custom_value(&value),
format(&Formatter::FormatCustomArg<T>) {}
~Arg() {
// Format is called here to make sure that a referred object is
// still alive, for example:
//
// Print("{0}") << std::string("test");
//
// Here an Arg object refers to a temporary std::string which is
// destroyed at the end of the statement. Since the string object is
// constructed before the Arg object, it will be destroyed after,
// so it will be alive in the Arg's destructor where Format is called.
// Note that the string object will not necessarily be alive when
// the destructor of ArgFormatter is called.
formatter->Format();
}
};
enum { NUM_INLINE_ARGS = 10 };
Array<const Arg*, NUM_INLINE_ARGS> args_; // Format arguments.
const char *format_; // Format string.
friend class ArgFormatter;
void Add(const Arg &arg) {
args_.push_back(&arg);
}
// Formats an integer.
template <typename T>
void FormatInt(T value, unsigned flags, int width, char type);
// Formats a floating point number (double or long double).
template <typename T>
void FormatDouble(
T value, unsigned flags, int width, int precision, char type);
// Formats an argument of a custom type, such as a user-defined class.
template <typename T>
void FormatCustomArg(const void *arg, int width);
void DoFormat();
void Format() {
if (!format_) return;
DoFormat();
}
// Grows the buffer by n characters and returns a pointer to the newly
// allocated area.
char *GrowBuffer(std::size_t n) {
std::size_t size = buffer_.size();
buffer_.resize(size + n);
return &buffer_[size];
}
public:
Formatter() : format_(0) { buffer_[0] = 0; }
// Formats a string appending the output to the internal buffer.
// Arguments are accepted through the returned ArgFormatter object
// using inserter operator<<.
ArgFormatter operator()(const char *format);
std::size_t size() const { return buffer_.size(); }
const char *data() const { return &buffer_[0]; }
const char *c_str() const { return &buffer_[0]; }
std::string str() const { return std::string(&buffer_[0], buffer_.size()); }
};
// Argument formatter. This is a transient object that normally exists
// only as a temporary returned by one of the formatting functions.
// It stores a reference to a formatter and provides operator<<
// that feeds arguments to the formatter.
class ArgFormatter {
private:
friend class Formatter;
protected:
mutable Formatter *formatter_;
ArgFormatter(ArgFormatter& other)
: formatter_(other.formatter_) {
other.formatter_ = 0;
}
ArgFormatter& operator=(const ArgFormatter& other) {
formatter_ = other.formatter_;
other.formatter_ = 0;
return *this;
}
Formatter *FinishFormatting() const {
Formatter *f = formatter_;
if (f) {
formatter_ = 0;
f->Format();
}
return f;
}
public:
explicit ArgFormatter(Formatter &f) : formatter_(&f) {}
~ArgFormatter() { FinishFormatting(); }
// Feeds an argument to a formatter.
ArgFormatter &operator<<(const Formatter::Arg &arg) {
arg.formatter = formatter_;
formatter_->Add(arg);
return *this;
}
// Performs formatting and returns a C string with the output.
friend const char *c_str(const ArgFormatter &af) {
return af.FinishFormatting()->c_str();
}
// Performs formatting and returns a std::string with the output.
friend std::string str(const ArgFormatter &af) {
return af.FinishFormatting()->str();
}
};
template <typename T>
void Formatter::FormatCustomArg(const void *arg, int width) {
const T &value = *static_cast<const T*>(arg);
std::ostringstream os;
os << value;
std::string str(os.str());
char *out = GrowBuffer(std::max<std::size_t>(width, str.size()));
std::copy(str.begin(), str.end(), out);
if (width > str.size())
std::fill_n(out + str.size(), width - str.size(), ' ');
}
inline ArgFormatter Formatter::operator()(const char *format) {
ArgFormatter formatter(*this);
format_ = format;
args_.clear();
return formatter;
}
// A formatter with an action performed when formatting is complete.
template <typename Action>
class ActiveFormatter : public ArgFormatter {
private:
mutable Formatter formatter_;
// Do not implement.
ActiveFormatter& operator=(const ActiveFormatter&);
public:
explicit ActiveFormatter(const char *format) : ArgFormatter(formatter_) {
ArgFormatter::operator=(formatter_(format));
}
ActiveFormatter(ActiveFormatter& other) : ArgFormatter(other) {}
~ActiveFormatter() {
Action()(*FinishFormatting());
}
};
struct Ignore {
void operator()(Formatter &) const {}
};
inline ActiveFormatter<Ignore> Format(const char *format) {
ActiveFormatter<Ignore> af(format);
return af;
}
struct Write {
void operator()(Formatter &f) const {
std::fwrite(f.data(), 1, f.size(), stdout);
}
};
inline ActiveFormatter<Write> Print(const char *format) {
ActiveFormatter<Write> af(format);
return af;
}
}
namespace fmt = format;
#endif // FORMAT_H_