fmtlegacy/test/gmock/gmock.h
2016-03-08 07:36:22 -08:00

14203 lines
541 KiB
C++

// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: wan@google.com (Zhanyong Wan)
// Google Mock - a framework for writing C++ mock classes.
//
// This is the main header file a user should include.
#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_H_
#define GMOCK_INCLUDE_GMOCK_GMOCK_H_
#ifdef __clang__
# pragma clang diagnostic ignored "-Wc99-extensions"
#endif
// This file implements the following syntax:
//
// ON_CALL(mock_object.Method(...))
// .With(...) ?
// .WillByDefault(...);
//
// where With() is optional and WillByDefault() must appear exactly
// once.
//
// EXPECT_CALL(mock_object.Method(...))
// .With(...) ?
// .Times(...) ?
// .InSequence(...) *
// .WillOnce(...) *
// .WillRepeatedly(...) ?
// .RetiresOnSaturation() ? ;
//
// where all clauses are optional and WillOnce() can be repeated.
// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: wan@google.com (Zhanyong Wan)
// Google Mock - a framework for writing C++ mock classes.
//
// This file implements some commonly used actions.
#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
#define GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
#ifndef _WIN32_WCE
# include <errno.h>
#endif
#include <algorithm>
#include <string>
// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: wan@google.com (Zhanyong Wan)
// Google Mock - a framework for writing C++ mock classes.
//
// This file defines some utilities useful for implementing Google
// Mock. They are subject to change without notice, so please DO NOT
// USE THEM IN USER CODE.
#ifndef GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_
#define GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_
#include <stdio.h>
#include <ostream> // NOLINT
#include <string>
// This file was GENERATED by command:
// pump.py gmock-generated-internal-utils.h.pump
// DO NOT EDIT BY HAND!!!
// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: wan@google.com (Zhanyong Wan)
// Google Mock - a framework for writing C++ mock classes.
//
// This file contains template meta-programming utility classes needed
// for implementing Google Mock.
#ifndef GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_GENERATED_INTERNAL_UTILS_H_
#define GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_GENERATED_INTERNAL_UTILS_H_
// Copyright 2008, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: vadimb@google.com (Vadim Berman)
//
// Low-level types and utilities for porting Google Mock to various
// platforms. They are subject to change without notice. DO NOT USE
// THEM IN USER CODE.
#ifndef GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_
#define GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_
#include <assert.h>
#include <stdlib.h>
#include <iostream>
// Most of the types needed for porting Google Mock are also required
// for Google Test and are defined in gtest-port.h.
#include "gtest/gtest.h"
// To avoid conditional compilation everywhere, we make it
// gmock-port.h's responsibility to #include the header implementing
// tr1/tuple. gmock-port.h does this via gtest-port.h, which is
// guaranteed to pull in the tuple header.
// For MS Visual C++, check the compiler version. At least VS 2003 is
// required to compile Google Mock.
#if defined(_MSC_VER) && _MSC_VER < 1310
# error "At least Visual C++ 2003 (7.1) is required to compile Google Mock."
#endif
// Macro for referencing flags. This is public as we want the user to
// use this syntax to reference Google Mock flags.
#define GMOCK_FLAG(name) FLAGS_gmock_##name
// Macros for declaring flags.
#define GMOCK_DECLARE_bool_(name) extern GTEST_API_ bool GMOCK_FLAG(name)
#define GMOCK_DECLARE_int32_(name) \
extern GTEST_API_ ::testing::internal::Int32 GMOCK_FLAG(name)
#define GMOCK_DECLARE_string_(name) \
extern GTEST_API_ ::std::string GMOCK_FLAG(name)
// Macros for defining flags.
#define GMOCK_DEFINE_bool_(name, default_val, doc) \
GTEST_API_ bool GMOCK_FLAG(name) = (default_val)
#define GMOCK_DEFINE_int32_(name, default_val, doc) \
GTEST_API_ ::testing::internal::Int32 GMOCK_FLAG(name) = (default_val)
#define GMOCK_DEFINE_string_(name, default_val, doc) \
GTEST_API_ ::std::string GMOCK_FLAG(name) = (default_val)
#endif // GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_PORT_H_
namespace testing {
template <typename T>
class Matcher;
namespace internal {
// An IgnoredValue object can be implicitly constructed from ANY value.
// This is used in implementing the IgnoreResult(a) action.
class IgnoredValue {
public:
// This constructor template allows any value to be implicitly
// converted to IgnoredValue. The object has no data member and
// doesn't try to remember anything about the argument. We
// deliberately omit the 'explicit' keyword in order to allow the
// conversion to be implicit.
template <typename T>
IgnoredValue(const T& /* ignored */) {} // NOLINT(runtime/explicit)
};
// MatcherTuple<T>::type is a tuple type where each field is a Matcher
// for the corresponding field in tuple type T.
template <typename Tuple>
struct MatcherTuple;
template <>
struct MatcherTuple< ::std::tr1::tuple<> > {
typedef ::std::tr1::tuple< > type;
};
template <typename A1>
struct MatcherTuple< ::std::tr1::tuple<A1> > {
typedef ::std::tr1::tuple<Matcher<A1> > type;
};
template <typename A1, typename A2>
struct MatcherTuple< ::std::tr1::tuple<A1, A2> > {
typedef ::std::tr1::tuple<Matcher<A1>, Matcher<A2> > type;
};
template <typename A1, typename A2, typename A3>
struct MatcherTuple< ::std::tr1::tuple<A1, A2, A3> > {
typedef ::std::tr1::tuple<Matcher<A1>, Matcher<A2>, Matcher<A3> > type;
};
template <typename A1, typename A2, typename A3, typename A4>
struct MatcherTuple< ::std::tr1::tuple<A1, A2, A3, A4> > {
typedef ::std::tr1::tuple<Matcher<A1>, Matcher<A2>, Matcher<A3>,
Matcher<A4> > type;
};
template <typename A1, typename A2, typename A3, typename A4, typename A5>
struct MatcherTuple< ::std::tr1::tuple<A1, A2, A3, A4, A5> > {
typedef ::std::tr1::tuple<Matcher<A1>, Matcher<A2>, Matcher<A3>, Matcher<A4>,
Matcher<A5> > type;
};
template <typename A1, typename A2, typename A3, typename A4, typename A5,
typename A6>
struct MatcherTuple< ::std::tr1::tuple<A1, A2, A3, A4, A5, A6> > {
typedef ::std::tr1::tuple<Matcher<A1>, Matcher<A2>, Matcher<A3>, Matcher<A4>,
Matcher<A5>, Matcher<A6> > type;
};
template <typename A1, typename A2, typename A3, typename A4, typename A5,
typename A6, typename A7>
struct MatcherTuple< ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7> > {
typedef ::std::tr1::tuple<Matcher<A1>, Matcher<A2>, Matcher<A3>, Matcher<A4>,
Matcher<A5>, Matcher<A6>, Matcher<A7> > type;
};
template <typename A1, typename A2, typename A3, typename A4, typename A5,
typename A6, typename A7, typename A8>
struct MatcherTuple< ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7, A8> > {
typedef ::std::tr1::tuple<Matcher<A1>, Matcher<A2>, Matcher<A3>, Matcher<A4>,
Matcher<A5>, Matcher<A6>, Matcher<A7>, Matcher<A8> > type;
};
template <typename A1, typename A2, typename A3, typename A4, typename A5,
typename A6, typename A7, typename A8, typename A9>
struct MatcherTuple< ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7, A8, A9> > {
typedef ::std::tr1::tuple<Matcher<A1>, Matcher<A2>, Matcher<A3>, Matcher<A4>,
Matcher<A5>, Matcher<A6>, Matcher<A7>, Matcher<A8>, Matcher<A9> > type;
};
template <typename A1, typename A2, typename A3, typename A4, typename A5,
typename A6, typename A7, typename A8, typename A9, typename A10>
struct MatcherTuple< ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7, A8, A9,
A10> > {
typedef ::std::tr1::tuple<Matcher<A1>, Matcher<A2>, Matcher<A3>, Matcher<A4>,
Matcher<A5>, Matcher<A6>, Matcher<A7>, Matcher<A8>, Matcher<A9>,
Matcher<A10> > type;
};
// Template struct Function<F>, where F must be a function type, contains
// the following typedefs:
//
// Result: the function's return type.
// ArgumentN: the type of the N-th argument, where N starts with 1.
// ArgumentTuple: the tuple type consisting of all parameters of F.
// ArgumentMatcherTuple: the tuple type consisting of Matchers for all
// parameters of F.
// MakeResultVoid: the function type obtained by substituting void
// for the return type of F.
// MakeResultIgnoredValue:
// the function type obtained by substituting Something
// for the return type of F.
template <typename F>
struct Function;
template <typename R>
struct Function<R()> {
typedef R Result;
typedef ::std::tr1::tuple<> ArgumentTuple;
typedef typename MatcherTuple<ArgumentTuple>::type ArgumentMatcherTuple;
typedef void MakeResultVoid();
typedef IgnoredValue MakeResultIgnoredValue();
};
template <typename R, typename A1>
struct Function<R(A1)>
: Function<R()> {
typedef A1 Argument1;
typedef ::std::tr1::tuple<A1> ArgumentTuple;
typedef typename MatcherTuple<ArgumentTuple>::type ArgumentMatcherTuple;
typedef void MakeResultVoid(A1);
typedef IgnoredValue MakeResultIgnoredValue(A1);
};
template <typename R, typename A1, typename A2>
struct Function<R(A1, A2)>
: Function<R(A1)> {
typedef A2 Argument2;
typedef ::std::tr1::tuple<A1, A2> ArgumentTuple;
typedef typename MatcherTuple<ArgumentTuple>::type ArgumentMatcherTuple;
typedef void MakeResultVoid(A1, A2);
typedef IgnoredValue MakeResultIgnoredValue(A1, A2);
};
template <typename R, typename A1, typename A2, typename A3>
struct Function<R(A1, A2, A3)>
: Function<R(A1, A2)> {
typedef A3 Argument3;
typedef ::std::tr1::tuple<A1, A2, A3> ArgumentTuple;
typedef typename MatcherTuple<ArgumentTuple>::type ArgumentMatcherTuple;
typedef void MakeResultVoid(A1, A2, A3);
typedef IgnoredValue MakeResultIgnoredValue(A1, A2, A3);
};
template <typename R, typename A1, typename A2, typename A3, typename A4>
struct Function<R(A1, A2, A3, A4)>
: Function<R(A1, A2, A3)> {
typedef A4 Argument4;
typedef ::std::tr1::tuple<A1, A2, A3, A4> ArgumentTuple;
typedef typename MatcherTuple<ArgumentTuple>::type ArgumentMatcherTuple;
typedef void MakeResultVoid(A1, A2, A3, A4);
typedef IgnoredValue MakeResultIgnoredValue(A1, A2, A3, A4);
};
template <typename R, typename A1, typename A2, typename A3, typename A4,
typename A5>
struct Function<R(A1, A2, A3, A4, A5)>
: Function<R(A1, A2, A3, A4)> {
typedef A5 Argument5;
typedef ::std::tr1::tuple<A1, A2, A3, A4, A5> ArgumentTuple;
typedef typename MatcherTuple<ArgumentTuple>::type ArgumentMatcherTuple;
typedef void MakeResultVoid(A1, A2, A3, A4, A5);
typedef IgnoredValue MakeResultIgnoredValue(A1, A2, A3, A4, A5);
};
template <typename R, typename A1, typename A2, typename A3, typename A4,
typename A5, typename A6>
struct Function<R(A1, A2, A3, A4, A5, A6)>
: Function<R(A1, A2, A3, A4, A5)> {
typedef A6 Argument6;
typedef ::std::tr1::tuple<A1, A2, A3, A4, A5, A6> ArgumentTuple;
typedef typename MatcherTuple<ArgumentTuple>::type ArgumentMatcherTuple;
typedef void MakeResultVoid(A1, A2, A3, A4, A5, A6);
typedef IgnoredValue MakeResultIgnoredValue(A1, A2, A3, A4, A5, A6);
};
template <typename R, typename A1, typename A2, typename A3, typename A4,
typename A5, typename A6, typename A7>
struct Function<R(A1, A2, A3, A4, A5, A6, A7)>
: Function<R(A1, A2, A3, A4, A5, A6)> {
typedef A7 Argument7;
typedef ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7> ArgumentTuple;
typedef typename MatcherTuple<ArgumentTuple>::type ArgumentMatcherTuple;
typedef void MakeResultVoid(A1, A2, A3, A4, A5, A6, A7);
typedef IgnoredValue MakeResultIgnoredValue(A1, A2, A3, A4, A5, A6, A7);
};
template <typename R, typename A1, typename A2, typename A3, typename A4,
typename A5, typename A6, typename A7, typename A8>
struct Function<R(A1, A2, A3, A4, A5, A6, A7, A8)>
: Function<R(A1, A2, A3, A4, A5, A6, A7)> {
typedef A8 Argument8;
typedef ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7, A8> ArgumentTuple;
typedef typename MatcherTuple<ArgumentTuple>::type ArgumentMatcherTuple;
typedef void MakeResultVoid(A1, A2, A3, A4, A5, A6, A7, A8);
typedef IgnoredValue MakeResultIgnoredValue(A1, A2, A3, A4, A5, A6, A7, A8);
};
template <typename R, typename A1, typename A2, typename A3, typename A4,
typename A5, typename A6, typename A7, typename A8, typename A9>
struct Function<R(A1, A2, A3, A4, A5, A6, A7, A8, A9)>
: Function<R(A1, A2, A3, A4, A5, A6, A7, A8)> {
typedef A9 Argument9;
typedef ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7, A8, A9> ArgumentTuple;
typedef typename MatcherTuple<ArgumentTuple>::type ArgumentMatcherTuple;
typedef void MakeResultVoid(A1, A2, A3, A4, A5, A6, A7, A8, A9);
typedef IgnoredValue MakeResultIgnoredValue(A1, A2, A3, A4, A5, A6, A7, A8,
A9);
};
template <typename R, typename A1, typename A2, typename A3, typename A4,
typename A5, typename A6, typename A7, typename A8, typename A9,
typename A10>
struct Function<R(A1, A2, A3, A4, A5, A6, A7, A8, A9, A10)>
: Function<R(A1, A2, A3, A4, A5, A6, A7, A8, A9)> {
typedef A10 Argument10;
typedef ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7, A8, A9,
A10> ArgumentTuple;
typedef typename MatcherTuple<ArgumentTuple>::type ArgumentMatcherTuple;
typedef void MakeResultVoid(A1, A2, A3, A4, A5, A6, A7, A8, A9, A10);
typedef IgnoredValue MakeResultIgnoredValue(A1, A2, A3, A4, A5, A6, A7, A8,
A9, A10);
};
} // namespace internal
} // namespace testing
#endif // GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_GENERATED_INTERNAL_UTILS_H_
namespace testing {
namespace internal {
// Converts an identifier name to a space-separated list of lower-case
// words. Each maximum substring of the form [A-Za-z][a-z]*|\d+ is
// treated as one word. For example, both "FooBar123" and
// "foo_bar_123" are converted to "foo bar 123".
GTEST_API_ string ConvertIdentifierNameToWords(const char* id_name);
// PointeeOf<Pointer>::type is the type of a value pointed to by a
// Pointer, which can be either a smart pointer or a raw pointer. The
// following default implementation is for the case where Pointer is a
// smart pointer.
template <typename Pointer>
struct PointeeOf {
// Smart pointer classes define type element_type as the type of
// their pointees.
typedef typename Pointer::element_type type;
};
// This specialization is for the raw pointer case.
template <typename T>
struct PointeeOf<T*> { typedef T type; }; // NOLINT
// GetRawPointer(p) returns the raw pointer underlying p when p is a
// smart pointer, or returns p itself when p is already a raw pointer.
// The following default implementation is for the smart pointer case.
template <typename Pointer>
inline const typename Pointer::element_type* GetRawPointer(const Pointer& p) {
return p.get();
}
// This overloaded version is for the raw pointer case.
template <typename Element>
inline Element* GetRawPointer(Element* p) { return p; }
// This comparator allows linked_ptr to be stored in sets.
template <typename T>
struct LinkedPtrLessThan {
bool operator()(const ::testing::internal::linked_ptr<T>& lhs,
const ::testing::internal::linked_ptr<T>& rhs) const {
return lhs.get() < rhs.get();
}
};
// Symbian compilation can be done with wchar_t being either a native
// type or a typedef. Using Google Mock with OpenC without wchar_t
// should require the definition of _STLP_NO_WCHAR_T.
//
// MSVC treats wchar_t as a native type usually, but treats it as the
// same as unsigned short when the compiler option /Zc:wchar_t- is
// specified. It defines _NATIVE_WCHAR_T_DEFINED symbol when wchar_t
// is a native type.
#if (GTEST_OS_SYMBIAN && defined(_STLP_NO_WCHAR_T)) || \
(defined(_MSC_VER) && !defined(_NATIVE_WCHAR_T_DEFINED))
// wchar_t is a typedef.
#else
# define GMOCK_WCHAR_T_IS_NATIVE_ 1
#endif
// signed wchar_t and unsigned wchar_t are NOT in the C++ standard.
// Using them is a bad practice and not portable. So DON'T use them.
//
// Still, Google Mock is designed to work even if the user uses signed
// wchar_t or unsigned wchar_t (obviously, assuming the compiler
// supports them).
//
// To gcc,
// wchar_t == signed wchar_t != unsigned wchar_t == unsigned int
#ifdef __GNUC__
// signed/unsigned wchar_t are valid types.
# define GMOCK_HAS_SIGNED_WCHAR_T_ 1
#endif
// In what follows, we use the term "kind" to indicate whether a type
// is bool, an integer type (excluding bool), a floating-point type,
// or none of them. This categorization is useful for determining
// when a matcher argument type can be safely converted to another
// type in the implementation of SafeMatcherCast.
enum TypeKind {
kBool, kInteger, kFloatingPoint, kOther
};
// KindOf<T>::value is the kind of type T.
template <typename T> struct KindOf {
enum { value = kOther }; // The default kind.
};
// This macro declares that the kind of 'type' is 'kind'.
#define GMOCK_DECLARE_KIND_(type, kind) \
template <> struct KindOf<type> { enum { value = kind }; }
GMOCK_DECLARE_KIND_(bool, kBool);
// All standard integer types.
GMOCK_DECLARE_KIND_(char, kInteger);
GMOCK_DECLARE_KIND_(signed char, kInteger);
GMOCK_DECLARE_KIND_(unsigned char, kInteger);
GMOCK_DECLARE_KIND_(short, kInteger); // NOLINT
GMOCK_DECLARE_KIND_(unsigned short, kInteger); // NOLINT
GMOCK_DECLARE_KIND_(int, kInteger);
GMOCK_DECLARE_KIND_(unsigned int, kInteger);
GMOCK_DECLARE_KIND_(long, kInteger); // NOLINT
GMOCK_DECLARE_KIND_(unsigned long, kInteger); // NOLINT
#if GMOCK_WCHAR_T_IS_NATIVE_
GMOCK_DECLARE_KIND_(wchar_t, kInteger);
#endif
// Non-standard integer types.
GMOCK_DECLARE_KIND_(Int64, kInteger);
GMOCK_DECLARE_KIND_(UInt64, kInteger);
// All standard floating-point types.
GMOCK_DECLARE_KIND_(float, kFloatingPoint);
GMOCK_DECLARE_KIND_(double, kFloatingPoint);
GMOCK_DECLARE_KIND_(long double, kFloatingPoint);
#undef GMOCK_DECLARE_KIND_
// Evaluates to the kind of 'type'.
#define GMOCK_KIND_OF_(type) \
static_cast< ::testing::internal::TypeKind>( \
::testing::internal::KindOf<type>::value)
// Evaluates to true iff integer type T is signed.
#define GMOCK_IS_SIGNED_(T) (static_cast<T>(-1) < 0)
// LosslessArithmeticConvertibleImpl<kFromKind, From, kToKind, To>::value
// is true iff arithmetic type From can be losslessly converted to
// arithmetic type To.
//
// It's the user's responsibility to ensure that both From and To are
// raw (i.e. has no CV modifier, is not a pointer, and is not a
// reference) built-in arithmetic types, kFromKind is the kind of
// From, and kToKind is the kind of To; the value is
// implementation-defined when the above pre-condition is violated.
template <TypeKind kFromKind, typename From, TypeKind kToKind, typename To>
struct LosslessArithmeticConvertibleImpl : public false_type {};
// Converting bool to bool is lossless.
template <>
struct LosslessArithmeticConvertibleImpl<kBool, bool, kBool, bool>
: public true_type {}; // NOLINT
// Converting bool to any integer type is lossless.
template <typename To>
struct LosslessArithmeticConvertibleImpl<kBool, bool, kInteger, To>
: public true_type {}; // NOLINT
// Converting bool to any floating-point type is lossless.
template <typename To>
struct LosslessArithmeticConvertibleImpl<kBool, bool, kFloatingPoint, To>
: public true_type {}; // NOLINT
// Converting an integer to bool is lossy.
template <typename From>
struct LosslessArithmeticConvertibleImpl<kInteger, From, kBool, bool>
: public false_type {}; // NOLINT
// Converting an integer to another non-bool integer is lossless iff
// the target type's range encloses the source type's range.
template <typename From, typename To>
struct LosslessArithmeticConvertibleImpl<kInteger, From, kInteger, To>
: public bool_constant<
// When converting from a smaller size to a larger size, we are
// fine as long as we are not converting from signed to unsigned.
((sizeof(From) < sizeof(To)) &&
(!GMOCK_IS_SIGNED_(From) || GMOCK_IS_SIGNED_(To))) ||
// When converting between the same size, the signedness must match.
((sizeof(From) == sizeof(To)) &&
(GMOCK_IS_SIGNED_(From) == GMOCK_IS_SIGNED_(To)))> {}; // NOLINT
#undef GMOCK_IS_SIGNED_
// Converting an integer to a floating-point type may be lossy, since
// the format of a floating-point number is implementation-defined.
template <typename From, typename To>
struct LosslessArithmeticConvertibleImpl<kInteger, From, kFloatingPoint, To>
: public false_type {}; // NOLINT
// Converting a floating-point to bool is lossy.
template <typename From>
struct LosslessArithmeticConvertibleImpl<kFloatingPoint, From, kBool, bool>
: public false_type {}; // NOLINT
// Converting a floating-point to an integer is lossy.
template <typename From, typename To>
struct LosslessArithmeticConvertibleImpl<kFloatingPoint, From, kInteger, To>
: public false_type {}; // NOLINT
// Converting a floating-point to another floating-point is lossless
// iff the target type is at least as big as the source type.
template <typename From, typename To>
struct LosslessArithmeticConvertibleImpl<
kFloatingPoint, From, kFloatingPoint, To>
: public bool_constant<sizeof(From) <= sizeof(To)> {}; // NOLINT
// LosslessArithmeticConvertible<From, To>::value is true iff arithmetic
// type From can be losslessly converted to arithmetic type To.
//
// It's the user's responsibility to ensure that both From and To are
// raw (i.e. has no CV modifier, is not a pointer, and is not a
// reference) built-in arithmetic types; the value is
// implementation-defined when the above pre-condition is violated.
template <typename From, typename To>
struct LosslessArithmeticConvertible
: public LosslessArithmeticConvertibleImpl<
GMOCK_KIND_OF_(From), From, GMOCK_KIND_OF_(To), To> {}; // NOLINT
// This interface knows how to report a Google Mock failure (either
// non-fatal or fatal).
class FailureReporterInterface {
public:
// The type of a failure (either non-fatal or fatal).
enum FailureType {
kNonfatal, kFatal
};
virtual ~FailureReporterInterface() {}
// Reports a failure that occurred at the given source file location.
virtual void ReportFailure(FailureType type, const char* file, int line,
const string& message) = 0;
};
// Returns the failure reporter used by Google Mock.
GTEST_API_ FailureReporterInterface* GetFailureReporter();
// Asserts that condition is true; aborts the process with the given
// message if condition is false. We cannot use LOG(FATAL) or CHECK()
// as Google Mock might be used to mock the log sink itself. We
// inline this function to prevent it from showing up in the stack
// trace.
inline void Assert(bool condition, const char* file, int line,
const string& msg) {
if (!condition) {
GetFailureReporter()->ReportFailure(FailureReporterInterface::kFatal,
file, line, msg);
}
}
inline void Assert(bool condition, const char* file, int line) {
Assert(condition, file, line, "Assertion failed.");
}
// Verifies that condition is true; generates a non-fatal failure if
// condition is false.
inline void Expect(bool condition, const char* file, int line,
const string& msg) {
if (!condition) {
GetFailureReporter()->ReportFailure(FailureReporterInterface::kNonfatal,
file, line, msg);
}
}
inline void Expect(bool condition, const char* file, int line) {
Expect(condition, file, line, "Expectation failed.");
}
// Severity level of a log.
enum LogSeverity {
kInfo = 0,
kWarning = 1
};
// Valid values for the --gmock_verbose flag.
// All logs (informational and warnings) are printed.
const char kInfoVerbosity[] = "info";
// Only warnings are printed.
const char kWarningVerbosity[] = "warning";
// No logs are printed.
const char kErrorVerbosity[] = "error";
// Returns true iff a log with the given severity is visible according
// to the --gmock_verbose flag.
GTEST_API_ bool LogIsVisible(LogSeverity severity);
// Prints the given message to stdout iff 'severity' >= the level
// specified by the --gmock_verbose flag. If stack_frames_to_skip >=
// 0, also prints the stack trace excluding the top
// stack_frames_to_skip frames. In opt mode, any positive
// stack_frames_to_skip is treated as 0, since we don't know which
// function calls will be inlined by the compiler and need to be
// conservative.
GTEST_API_ void Log(LogSeverity severity,
const string& message,
int stack_frames_to_skip);
// TODO(wan@google.com): group all type utilities together.
// Type traits.
// is_reference<T>::value is non-zero iff T is a reference type.
template <typename T> struct is_reference : public false_type {};
template <typename T> struct is_reference<T&> : public true_type {};
// type_equals<T1, T2>::value is non-zero iff T1 and T2 are the same type.
template <typename T1, typename T2> struct type_equals : public false_type {};
template <typename T> struct type_equals<T, T> : public true_type {};
// remove_reference<T>::type removes the reference from type T, if any.
template <typename T> struct remove_reference { typedef T type; }; // NOLINT
template <typename T> struct remove_reference<T&> { typedef T type; }; // NOLINT
// DecayArray<T>::type turns an array type U[N] to const U* and preserves
// other types. Useful for saving a copy of a function argument.
template <typename T> struct DecayArray { typedef T type; }; // NOLINT
template <typename T, size_t N> struct DecayArray<T[N]> {
typedef const T* type;
};
// Sometimes people use arrays whose size is not available at the use site
// (e.g. extern const char kNamePrefix[]). This specialization covers that
// case.
template <typename T> struct DecayArray<T[]> {
typedef const T* type;
};
// Invalid<T>() returns an invalid value of type T. This is useful
// when a value of type T is needed for compilation, but the statement
// will not really be executed (or we don't care if the statement
// crashes).
template <typename T>
inline T Invalid() {
return const_cast<typename remove_reference<T>::type&>(
*static_cast<volatile typename remove_reference<T>::type*>(NULL));
}
template <>
inline void Invalid<void>() {}
// Given a raw type (i.e. having no top-level reference or const
// modifier) RawContainer that's either an STL-style container or a
// native array, class StlContainerView<RawContainer> has the
// following members:
//
// - type is a type that provides an STL-style container view to
// (i.e. implements the STL container concept for) RawContainer;
// - const_reference is a type that provides a reference to a const
// RawContainer;
// - ConstReference(raw_container) returns a const reference to an STL-style
// container view to raw_container, which is a RawContainer.
// - Copy(raw_container) returns an STL-style container view of a
// copy of raw_container, which is a RawContainer.
//
// This generic version is used when RawContainer itself is already an
// STL-style container.
template <class RawContainer>
class StlContainerView {
public:
typedef RawContainer type;
typedef const type& const_reference;
static const_reference ConstReference(const RawContainer& container) {
// Ensures that RawContainer is not a const type.
testing::StaticAssertTypeEq<RawContainer,
GTEST_REMOVE_CONST_(RawContainer)>();
return container;
}
static type Copy(const RawContainer& container) { return container; }
};
// This specialization is used when RawContainer is a native array type.
template <typename Element, size_t N>
class StlContainerView<Element[N]> {
public:
typedef GTEST_REMOVE_CONST_(Element) RawElement;
typedef internal::NativeArray<RawElement> type;
// NativeArray<T> can represent a native array either by value or by
// reference (selected by a constructor argument), so 'const type'
// can be used to reference a const native array. We cannot
// 'typedef const type& const_reference' here, as that would mean
// ConstReference() has to return a reference to a local variable.
typedef const type const_reference;
static const_reference ConstReference(const Element (&array)[N]) {
// Ensures that Element is not a const type.
testing::StaticAssertTypeEq<Element, RawElement>();
#if GTEST_OS_SYMBIAN
// The Nokia Symbian compiler confuses itself in template instantiation
// for this call without the cast to Element*:
// function call '[testing::internal::NativeArray<char *>].NativeArray(
// {lval} const char *[4], long, testing::internal::RelationToSource)'
// does not match
// 'testing::internal::NativeArray<char *>::NativeArray(
// char *const *, unsigned int, testing::internal::RelationToSource)'
// (instantiating: 'testing::internal::ContainsMatcherImpl
// <const char * (&)[4]>::Matches(const char * (&)[4]) const')
// (instantiating: 'testing::internal::StlContainerView<char *[4]>::
// ConstReference(const char * (&)[4])')
// (and though the N parameter type is mismatched in the above explicit
// conversion of it doesn't help - only the conversion of the array).
return type(const_cast<Element*>(&array[0]), N, kReference);
#else
return type(array, N, kReference);
#endif // GTEST_OS_SYMBIAN
}
static type Copy(const Element (&array)[N]) {
#if GTEST_OS_SYMBIAN
return type(const_cast<Element*>(&array[0]), N, kCopy);
#else
return type(array, N, kCopy);
#endif // GTEST_OS_SYMBIAN
}
};
// This specialization is used when RawContainer is a native array
// represented as a (pointer, size) tuple.
template <typename ElementPointer, typename Size>
class StlContainerView< ::std::tr1::tuple<ElementPointer, Size> > {
public:
typedef GTEST_REMOVE_CONST_(
typename internal::PointeeOf<ElementPointer>::type) RawElement;
typedef internal::NativeArray<RawElement> type;
typedef const type const_reference;
static const_reference ConstReference(
const ::std::tr1::tuple<ElementPointer, Size>& array) {
using ::std::tr1::get;
return type(get<0>(array), get<1>(array), kReference);
}
static type Copy(const ::std::tr1::tuple<ElementPointer, Size>& array) {
using ::std::tr1::get;
return type(get<0>(array), get<1>(array), kCopy);
}
};
// The following specialization prevents the user from instantiating
// StlContainer with a reference type.
template <typename T> class StlContainerView<T&>;
// A type transform to remove constness from the first part of a pair.
// Pairs like that are used as the value_type of associative containers,
// and this transform produces a similar but assignable pair.
template <typename T>
struct RemoveConstFromKey {
typedef T type;
};
// Partially specialized to remove constness from std::pair<const K, V>.
template <typename K, typename V>
struct RemoveConstFromKey<std::pair<const K, V> > {
typedef std::pair<K, V> type;
};
// Mapping from booleans to types. Similar to boost::bool_<kValue> and
// std::integral_constant<bool, kValue>.
template <bool kValue>
struct BooleanConstant {};
} // namespace internal
} // namespace testing
#endif // GMOCK_INCLUDE_GMOCK_INTERNAL_GMOCK_INTERNAL_UTILS_H_
namespace testing {
// To implement an action Foo, define:
// 1. a class FooAction that implements the ActionInterface interface, and
// 2. a factory function that creates an Action object from a
// const FooAction*.
//
// The two-level delegation design follows that of Matcher, providing
// consistency for extension developers. It also eases ownership
// management as Action objects can now be copied like plain values.
namespace internal {
template <typename F1, typename F2>
class ActionAdaptor;
// BuiltInDefaultValue<T>::Get() returns the "built-in" default
// value for type T, which is NULL when T is a pointer type, 0 when T
// is a numeric type, false when T is bool, or "" when T is string or
// std::string. For any other type T, this value is undefined and the
// function will abort the process.
template <typename T>
class BuiltInDefaultValue {
public:
// This function returns true iff type T has a built-in default value.
static bool Exists() { return false; }
static T Get() {
Assert(false, __FILE__, __LINE__,
"Default action undefined for the function return type.");
return internal::Invalid<T>();
// The above statement will never be reached, but is required in
// order for this function to compile.
}
};
// This partial specialization says that we use the same built-in
// default value for T and const T.
template <typename T>
class BuiltInDefaultValue<const T> {
public:
static bool Exists() { return BuiltInDefaultValue<T>::Exists(); }
static T Get() { return BuiltInDefaultValue<T>::Get(); }
};
// This partial specialization defines the default values for pointer
// types.
template <typename T>
class BuiltInDefaultValue<T*> {
public:
static bool Exists() { return true; }
static T* Get() { return NULL; }
};
// The following specializations define the default values for
// specific types we care about.
#define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
template <> \
class BuiltInDefaultValue<type> { \
public: \
static bool Exists() { return true; } \
static type Get() { return value; } \
}
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, ); // NOLINT
#if GTEST_HAS_GLOBAL_STRING
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::string, "");
#endif // GTEST_HAS_GLOBAL_STRING
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, "");
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0');
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0');
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');
// There's no need for a default action for signed wchar_t, as that
// type is the same as wchar_t for gcc, and invalid for MSVC.
//
// There's also no need for a default action for unsigned wchar_t, as
// that type is the same as unsigned int for gcc, and invalid for
// MSVC.
#if GMOCK_WCHAR_T_IS_NATIVE_
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT
#endif
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(UInt64, 0);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(Int64, 0);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);
#undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
} // namespace internal
// When an unexpected function call is encountered, Google Mock will
// let it return a default value if the user has specified one for its
// return type, or if the return type has a built-in default value;
// otherwise Google Mock won't know what value to return and will have
// to abort the process.
//
// The DefaultValue<T> class allows a user to specify the
// default value for a type T that is both copyable and publicly
// destructible (i.e. anything that can be used as a function return
// type). The usage is:
//
// // Sets the default value for type T to be foo.
// DefaultValue<T>::Set(foo);
template <typename T>
class DefaultValue {
public:
// Sets the default value for type T; requires T to be
// copy-constructable and have a public destructor.
static void Set(T x) {
delete value_;
value_ = new T(x);
}
// Unsets the default value for type T.
static void Clear() {
delete value_;
value_ = NULL;
}
// Returns true iff the user has set the default value for type T.
static bool IsSet() { return value_ != NULL; }
// Returns true if T has a default return value set by the user or there
// exists a built-in default value.
static bool Exists() {
return IsSet() || internal::BuiltInDefaultValue<T>::Exists();
}
// Returns the default value for type T if the user has set one;
// otherwise returns the built-in default value if there is one;
// otherwise aborts the process.
static T Get() {
return value_ == NULL ?
internal::BuiltInDefaultValue<T>::Get() : *value_;
}
private:
static const T* value_;
};
// This partial specialization allows a user to set default values for
// reference types.
template <typename T>
class DefaultValue<T&> {
public:
// Sets the default value for type T&.
static void Set(T& x) { // NOLINT
address_ = &x;
}
// Unsets the default value for type T&.
static void Clear() {
address_ = NULL;
}
// Returns true iff the user has set the default value for type T&.
static bool IsSet() { return address_ != NULL; }
// Returns true if T has a default return value set by the user or there
// exists a built-in default value.
static bool Exists() {
return IsSet() || internal::BuiltInDefaultValue<T&>::Exists();
}
// Returns the default value for type T& if the user has set one;
// otherwise returns the built-in default value if there is one;
// otherwise aborts the process.
static T& Get() {
return address_ == NULL ?
internal::BuiltInDefaultValue<T&>::Get() : *address_;
}
private:
static T* address_;
};
// This specialization allows DefaultValue<void>::Get() to
// compile.
template <>
class DefaultValue<void> {
public:
static bool Exists() { return true; }
static void Get() {}
};
// Points to the user-set default value for type T.
template <typename T>
const T* DefaultValue<T>::value_ = NULL;
// Points to the user-set default value for type T&.
template <typename T>
T* DefaultValue<T&>::address_ = NULL;
// Implement this interface to define an action for function type F.
template <typename F>
class ActionInterface {
public:
typedef typename internal::Function<F>::Result Result;
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
ActionInterface() {}
virtual ~ActionInterface() {}
// Performs the action. This method is not const, as in general an
// action can have side effects and be stateful. For example, a
// get-the-next-element-from-the-collection action will need to
// remember the current element.
virtual Result Perform(const ArgumentTuple& args) = 0;
private:
GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface);
};
// An Action<F> is a copyable and IMMUTABLE (except by assignment)
// object that represents an action to be taken when a mock function
// of type F is called. The implementation of Action<T> is just a
// linked_ptr to const ActionInterface<T>, so copying is fairly cheap.
// Don't inherit from Action!
//
// You can view an object implementing ActionInterface<F> as a
// concrete action (including its current state), and an Action<F>
// object as a handle to it.
template <typename F>
class Action {
public:
typedef typename internal::Function<F>::Result Result;
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
// Constructs a null Action. Needed for storing Action objects in
// STL containers.
Action() : impl_(NULL) {}
// Constructs an Action from its implementation. A NULL impl is
// used to represent the "do-default" action.
explicit Action(ActionInterface<F>* impl) : impl_(impl) {}
// Copy constructor.
Action(const Action& action) : impl_(action.impl_) {}
// This constructor allows us to turn an Action<Func> object into an
// Action<F>, as long as F's arguments can be implicitly converted
// to Func's and Func's return type can be implicitly converted to
// F's.
template <typename Func>
explicit Action(const Action<Func>& action);
// Returns true iff this is the DoDefault() action.
bool IsDoDefault() const { return impl_.get() == NULL; }
// Performs the action. Note that this method is const even though
// the corresponding method in ActionInterface is not. The reason
// is that a const Action<F> means that it cannot be re-bound to
// another concrete action, not that the concrete action it binds to
// cannot change state. (Think of the difference between a const
// pointer and a pointer to const.)
Result Perform(const ArgumentTuple& args) const {
internal::Assert(
!IsDoDefault(), __FILE__, __LINE__,
"You are using DoDefault() inside a composite action like "
"DoAll() or WithArgs(). This is not supported for technical "
"reasons. Please instead spell out the default action, or "
"assign the default action to an Action variable and use "
"the variable in various places.");
return impl_->Perform(args);
}
private:
template <typename F1, typename F2>
friend class internal::ActionAdaptor;
internal::linked_ptr<ActionInterface<F> > impl_;
};
// The PolymorphicAction class template makes it easy to implement a
// polymorphic action (i.e. an action that can be used in mock
// functions of than one type, e.g. Return()).
//
// To define a polymorphic action, a user first provides a COPYABLE
// implementation class that has a Perform() method template:
//
// class FooAction {
// public:
// template <typename Result, typename ArgumentTuple>
// Result Perform(const ArgumentTuple& args) const {
// // Processes the arguments and returns a result, using
// // tr1::get<N>(args) to get the N-th (0-based) argument in the tuple.
// }
// ...
// };
//
// Then the user creates the polymorphic action using
// MakePolymorphicAction(object) where object has type FooAction. See
// the definition of Return(void) and SetArgumentPointee<N>(value) for
// complete examples.
template <typename Impl>
class PolymorphicAction {
public:
explicit PolymorphicAction(const Impl& impl) : impl_(impl) {}
template <typename F>
operator Action<F>() const {
return Action<F>(new MonomorphicImpl<F>(impl_));
}
private:
template <typename F>
class MonomorphicImpl : public ActionInterface<F> {
public:
typedef typename internal::Function<F>::Result Result;
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
virtual Result Perform(const ArgumentTuple& args) {
return impl_.template Perform<Result>(args);
}
private:
Impl impl_;
GTEST_DISALLOW_ASSIGN_(MonomorphicImpl);
};
Impl impl_;
GTEST_DISALLOW_ASSIGN_(PolymorphicAction);
};
// Creates an Action from its implementation and returns it. The
// created Action object owns the implementation.
template <typename F>
Action<F> MakeAction(ActionInterface<F>* impl) {
return Action<F>(impl);
}
// Creates a polymorphic action from its implementation. This is
// easier to use than the PolymorphicAction<Impl> constructor as it
// doesn't require you to explicitly write the template argument, e.g.
//
// MakePolymorphicAction(foo);
// vs
// PolymorphicAction<TypeOfFoo>(foo);
template <typename Impl>
inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) {
return PolymorphicAction<Impl>(impl);
}
namespace internal {
// Allows an Action<F2> object to pose as an Action<F1>, as long as F2
// and F1 are compatible.
template <typename F1, typename F2>
class ActionAdaptor : public ActionInterface<F1> {
public:
typedef typename internal::Function<F1>::Result Result;
typedef typename internal::Function<F1>::ArgumentTuple ArgumentTuple;
explicit ActionAdaptor(const Action<F2>& from) : impl_(from.impl_) {}
virtual Result Perform(const ArgumentTuple& args) {
return impl_->Perform(args);
}
private:
const internal::linked_ptr<ActionInterface<F2> > impl_;
GTEST_DISALLOW_ASSIGN_(ActionAdaptor);
};
// Implements the polymorphic Return(x) action, which can be used in
// any function that returns the type of x, regardless of the argument
// types.
//
// Note: The value passed into Return must be converted into
// Function<F>::Result when this action is cast to Action<F> rather than
// when that action is performed. This is important in scenarios like
//
// MOCK_METHOD1(Method, T(U));
// ...
// {
// Foo foo;
// X x(&foo);
// EXPECT_CALL(mock, Method(_)).WillOnce(Return(x));
// }
//
// In the example above the variable x holds reference to foo which leaves
// scope and gets destroyed. If copying X just copies a reference to foo,
// that copy will be left with a hanging reference. If conversion to T
// makes a copy of foo, the above code is safe. To support that scenario, we
// need to make sure that the type conversion happens inside the EXPECT_CALL
// statement, and conversion of the result of Return to Action<T(U)> is a
// good place for that.
//
template <typename R>
class ReturnAction {
public:
// Constructs a ReturnAction object from the value to be returned.
// 'value' is passed by value instead of by const reference in order
// to allow Return("string literal") to compile.
explicit ReturnAction(R value) : value_(value) {}
// This template type conversion operator allows Return(x) to be
// used in ANY function that returns x's type.
template <typename F>
operator Action<F>() const {
// Assert statement belongs here because this is the best place to verify
// conditions on F. It produces the clearest error messages
// in most compilers.
// Impl really belongs in this scope as a local class but can't
// because MSVC produces duplicate symbols in different translation units
// in this case. Until MS fixes that bug we put Impl into the class scope
// and put the typedef both here (for use in assert statement) and
// in the Impl class. But both definitions must be the same.
typedef typename Function<F>::Result Result;
GTEST_COMPILE_ASSERT_(
!internal::is_reference<Result>::value,
use_ReturnRef_instead_of_Return_to_return_a_reference);
return Action<F>(new Impl<F>(value_));
}
private:
// Implements the Return(x) action for a particular function type F.
template <typename F>
class Impl : public ActionInterface<F> {
public:
typedef typename Function<F>::Result Result;
typedef typename Function<F>::ArgumentTuple ArgumentTuple;
// The implicit cast is necessary when Result has more than one
// single-argument constructor (e.g. Result is std::vector<int>) and R
// has a type conversion operator template. In that case, value_(value)
// won't compile as the compiler doesn't known which constructor of
// Result to call. ImplicitCast_ forces the compiler to convert R to
// Result without considering explicit constructors, thus resolving the
// ambiguity. value_ is then initialized using its copy constructor.
explicit Impl(R value)
: value_(::testing::internal::ImplicitCast_<Result>(value)) {}
virtual Result Perform(const ArgumentTuple&) { return value_; }
private:
GTEST_COMPILE_ASSERT_(!internal::is_reference<Result>::value,
Result_cannot_be_a_reference_type);
Result value_;
GTEST_DISALLOW_ASSIGN_(Impl);
};
R value_;
GTEST_DISALLOW_ASSIGN_(ReturnAction);
};
// Implements the ReturnNull() action.
class ReturnNullAction {
public:
// Allows ReturnNull() to be used in any pointer-returning function.
template <typename Result, typename ArgumentTuple>
static Result Perform(const ArgumentTuple&) {
GTEST_COMPILE_ASSERT_(internal::is_pointer<Result>::value,
ReturnNull_can_be_used_to_return_a_pointer_only);
return NULL;
}
};
// Implements the Return() action.
class ReturnVoidAction {
public:
// Allows Return() to be used in any void-returning function.
template <typename Result, typename ArgumentTuple>
static void Perform(const ArgumentTuple&) {
CompileAssertTypesEqual<void, Result>();
}
};
// Implements the polymorphic ReturnRef(x) action, which can be used
// in any function that returns a reference to the type of x,
// regardless of the argument types.
template <typename T>
class ReturnRefAction {
public:
// Constructs a ReturnRefAction object from the reference to be returned.
explicit ReturnRefAction(T& ref) : ref_(ref) {} // NOLINT
// This template type conversion operator allows ReturnRef(x) to be
// used in ANY function that returns a reference to x's type.
template <typename F>
operator Action<F>() const {
typedef typename Function<F>::Result Result;
// Asserts that the function return type is a reference. This
// catches the user error of using ReturnRef(x) when Return(x)
// should be used, and generates some helpful error message.
GTEST_COMPILE_ASSERT_(internal::is_reference<Result>::value,
use_Return_instead_of_ReturnRef_to_return_a_value);
return Action<F>(new Impl<F>(ref_));
}
private:
// Implements the ReturnRef(x) action for a particular function type F.
template <typename F>
class Impl : public ActionInterface<F> {
public:
typedef typename Function<F>::Result Result;
typedef typename Function<F>::ArgumentTuple ArgumentTuple;
explicit Impl(T& ref) : ref_(ref) {} // NOLINT
virtual Result Perform(const ArgumentTuple&) {
return ref_;
}
private:
T& ref_;
GTEST_DISALLOW_ASSIGN_(Impl);
};
T& ref_;
GTEST_DISALLOW_ASSIGN_(ReturnRefAction);
};
// Implements the polymorphic ReturnRefOfCopy(x) action, which can be
// used in any function that returns a reference to the type of x,
// regardless of the argument types.
template <typename T>
class ReturnRefOfCopyAction {
public:
// Constructs a ReturnRefOfCopyAction object from the reference to
// be returned.
explicit ReturnRefOfCopyAction(const T& value) : value_(value) {} // NOLINT
// This template type conversion operator allows ReturnRefOfCopy(x) to be
// used in ANY function that returns a reference to x's type.
template <typename F>
operator Action<F>() const {
typedef typename Function<F>::Result Result;
// Asserts that the function return type is a reference. This
// catches the user error of using ReturnRefOfCopy(x) when Return(x)
// should be used, and generates some helpful error message.
GTEST_COMPILE_ASSERT_(
internal::is_reference<Result>::value,
use_Return_instead_of_ReturnRefOfCopy_to_return_a_value);
return Action<F>(new Impl<F>(value_));
}
private:
// Implements the ReturnRefOfCopy(x) action for a particular function type F.
template <typename F>
class Impl : public ActionInterface<F> {
public:
typedef typename Function<F>::Result Result;
typedef typename Function<F>::ArgumentTuple ArgumentTuple;
explicit Impl(const T& value) : value_(value) {} // NOLINT
virtual Result Perform(const ArgumentTuple&) {
return value_;
}
private:
T value_;
GTEST_DISALLOW_ASSIGN_(Impl);
};
const T value_;
GTEST_DISALLOW_ASSIGN_(ReturnRefOfCopyAction);
};
// Implements the polymorphic DoDefault() action.
class DoDefaultAction {
public:
// This template type conversion operator allows DoDefault() to be
// used in any function.
template <typename F>
operator Action<F>() const { return Action<F>(NULL); }
};
// Implements the Assign action to set a given pointer referent to a
// particular value.
template <typename T1, typename T2>
class AssignAction {
public:
AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}
template <typename Result, typename ArgumentTuple>
void Perform(const ArgumentTuple& /* args */) const {
*ptr_ = value_;
}
private:
T1* const ptr_;
const T2 value_;
GTEST_DISALLOW_ASSIGN_(AssignAction);
};
#if !GTEST_OS_WINDOWS_MOBILE
// Implements the SetErrnoAndReturn action to simulate return from
// various system calls and libc functions.
template <typename T>
class SetErrnoAndReturnAction {
public:
SetErrnoAndReturnAction(int errno_value, T result)
: errno_(errno_value),
result_(result) {}
template <typename Result, typename ArgumentTuple>
Result Perform(const ArgumentTuple& /* args */) const {
errno = errno_;
return result_;
}
private:
const int errno_;
const T result_;
GTEST_DISALLOW_ASSIGN_(SetErrnoAndReturnAction);
};
#endif // !GTEST_OS_WINDOWS_MOBILE
// Implements the SetArgumentPointee<N>(x) action for any function
// whose N-th argument (0-based) is a pointer to x's type. The
// template parameter kIsProto is true iff type A is ProtocolMessage,
// proto2::Message, or a sub-class of those.
template <size_t N, typename A, bool kIsProto>
class SetArgumentPointeeAction {
public:
// Constructs an action that sets the variable pointed to by the
// N-th function argument to 'value'.
explicit SetArgumentPointeeAction(const A& value) : value_(value) {}
template <typename Result, typename ArgumentTuple>
void Perform(const ArgumentTuple& args) const {
CompileAssertTypesEqual<void, Result>();
*::std::tr1::get<N>(args) = value_;
}
private:
const A value_;
GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction);
};
template <size_t N, typename Proto>
class SetArgumentPointeeAction<N, Proto, true> {
public:
// Constructs an action that sets the variable pointed to by the
// N-th function argument to 'proto'. Both ProtocolMessage and
// proto2::Message have the CopyFrom() method, so the same
// implementation works for both.
explicit SetArgumentPointeeAction(const Proto& proto) : proto_(new Proto) {
proto_->CopyFrom(proto);
}
template <typename Result, typename ArgumentTuple>
void Perform(const ArgumentTuple& args) const {
CompileAssertTypesEqual<void, Result>();
::std::tr1::get<N>(args)->CopyFrom(*proto_);
}
private:
const internal::linked_ptr<Proto> proto_;
GTEST_DISALLOW_ASSIGN_(SetArgumentPointeeAction);
};
// Implements the InvokeWithoutArgs(f) action. The template argument
// FunctionImpl is the implementation type of f, which can be either a
// function pointer or a functor. InvokeWithoutArgs(f) can be used as an
// Action<F> as long as f's type is compatible with F (i.e. f can be
// assigned to a tr1::function<F>).
template <typename FunctionImpl>
class InvokeWithoutArgsAction {
public:
// The c'tor makes a copy of function_impl (either a function
// pointer or a functor).
explicit InvokeWithoutArgsAction(FunctionImpl function_impl)
: function_impl_(function_impl) {}
// Allows InvokeWithoutArgs(f) to be used as any action whose type is
// compatible with f.
template <typename Result, typename ArgumentTuple>
Result Perform(const ArgumentTuple&) { return function_impl_(); }
private:
FunctionImpl function_impl_;
GTEST_DISALLOW_ASSIGN_(InvokeWithoutArgsAction);
};
// Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
template <class Class, typename MethodPtr>
class InvokeMethodWithoutArgsAction {
public:
InvokeMethodWithoutArgsAction(Class* obj_ptr, MethodPtr method_ptr)
: obj_ptr_(obj_ptr), method_ptr_(method_ptr) {}
template <typename Result, typename ArgumentTuple>
Result Perform(const ArgumentTuple&) const {
return (obj_ptr_->*method_ptr_)();
}
private:
Class* const obj_ptr_;
const MethodPtr method_ptr_;
GTEST_DISALLOW_ASSIGN_(InvokeMethodWithoutArgsAction);
};
// Implements the IgnoreResult(action) action.
template <typename A>
class IgnoreResultAction {
public:
explicit IgnoreResultAction(const A& action) : action_(action) {}
template <typename F>
operator Action<F>() const {
// Assert statement belongs here because this is the best place to verify
// conditions on F. It produces the clearest error messages
// in most compilers.
// Impl really belongs in this scope as a local class but can't
// because MSVC produces duplicate symbols in different translation units
// in this case. Until MS fixes that bug we put Impl into the class scope
// and put the typedef both here (for use in assert statement) and
// in the Impl class. But both definitions must be the same.
typedef typename internal::Function<F>::Result Result;
// Asserts at compile time that F returns void.
CompileAssertTypesEqual<void, Result>();
return Action<F>(new Impl<F>(action_));
}
private:
template <typename F>
class Impl : public ActionInterface<F> {
public:
typedef typename internal::Function<F>::Result Result;
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
explicit Impl(const A& action) : action_(action) {}
virtual void Perform(const ArgumentTuple& args) {
// Performs the action and ignores its result.
action_.Perform(args);
}
private:
// Type OriginalFunction is the same as F except that its return
// type is IgnoredValue.
typedef typename internal::Function<F>::MakeResultIgnoredValue
OriginalFunction;
const Action<OriginalFunction> action_;
GTEST_DISALLOW_ASSIGN_(Impl);
};
const A action_;
GTEST_DISALLOW_ASSIGN_(IgnoreResultAction);
};
// A ReferenceWrapper<T> object represents a reference to type T,
// which can be either const or not. It can be explicitly converted
// from, and implicitly converted to, a T&. Unlike a reference,
// ReferenceWrapper<T> can be copied and can survive template type
// inference. This is used to support by-reference arguments in the
// InvokeArgument<N>(...) action. The idea was from "reference
// wrappers" in tr1, which we don't have in our source tree yet.
template <typename T>
class ReferenceWrapper {
public:
// Constructs a ReferenceWrapper<T> object from a T&.
explicit ReferenceWrapper(T& l_value) : pointer_(&l_value) {} // NOLINT
// Allows a ReferenceWrapper<T> object to be implicitly converted to
// a T&.
operator T&() const { return *pointer_; }
private:
T* pointer_;
};
// Allows the expression ByRef(x) to be printed as a reference to x.
template <typename T>
void PrintTo(const ReferenceWrapper<T>& ref, ::std::ostream* os) {
T& value = ref;
UniversalPrinter<T&>::Print(value, os);
}
// Does two actions sequentially. Used for implementing the DoAll(a1,
// a2, ...) action.
template <typename Action1, typename Action2>
class DoBothAction {
public:
DoBothAction(Action1 action1, Action2 action2)
: action1_(action1), action2_(action2) {}
// This template type conversion operator allows DoAll(a1, ..., a_n)
// to be used in ANY function of compatible type.
template <typename F>
operator Action<F>() const {
return Action<F>(new Impl<F>(action1_, action2_));
}
private:
// Implements the DoAll(...) action for a particular function type F.
template <typename F>
class Impl : public ActionInterface<F> {
public:
typedef typename Function<F>::Result Result;
typedef typename Function<F>::ArgumentTuple ArgumentTuple;
typedef typename Function<F>::MakeResultVoid VoidResult;
Impl(const Action<VoidResult>& action1, const Action<F>& action2)
: action1_(action1), action2_(action2) {}
virtual Result Perform(const ArgumentTuple& args) {
action1_.Perform(args);
return action2_.Perform(args);
}
private:
const Action<VoidResult> action1_;
const Action<F> action2_;
GTEST_DISALLOW_ASSIGN_(Impl);
};
Action1 action1_;
Action2 action2_;
GTEST_DISALLOW_ASSIGN_(DoBothAction);
};
} // namespace internal
// An Unused object can be implicitly constructed from ANY value.
// This is handy when defining actions that ignore some or all of the
// mock function arguments. For example, given
//
// MOCK_METHOD3(Foo, double(const string& label, double x, double y));
// MOCK_METHOD3(Bar, double(int index, double x, double y));
//
// instead of
//
// double DistanceToOriginWithLabel(const string& label, double x, double y) {
// return sqrt(x*x + y*y);
// }
// double DistanceToOriginWithIndex(int index, double x, double y) {
// return sqrt(x*x + y*y);
// }
// ...
// EXEPCT_CALL(mock, Foo("abc", _, _))
// .WillOnce(Invoke(DistanceToOriginWithLabel));
// EXEPCT_CALL(mock, Bar(5, _, _))
// .WillOnce(Invoke(DistanceToOriginWithIndex));
//
// you could write
//
// // We can declare any uninteresting argument as Unused.
// double DistanceToOrigin(Unused, double x, double y) {
// return sqrt(x*x + y*y);
// }
// ...
// EXEPCT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
// EXEPCT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
typedef internal::IgnoredValue Unused;
// This constructor allows us to turn an Action<From> object into an
// Action<To>, as long as To's arguments can be implicitly converted
// to From's and From's return type cann be implicitly converted to
// To's.
template <typename To>
template <typename From>
Action<To>::Action(const Action<From>& from)
: impl_(new internal::ActionAdaptor<To, From>(from)) {}
// Creates an action that returns 'value'. 'value' is passed by value
// instead of const reference - otherwise Return("string literal")
// will trigger a compiler error about using array as initializer.
template <typename R>
internal::ReturnAction<R> Return(R value) {
return internal::ReturnAction<R>(value);
}
// Creates an action that returns NULL.
inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() {
return MakePolymorphicAction(internal::ReturnNullAction());
}
// Creates an action that returns from a void function.
inline PolymorphicAction<internal::ReturnVoidAction> Return() {
return MakePolymorphicAction(internal::ReturnVoidAction());
}
// Creates an action that returns the reference to a variable.
template <typename R>
inline internal::ReturnRefAction<R> ReturnRef(R& x) { // NOLINT
return internal::ReturnRefAction<R>(x);
}
// Creates an action that returns the reference to a copy of the
// argument. The copy is created when the action is constructed and
// lives as long as the action.
template <typename R>
inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) {
return internal::ReturnRefOfCopyAction<R>(x);
}
// Creates an action that does the default action for the give mock function.
inline internal::DoDefaultAction DoDefault() {
return internal::DoDefaultAction();
}
// Creates an action that sets the variable pointed by the N-th
// (0-based) function argument to 'value'.
template <size_t N, typename T>
PolymorphicAction<
internal::SetArgumentPointeeAction<
N, T, internal::IsAProtocolMessage<T>::value> >
SetArgPointee(const T& x) {
return MakePolymorphicAction(internal::SetArgumentPointeeAction<
N, T, internal::IsAProtocolMessage<T>::value>(x));
}
#if !((GTEST_GCC_VER_ && GTEST_GCC_VER_ < 40000) || GTEST_OS_SYMBIAN)
// This overload allows SetArgPointee() to accept a string literal.
// GCC prior to the version 4.0 and Symbian C++ compiler cannot distinguish
// this overload from the templated version and emit a compile error.
template <size_t N>
PolymorphicAction<
internal::SetArgumentPointeeAction<N, const char*, false> >
SetArgPointee(const char* p) {
return MakePolymorphicAction(internal::SetArgumentPointeeAction<
N, const char*, false>(p));
}
template <size_t N>
PolymorphicAction<
internal::SetArgumentPointeeAction<N, const wchar_t*, false> >
SetArgPointee(const wchar_t* p) {
return MakePolymorphicAction(internal::SetArgumentPointeeAction<
N, const wchar_t*, false>(p));
}
#endif
// The following version is DEPRECATED.
template <size_t N, typename T>
PolymorphicAction<
internal::SetArgumentPointeeAction<
N, T, internal::IsAProtocolMessage<T>::value> >
SetArgumentPointee(const T& x) {
return MakePolymorphicAction(internal::SetArgumentPointeeAction<
N, T, internal::IsAProtocolMessage<T>::value>(x));
}
// Creates an action that sets a pointer referent to a given value.
template <typename T1, typename T2>
PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) {
return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val));
}
#if !GTEST_OS_WINDOWS_MOBILE
// Creates an action that sets errno and returns the appropriate error.
template <typename T>
PolymorphicAction<internal::SetErrnoAndReturnAction<T> >
SetErrnoAndReturn(int errval, T result) {
return MakePolymorphicAction(
internal::SetErrnoAndReturnAction<T>(errval, result));
}
#endif // !GTEST_OS_WINDOWS_MOBILE
// Various overloads for InvokeWithoutArgs().
// Creates an action that invokes 'function_impl' with no argument.
template <typename FunctionImpl>
PolymorphicAction<internal::InvokeWithoutArgsAction<FunctionImpl> >
InvokeWithoutArgs(FunctionImpl function_impl) {
return MakePolymorphicAction(
internal::InvokeWithoutArgsAction<FunctionImpl>(function_impl));
}
// Creates an action that invokes the given method on the given object
// with no argument.
template <class Class, typename MethodPtr>
PolymorphicAction<internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> >
InvokeWithoutArgs(Class* obj_ptr, MethodPtr method_ptr) {
return MakePolymorphicAction(
internal::InvokeMethodWithoutArgsAction<Class, MethodPtr>(
obj_ptr, method_ptr));
}
// Creates an action that performs an_action and throws away its
// result. In other words, it changes the return type of an_action to
// void. an_action MUST NOT return void, or the code won't compile.
template <typename A>
inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) {
return internal::IgnoreResultAction<A>(an_action);
}
// Creates a reference wrapper for the given L-value. If necessary,
// you can explicitly specify the type of the reference. For example,
// suppose 'derived' is an object of type Derived, ByRef(derived)
// would wrap a Derived&. If you want to wrap a const Base& instead,
// where Base is a base class of Derived, just write:
//
// ByRef<const Base>(derived)
template <typename T>
inline internal::ReferenceWrapper<T> ByRef(T& l_value) { // NOLINT
return internal::ReferenceWrapper<T>(l_value);
}
} // namespace testing
#endif // GMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: wan@google.com (Zhanyong Wan)
// Google Mock - a framework for writing C++ mock classes.
//
// This file implements some commonly used cardinalities. More
// cardinalities can be defined by the user implementing the
// CardinalityInterface interface if necessary.
#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_
#define GMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_
#include <limits.h>
#include <ostream> // NOLINT
namespace testing {
// To implement a cardinality Foo, define:
// 1. a class FooCardinality that implements the
// CardinalityInterface interface, and
// 2. a factory function that creates a Cardinality object from a
// const FooCardinality*.
//
// The two-level delegation design follows that of Matcher, providing
// consistency for extension developers. It also eases ownership
// management as Cardinality objects can now be copied like plain values.
// The implementation of a cardinality.
class CardinalityInterface {
public:
virtual ~CardinalityInterface() {}
// Conservative estimate on the lower/upper bound of the number of
// calls allowed.
virtual int ConservativeLowerBound() const { return 0; }
virtual int ConservativeUpperBound() const { return INT_MAX; }
// Returns true iff call_count calls will satisfy this cardinality.
virtual bool IsSatisfiedByCallCount(int call_count) const = 0;
// Returns true iff call_count calls will saturate this cardinality.
virtual bool IsSaturatedByCallCount(int call_count) const = 0;
// Describes self to an ostream.
virtual void DescribeTo(::std::ostream* os) const = 0;
};
// A Cardinality is a copyable and IMMUTABLE (except by assignment)
// object that specifies how many times a mock function is expected to
// be called. The implementation of Cardinality is just a linked_ptr
// to const CardinalityInterface, so copying is fairly cheap.
// Don't inherit from Cardinality!
class GTEST_API_ Cardinality {
public:
// Constructs a null cardinality. Needed for storing Cardinality
// objects in STL containers.
Cardinality() {}
// Constructs a Cardinality from its implementation.
explicit Cardinality(const CardinalityInterface* impl) : impl_(impl) {}
// Conservative estimate on the lower/upper bound of the number of
// calls allowed.
int ConservativeLowerBound() const { return impl_->ConservativeLowerBound(); }
int ConservativeUpperBound() const { return impl_->ConservativeUpperBound(); }
// Returns true iff call_count calls will satisfy this cardinality.
bool IsSatisfiedByCallCount(int call_count) const {
return impl_->IsSatisfiedByCallCount(call_count);
}
// Returns true iff call_count calls will saturate this cardinality.
bool IsSaturatedByCallCount(int call_count) const {
return impl_->IsSaturatedByCallCount(call_count);
}
// Returns true iff call_count calls will over-saturate this
// cardinality, i.e. exceed the maximum number of allowed calls.
bool IsOverSaturatedByCallCount(int call_count) const {
return impl_->IsSaturatedByCallCount(call_count) &&
!impl_->IsSatisfiedByCallCount(call_count);
}
// Describes self to an ostream
void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); }
// Describes the given actual call count to an ostream.
static void DescribeActualCallCountTo(int actual_call_count,
::std::ostream* os);
private:
internal::linked_ptr<const CardinalityInterface> impl_;
};
// Creates a cardinality that allows at least n calls.
GTEST_API_ Cardinality AtLeast(int n);
// Creates a cardinality that allows at most n calls.
GTEST_API_ Cardinality AtMost(int n);
// Creates a cardinality that allows any number of calls.
GTEST_API_ Cardinality AnyNumber();
// Creates a cardinality that allows between min and max calls.
GTEST_API_ Cardinality Between(int min, int max);
// Creates a cardinality that allows exactly n calls.
GTEST_API_ Cardinality Exactly(int n);
// Creates a cardinality from its implementation.
inline Cardinality MakeCardinality(const CardinalityInterface* c) {
return Cardinality(c);
}
} // namespace testing
#endif // GMOCK_INCLUDE_GMOCK_GMOCK_CARDINALITIES_H_
// This file was GENERATED by a script. DO NOT EDIT BY HAND!!!
// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: wan@google.com (Zhanyong Wan)
// Google Mock - a framework for writing C++ mock classes.
//
// This file implements some commonly used variadic actions.
#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_ACTIONS_H_
#define GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_ACTIONS_H_
namespace testing {
namespace internal {
// InvokeHelper<F> knows how to unpack an N-tuple and invoke an N-ary
// function or method with the unpacked values, where F is a function
// type that takes N arguments.
template <typename Result, typename ArgumentTuple>
class InvokeHelper;
template <typename R>
class InvokeHelper<R, ::std::tr1::tuple<> > {
public:
template <typename Function>
static R Invoke(Function function, const ::std::tr1::tuple<>&) {
return function();
}
template <class Class, typename MethodPtr>
static R InvokeMethod(Class* obj_ptr,
MethodPtr method_ptr,
const ::std::tr1::tuple<>&) {
return (obj_ptr->*method_ptr)();
}
};
template <typename R, typename A1>
class InvokeHelper<R, ::std::tr1::tuple<A1> > {
public:
template <typename Function>
static R Invoke(Function function, const ::std::tr1::tuple<A1>& args) {
using ::std::tr1::get;
return function(get<0>(args));
}
template <class Class, typename MethodPtr>
static R InvokeMethod(Class* obj_ptr,
MethodPtr method_ptr,
const ::std::tr1::tuple<A1>& args) {
using ::std::tr1::get;
return (obj_ptr->*method_ptr)(get<0>(args));
}
};
template <typename R, typename A1, typename A2>
class InvokeHelper<R, ::std::tr1::tuple<A1, A2> > {
public:
template <typename Function>
static R Invoke(Function function, const ::std::tr1::tuple<A1, A2>& args) {
using ::std::tr1::get;
return function(get<0>(args), get<1>(args));
}
template <class Class, typename MethodPtr>
static R InvokeMethod(Class* obj_ptr,
MethodPtr method_ptr,
const ::std::tr1::tuple<A1, A2>& args) {
using ::std::tr1::get;
return (obj_ptr->*method_ptr)(get<0>(args), get<1>(args));
}
};
template <typename R, typename A1, typename A2, typename A3>
class InvokeHelper<R, ::std::tr1::tuple<A1, A2, A3> > {
public:
template <typename Function>
static R Invoke(Function function, const ::std::tr1::tuple<A1, A2,
A3>& args) {
using ::std::tr1::get;
return function(get<0>(args), get<1>(args), get<2>(args));
}
template <class Class, typename MethodPtr>
static R InvokeMethod(Class* obj_ptr,
MethodPtr method_ptr,
const ::std::tr1::tuple<A1, A2, A3>& args) {
using ::std::tr1::get;
return (obj_ptr->*method_ptr)(get<0>(args), get<1>(args), get<2>(args));
}
};
template <typename R, typename A1, typename A2, typename A3, typename A4>
class InvokeHelper<R, ::std::tr1::tuple<A1, A2, A3, A4> > {
public:
template <typename Function>
static R Invoke(Function function, const ::std::tr1::tuple<A1, A2, A3,
A4>& args) {
using ::std::tr1::get;
return function(get<0>(args), get<1>(args), get<2>(args), get<3>(args));
}
template <class Class, typename MethodPtr>
static R InvokeMethod(Class* obj_ptr,
MethodPtr method_ptr,
const ::std::tr1::tuple<A1, A2, A3, A4>& args) {
using ::std::tr1::get;
return (obj_ptr->*method_ptr)(get<0>(args), get<1>(args), get<2>(args),
get<3>(args));
}
};
template <typename R, typename A1, typename A2, typename A3, typename A4,
typename A5>
class InvokeHelper<R, ::std::tr1::tuple<A1, A2, A3, A4, A5> > {
public:
template <typename Function>
static R Invoke(Function function, const ::std::tr1::tuple<A1, A2, A3, A4,
A5>& args) {
using ::std::tr1::get;
return function(get<0>(args), get<1>(args), get<2>(args), get<3>(args),
get<4>(args));
}
template <class Class, typename MethodPtr>
static R InvokeMethod(Class* obj_ptr,
MethodPtr method_ptr,
const ::std::tr1::tuple<A1, A2, A3, A4, A5>& args) {
using ::std::tr1::get;
return (obj_ptr->*method_ptr)(get<0>(args), get<1>(args), get<2>(args),
get<3>(args), get<4>(args));
}
};
template <typename R, typename A1, typename A2, typename A3, typename A4,
typename A5, typename A6>
class InvokeHelper<R, ::std::tr1::tuple<A1, A2, A3, A4, A5, A6> > {
public:
template <typename Function>
static R Invoke(Function function, const ::std::tr1::tuple<A1, A2, A3, A4,
A5, A6>& args) {
using ::std::tr1::get;
return function(get<0>(args), get<1>(args), get<2>(args), get<3>(args),
get<4>(args), get<5>(args));
}
template <class Class, typename MethodPtr>
static R InvokeMethod(Class* obj_ptr,
MethodPtr method_ptr,
const ::std::tr1::tuple<A1, A2, A3, A4, A5, A6>& args) {
using ::std::tr1::get;
return (obj_ptr->*method_ptr)(get<0>(args), get<1>(args), get<2>(args),
get<3>(args), get<4>(args), get<5>(args));
}
};
template <typename R, typename A1, typename A2, typename A3, typename A4,
typename A5, typename A6, typename A7>
class InvokeHelper<R, ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7> > {
public:
template <typename Function>
static R Invoke(Function function, const ::std::tr1::tuple<A1, A2, A3, A4,
A5, A6, A7>& args) {
using ::std::tr1::get;
return function(get<0>(args), get<1>(args), get<2>(args), get<3>(args),
get<4>(args), get<5>(args), get<6>(args));
}
template <class Class, typename MethodPtr>
static R InvokeMethod(Class* obj_ptr,
MethodPtr method_ptr,
const ::std::tr1::tuple<A1, A2, A3, A4, A5, A6,
A7>& args) {
using ::std::tr1::get;
return (obj_ptr->*method_ptr)(get<0>(args), get<1>(args), get<2>(args),
get<3>(args), get<4>(args), get<5>(args), get<6>(args));
}
};
template <typename R, typename A1, typename A2, typename A3, typename A4,
typename A5, typename A6, typename A7, typename A8>
class InvokeHelper<R, ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7, A8> > {
public:
template <typename Function>
static R Invoke(Function function, const ::std::tr1::tuple<A1, A2, A3, A4,
A5, A6, A7, A8>& args) {
using ::std::tr1::get;
return function(get<0>(args), get<1>(args), get<2>(args), get<3>(args),
get<4>(args), get<5>(args), get<6>(args), get<7>(args));
}
template <class Class, typename MethodPtr>
static R InvokeMethod(Class* obj_ptr,
MethodPtr method_ptr,
const ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7,
A8>& args) {
using ::std::tr1::get;
return (obj_ptr->*method_ptr)(get<0>(args), get<1>(args), get<2>(args),
get<3>(args), get<4>(args), get<5>(args), get<6>(args), get<7>(args));
}
};
template <typename R, typename A1, typename A2, typename A3, typename A4,
typename A5, typename A6, typename A7, typename A8, typename A9>
class InvokeHelper<R, ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7, A8, A9> > {
public:
template <typename Function>
static R Invoke(Function function, const ::std::tr1::tuple<A1, A2, A3, A4,
A5, A6, A7, A8, A9>& args) {
using ::std::tr1::get;
return function(get<0>(args), get<1>(args), get<2>(args), get<3>(args),
get<4>(args), get<5>(args), get<6>(args), get<7>(args), get<8>(args));
}
template <class Class, typename MethodPtr>
static R InvokeMethod(Class* obj_ptr,
MethodPtr method_ptr,
const ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7, A8,
A9>& args) {
using ::std::tr1::get;
return (obj_ptr->*method_ptr)(get<0>(args), get<1>(args), get<2>(args),
get<3>(args), get<4>(args), get<5>(args), get<6>(args), get<7>(args),
get<8>(args));
}
};
template <typename R, typename A1, typename A2, typename A3, typename A4,
typename A5, typename A6, typename A7, typename A8, typename A9,
typename A10>
class InvokeHelper<R, ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7, A8, A9,
A10> > {
public:
template <typename Function>
static R Invoke(Function function, const ::std::tr1::tuple<A1, A2, A3, A4,
A5, A6, A7, A8, A9, A10>& args) {
using ::std::tr1::get;
return function(get<0>(args), get<1>(args), get<2>(args), get<3>(args),
get<4>(args), get<5>(args), get<6>(args), get<7>(args), get<8>(args),
get<9>(args));
}
template <class Class, typename MethodPtr>
static R InvokeMethod(Class* obj_ptr,
MethodPtr method_ptr,
const ::std::tr1::tuple<A1, A2, A3, A4, A5, A6, A7, A8,
A9, A10>& args) {
using ::std::tr1::get;
return (obj_ptr->*method_ptr)(get<0>(args), get<1>(args), get<2>(args),
get<3>(args), get<4>(args), get<5>(args), get<6>(args), get<7>(args),
get<8>(args), get<9>(args));
}
};
// CallableHelper has static methods for invoking "callables",
// i.e. function pointers and functors. It uses overloading to
// provide a uniform interface for invoking different kinds of
// callables. In particular, you can use:
//
// CallableHelper<R>::Call(callable, a1, a2, ..., an)
//
// to invoke an n-ary callable, where R is its return type. If an
// argument, say a2, needs to be passed by reference, you should write
// ByRef(a2) instead of a2 in the above expression.
template <typename R>
class CallableHelper {
public:
// Calls a nullary callable.
template <typename Function>
static R Call(Function function) { return function(); }
// Calls a unary callable.
// We deliberately pass a1 by value instead of const reference here
// in case it is a C-string literal. If we had declared the
// parameter as 'const A1& a1' and write Call(function, "Hi"), the
// compiler would've thought A1 is 'char[3]', which causes trouble
// when you need to copy a value of type A1. By declaring the
// parameter as 'A1 a1', the compiler will correctly infer that A1
// is 'const char*' when it sees Call(function, "Hi").
//
// Since this function is defined inline, the compiler can get rid
// of the copying of the arguments. Therefore the performance won't
// be hurt.
template <typename Function, typename A1>
static R Call(Function function, A1 a1) { return function(a1); }
// Calls a binary callable.
template <typename Function, typename A1, typename A2>
static R Call(Function function, A1 a1, A2 a2) {
return function(a1, a2);
}
// Calls a ternary callable.
template <typename Function, typename A1, typename A2, typename A3>
static R Call(Function function, A1 a1, A2 a2, A3 a3) {
return function(a1, a2, a3);
}
// Calls a 4-ary callable.
template <typename Function, typename A1, typename A2, typename A3,
typename A4>
static R Call(Function function, A1 a1, A2 a2, A3 a3, A4 a4) {
return function(a1, a2, a3, a4);
}
// Calls a 5-ary callable.
template <typename Function, typename A1, typename A2, typename A3,
typename A4, typename A5>
static R Call(Function function, A1 a1, A2 a2, A3 a3, A4 a4, A5 a5) {
return function(a1, a2, a3, a4, a5);
}
// Calls a 6-ary callable.
template <typename Function, typename A1, typename A2, typename A3,
typename A4, typename A5, typename A6>
static R Call(Function function, A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6) {
return function(a1, a2, a3, a4, a5, a6);
}
// Calls a 7-ary callable.
template <typename Function, typename A1, typename A2, typename A3,
typename A4, typename A5, typename A6, typename A7>
static R Call(Function function, A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6,
A7 a7) {
return function(a1, a2, a3, a4, a5, a6, a7);
}
// Calls a 8-ary callable.
template <typename Function, typename A1, typename A2, typename A3,
typename A4, typename A5, typename A6, typename A7, typename A8>
static R Call(Function function, A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6,
A7 a7, A8 a8) {
return function(a1, a2, a3, a4, a5, a6, a7, a8);
}
// Calls a 9-ary callable.
template <typename Function, typename A1, typename A2, typename A3,
typename A4, typename A5, typename A6, typename A7, typename A8,
typename A9>
static R Call(Function function, A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6,
A7 a7, A8 a8, A9 a9) {
return function(a1, a2, a3, a4, a5, a6, a7, a8, a9);
}
// Calls a 10-ary callable.
template <typename Function, typename A1, typename A2, typename A3,
typename A4, typename A5, typename A6, typename A7, typename A8,
typename A9, typename A10>
static R Call(Function function, A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6,
A7 a7, A8 a8, A9 a9, A10 a10) {
return function(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10);
}
}; // class CallableHelper
// An INTERNAL macro for extracting the type of a tuple field. It's
// subject to change without notice - DO NOT USE IN USER CODE!
#define GMOCK_FIELD_(Tuple, N) \
typename ::std::tr1::tuple_element<N, Tuple>::type
// SelectArgs<Result, ArgumentTuple, k1, k2, ..., k_n>::type is the
// type of an n-ary function whose i-th (1-based) argument type is the
// k{i}-th (0-based) field of ArgumentTuple, which must be a tuple
// type, and whose return type is Result. For example,
// SelectArgs<int, ::std::tr1::tuple<bool, char, double, long>, 0, 3>::type
// is int(bool, long).
//
// SelectArgs<Result, ArgumentTuple, k1, k2, ..., k_n>::Select(args)
// returns the selected fields (k1, k2, ..., k_n) of args as a tuple.
// For example,
// SelectArgs<int, ::std::tr1::tuple<bool, char, double>, 2, 0>::Select(
// ::std::tr1::make_tuple(true, 'a', 2.5))
// returns ::std::tr1::tuple (2.5, true).
//
// The numbers in list k1, k2, ..., k_n must be >= 0, where n can be
// in the range [0, 10]. Duplicates are allowed and they don't have
// to be in an ascending or descending order.
template <typename Result, typename ArgumentTuple, int k1, int k2, int k3,
int k4, int k5, int k6, int k7, int k8, int k9, int k10>
class SelectArgs {
public:
typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1),
GMOCK_FIELD_(ArgumentTuple, k2), GMOCK_FIELD_(ArgumentTuple, k3),
GMOCK_FIELD_(ArgumentTuple, k4), GMOCK_FIELD_(ArgumentTuple, k5),
GMOCK_FIELD_(ArgumentTuple, k6), GMOCK_FIELD_(ArgumentTuple, k7),
GMOCK_FIELD_(ArgumentTuple, k8), GMOCK_FIELD_(ArgumentTuple, k9),
GMOCK_FIELD_(ArgumentTuple, k10));
typedef typename Function<type>::ArgumentTuple SelectedArgs;
static SelectedArgs Select(const ArgumentTuple& args) {
using ::std::tr1::get;
return SelectedArgs(get<k1>(args), get<k2>(args), get<k3>(args),
get<k4>(args), get<k5>(args), get<k6>(args), get<k7>(args),
get<k8>(args), get<k9>(args), get<k10>(args));
}
};
template <typename Result, typename ArgumentTuple>
class SelectArgs<Result, ArgumentTuple,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1> {
public:
typedef Result type();
typedef typename Function<type>::ArgumentTuple SelectedArgs;
static SelectedArgs Select(const ArgumentTuple& /* args */) {
using ::std::tr1::get;
return SelectedArgs();
}
};
template <typename Result, typename ArgumentTuple, int k1>
class SelectArgs<Result, ArgumentTuple,
k1, -1, -1, -1, -1, -1, -1, -1, -1, -1> {
public:
typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1));
typedef typename Function<type>::ArgumentTuple SelectedArgs;
static SelectedArgs Select(const ArgumentTuple& args) {
using ::std::tr1::get;
return SelectedArgs(get<k1>(args));
}
};
template <typename Result, typename ArgumentTuple, int k1, int k2>
class SelectArgs<Result, ArgumentTuple,
k1, k2, -1, -1, -1, -1, -1, -1, -1, -1> {
public:
typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1),
GMOCK_FIELD_(ArgumentTuple, k2));
typedef typename Function<type>::ArgumentTuple SelectedArgs;
static SelectedArgs Select(const ArgumentTuple& args) {
using ::std::tr1::get;
return SelectedArgs(get<k1>(args), get<k2>(args));
}
};
template <typename Result, typename ArgumentTuple, int k1, int k2, int k3>
class SelectArgs<Result, ArgumentTuple,
k1, k2, k3, -1, -1, -1, -1, -1, -1, -1> {
public:
typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1),
GMOCK_FIELD_(ArgumentTuple, k2), GMOCK_FIELD_(ArgumentTuple, k3));
typedef typename Function<type>::ArgumentTuple SelectedArgs;
static SelectedArgs Select(const ArgumentTuple& args) {
using ::std::tr1::get;
return SelectedArgs(get<k1>(args), get<k2>(args), get<k3>(args));
}
};
template <typename Result, typename ArgumentTuple, int k1, int k2, int k3,
int k4>
class SelectArgs<Result, ArgumentTuple,
k1, k2, k3, k4, -1, -1, -1, -1, -1, -1> {
public:
typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1),
GMOCK_FIELD_(ArgumentTuple, k2), GMOCK_FIELD_(ArgumentTuple, k3),
GMOCK_FIELD_(ArgumentTuple, k4));
typedef typename Function<type>::ArgumentTuple SelectedArgs;
static SelectedArgs Select(const ArgumentTuple& args) {
using ::std::tr1::get;
return SelectedArgs(get<k1>(args), get<k2>(args), get<k3>(args),
get<k4>(args));
}
};
template <typename Result, typename ArgumentTuple, int k1, int k2, int k3,
int k4, int k5>
class SelectArgs<Result, ArgumentTuple,
k1, k2, k3, k4, k5, -1, -1, -1, -1, -1> {
public:
typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1),
GMOCK_FIELD_(ArgumentTuple, k2), GMOCK_FIELD_(ArgumentTuple, k3),
GMOCK_FIELD_(ArgumentTuple, k4), GMOCK_FIELD_(ArgumentTuple, k5));
typedef typename Function<type>::ArgumentTuple SelectedArgs;
static SelectedArgs Select(const ArgumentTuple& args) {
using ::std::tr1::get;
return SelectedArgs(get<k1>(args), get<k2>(args), get<k3>(args),
get<k4>(args), get<k5>(args));
}
};
template <typename Result, typename ArgumentTuple, int k1, int k2, int k3,
int k4, int k5, int k6>
class SelectArgs<Result, ArgumentTuple,
k1, k2, k3, k4, k5, k6, -1, -1, -1, -1> {
public:
typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1),
GMOCK_FIELD_(ArgumentTuple, k2), GMOCK_FIELD_(ArgumentTuple, k3),
GMOCK_FIELD_(ArgumentTuple, k4), GMOCK_FIELD_(ArgumentTuple, k5),
GMOCK_FIELD_(ArgumentTuple, k6));
typedef typename Function<type>::ArgumentTuple SelectedArgs;
static SelectedArgs Select(const ArgumentTuple& args) {
using ::std::tr1::get;
return SelectedArgs(get<k1>(args), get<k2>(args), get<k3>(args),
get<k4>(args), get<k5>(args), get<k6>(args));
}
};
template <typename Result, typename ArgumentTuple, int k1, int k2, int k3,
int k4, int k5, int k6, int k7>
class SelectArgs<Result, ArgumentTuple,
k1, k2, k3, k4, k5, k6, k7, -1, -1, -1> {
public:
typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1),
GMOCK_FIELD_(ArgumentTuple, k2), GMOCK_FIELD_(ArgumentTuple, k3),
GMOCK_FIELD_(ArgumentTuple, k4), GMOCK_FIELD_(ArgumentTuple, k5),
GMOCK_FIELD_(ArgumentTuple, k6), GMOCK_FIELD_(ArgumentTuple, k7));
typedef typename Function<type>::ArgumentTuple SelectedArgs;
static SelectedArgs Select(const ArgumentTuple& args) {
using ::std::tr1::get;
return SelectedArgs(get<k1>(args), get<k2>(args), get<k3>(args),
get<k4>(args), get<k5>(args), get<k6>(args), get<k7>(args));
}
};
template <typename Result, typename ArgumentTuple, int k1, int k2, int k3,
int k4, int k5, int k6, int k7, int k8>
class SelectArgs<Result, ArgumentTuple,
k1, k2, k3, k4, k5, k6, k7, k8, -1, -1> {
public:
typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1),
GMOCK_FIELD_(ArgumentTuple, k2), GMOCK_FIELD_(ArgumentTuple, k3),
GMOCK_FIELD_(ArgumentTuple, k4), GMOCK_FIELD_(ArgumentTuple, k5),
GMOCK_FIELD_(ArgumentTuple, k6), GMOCK_FIELD_(ArgumentTuple, k7),
GMOCK_FIELD_(ArgumentTuple, k8));
typedef typename Function<type>::ArgumentTuple SelectedArgs;
static SelectedArgs Select(const ArgumentTuple& args) {
using ::std::tr1::get;
return SelectedArgs(get<k1>(args), get<k2>(args), get<k3>(args),
get<k4>(args), get<k5>(args), get<k6>(args), get<k7>(args),
get<k8>(args));
}
};
template <typename Result, typename ArgumentTuple, int k1, int k2, int k3,
int k4, int k5, int k6, int k7, int k8, int k9>
class SelectArgs<Result, ArgumentTuple,
k1, k2, k3, k4, k5, k6, k7, k8, k9, -1> {
public:
typedef Result type(GMOCK_FIELD_(ArgumentTuple, k1),
GMOCK_FIELD_(ArgumentTuple, k2), GMOCK_FIELD_(ArgumentTuple, k3),
GMOCK_FIELD_(ArgumentTuple, k4), GMOCK_FIELD_(ArgumentTuple, k5),
GMOCK_FIELD_(ArgumentTuple, k6), GMOCK_FIELD_(ArgumentTuple, k7),
GMOCK_FIELD_(ArgumentTuple, k8), GMOCK_FIELD_(ArgumentTuple, k9));
typedef typename Function<type>::ArgumentTuple SelectedArgs;
static SelectedArgs Select(const ArgumentTuple& args) {
using ::std::tr1::get;
return SelectedArgs(get<k1>(args), get<k2>(args), get<k3>(args),
get<k4>(args), get<k5>(args), get<k6>(args), get<k7>(args),
get<k8>(args), get<k9>(args));
}
};
#undef GMOCK_FIELD_
// Implements the WithArgs action.
template <typename InnerAction, int k1 = -1, int k2 = -1, int k3 = -1,
int k4 = -1, int k5 = -1, int k6 = -1, int k7 = -1, int k8 = -1,
int k9 = -1, int k10 = -1>
class WithArgsAction {
public:
explicit WithArgsAction(const InnerAction& action) : action_(action) {}
template <typename F>
operator Action<F>() const { return MakeAction(new Impl<F>(action_)); }
private:
template <typename F>
class Impl : public ActionInterface<F> {
public:
typedef typename Function<F>::Result Result;
typedef typename Function<F>::ArgumentTuple ArgumentTuple;
explicit Impl(const InnerAction& action) : action_(action) {}
virtual Result Perform(const ArgumentTuple& args) {
return action_.Perform(SelectArgs<Result, ArgumentTuple, k1, k2, k3, k4,
k5, k6, k7, k8, k9, k10>::Select(args));
}
private:
typedef typename SelectArgs<Result, ArgumentTuple,
k1, k2, k3, k4, k5, k6, k7, k8, k9, k10>::type InnerFunctionType;
Action<InnerFunctionType> action_;
};
const InnerAction action_;
GTEST_DISALLOW_ASSIGN_(WithArgsAction);
};
// A macro from the ACTION* family (defined later in this file)
// defines an action that can be used in a mock function. Typically,
// these actions only care about a subset of the arguments of the mock
// function. For example, if such an action only uses the second
// argument, it can be used in any mock function that takes >= 2
// arguments where the type of the second argument is compatible.
//
// Therefore, the action implementation must be prepared to take more
// arguments than it needs. The ExcessiveArg type is used to
// represent those excessive arguments. In order to keep the compiler
// error messages tractable, we define it in the testing namespace
// instead of testing::internal. However, this is an INTERNAL TYPE
// and subject to change without notice, so a user MUST NOT USE THIS
// TYPE DIRECTLY.
struct ExcessiveArg {};
// A helper class needed for implementing the ACTION* macros.
template <typename Result, class Impl>
class ActionHelper {
public:
static Result Perform(Impl* impl, const ::std::tr1::tuple<>& args) {
using ::std::tr1::get;
return impl->template gmock_PerformImpl<>(args, ExcessiveArg(),
ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(),
ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(),
ExcessiveArg());
}
template <typename A0>
static Result Perform(Impl* impl, const ::std::tr1::tuple<A0>& args) {
using ::std::tr1::get;
return impl->template gmock_PerformImpl<A0>(args, get<0>(args),
ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(),
ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(),
ExcessiveArg());
}
template <typename A0, typename A1>
static Result Perform(Impl* impl, const ::std::tr1::tuple<A0, A1>& args) {
using ::std::tr1::get;
return impl->template gmock_PerformImpl<A0, A1>(args, get<0>(args),
get<1>(args), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(),
ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(),
ExcessiveArg());
}
template <typename A0, typename A1, typename A2>
static Result Perform(Impl* impl, const ::std::tr1::tuple<A0, A1, A2>& args) {
using ::std::tr1::get;
return impl->template gmock_PerformImpl<A0, A1, A2>(args, get<0>(args),
get<1>(args), get<2>(args), ExcessiveArg(), ExcessiveArg(),
ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(),
ExcessiveArg());
}
template <typename A0, typename A1, typename A2, typename A3>
static Result Perform(Impl* impl, const ::std::tr1::tuple<A0, A1, A2,
A3>& args) {
using ::std::tr1::get;
return impl->template gmock_PerformImpl<A0, A1, A2, A3>(args, get<0>(args),
get<1>(args), get<2>(args), get<3>(args), ExcessiveArg(),
ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(),
ExcessiveArg());
}
template <typename A0, typename A1, typename A2, typename A3, typename A4>
static Result Perform(Impl* impl, const ::std::tr1::tuple<A0, A1, A2, A3,
A4>& args) {
using ::std::tr1::get;
return impl->template gmock_PerformImpl<A0, A1, A2, A3, A4>(args,
get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args),
ExcessiveArg(), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(),
ExcessiveArg());
}
template <typename A0, typename A1, typename A2, typename A3, typename A4,
typename A5>
static Result Perform(Impl* impl, const ::std::tr1::tuple<A0, A1, A2, A3, A4,
A5>& args) {
using ::std::tr1::get;
return impl->template gmock_PerformImpl<A0, A1, A2, A3, A4, A5>(args,
get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args),
get<5>(args), ExcessiveArg(), ExcessiveArg(), ExcessiveArg(),
ExcessiveArg());
}
template <typename A0, typename A1, typename A2, typename A3, typename A4,
typename A5, typename A6>
static Result Perform(Impl* impl, const ::std::tr1::tuple<A0, A1, A2, A3, A4,
A5, A6>& args) {
using ::std::tr1::get;
return impl->template gmock_PerformImpl<A0, A1, A2, A3, A4, A5, A6>(args,
get<0>(args), get<1>(args), get<2>(args), get<3>(args), get<4>(args),
get<5>(args), get<6>(args), ExcessiveArg(), ExcessiveArg(),
ExcessiveArg());
}
template <typename A0, typename A1, typename A2, typename A3, typename A4,
typename A5, typename A6, typename A7>
static Result Perform(Impl* impl, const ::std::tr1::tuple<A0, A1, A2, A3, A4,
A5, A6, A7>& args) {
using ::std::tr1::get;
return impl->template gmock_PerformImpl<A0, A1, A2, A3, A4, A5, A6,
A7>(args, get<0>(args), get<1>(args), get<2>(args), get<3>(args),
get<4>(args), get<5>(args), get<6>(args), get<7>(args), ExcessiveArg(),
ExcessiveArg());
}
template <typename A0, typename A1, typename A2, typename A3, typename A4,
typename A5, typename A6, typename A7, typename A8>
static Result Perform(Impl* impl, const ::std::tr1::tuple<A0, A1, A2, A3, A4,
A5, A6, A7, A8>& args) {
using ::std::tr1::get;
return impl->template gmock_PerformImpl<A0, A1, A2, A3, A4, A5, A6, A7,
A8>(args, get<0>(args), get<1>(args), get<2>(args), get<3>(args),
get<4>(args), get<5>(args), get<6>(args), get<7>(args), get<8>(args),
ExcessiveArg());
}
template <typename A0, typename A1, typename A2, typename A3, typename A4,
typename A5, typename A6, typename A7, typename A8, typename A9>
static Result Perform(Impl* impl, const ::std::tr1::tuple<A0, A1, A2, A3, A4,
A5, A6, A7, A8, A9>& args) {
using ::std::tr1::get;
return impl->template gmock_PerformImpl<A0, A1, A2, A3, A4, A5, A6, A7, A8,
A9>(args, get<0>(args), get<1>(args), get<2>(args), get<3>(args),
get<4>(args), get<5>(args), get<6>(args), get<7>(args), get<8>(args),
get<9>(args));
}
};
} // namespace internal
// Various overloads for Invoke().
// WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes
// the selected arguments of the mock function to an_action and
// performs it. It serves as an adaptor between actions with
// different argument lists. C++ doesn't support default arguments for
// function templates, so we have to overload it.
template <int k1, typename InnerAction>
inline internal::WithArgsAction<InnerAction, k1>
WithArgs(const InnerAction& action) {
return internal::WithArgsAction<InnerAction, k1>(action);
}
template <int k1, int k2, typename InnerAction>
inline internal::WithArgsAction<InnerAction, k1, k2>
WithArgs(const InnerAction& action) {
return internal::WithArgsAction<InnerAction, k1, k2>(action);
}
template <int k1, int k2, int k3, typename InnerAction>
inline internal::WithArgsAction<InnerAction, k1, k2, k3>
WithArgs(const InnerAction& action) {
return internal::WithArgsAction<InnerAction, k1, k2, k3>(action);
}
template <int k1, int k2, int k3, int k4, typename InnerAction>
inline internal::WithArgsAction<InnerAction, k1, k2, k3, k4>
WithArgs(const InnerAction& action) {
return internal::WithArgsAction<InnerAction, k1, k2, k3, k4>(action);
}
template <int k1, int k2, int k3, int k4, int k5, typename InnerAction>
inline internal::WithArgsAction<InnerAction, k1, k2, k3, k4, k5>
WithArgs(const InnerAction& action) {
return internal::WithArgsAction<InnerAction, k1, k2, k3, k4, k5>(action);
}
template <int k1, int k2, int k3, int k4, int k5, int k6, typename InnerAction>
inline internal::WithArgsAction<InnerAction, k1, k2, k3, k4, k5, k6>
WithArgs(const InnerAction& action) {
return internal::WithArgsAction<InnerAction, k1, k2, k3, k4, k5, k6>(action);
}
template <int k1, int k2, int k3, int k4, int k5, int k6, int k7,
typename InnerAction>
inline internal::WithArgsAction<InnerAction, k1, k2, k3, k4, k5, k6, k7>
WithArgs(const InnerAction& action) {
return internal::WithArgsAction<InnerAction, k1, k2, k3, k4, k5, k6,
k7>(action);
}
template <int k1, int k2, int k3, int k4, int k5, int k6, int k7, int k8,
typename InnerAction>
inline internal::WithArgsAction<InnerAction, k1, k2, k3, k4, k5, k6, k7, k8>
WithArgs(const InnerAction& action) {
return internal::WithArgsAction<InnerAction, k1, k2, k3, k4, k5, k6, k7,
k8>(action);
}
template <int k1, int k2, int k3, int k4, int k5, int k6, int k7, int k8,
int k9, typename InnerAction>
inline internal::WithArgsAction<InnerAction, k1, k2, k3, k4, k5, k6, k7, k8, k9>
WithArgs(const InnerAction& action) {
return internal::WithArgsAction<InnerAction, k1, k2, k3, k4, k5, k6, k7, k8,
k9>(action);
}
template <int k1, int k2, int k3, int k4, int k5, int k6, int k7, int k8,
int k9, int k10, typename InnerAction>
inline internal::WithArgsAction<InnerAction, k1, k2, k3, k4, k5, k6, k7, k8,
k9, k10>
WithArgs(const InnerAction& action) {
return internal::WithArgsAction<InnerAction, k1, k2, k3, k4, k5, k6, k7, k8,
k9, k10>(action);
}
// Creates an action that does actions a1, a2, ..., sequentially in
// each invocation.
template <typename Action1, typename Action2>
inline internal::DoBothAction<Action1, Action2>
DoAll(Action1 a1, Action2 a2) {
return internal::DoBothAction<Action1, Action2>(a1, a2);
}
template <typename Action1, typename Action2, typename Action3>
inline internal::DoBothAction<Action1, internal::DoBothAction<Action2,
Action3> >
DoAll(Action1 a1, Action2 a2, Action3 a3) {
return DoAll(a1, DoAll(a2, a3));
}
template <typename Action1, typename Action2, typename Action3,
typename Action4>
inline internal::DoBothAction<Action1, internal::DoBothAction<Action2,
internal::DoBothAction<Action3, Action4> > >
DoAll(Action1 a1, Action2 a2, Action3 a3, Action4 a4) {
return DoAll(a1, DoAll(a2, a3, a4));
}
template <typename Action1, typename Action2, typename Action3,
typename Action4, typename Action5>
inline internal::DoBothAction<Action1, internal::DoBothAction<Action2,
internal::DoBothAction<Action3, internal::DoBothAction<Action4,
Action5> > > >
DoAll(Action1 a1, Action2 a2, Action3 a3, Action4 a4, Action5 a5) {
return DoAll(a1, DoAll(a2, a3, a4, a5));
}
template <typename Action1, typename Action2, typename Action3,
typename Action4, typename Action5, typename Action6>
inline internal::DoBothAction<Action1, internal::DoBothAction<Action2,
internal::DoBothAction<Action3, internal::DoBothAction<Action4,
internal::DoBothAction<Action5, Action6> > > > >
DoAll(Action1 a1, Action2 a2, Action3 a3, Action4 a4, Action5 a5, Action6 a6) {
return DoAll(a1, DoAll(a2, a3, a4, a5, a6));
}
template <typename Action1, typename Action2, typename Action3,
typename Action4, typename Action5, typename Action6, typename Action7>
inline internal::DoBothAction<Action1, internal::DoBothAction<Action2,
internal::DoBothAction<Action3, internal::DoBothAction<Action4,
internal::DoBothAction<Action5, internal::DoBothAction<Action6,
Action7> > > > > >
DoAll(Action1 a1, Action2 a2, Action3 a3, Action4 a4, Action5 a5, Action6 a6,
Action7 a7) {
return DoAll(a1, DoAll(a2, a3, a4, a5, a6, a7));
}
template <typename Action1, typename Action2, typename Action3,
typename Action4, typename Action5, typename Action6, typename Action7,
typename Action8>
inline internal::DoBothAction<Action1, internal::DoBothAction<Action2,
internal::DoBothAction<Action3, internal::DoBothAction<Action4,
internal::DoBothAction<Action5, internal::DoBothAction<Action6,
internal::DoBothAction<Action7, Action8> > > > > > >
DoAll(Action1 a1, Action2 a2, Action3 a3, Action4 a4, Action5 a5, Action6 a6,
Action7 a7, Action8 a8) {
return DoAll(a1, DoAll(a2, a3, a4, a5, a6, a7, a8));
}
template <typename Action1, typename Action2, typename Action3,
typename Action4, typename Action5, typename Action6, typename Action7,
typename Action8, typename Action9>
inline internal::DoBothAction<Action1, internal::DoBothAction<Action2,
internal::DoBothAction<Action3, internal::DoBothAction<Action4,
internal::DoBothAction<Action5, internal::DoBothAction<Action6,
internal::DoBothAction<Action7, internal::DoBothAction<Action8,
Action9> > > > > > > >
DoAll(Action1 a1, Action2 a2, Action3 a3, Action4 a4, Action5 a5, Action6 a6,
Action7 a7, Action8 a8, Action9 a9) {
return DoAll(a1, DoAll(a2, a3, a4, a5, a6, a7, a8, a9));
}
template <typename Action1, typename Action2, typename Action3,
typename Action4, typename Action5, typename Action6, typename Action7,
typename Action8, typename Action9, typename Action10>
inline internal::DoBothAction<Action1, internal::DoBothAction<Action2,
internal::DoBothAction<Action3, internal::DoBothAction<Action4,
internal::DoBothAction<Action5, internal::DoBothAction<Action6,
internal::DoBothAction<Action7, internal::DoBothAction<Action8,
internal::DoBothAction<Action9, Action10> > > > > > > > >
DoAll(Action1 a1, Action2 a2, Action3 a3, Action4 a4, Action5 a5, Action6 a6,
Action7 a7, Action8 a8, Action9 a9, Action10 a10) {
return DoAll(a1, DoAll(a2, a3, a4, a5, a6, a7, a8, a9, a10));
}
} // namespace testing
// The ACTION* family of macros can be used in a namespace scope to
// define custom actions easily. The syntax:
//
// ACTION(name) { statements; }
//
// will define an action with the given name that executes the
// statements. The value returned by the statements will be used as
// the return value of the action. Inside the statements, you can
// refer to the K-th (0-based) argument of the mock function by
// 'argK', and refer to its type by 'argK_type'. For example:
//
// ACTION(IncrementArg1) {
// arg1_type temp = arg1;
// return ++(*temp);
// }
//
// allows you to write
//
// ...WillOnce(IncrementArg1());
//
// You can also refer to the entire argument tuple and its type by
// 'args' and 'args_type', and refer to the mock function type and its
// return type by 'function_type' and 'return_type'.
//
// Note that you don't need to specify the types of the mock function
// arguments. However rest assured that your code is still type-safe:
// you'll get a compiler error if *arg1 doesn't support the ++
// operator, or if the type of ++(*arg1) isn't compatible with the
// mock function's return type, for example.
//
// Sometimes you'll want to parameterize the action. For that you can use
// another macro:
//
// ACTION_P(name, param_name) { statements; }
//
// For example:
//
// ACTION_P(Add, n) { return arg0 + n; }
//
// will allow you to write:
//
// ...WillOnce(Add(5));
//
// Note that you don't need to provide the type of the parameter
// either. If you need to reference the type of a parameter named
// 'foo', you can write 'foo_type'. For example, in the body of
// ACTION_P(Add, n) above, you can write 'n_type' to refer to the type
// of 'n'.
//
// We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P10 to support
// multi-parameter actions.
//
// For the purpose of typing, you can view
//
// ACTION_Pk(Foo, p1, ..., pk) { ... }
//
// as shorthand for
//
// template <typename p1_type, ..., typename pk_type>
// FooActionPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... }
//
// In particular, you can provide the template type arguments
// explicitly when invoking Foo(), as in Foo<long, bool>(5, false);
// although usually you can rely on the compiler to infer the types
// for you automatically. You can assign the result of expression
// Foo(p1, ..., pk) to a variable of type FooActionPk<p1_type, ...,
// pk_type>. This can be useful when composing actions.
//
// You can also overload actions with different numbers of parameters:
//
// ACTION_P(Plus, a) { ... }
// ACTION_P2(Plus, a, b) { ... }
//
// While it's tempting to always use the ACTION* macros when defining
// a new action, you should also consider implementing ActionInterface
// or using MakePolymorphicAction() instead, especially if you need to
// use the action a lot. While these approaches require more work,
// they give you more control on the types of the mock function
// arguments and the action parameters, which in general leads to
// better compiler error messages that pay off in the long run. They
// also allow overloading actions based on parameter types (as opposed
// to just based on the number of parameters).
//
// CAVEAT:
//
// ACTION*() can only be used in a namespace scope. The reason is
// that C++ doesn't yet allow function-local types to be used to
// instantiate templates. The up-coming C++0x standard will fix this.
// Once that's done, we'll consider supporting using ACTION*() inside
// a function.
//
// MORE INFORMATION:
//
// To learn more about using these macros, please search for 'ACTION'
// on http://code.google.com/p/googlemock/wiki/CookBook.
// An internal macro needed for implementing ACTION*().
#define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_\
const args_type& args GTEST_ATTRIBUTE_UNUSED_, \
arg0_type arg0 GTEST_ATTRIBUTE_UNUSED_, \
arg1_type arg1 GTEST_ATTRIBUTE_UNUSED_, \
arg2_type arg2 GTEST_ATTRIBUTE_UNUSED_, \
arg3_type arg3 GTEST_ATTRIBUTE_UNUSED_, \
arg4_type arg4 GTEST_ATTRIBUTE_UNUSED_, \
arg5_type arg5 GTEST_ATTRIBUTE_UNUSED_, \
arg6_type arg6 GTEST_ATTRIBUTE_UNUSED_, \
arg7_type arg7 GTEST_ATTRIBUTE_UNUSED_, \
arg8_type arg8 GTEST_ATTRIBUTE_UNUSED_, \
arg9_type arg9 GTEST_ATTRIBUTE_UNUSED_
// Sometimes you want to give an action explicit template parameters
// that cannot be inferred from its value parameters. ACTION() and
// ACTION_P*() don't support that. ACTION_TEMPLATE() remedies that
// and can be viewed as an extension to ACTION() and ACTION_P*().
//
// The syntax:
//
// ACTION_TEMPLATE(ActionName,
// HAS_m_TEMPLATE_PARAMS(kind1, name1, ..., kind_m, name_m),
// AND_n_VALUE_PARAMS(p1, ..., p_n)) { statements; }
//
// defines an action template that takes m explicit template
// parameters and n value parameters. name_i is the name of the i-th
// template parameter, and kind_i specifies whether it's a typename,
// an integral constant, or a template. p_i is the name of the i-th
// value parameter.
//
// Example:
//
// // DuplicateArg<k, T>(output) converts the k-th argument of the mock
// // function to type T and copies it to *output.
// ACTION_TEMPLATE(DuplicateArg,
// HAS_2_TEMPLATE_PARAMS(int, k, typename, T),
// AND_1_VALUE_PARAMS(output)) {
// *output = T(std::tr1::get<k>(args));
// }
// ...
// int n;
// EXPECT_CALL(mock, Foo(_, _))
// .WillOnce(DuplicateArg<1, unsigned char>(&n));
//
// To create an instance of an action template, write:
//
// ActionName<t1, ..., t_m>(v1, ..., v_n)
//
// where the ts are the template arguments and the vs are the value
// arguments. The value argument types are inferred by the compiler.
// If you want to explicitly specify the value argument types, you can
// provide additional template arguments:
//
// ActionName<t1, ..., t_m, u1, ..., u_k>(v1, ..., v_n)
//
// where u_i is the desired type of v_i.
//
// ACTION_TEMPLATE and ACTION/ACTION_P* can be overloaded on the
// number of value parameters, but not on the number of template
// parameters. Without the restriction, the meaning of the following
// is unclear:
//
// OverloadedAction<int, bool>(x);
//
// Are we using a single-template-parameter action where 'bool' refers
// to the type of x, or are we using a two-template-parameter action
// where the compiler is asked to infer the type of x?
//
// Implementation notes:
//
// GMOCK_INTERNAL_*_HAS_m_TEMPLATE_PARAMS and
// GMOCK_INTERNAL_*_AND_n_VALUE_PARAMS are internal macros for
// implementing ACTION_TEMPLATE. The main trick we use is to create
// new macro invocations when expanding a macro. For example, we have
//
// #define ACTION_TEMPLATE(name, template_params, value_params)
// ... GMOCK_INTERNAL_DECL_##template_params ...
//
// which causes ACTION_TEMPLATE(..., HAS_1_TEMPLATE_PARAMS(typename, T), ...)
// to expand to
//
// ... GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS(typename, T) ...
//
// Since GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS is a macro, the
// preprocessor will continue to expand it to
//
// ... typename T ...
//
// This technique conforms to the C++ standard and is portable. It
// allows us to implement action templates using O(N) code, where N is
// the maximum number of template/value parameters supported. Without
// using it, we'd have to devote O(N^2) amount of code to implement all
// combinations of m and n.
// Declares the template parameters.
#define GMOCK_INTERNAL_DECL_HAS_1_TEMPLATE_PARAMS(kind0, name0) kind0 name0
#define GMOCK_INTERNAL_DECL_HAS_2_TEMPLATE_PARAMS(kind0, name0, kind1, \
name1) kind0 name0, kind1 name1
#define GMOCK_INTERNAL_DECL_HAS_3_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
kind2, name2) kind0 name0, kind1 name1, kind2 name2
#define GMOCK_INTERNAL_DECL_HAS_4_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
kind2, name2, kind3, name3) kind0 name0, kind1 name1, kind2 name2, \
kind3 name3
#define GMOCK_INTERNAL_DECL_HAS_5_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
kind2, name2, kind3, name3, kind4, name4) kind0 name0, kind1 name1, \
kind2 name2, kind3 name3, kind4 name4
#define GMOCK_INTERNAL_DECL_HAS_6_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
kind2, name2, kind3, name3, kind4, name4, kind5, name5) kind0 name0, \
kind1 name1, kind2 name2, kind3 name3, kind4 name4, kind5 name5
#define GMOCK_INTERNAL_DECL_HAS_7_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \
name6) kind0 name0, kind1 name1, kind2 name2, kind3 name3, kind4 name4, \
kind5 name5, kind6 name6
#define GMOCK_INTERNAL_DECL_HAS_8_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \
kind7, name7) kind0 name0, kind1 name1, kind2 name2, kind3 name3, \
kind4 name4, kind5 name5, kind6 name6, kind7 name7
#define GMOCK_INTERNAL_DECL_HAS_9_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \
kind7, name7, kind8, name8) kind0 name0, kind1 name1, kind2 name2, \
kind3 name3, kind4 name4, kind5 name5, kind6 name6, kind7 name7, \
kind8 name8
#define GMOCK_INTERNAL_DECL_HAS_10_TEMPLATE_PARAMS(kind0, name0, kind1, \
name1, kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \
name6, kind7, name7, kind8, name8, kind9, name9) kind0 name0, \
kind1 name1, kind2 name2, kind3 name3, kind4 name4, kind5 name5, \
kind6 name6, kind7 name7, kind8 name8, kind9 name9
// Lists the template parameters.
#define GMOCK_INTERNAL_LIST_HAS_1_TEMPLATE_PARAMS(kind0, name0) name0
#define GMOCK_INTERNAL_LIST_HAS_2_TEMPLATE_PARAMS(kind0, name0, kind1, \
name1) name0, name1
#define GMOCK_INTERNAL_LIST_HAS_3_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
kind2, name2) name0, name1, name2
#define GMOCK_INTERNAL_LIST_HAS_4_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
kind2, name2, kind3, name3) name0, name1, name2, name3
#define GMOCK_INTERNAL_LIST_HAS_5_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
kind2, name2, kind3, name3, kind4, name4) name0, name1, name2, name3, \
name4
#define GMOCK_INTERNAL_LIST_HAS_6_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
kind2, name2, kind3, name3, kind4, name4, kind5, name5) name0, name1, \
name2, name3, name4, name5
#define GMOCK_INTERNAL_LIST_HAS_7_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \
name6) name0, name1, name2, name3, name4, name5, name6
#define GMOCK_INTERNAL_LIST_HAS_8_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \
kind7, name7) name0, name1, name2, name3, name4, name5, name6, name7
#define GMOCK_INTERNAL_LIST_HAS_9_TEMPLATE_PARAMS(kind0, name0, kind1, name1, \
kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, name6, \
kind7, name7, kind8, name8) name0, name1, name2, name3, name4, name5, \
name6, name7, name8
#define GMOCK_INTERNAL_LIST_HAS_10_TEMPLATE_PARAMS(kind0, name0, kind1, \
name1, kind2, name2, kind3, name3, kind4, name4, kind5, name5, kind6, \
name6, kind7, name7, kind8, name8, kind9, name9) name0, name1, name2, \
name3, name4, name5, name6, name7, name8, name9
// Declares the types of value parameters.
#define GMOCK_INTERNAL_DECL_TYPE_AND_0_VALUE_PARAMS()
#define GMOCK_INTERNAL_DECL_TYPE_AND_1_VALUE_PARAMS(p0) , typename p0##_type
#define GMOCK_INTERNAL_DECL_TYPE_AND_2_VALUE_PARAMS(p0, p1) , \
typename p0##_type, typename p1##_type
#define GMOCK_INTERNAL_DECL_TYPE_AND_3_VALUE_PARAMS(p0, p1, p2) , \
typename p0##_type, typename p1##_type, typename p2##_type
#define GMOCK_INTERNAL_DECL_TYPE_AND_4_VALUE_PARAMS(p0, p1, p2, p3) , \
typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type
#define GMOCK_INTERNAL_DECL_TYPE_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) , \
typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type, typename p4##_type
#define GMOCK_INTERNAL_DECL_TYPE_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) , \
typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type, typename p4##_type, typename p5##_type
#define GMOCK_INTERNAL_DECL_TYPE_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
p6) , typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type, typename p4##_type, typename p5##_type, \
typename p6##_type
#define GMOCK_INTERNAL_DECL_TYPE_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
p6, p7) , typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type, typename p4##_type, typename p5##_type, \
typename p6##_type, typename p7##_type
#define GMOCK_INTERNAL_DECL_TYPE_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
p6, p7, p8) , typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type, typename p4##_type, typename p5##_type, \
typename p6##_type, typename p7##_type, typename p8##_type
#define GMOCK_INTERNAL_DECL_TYPE_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
p6, p7, p8, p9) , typename p0##_type, typename p1##_type, \
typename p2##_type, typename p3##_type, typename p4##_type, \
typename p5##_type, typename p6##_type, typename p7##_type, \
typename p8##_type, typename p9##_type
// Initializes the value parameters.
#define GMOCK_INTERNAL_INIT_AND_0_VALUE_PARAMS()\
()
#define GMOCK_INTERNAL_INIT_AND_1_VALUE_PARAMS(p0)\
(p0##_type gmock_p0) : p0(gmock_p0)
#define GMOCK_INTERNAL_INIT_AND_2_VALUE_PARAMS(p0, p1)\
(p0##_type gmock_p0, p1##_type gmock_p1) : p0(gmock_p0), p1(gmock_p1)
#define GMOCK_INTERNAL_INIT_AND_3_VALUE_PARAMS(p0, p1, p2)\
(p0##_type gmock_p0, p1##_type gmock_p1, \
p2##_type gmock_p2) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2)
#define GMOCK_INTERNAL_INIT_AND_4_VALUE_PARAMS(p0, p1, p2, p3)\
(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
p3##_type gmock_p3) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \
p3(gmock_p3)
#define GMOCK_INTERNAL_INIT_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4)\
(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
p3##_type gmock_p3, p4##_type gmock_p4) : p0(gmock_p0), p1(gmock_p1), \
p2(gmock_p2), p3(gmock_p3), p4(gmock_p4)
#define GMOCK_INTERNAL_INIT_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5)\
(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
p3##_type gmock_p3, p4##_type gmock_p4, \
p5##_type gmock_p5) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \
p3(gmock_p3), p4(gmock_p4), p5(gmock_p5)
#define GMOCK_INTERNAL_INIT_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6)\
(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \
p6##_type gmock_p6) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \
p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6)
#define GMOCK_INTERNAL_INIT_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7)\
(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \
p6##_type gmock_p6, p7##_type gmock_p7) : p0(gmock_p0), p1(gmock_p1), \
p2(gmock_p2), p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), \
p7(gmock_p7)
#define GMOCK_INTERNAL_INIT_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
p7, p8)\
(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \
p6##_type gmock_p6, p7##_type gmock_p7, \
p8##_type gmock_p8) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \
p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), p7(gmock_p7), \
p8(gmock_p8)
#define GMOCK_INTERNAL_INIT_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
p7, p8, p9)\
(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \
p6##_type gmock_p6, p7##_type gmock_p7, p8##_type gmock_p8, \
p9##_type gmock_p9) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \
p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), p7(gmock_p7), \
p8(gmock_p8), p9(gmock_p9)
// Declares the fields for storing the value parameters.
#define GMOCK_INTERNAL_DEFN_AND_0_VALUE_PARAMS()
#define GMOCK_INTERNAL_DEFN_AND_1_VALUE_PARAMS(p0) p0##_type p0;
#define GMOCK_INTERNAL_DEFN_AND_2_VALUE_PARAMS(p0, p1) p0##_type p0; \
p1##_type p1;
#define GMOCK_INTERNAL_DEFN_AND_3_VALUE_PARAMS(p0, p1, p2) p0##_type p0; \
p1##_type p1; p2##_type p2;
#define GMOCK_INTERNAL_DEFN_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0##_type p0; \
p1##_type p1; p2##_type p2; p3##_type p3;
#define GMOCK_INTERNAL_DEFN_AND_5_VALUE_PARAMS(p0, p1, p2, p3, \
p4) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4;
#define GMOCK_INTERNAL_DEFN_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, \
p5) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \
p5##_type p5;
#define GMOCK_INTERNAL_DEFN_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
p6) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \
p5##_type p5; p6##_type p6;
#define GMOCK_INTERNAL_DEFN_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
p7) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; p4##_type p4; \
p5##_type p5; p6##_type p6; p7##_type p7;
#define GMOCK_INTERNAL_DEFN_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
p7, p8) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; \
p4##_type p4; p5##_type p5; p6##_type p6; p7##_type p7; p8##_type p8;
#define GMOCK_INTERNAL_DEFN_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
p7, p8, p9) p0##_type p0; p1##_type p1; p2##_type p2; p3##_type p3; \
p4##_type p4; p5##_type p5; p6##_type p6; p7##_type p7; p8##_type p8; \
p9##_type p9;
// Lists the value parameters.
#define GMOCK_INTERNAL_LIST_AND_0_VALUE_PARAMS()
#define GMOCK_INTERNAL_LIST_AND_1_VALUE_PARAMS(p0) p0
#define GMOCK_INTERNAL_LIST_AND_2_VALUE_PARAMS(p0, p1) p0, p1
#define GMOCK_INTERNAL_LIST_AND_3_VALUE_PARAMS(p0, p1, p2) p0, p1, p2
#define GMOCK_INTERNAL_LIST_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0, p1, p2, p3
#define GMOCK_INTERNAL_LIST_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) p0, p1, \
p2, p3, p4
#define GMOCK_INTERNAL_LIST_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) p0, \
p1, p2, p3, p4, p5
#define GMOCK_INTERNAL_LIST_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
p6) p0, p1, p2, p3, p4, p5, p6
#define GMOCK_INTERNAL_LIST_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
p7) p0, p1, p2, p3, p4, p5, p6, p7
#define GMOCK_INTERNAL_LIST_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
p7, p8) p0, p1, p2, p3, p4, p5, p6, p7, p8
#define GMOCK_INTERNAL_LIST_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
p7, p8, p9) p0, p1, p2, p3, p4, p5, p6, p7, p8, p9
// Lists the value parameter types.
#define GMOCK_INTERNAL_LIST_TYPE_AND_0_VALUE_PARAMS()
#define GMOCK_INTERNAL_LIST_TYPE_AND_1_VALUE_PARAMS(p0) , p0##_type
#define GMOCK_INTERNAL_LIST_TYPE_AND_2_VALUE_PARAMS(p0, p1) , p0##_type, \
p1##_type
#define GMOCK_INTERNAL_LIST_TYPE_AND_3_VALUE_PARAMS(p0, p1, p2) , p0##_type, \
p1##_type, p2##_type
#define GMOCK_INTERNAL_LIST_TYPE_AND_4_VALUE_PARAMS(p0, p1, p2, p3) , \
p0##_type, p1##_type, p2##_type, p3##_type
#define GMOCK_INTERNAL_LIST_TYPE_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) , \
p0##_type, p1##_type, p2##_type, p3##_type, p4##_type
#define GMOCK_INTERNAL_LIST_TYPE_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) , \
p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, p5##_type
#define GMOCK_INTERNAL_LIST_TYPE_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
p6) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, p5##_type, \
p6##_type
#define GMOCK_INTERNAL_LIST_TYPE_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
p6, p7) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \
p5##_type, p6##_type, p7##_type
#define GMOCK_INTERNAL_LIST_TYPE_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
p6, p7, p8) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \
p5##_type, p6##_type, p7##_type, p8##_type
#define GMOCK_INTERNAL_LIST_TYPE_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
p6, p7, p8, p9) , p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \
p5##_type, p6##_type, p7##_type, p8##_type, p9##_type
// Declares the value parameters.
#define GMOCK_INTERNAL_DECL_AND_0_VALUE_PARAMS()
#define GMOCK_INTERNAL_DECL_AND_1_VALUE_PARAMS(p0) p0##_type p0
#define GMOCK_INTERNAL_DECL_AND_2_VALUE_PARAMS(p0, p1) p0##_type p0, \
p1##_type p1
#define GMOCK_INTERNAL_DECL_AND_3_VALUE_PARAMS(p0, p1, p2) p0##_type p0, \
p1##_type p1, p2##_type p2
#define GMOCK_INTERNAL_DECL_AND_4_VALUE_PARAMS(p0, p1, p2, p3) p0##_type p0, \
p1##_type p1, p2##_type p2, p3##_type p3
#define GMOCK_INTERNAL_DECL_AND_5_VALUE_PARAMS(p0, p1, p2, p3, \
p4) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4
#define GMOCK_INTERNAL_DECL_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, \
p5) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \
p5##_type p5
#define GMOCK_INTERNAL_DECL_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, \
p6) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \
p5##_type p5, p6##_type p6
#define GMOCK_INTERNAL_DECL_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
p7) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, \
p5##_type p5, p6##_type p6, p7##_type p7
#define GMOCK_INTERNAL_DECL_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
p7, p8) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \
p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, p8##_type p8
#define GMOCK_INTERNAL_DECL_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
p7, p8, p9) p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \
p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, p8##_type p8, \
p9##_type p9
// The suffix of the class template implementing the action template.
#define GMOCK_INTERNAL_COUNT_AND_0_VALUE_PARAMS()
#define GMOCK_INTERNAL_COUNT_AND_1_VALUE_PARAMS(p0) P
#define GMOCK_INTERNAL_COUNT_AND_2_VALUE_PARAMS(p0, p1) P2
#define GMOCK_INTERNAL_COUNT_AND_3_VALUE_PARAMS(p0, p1, p2) P3
#define GMOCK_INTERNAL_COUNT_AND_4_VALUE_PARAMS(p0, p1, p2, p3) P4
#define GMOCK_INTERNAL_COUNT_AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4) P5
#define GMOCK_INTERNAL_COUNT_AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5) P6
#define GMOCK_INTERNAL_COUNT_AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6) P7
#define GMOCK_INTERNAL_COUNT_AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
p7) P8
#define GMOCK_INTERNAL_COUNT_AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
p7, p8) P9
#define GMOCK_INTERNAL_COUNT_AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, \
p7, p8, p9) P10
// The name of the class template implementing the action template.
#define GMOCK_ACTION_CLASS_(name, value_params)\
GTEST_CONCAT_TOKEN_(name##Action, GMOCK_INTERNAL_COUNT_##value_params)
#define ACTION_TEMPLATE(name, template_params, value_params)\
template <GMOCK_INTERNAL_DECL_##template_params\
GMOCK_INTERNAL_DECL_TYPE_##value_params>\
class GMOCK_ACTION_CLASS_(name, value_params) {\
public:\
GMOCK_ACTION_CLASS_(name, value_params)\
GMOCK_INTERNAL_INIT_##value_params {}\
template <typename F>\
class gmock_Impl : public ::testing::ActionInterface<F> {\
public:\
typedef F function_type;\
typedef typename ::testing::internal::Function<F>::Result return_type;\
typedef typename ::testing::internal::Function<F>::ArgumentTuple\
args_type;\
explicit gmock_Impl GMOCK_INTERNAL_INIT_##value_params {}\
virtual return_type Perform(const args_type& args) {\
return ::testing::internal::ActionHelper<return_type, gmock_Impl>::\
Perform(this, args);\
}\
template <typename arg0_type, typename arg1_type, typename arg2_type, \
typename arg3_type, typename arg4_type, typename arg5_type, \
typename arg6_type, typename arg7_type, typename arg8_type, \
typename arg9_type>\
return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \
arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \
arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \
arg9_type arg9) const;\
GMOCK_INTERNAL_DEFN_##value_params\
private:\
GTEST_DISALLOW_ASSIGN_(gmock_Impl);\
};\
template <typename F> operator ::testing::Action<F>() const {\
return ::testing::Action<F>(\
new gmock_Impl<F>(GMOCK_INTERNAL_LIST_##value_params));\
}\
GMOCK_INTERNAL_DEFN_##value_params\
private:\
GTEST_DISALLOW_ASSIGN_(GMOCK_ACTION_CLASS_(name, value_params));\
};\
template <GMOCK_INTERNAL_DECL_##template_params\
GMOCK_INTERNAL_DECL_TYPE_##value_params>\
inline GMOCK_ACTION_CLASS_(name, value_params)<\
GMOCK_INTERNAL_LIST_##template_params\
GMOCK_INTERNAL_LIST_TYPE_##value_params> name(\
GMOCK_INTERNAL_DECL_##value_params) {\
return GMOCK_ACTION_CLASS_(name, value_params)<\
GMOCK_INTERNAL_LIST_##template_params\
GMOCK_INTERNAL_LIST_TYPE_##value_params>(\
GMOCK_INTERNAL_LIST_##value_params);\
}\
template <GMOCK_INTERNAL_DECL_##template_params\
GMOCK_INTERNAL_DECL_TYPE_##value_params>\
template <typename F>\
template <typename arg0_type, typename arg1_type, typename arg2_type, \
typename arg3_type, typename arg4_type, typename arg5_type, \
typename arg6_type, typename arg7_type, typename arg8_type, \
typename arg9_type>\
typename ::testing::internal::Function<F>::Result\
GMOCK_ACTION_CLASS_(name, value_params)<\
GMOCK_INTERNAL_LIST_##template_params\
GMOCK_INTERNAL_LIST_TYPE_##value_params>::gmock_Impl<F>::\
gmock_PerformImpl(\
GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
#define ACTION(name)\
class name##Action {\
public:\
name##Action() {}\
template <typename F>\
class gmock_Impl : public ::testing::ActionInterface<F> {\
public:\
typedef F function_type;\
typedef typename ::testing::internal::Function<F>::Result return_type;\
typedef typename ::testing::internal::Function<F>::ArgumentTuple\
args_type;\
gmock_Impl() {}\
virtual return_type Perform(const args_type& args) {\
return ::testing::internal::ActionHelper<return_type, gmock_Impl>::\
Perform(this, args);\
}\
template <typename arg0_type, typename arg1_type, typename arg2_type, \
typename arg3_type, typename arg4_type, typename arg5_type, \
typename arg6_type, typename arg7_type, typename arg8_type, \
typename arg9_type>\
return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \
arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \
arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \
arg9_type arg9) const;\
private:\
GTEST_DISALLOW_ASSIGN_(gmock_Impl);\
};\
template <typename F> operator ::testing::Action<F>() const {\
return ::testing::Action<F>(new gmock_Impl<F>());\
}\
private:\
GTEST_DISALLOW_ASSIGN_(name##Action);\
};\
inline name##Action name() {\
return name##Action();\
}\
template <typename F>\
template <typename arg0_type, typename arg1_type, typename arg2_type, \
typename arg3_type, typename arg4_type, typename arg5_type, \
typename arg6_type, typename arg7_type, typename arg8_type, \
typename arg9_type>\
typename ::testing::internal::Function<F>::Result\
name##Action::gmock_Impl<F>::gmock_PerformImpl(\
GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
#define ACTION_P(name, p0)\
template <typename p0##_type>\
class name##ActionP {\
public:\
name##ActionP(p0##_type gmock_p0) : p0(gmock_p0) {}\
template <typename F>\
class gmock_Impl : public ::testing::ActionInterface<F> {\
public:\
typedef F function_type;\
typedef typename ::testing::internal::Function<F>::Result return_type;\
typedef typename ::testing::internal::Function<F>::ArgumentTuple\
args_type;\
explicit gmock_Impl(p0##_type gmock_p0) : p0(gmock_p0) {}\
virtual return_type Perform(const args_type& args) {\
return ::testing::internal::ActionHelper<return_type, gmock_Impl>::\
Perform(this, args);\
}\
template <typename arg0_type, typename arg1_type, typename arg2_type, \
typename arg3_type, typename arg4_type, typename arg5_type, \
typename arg6_type, typename arg7_type, typename arg8_type, \
typename arg9_type>\
return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \
arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \
arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \
arg9_type arg9) const;\
p0##_type p0;\
private:\
GTEST_DISALLOW_ASSIGN_(gmock_Impl);\
};\
template <typename F> operator ::testing::Action<F>() const {\
return ::testing::Action<F>(new gmock_Impl<F>(p0));\
}\
p0##_type p0;\
private:\
GTEST_DISALLOW_ASSIGN_(name##ActionP);\
};\
template <typename p0##_type>\
inline name##ActionP<p0##_type> name(p0##_type p0) {\
return name##ActionP<p0##_type>(p0);\
}\
template <typename p0##_type>\
template <typename F>\
template <typename arg0_type, typename arg1_type, typename arg2_type, \
typename arg3_type, typename arg4_type, typename arg5_type, \
typename arg6_type, typename arg7_type, typename arg8_type, \
typename arg9_type>\
typename ::testing::internal::Function<F>::Result\
name##ActionP<p0##_type>::gmock_Impl<F>::gmock_PerformImpl(\
GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
#define ACTION_P2(name, p0, p1)\
template <typename p0##_type, typename p1##_type>\
class name##ActionP2 {\
public:\
name##ActionP2(p0##_type gmock_p0, p1##_type gmock_p1) : p0(gmock_p0), \
p1(gmock_p1) {}\
template <typename F>\
class gmock_Impl : public ::testing::ActionInterface<F> {\
public:\
typedef F function_type;\
typedef typename ::testing::internal::Function<F>::Result return_type;\
typedef typename ::testing::internal::Function<F>::ArgumentTuple\
args_type;\
gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1) : p0(gmock_p0), \
p1(gmock_p1) {}\
virtual return_type Perform(const args_type& args) {\
return ::testing::internal::ActionHelper<return_type, gmock_Impl>::\
Perform(this, args);\
}\
template <typename arg0_type, typename arg1_type, typename arg2_type, \
typename arg3_type, typename arg4_type, typename arg5_type, \
typename arg6_type, typename arg7_type, typename arg8_type, \
typename arg9_type>\
return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \
arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \
arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \
arg9_type arg9) const;\
p0##_type p0;\
p1##_type p1;\
private:\
GTEST_DISALLOW_ASSIGN_(gmock_Impl);\
};\
template <typename F> operator ::testing::Action<F>() const {\
return ::testing::Action<F>(new gmock_Impl<F>(p0, p1));\
}\
p0##_type p0;\
p1##_type p1;\
private:\
GTEST_DISALLOW_ASSIGN_(name##ActionP2);\
};\
template <typename p0##_type, typename p1##_type>\
inline name##ActionP2<p0##_type, p1##_type> name(p0##_type p0, \
p1##_type p1) {\
return name##ActionP2<p0##_type, p1##_type>(p0, p1);\
}\
template <typename p0##_type, typename p1##_type>\
template <typename F>\
template <typename arg0_type, typename arg1_type, typename arg2_type, \
typename arg3_type, typename arg4_type, typename arg5_type, \
typename arg6_type, typename arg7_type, typename arg8_type, \
typename arg9_type>\
typename ::testing::internal::Function<F>::Result\
name##ActionP2<p0##_type, p1##_type>::gmock_Impl<F>::gmock_PerformImpl(\
GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
#define ACTION_P3(name, p0, p1, p2)\
template <typename p0##_type, typename p1##_type, typename p2##_type>\
class name##ActionP3 {\
public:\
name##ActionP3(p0##_type gmock_p0, p1##_type gmock_p1, \
p2##_type gmock_p2) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2) {}\
template <typename F>\
class gmock_Impl : public ::testing::ActionInterface<F> {\
public:\
typedef F function_type;\
typedef typename ::testing::internal::Function<F>::Result return_type;\
typedef typename ::testing::internal::Function<F>::ArgumentTuple\
args_type;\
gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, \
p2##_type gmock_p2) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2) {}\
virtual return_type Perform(const args_type& args) {\
return ::testing::internal::ActionHelper<return_type, gmock_Impl>::\
Perform(this, args);\
}\
template <typename arg0_type, typename arg1_type, typename arg2_type, \
typename arg3_type, typename arg4_type, typename arg5_type, \
typename arg6_type, typename arg7_type, typename arg8_type, \
typename arg9_type>\
return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \
arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \
arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \
arg9_type arg9) const;\
p0##_type p0;\
p1##_type p1;\
p2##_type p2;\
private:\
GTEST_DISALLOW_ASSIGN_(gmock_Impl);\
};\
template <typename F> operator ::testing::Action<F>() const {\
return ::testing::Action<F>(new gmock_Impl<F>(p0, p1, p2));\
}\
p0##_type p0;\
p1##_type p1;\
p2##_type p2;\
private:\
GTEST_DISALLOW_ASSIGN_(name##ActionP3);\
};\
template <typename p0##_type, typename p1##_type, typename p2##_type>\
inline name##ActionP3<p0##_type, p1##_type, p2##_type> name(p0##_type p0, \
p1##_type p1, p2##_type p2) {\
return name##ActionP3<p0##_type, p1##_type, p2##_type>(p0, p1, p2);\
}\
template <typename p0##_type, typename p1##_type, typename p2##_type>\
template <typename F>\
template <typename arg0_type, typename arg1_type, typename arg2_type, \
typename arg3_type, typename arg4_type, typename arg5_type, \
typename arg6_type, typename arg7_type, typename arg8_type, \
typename arg9_type>\
typename ::testing::internal::Function<F>::Result\
name##ActionP3<p0##_type, p1##_type, \
p2##_type>::gmock_Impl<F>::gmock_PerformImpl(\
GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
#define ACTION_P4(name, p0, p1, p2, p3)\
template <typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type>\
class name##ActionP4 {\
public:\
name##ActionP4(p0##_type gmock_p0, p1##_type gmock_p1, \
p2##_type gmock_p2, p3##_type gmock_p3) : p0(gmock_p0), p1(gmock_p1), \
p2(gmock_p2), p3(gmock_p3) {}\
template <typename F>\
class gmock_Impl : public ::testing::ActionInterface<F> {\
public:\
typedef F function_type;\
typedef typename ::testing::internal::Function<F>::Result return_type;\
typedef typename ::testing::internal::Function<F>::ArgumentTuple\
args_type;\
gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
p3##_type gmock_p3) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \
p3(gmock_p3) {}\
virtual return_type Perform(const args_type& args) {\
return ::testing::internal::ActionHelper<return_type, gmock_Impl>::\
Perform(this, args);\
}\
template <typename arg0_type, typename arg1_type, typename arg2_type, \
typename arg3_type, typename arg4_type, typename arg5_type, \
typename arg6_type, typename arg7_type, typename arg8_type, \
typename arg9_type>\
return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \
arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \
arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \
arg9_type arg9) const;\
p0##_type p0;\
p1##_type p1;\
p2##_type p2;\
p3##_type p3;\
private:\
GTEST_DISALLOW_ASSIGN_(gmock_Impl);\
};\
template <typename F> operator ::testing::Action<F>() const {\
return ::testing::Action<F>(new gmock_Impl<F>(p0, p1, p2, p3));\
}\
p0##_type p0;\
p1##_type p1;\
p2##_type p2;\
p3##_type p3;\
private:\
GTEST_DISALLOW_ASSIGN_(name##ActionP4);\
};\
template <typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type>\
inline name##ActionP4<p0##_type, p1##_type, p2##_type, \
p3##_type> name(p0##_type p0, p1##_type p1, p2##_type p2, \
p3##_type p3) {\
return name##ActionP4<p0##_type, p1##_type, p2##_type, p3##_type>(p0, p1, \
p2, p3);\
}\
template <typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type>\
template <typename F>\
template <typename arg0_type, typename arg1_type, typename arg2_type, \
typename arg3_type, typename arg4_type, typename arg5_type, \
typename arg6_type, typename arg7_type, typename arg8_type, \
typename arg9_type>\
typename ::testing::internal::Function<F>::Result\
name##ActionP4<p0##_type, p1##_type, p2##_type, \
p3##_type>::gmock_Impl<F>::gmock_PerformImpl(\
GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
#define ACTION_P5(name, p0, p1, p2, p3, p4)\
template <typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type, typename p4##_type>\
class name##ActionP5 {\
public:\
name##ActionP5(p0##_type gmock_p0, p1##_type gmock_p1, \
p2##_type gmock_p2, p3##_type gmock_p3, \
p4##_type gmock_p4) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \
p3(gmock_p3), p4(gmock_p4) {}\
template <typename F>\
class gmock_Impl : public ::testing::ActionInterface<F> {\
public:\
typedef F function_type;\
typedef typename ::testing::internal::Function<F>::Result return_type;\
typedef typename ::testing::internal::Function<F>::ArgumentTuple\
args_type;\
gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
p3##_type gmock_p3, p4##_type gmock_p4) : p0(gmock_p0), \
p1(gmock_p1), p2(gmock_p2), p3(gmock_p3), p4(gmock_p4) {}\
virtual return_type Perform(const args_type& args) {\
return ::testing::internal::ActionHelper<return_type, gmock_Impl>::\
Perform(this, args);\
}\
template <typename arg0_type, typename arg1_type, typename arg2_type, \
typename arg3_type, typename arg4_type, typename arg5_type, \
typename arg6_type, typename arg7_type, typename arg8_type, \
typename arg9_type>\
return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \
arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \
arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \
arg9_type arg9) const;\
p0##_type p0;\
p1##_type p1;\
p2##_type p2;\
p3##_type p3;\
p4##_type p4;\
private:\
GTEST_DISALLOW_ASSIGN_(gmock_Impl);\
};\
template <typename F> operator ::testing::Action<F>() const {\
return ::testing::Action<F>(new gmock_Impl<F>(p0, p1, p2, p3, p4));\
}\
p0##_type p0;\
p1##_type p1;\
p2##_type p2;\
p3##_type p3;\
p4##_type p4;\
private:\
GTEST_DISALLOW_ASSIGN_(name##ActionP5);\
};\
template <typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type, typename p4##_type>\
inline name##ActionP5<p0##_type, p1##_type, p2##_type, p3##_type, \
p4##_type> name(p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \
p4##_type p4) {\
return name##ActionP5<p0##_type, p1##_type, p2##_type, p3##_type, \
p4##_type>(p0, p1, p2, p3, p4);\
}\
template <typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type, typename p4##_type>\
template <typename F>\
template <typename arg0_type, typename arg1_type, typename arg2_type, \
typename arg3_type, typename arg4_type, typename arg5_type, \
typename arg6_type, typename arg7_type, typename arg8_type, \
typename arg9_type>\
typename ::testing::internal::Function<F>::Result\
name##ActionP5<p0##_type, p1##_type, p2##_type, p3##_type, \
p4##_type>::gmock_Impl<F>::gmock_PerformImpl(\
GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
#define ACTION_P6(name, p0, p1, p2, p3, p4, p5)\
template <typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type, typename p4##_type, typename p5##_type>\
class name##ActionP6 {\
public:\
name##ActionP6(p0##_type gmock_p0, p1##_type gmock_p1, \
p2##_type gmock_p2, p3##_type gmock_p3, p4##_type gmock_p4, \
p5##_type gmock_p5) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \
p3(gmock_p3), p4(gmock_p4), p5(gmock_p5) {}\
template <typename F>\
class gmock_Impl : public ::testing::ActionInterface<F> {\
public:\
typedef F function_type;\
typedef typename ::testing::internal::Function<F>::Result return_type;\
typedef typename ::testing::internal::Function<F>::ArgumentTuple\
args_type;\
gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
p3##_type gmock_p3, p4##_type gmock_p4, \
p5##_type gmock_p5) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \
p3(gmock_p3), p4(gmock_p4), p5(gmock_p5) {}\
virtual return_type Perform(const args_type& args) {\
return ::testing::internal::ActionHelper<return_type, gmock_Impl>::\
Perform(this, args);\
}\
template <typename arg0_type, typename arg1_type, typename arg2_type, \
typename arg3_type, typename arg4_type, typename arg5_type, \
typename arg6_type, typename arg7_type, typename arg8_type, \
typename arg9_type>\
return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \
arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \
arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \
arg9_type arg9) const;\
p0##_type p0;\
p1##_type p1;\
p2##_type p2;\
p3##_type p3;\
p4##_type p4;\
p5##_type p5;\
private:\
GTEST_DISALLOW_ASSIGN_(gmock_Impl);\
};\
template <typename F> operator ::testing::Action<F>() const {\
return ::testing::Action<F>(new gmock_Impl<F>(p0, p1, p2, p3, p4, p5));\
}\
p0##_type p0;\
p1##_type p1;\
p2##_type p2;\
p3##_type p3;\
p4##_type p4;\
p5##_type p5;\
private:\
GTEST_DISALLOW_ASSIGN_(name##ActionP6);\
};\
template <typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type, typename p4##_type, typename p5##_type>\
inline name##ActionP6<p0##_type, p1##_type, p2##_type, p3##_type, \
p4##_type, p5##_type> name(p0##_type p0, p1##_type p1, p2##_type p2, \
p3##_type p3, p4##_type p4, p5##_type p5) {\
return name##ActionP6<p0##_type, p1##_type, p2##_type, p3##_type, \
p4##_type, p5##_type>(p0, p1, p2, p3, p4, p5);\
}\
template <typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type, typename p4##_type, typename p5##_type>\
template <typename F>\
template <typename arg0_type, typename arg1_type, typename arg2_type, \
typename arg3_type, typename arg4_type, typename arg5_type, \
typename arg6_type, typename arg7_type, typename arg8_type, \
typename arg9_type>\
typename ::testing::internal::Function<F>::Result\
name##ActionP6<p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \
p5##_type>::gmock_Impl<F>::gmock_PerformImpl(\
GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
#define ACTION_P7(name, p0, p1, p2, p3, p4, p5, p6)\
template <typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type, typename p4##_type, typename p5##_type, \
typename p6##_type>\
class name##ActionP7 {\
public:\
name##ActionP7(p0##_type gmock_p0, p1##_type gmock_p1, \
p2##_type gmock_p2, p3##_type gmock_p3, p4##_type gmock_p4, \
p5##_type gmock_p5, p6##_type gmock_p6) : p0(gmock_p0), p1(gmock_p1), \
p2(gmock_p2), p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), \
p6(gmock_p6) {}\
template <typename F>\
class gmock_Impl : public ::testing::ActionInterface<F> {\
public:\
typedef F function_type;\
typedef typename ::testing::internal::Function<F>::Result return_type;\
typedef typename ::testing::internal::Function<F>::ArgumentTuple\
args_type;\
gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \
p6##_type gmock_p6) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \
p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6) {}\
virtual return_type Perform(const args_type& args) {\
return ::testing::internal::ActionHelper<return_type, gmock_Impl>::\
Perform(this, args);\
}\
template <typename arg0_type, typename arg1_type, typename arg2_type, \
typename arg3_type, typename arg4_type, typename arg5_type, \
typename arg6_type, typename arg7_type, typename arg8_type, \
typename arg9_type>\
return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \
arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \
arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \
arg9_type arg9) const;\
p0##_type p0;\
p1##_type p1;\
p2##_type p2;\
p3##_type p3;\
p4##_type p4;\
p5##_type p5;\
p6##_type p6;\
private:\
GTEST_DISALLOW_ASSIGN_(gmock_Impl);\
};\
template <typename F> operator ::testing::Action<F>() const {\
return ::testing::Action<F>(new gmock_Impl<F>(p0, p1, p2, p3, p4, p5, \
p6));\
}\
p0##_type p0;\
p1##_type p1;\
p2##_type p2;\
p3##_type p3;\
p4##_type p4;\
p5##_type p5;\
p6##_type p6;\
private:\
GTEST_DISALLOW_ASSIGN_(name##ActionP7);\
};\
template <typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type, typename p4##_type, typename p5##_type, \
typename p6##_type>\
inline name##ActionP7<p0##_type, p1##_type, p2##_type, p3##_type, \
p4##_type, p5##_type, p6##_type> name(p0##_type p0, p1##_type p1, \
p2##_type p2, p3##_type p3, p4##_type p4, p5##_type p5, \
p6##_type p6) {\
return name##ActionP7<p0##_type, p1##_type, p2##_type, p3##_type, \
p4##_type, p5##_type, p6##_type>(p0, p1, p2, p3, p4, p5, p6);\
}\
template <typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type, typename p4##_type, typename p5##_type, \
typename p6##_type>\
template <typename F>\
template <typename arg0_type, typename arg1_type, typename arg2_type, \
typename arg3_type, typename arg4_type, typename arg5_type, \
typename arg6_type, typename arg7_type, typename arg8_type, \
typename arg9_type>\
typename ::testing::internal::Function<F>::Result\
name##ActionP7<p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \
p5##_type, p6##_type>::gmock_Impl<F>::gmock_PerformImpl(\
GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
#define ACTION_P8(name, p0, p1, p2, p3, p4, p5, p6, p7)\
template <typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type, typename p4##_type, typename p5##_type, \
typename p6##_type, typename p7##_type>\
class name##ActionP8 {\
public:\
name##ActionP8(p0##_type gmock_p0, p1##_type gmock_p1, \
p2##_type gmock_p2, p3##_type gmock_p3, p4##_type gmock_p4, \
p5##_type gmock_p5, p6##_type gmock_p6, \
p7##_type gmock_p7) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \
p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), \
p7(gmock_p7) {}\
template <typename F>\
class gmock_Impl : public ::testing::ActionInterface<F> {\
public:\
typedef F function_type;\
typedef typename ::testing::internal::Function<F>::Result return_type;\
typedef typename ::testing::internal::Function<F>::ArgumentTuple\
args_type;\
gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \
p6##_type gmock_p6, p7##_type gmock_p7) : p0(gmock_p0), \
p1(gmock_p1), p2(gmock_p2), p3(gmock_p3), p4(gmock_p4), \
p5(gmock_p5), p6(gmock_p6), p7(gmock_p7) {}\
virtual return_type Perform(const args_type& args) {\
return ::testing::internal::ActionHelper<return_type, gmock_Impl>::\
Perform(this, args);\
}\
template <typename arg0_type, typename arg1_type, typename arg2_type, \
typename arg3_type, typename arg4_type, typename arg5_type, \
typename arg6_type, typename arg7_type, typename arg8_type, \
typename arg9_type>\
return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \
arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \
arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \
arg9_type arg9) const;\
p0##_type p0;\
p1##_type p1;\
p2##_type p2;\
p3##_type p3;\
p4##_type p4;\
p5##_type p5;\
p6##_type p6;\
p7##_type p7;\
private:\
GTEST_DISALLOW_ASSIGN_(gmock_Impl);\
};\
template <typename F> operator ::testing::Action<F>() const {\
return ::testing::Action<F>(new gmock_Impl<F>(p0, p1, p2, p3, p4, p5, \
p6, p7));\
}\
p0##_type p0;\
p1##_type p1;\
p2##_type p2;\
p3##_type p3;\
p4##_type p4;\
p5##_type p5;\
p6##_type p6;\
p7##_type p7;\
private:\
GTEST_DISALLOW_ASSIGN_(name##ActionP8);\
};\
template <typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type, typename p4##_type, typename p5##_type, \
typename p6##_type, typename p7##_type>\
inline name##ActionP8<p0##_type, p1##_type, p2##_type, p3##_type, \
p4##_type, p5##_type, p6##_type, p7##_type> name(p0##_type p0, \
p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, p5##_type p5, \
p6##_type p6, p7##_type p7) {\
return name##ActionP8<p0##_type, p1##_type, p2##_type, p3##_type, \
p4##_type, p5##_type, p6##_type, p7##_type>(p0, p1, p2, p3, p4, p5, \
p6, p7);\
}\
template <typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type, typename p4##_type, typename p5##_type, \
typename p6##_type, typename p7##_type>\
template <typename F>\
template <typename arg0_type, typename arg1_type, typename arg2_type, \
typename arg3_type, typename arg4_type, typename arg5_type, \
typename arg6_type, typename arg7_type, typename arg8_type, \
typename arg9_type>\
typename ::testing::internal::Function<F>::Result\
name##ActionP8<p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \
p5##_type, p6##_type, \
p7##_type>::gmock_Impl<F>::gmock_PerformImpl(\
GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
#define ACTION_P9(name, p0, p1, p2, p3, p4, p5, p6, p7, p8)\
template <typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type, typename p4##_type, typename p5##_type, \
typename p6##_type, typename p7##_type, typename p8##_type>\
class name##ActionP9 {\
public:\
name##ActionP9(p0##_type gmock_p0, p1##_type gmock_p1, \
p2##_type gmock_p2, p3##_type gmock_p3, p4##_type gmock_p4, \
p5##_type gmock_p5, p6##_type gmock_p6, p7##_type gmock_p7, \
p8##_type gmock_p8) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \
p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), p7(gmock_p7), \
p8(gmock_p8) {}\
template <typename F>\
class gmock_Impl : public ::testing::ActionInterface<F> {\
public:\
typedef F function_type;\
typedef typename ::testing::internal::Function<F>::Result return_type;\
typedef typename ::testing::internal::Function<F>::ArgumentTuple\
args_type;\
gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \
p6##_type gmock_p6, p7##_type gmock_p7, \
p8##_type gmock_p8) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \
p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), \
p7(gmock_p7), p8(gmock_p8) {}\
virtual return_type Perform(const args_type& args) {\
return ::testing::internal::ActionHelper<return_type, gmock_Impl>::\
Perform(this, args);\
}\
template <typename arg0_type, typename arg1_type, typename arg2_type, \
typename arg3_type, typename arg4_type, typename arg5_type, \
typename arg6_type, typename arg7_type, typename arg8_type, \
typename arg9_type>\
return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \
arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \
arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \
arg9_type arg9) const;\
p0##_type p0;\
p1##_type p1;\
p2##_type p2;\
p3##_type p3;\
p4##_type p4;\
p5##_type p5;\
p6##_type p6;\
p7##_type p7;\
p8##_type p8;\
private:\
GTEST_DISALLOW_ASSIGN_(gmock_Impl);\
};\
template <typename F> operator ::testing::Action<F>() const {\
return ::testing::Action<F>(new gmock_Impl<F>(p0, p1, p2, p3, p4, p5, \
p6, p7, p8));\
}\
p0##_type p0;\
p1##_type p1;\
p2##_type p2;\
p3##_type p3;\
p4##_type p4;\
p5##_type p5;\
p6##_type p6;\
p7##_type p7;\
p8##_type p8;\
private:\
GTEST_DISALLOW_ASSIGN_(name##ActionP9);\
};\
template <typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type, typename p4##_type, typename p5##_type, \
typename p6##_type, typename p7##_type, typename p8##_type>\
inline name##ActionP9<p0##_type, p1##_type, p2##_type, p3##_type, \
p4##_type, p5##_type, p6##_type, p7##_type, \
p8##_type> name(p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \
p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, \
p8##_type p8) {\
return name##ActionP9<p0##_type, p1##_type, p2##_type, p3##_type, \
p4##_type, p5##_type, p6##_type, p7##_type, p8##_type>(p0, p1, p2, \
p3, p4, p5, p6, p7, p8);\
}\
template <typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type, typename p4##_type, typename p5##_type, \
typename p6##_type, typename p7##_type, typename p8##_type>\
template <typename F>\
template <typename arg0_type, typename arg1_type, typename arg2_type, \
typename arg3_type, typename arg4_type, typename arg5_type, \
typename arg6_type, typename arg7_type, typename arg8_type, \
typename arg9_type>\
typename ::testing::internal::Function<F>::Result\
name##ActionP9<p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \
p5##_type, p6##_type, p7##_type, \
p8##_type>::gmock_Impl<F>::gmock_PerformImpl(\
GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
#define ACTION_P10(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9)\
template <typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type, typename p4##_type, typename p5##_type, \
typename p6##_type, typename p7##_type, typename p8##_type, \
typename p9##_type>\
class name##ActionP10 {\
public:\
name##ActionP10(p0##_type gmock_p0, p1##_type gmock_p1, \
p2##_type gmock_p2, p3##_type gmock_p3, p4##_type gmock_p4, \
p5##_type gmock_p5, p6##_type gmock_p6, p7##_type gmock_p7, \
p8##_type gmock_p8, p9##_type gmock_p9) : p0(gmock_p0), p1(gmock_p1), \
p2(gmock_p2), p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), \
p7(gmock_p7), p8(gmock_p8), p9(gmock_p9) {}\
template <typename F>\
class gmock_Impl : public ::testing::ActionInterface<F> {\
public:\
typedef F function_type;\
typedef typename ::testing::internal::Function<F>::Result return_type;\
typedef typename ::testing::internal::Function<F>::ArgumentTuple\
args_type;\
gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \
p6##_type gmock_p6, p7##_type gmock_p7, p8##_type gmock_p8, \
p9##_type gmock_p9) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \
p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), \
p7(gmock_p7), p8(gmock_p8), p9(gmock_p9) {}\
virtual return_type Perform(const args_type& args) {\
return ::testing::internal::ActionHelper<return_type, gmock_Impl>::\
Perform(this, args);\
}\
template <typename arg0_type, typename arg1_type, typename arg2_type, \
typename arg3_type, typename arg4_type, typename arg5_type, \
typename arg6_type, typename arg7_type, typename arg8_type, \
typename arg9_type>\
return_type gmock_PerformImpl(const args_type& args, arg0_type arg0, \
arg1_type arg1, arg2_type arg2, arg3_type arg3, arg4_type arg4, \
arg5_type arg5, arg6_type arg6, arg7_type arg7, arg8_type arg8, \
arg9_type arg9) const;\
p0##_type p0;\
p1##_type p1;\
p2##_type p2;\
p3##_type p3;\
p4##_type p4;\
p5##_type p5;\
p6##_type p6;\
p7##_type p7;\
p8##_type p8;\
p9##_type p9;\
private:\
GTEST_DISALLOW_ASSIGN_(gmock_Impl);\
};\
template <typename F> operator ::testing::Action<F>() const {\
return ::testing::Action<F>(new gmock_Impl<F>(p0, p1, p2, p3, p4, p5, \
p6, p7, p8, p9));\
}\
p0##_type p0;\
p1##_type p1;\
p2##_type p2;\
p3##_type p3;\
p4##_type p4;\
p5##_type p5;\
p6##_type p6;\
p7##_type p7;\
p8##_type p8;\
p9##_type p9;\
private:\
GTEST_DISALLOW_ASSIGN_(name##ActionP10);\
};\
template <typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type, typename p4##_type, typename p5##_type, \
typename p6##_type, typename p7##_type, typename p8##_type, \
typename p9##_type>\
inline name##ActionP10<p0##_type, p1##_type, p2##_type, p3##_type, \
p4##_type, p5##_type, p6##_type, p7##_type, p8##_type, \
p9##_type> name(p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \
p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, p8##_type p8, \
p9##_type p9) {\
return name##ActionP10<p0##_type, p1##_type, p2##_type, p3##_type, \
p4##_type, p5##_type, p6##_type, p7##_type, p8##_type, p9##_type>(p0, \
p1, p2, p3, p4, p5, p6, p7, p8, p9);\
}\
template <typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type, typename p4##_type, typename p5##_type, \
typename p6##_type, typename p7##_type, typename p8##_type, \
typename p9##_type>\
template <typename F>\
template <typename arg0_type, typename arg1_type, typename arg2_type, \
typename arg3_type, typename arg4_type, typename arg5_type, \
typename arg6_type, typename arg7_type, typename arg8_type, \
typename arg9_type>\
typename ::testing::internal::Function<F>::Result\
name##ActionP10<p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \
p5##_type, p6##_type, p7##_type, p8##_type, \
p9##_type>::gmock_Impl<F>::gmock_PerformImpl(\
GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
namespace testing {
// The ACTION*() macros trigger warning C4100 (unreferenced formal
// parameter) in MSVC with -W4. Unfortunately they cannot be fixed in
// the macro definition, as the warnings are generated when the macro
// is expanded and macro expansion cannot contain #pragma. Therefore
// we suppress them here.
#ifdef _MSC_VER
# pragma warning(push)
# pragma warning(disable:4100)
#endif
// Various overloads for InvokeArgument<N>().
//
// The InvokeArgument<N>(a1, a2, ..., a_k) action invokes the N-th
// (0-based) argument, which must be a k-ary callable, of the mock
// function, with arguments a1, a2, ..., a_k.
//
// Notes:
//
// 1. The arguments are passed by value by default. If you need to
// pass an argument by reference, wrap it inside ByRef(). For
// example,
//
// InvokeArgument<1>(5, string("Hello"), ByRef(foo))
//
// passes 5 and string("Hello") by value, and passes foo by
// reference.
//
// 2. If the callable takes an argument by reference but ByRef() is
// not used, it will receive the reference to a copy of the value,
// instead of the original value. For example, when the 0-th
// argument of the mock function takes a const string&, the action
//
// InvokeArgument<0>(string("Hello"))
//
// makes a copy of the temporary string("Hello") object and passes a
// reference of the copy, instead of the original temporary object,
// to the callable. This makes it easy for a user to define an
// InvokeArgument action from temporary values and have it performed
// later.
ACTION_TEMPLATE(InvokeArgument,
HAS_1_TEMPLATE_PARAMS(int, k),
AND_0_VALUE_PARAMS()) {
return internal::CallableHelper<return_type>::Call(
::std::tr1::get<k>(args));
}
ACTION_TEMPLATE(InvokeArgument,
HAS_1_TEMPLATE_PARAMS(int, k),
AND_1_VALUE_PARAMS(p0)) {
return internal::CallableHelper<return_type>::Call(
::std::tr1::get<k>(args), p0);
}
ACTION_TEMPLATE(InvokeArgument,
HAS_1_TEMPLATE_PARAMS(int, k),
AND_2_VALUE_PARAMS(p0, p1)) {
return internal::CallableHelper<return_type>::Call(
::std::tr1::get<k>(args), p0, p1);
}
ACTION_TEMPLATE(InvokeArgument,
HAS_1_TEMPLATE_PARAMS(int, k),
AND_3_VALUE_PARAMS(p0, p1, p2)) {
return internal::CallableHelper<return_type>::Call(
::std::tr1::get<k>(args), p0, p1, p2);
}
ACTION_TEMPLATE(InvokeArgument,
HAS_1_TEMPLATE_PARAMS(int, k),
AND_4_VALUE_PARAMS(p0, p1, p2, p3)) {
return internal::CallableHelper<return_type>::Call(
::std::tr1::get<k>(args), p0, p1, p2, p3);
}
ACTION_TEMPLATE(InvokeArgument,
HAS_1_TEMPLATE_PARAMS(int, k),
AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4)) {
return internal::CallableHelper<return_type>::Call(
::std::tr1::get<k>(args), p0, p1, p2, p3, p4);
}
ACTION_TEMPLATE(InvokeArgument,
HAS_1_TEMPLATE_PARAMS(int, k),
AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5)) {
return internal::CallableHelper<return_type>::Call(
::std::tr1::get<k>(args), p0, p1, p2, p3, p4, p5);
}
ACTION_TEMPLATE(InvokeArgument,
HAS_1_TEMPLATE_PARAMS(int, k),
AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6)) {
return internal::CallableHelper<return_type>::Call(
::std::tr1::get<k>(args), p0, p1, p2, p3, p4, p5, p6);
}
ACTION_TEMPLATE(InvokeArgument,
HAS_1_TEMPLATE_PARAMS(int, k),
AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7)) {
return internal::CallableHelper<return_type>::Call(
::std::tr1::get<k>(args), p0, p1, p2, p3, p4, p5, p6, p7);
}
ACTION_TEMPLATE(InvokeArgument,
HAS_1_TEMPLATE_PARAMS(int, k),
AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7, p8)) {
return internal::CallableHelper<return_type>::Call(
::std::tr1::get<k>(args), p0, p1, p2, p3, p4, p5, p6, p7, p8);
}
ACTION_TEMPLATE(InvokeArgument,
HAS_1_TEMPLATE_PARAMS(int, k),
AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9)) {
return internal::CallableHelper<return_type>::Call(
::std::tr1::get<k>(args), p0, p1, p2, p3, p4, p5, p6, p7, p8, p9);
}
// Various overloads for ReturnNew<T>().
//
// The ReturnNew<T>(a1, a2, ..., a_k) action returns a pointer to a new
// instance of type T, constructed on the heap with constructor arguments
// a1, a2, ..., and a_k. The caller assumes ownership of the returned value.
ACTION_TEMPLATE(ReturnNew,
HAS_1_TEMPLATE_PARAMS(typename, T),
AND_0_VALUE_PARAMS()) {
return new T();
}
ACTION_TEMPLATE(ReturnNew,
HAS_1_TEMPLATE_PARAMS(typename, T),
AND_1_VALUE_PARAMS(p0)) {
return new T(p0);
}
ACTION_TEMPLATE(ReturnNew,
HAS_1_TEMPLATE_PARAMS(typename, T),
AND_2_VALUE_PARAMS(p0, p1)) {
return new T(p0, p1);
}
ACTION_TEMPLATE(ReturnNew,
HAS_1_TEMPLATE_PARAMS(typename, T),
AND_3_VALUE_PARAMS(p0, p1, p2)) {
return new T(p0, p1, p2);
}
ACTION_TEMPLATE(ReturnNew,
HAS_1_TEMPLATE_PARAMS(typename, T),
AND_4_VALUE_PARAMS(p0, p1, p2, p3)) {
return new T(p0, p1, p2, p3);
}
ACTION_TEMPLATE(ReturnNew,
HAS_1_TEMPLATE_PARAMS(typename, T),
AND_5_VALUE_PARAMS(p0, p1, p2, p3, p4)) {
return new T(p0, p1, p2, p3, p4);
}
ACTION_TEMPLATE(ReturnNew,
HAS_1_TEMPLATE_PARAMS(typename, T),
AND_6_VALUE_PARAMS(p0, p1, p2, p3, p4, p5)) {
return new T(p0, p1, p2, p3, p4, p5);
}
ACTION_TEMPLATE(ReturnNew,
HAS_1_TEMPLATE_PARAMS(typename, T),
AND_7_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6)) {
return new T(p0, p1, p2, p3, p4, p5, p6);
}
ACTION_TEMPLATE(ReturnNew,
HAS_1_TEMPLATE_PARAMS(typename, T),
AND_8_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7)) {
return new T(p0, p1, p2, p3, p4, p5, p6, p7);
}
ACTION_TEMPLATE(ReturnNew,
HAS_1_TEMPLATE_PARAMS(typename, T),
AND_9_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7, p8)) {
return new T(p0, p1, p2, p3, p4, p5, p6, p7, p8);
}
ACTION_TEMPLATE(ReturnNew,
HAS_1_TEMPLATE_PARAMS(typename, T),
AND_10_VALUE_PARAMS(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9)) {
return new T(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9);
}
#ifdef _MSC_VER
# pragma warning(pop)
#endif
} // namespace testing
#endif // GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_ACTIONS_H_
// This file was GENERATED by command:
// pump.py gmock-generated-function-mockers.h.pump
// DO NOT EDIT BY HAND!!!
// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: wan@google.com (Zhanyong Wan)
// Google Mock - a framework for writing C++ mock classes.
//
// This file implements function mockers of various arities.
#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_FUNCTION_MOCKERS_H_
#define GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_FUNCTION_MOCKERS_H_
// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: wan@google.com (Zhanyong Wan)
// Google Mock - a framework for writing C++ mock classes.
//
// This file implements the ON_CALL() and EXPECT_CALL() macros.
//
// A user can use the ON_CALL() macro to specify the default action of
// a mock method. The syntax is:
//
// ON_CALL(mock_object, Method(argument-matchers))
// .With(multi-argument-matcher)
// .WillByDefault(action);
//
// where the .With() clause is optional.
//
// A user can use the EXPECT_CALL() macro to specify an expectation on
// a mock method. The syntax is:
//
// EXPECT_CALL(mock_object, Method(argument-matchers))
// .With(multi-argument-matchers)
// .Times(cardinality)
// .InSequence(sequences)
// .After(expectations)
// .WillOnce(action)
// .WillRepeatedly(action)
// .RetiresOnSaturation();
//
// where all clauses are optional, and .InSequence()/.After()/
// .WillOnce() can appear any number of times.
#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_
#define GMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <vector>
#if GTEST_HAS_EXCEPTIONS
# include <stdexcept> // NOLINT
#endif
// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: wan@google.com (Zhanyong Wan)
// Google Mock - a framework for writing C++ mock classes.
//
// This file implements some commonly used argument matchers. More
// matchers can be defined by the user implementing the
// MatcherInterface<T> interface if necessary.
#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
#define GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
#include <math.h>
#include <algorithm>
#include <iterator>
#include <limits>
#include <ostream> // NOLINT
#include <sstream>
#include <string>
#include <utility>
#include <vector>
#if GTEST_LANG_CXX11
#include <initializer_list> // NOLINT -- must be after gtest.h
#endif
namespace testing {
// To implement a matcher Foo for type T, define:
// 1. a class FooMatcherImpl that implements the
// MatcherInterface<T> interface, and
// 2. a factory function that creates a Matcher<T> object from a
// FooMatcherImpl*.
//
// The two-level delegation design makes it possible to allow a user
// to write "v" instead of "Eq(v)" where a Matcher is expected, which
// is impossible if we pass matchers by pointers. It also eases
// ownership management as Matcher objects can now be copied like
// plain values.
// MatchResultListener is an abstract class. Its << operator can be
// used by a matcher to explain why a value matches or doesn't match.
//
// TODO(wan@google.com): add method
// bool InterestedInWhy(bool result) const;
// to indicate whether the listener is interested in why the match
// result is 'result'.
class MatchResultListener {
public:
// Creates a listener object with the given underlying ostream. The
// listener does not own the ostream, and does not dereference it
// in the constructor or destructor.
explicit MatchResultListener(::std::ostream* os) : stream_(os) {}
virtual ~MatchResultListener() = 0; // Makes this class abstract.
// Streams x to the underlying ostream; does nothing if the ostream
// is NULL.
template <typename T>
MatchResultListener& operator<<(const T& x) {
if (stream_ != NULL)
*stream_ << x;
return *this;
}
// Returns the underlying ostream.
::std::ostream* stream() { return stream_; }
// Returns true iff the listener is interested in an explanation of
// the match result. A matcher's MatchAndExplain() method can use
// this information to avoid generating the explanation when no one
// intends to hear it.
bool IsInterested() const { return stream_ != NULL; }
private:
::std::ostream* const stream_;
GTEST_DISALLOW_COPY_AND_ASSIGN_(MatchResultListener);
};
inline MatchResultListener::~MatchResultListener() {
}
// An instance of a subclass of this knows how to describe itself as a
// matcher.
class MatcherDescriberInterface {
public:
virtual ~MatcherDescriberInterface() {}
// Describes this matcher to an ostream. The function should print
// a verb phrase that describes the property a value matching this
// matcher should have. The subject of the verb phrase is the value
// being matched. For example, the DescribeTo() method of the Gt(7)
// matcher prints "is greater than 7".
virtual void DescribeTo(::std::ostream* os) const = 0;
// Describes the negation of this matcher to an ostream. For
// example, if the description of this matcher is "is greater than
// 7", the negated description could be "is not greater than 7".
// You are not required to override this when implementing
// MatcherInterface, but it is highly advised so that your matcher
// can produce good error messages.
virtual void DescribeNegationTo(::std::ostream* os) const {
*os << "not (";
DescribeTo(os);
*os << ")";
}
};
// The implementation of a matcher.
template <typename T>
class MatcherInterface : public MatcherDescriberInterface {
public:
// Returns true iff the matcher matches x; also explains the match
// result to 'listener' if necessary (see the next paragraph), in
// the form of a non-restrictive relative clause ("which ...",
// "whose ...", etc) that describes x. For example, the
// MatchAndExplain() method of the Pointee(...) matcher should
// generate an explanation like "which points to ...".
//
// Implementations of MatchAndExplain() should add an explanation of
// the match result *if and only if* they can provide additional
// information that's not already present (or not obvious) in the
// print-out of x and the matcher's description. Whether the match
// succeeds is not a factor in deciding whether an explanation is
// needed, as sometimes the caller needs to print a failure message
// when the match succeeds (e.g. when the matcher is used inside
// Not()).
//
// For example, a "has at least 10 elements" matcher should explain
// what the actual element count is, regardless of the match result,
// as it is useful information to the reader; on the other hand, an
// "is empty" matcher probably only needs to explain what the actual
// size is when the match fails, as it's redundant to say that the
// size is 0 when the value is already known to be empty.
//
// You should override this method when defining a new matcher.
//
// It's the responsibility of the caller (Google Mock) to guarantee
// that 'listener' is not NULL. This helps to simplify a matcher's
// implementation when it doesn't care about the performance, as it
// can talk to 'listener' without checking its validity first.
// However, in order to implement dummy listeners efficiently,
// listener->stream() may be NULL.
virtual bool MatchAndExplain(T x, MatchResultListener* listener) const = 0;
// Inherits these methods from MatcherDescriberInterface:
// virtual void DescribeTo(::std::ostream* os) const = 0;
// virtual void DescribeNegationTo(::std::ostream* os) const;
};
// A match result listener that stores the explanation in a string.
class StringMatchResultListener : public MatchResultListener {
public:
StringMatchResultListener() : MatchResultListener(&ss_) {}
// Returns the explanation accumulated so far.
internal::string str() const { return ss_.str(); }
// Clears the explanation accumulated so far.
void Clear() { ss_.str(""); }
private:
::std::stringstream ss_;
GTEST_DISALLOW_COPY_AND_ASSIGN_(StringMatchResultListener);
};
namespace internal {
// A match result listener that ignores the explanation.
class DummyMatchResultListener : public MatchResultListener {
public:
DummyMatchResultListener() : MatchResultListener(NULL) {}
private:
GTEST_DISALLOW_COPY_AND_ASSIGN_(DummyMatchResultListener);
};
// A match result listener that forwards the explanation to a given
// ostream. The difference between this and MatchResultListener is
// that the former is concrete.
class StreamMatchResultListener : public MatchResultListener {
public:
explicit StreamMatchResultListener(::std::ostream* os)
: MatchResultListener(os) {}
private:
GTEST_DISALLOW_COPY_AND_ASSIGN_(StreamMatchResultListener);
};
// An internal class for implementing Matcher<T>, which will derive
// from it. We put functionalities common to all Matcher<T>
// specializations here to avoid code duplication.
template <typename T>
class MatcherBase {
public:
// Returns true iff the matcher matches x; also explains the match
// result to 'listener'.
bool MatchAndExplain(T x, MatchResultListener* listener) const {
return impl_->MatchAndExplain(x, listener);
}
// Returns true iff this matcher matches x.
bool Matches(T x) const {
DummyMatchResultListener dummy;
return MatchAndExplain(x, &dummy);
}
// Describes this matcher to an ostream.
void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); }
// Describes the negation of this matcher to an ostream.
void DescribeNegationTo(::std::ostream* os) const {
impl_->DescribeNegationTo(os);
}
// Explains why x matches, or doesn't match, the matcher.
void ExplainMatchResultTo(T x, ::std::ostream* os) const {
StreamMatchResultListener listener(os);
MatchAndExplain(x, &listener);
}
// Returns the describer for this matcher object; retains ownership
// of the describer, which is only guaranteed to be alive when
// this matcher object is alive.
const MatcherDescriberInterface* GetDescriber() const {
return impl_.get();
}
protected:
MatcherBase() {}
// Constructs a matcher from its implementation.
explicit MatcherBase(const MatcherInterface<T>* impl)
: impl_(impl) {}
virtual ~MatcherBase() {}
private:
// shared_ptr (util/gtl/shared_ptr.h) and linked_ptr have similar
// interfaces. The former dynamically allocates a chunk of memory
// to hold the reference count, while the latter tracks all
// references using a circular linked list without allocating
// memory. It has been observed that linked_ptr performs better in
// typical scenarios. However, shared_ptr can out-perform
// linked_ptr when there are many more uses of the copy constructor
// than the default constructor.
//
// If performance becomes a problem, we should see if using
// shared_ptr helps.
::testing::internal::linked_ptr<const MatcherInterface<T> > impl_;
};
} // namespace internal
// A Matcher<T> is a copyable and IMMUTABLE (except by assignment)
// object that can check whether a value of type T matches. The
// implementation of Matcher<T> is just a linked_ptr to const
// MatcherInterface<T>, so copying is fairly cheap. Don't inherit
// from Matcher!
template <typename T>
class Matcher : public internal::MatcherBase<T> {
public:
// Constructs a null matcher. Needed for storing Matcher objects in STL
// containers. A default-constructed matcher is not yet initialized. You
// cannot use it until a valid value has been assigned to it.
Matcher() {}
// Constructs a matcher from its implementation.
explicit Matcher(const MatcherInterface<T>* impl)
: internal::MatcherBase<T>(impl) {}
// Implicit constructor here allows people to write
// EXPECT_CALL(foo, Bar(5)) instead of EXPECT_CALL(foo, Bar(Eq(5))) sometimes
Matcher(T value); // NOLINT
};
// The following two specializations allow the user to write str
// instead of Eq(str) and "foo" instead of Eq("foo") when a string
// matcher is expected.
template <>
class GTEST_API_ Matcher<const internal::string&>
: public internal::MatcherBase<const internal::string&> {
public:
Matcher() {}
explicit Matcher(const MatcherInterface<const internal::string&>* impl)
: internal::MatcherBase<const internal::string&>(impl) {}
// Allows the user to write str instead of Eq(str) sometimes, where
// str is a string object.
Matcher(const internal::string& s); // NOLINT
// Allows the user to write "foo" instead of Eq("foo") sometimes.
Matcher(const char* s); // NOLINT
};
template <>
class GTEST_API_ Matcher<internal::string>
: public internal::MatcherBase<internal::string> {
public:
Matcher() {}
explicit Matcher(const MatcherInterface<internal::string>* impl)
: internal::MatcherBase<internal::string>(impl) {}
// Allows the user to write str instead of Eq(str) sometimes, where
// str is a string object.
Matcher(const internal::string& s); // NOLINT
// Allows the user to write "foo" instead of Eq("foo") sometimes.
Matcher(const char* s); // NOLINT
};
#if GTEST_HAS_STRING_PIECE_
// The following two specializations allow the user to write str
// instead of Eq(str) and "foo" instead of Eq("foo") when a StringPiece
// matcher is expected.
template <>
class GTEST_API_ Matcher<const StringPiece&>
: public internal::MatcherBase<const StringPiece&> {
public:
Matcher() {}
explicit Matcher(const MatcherInterface<const StringPiece&>* impl)
: internal::MatcherBase<const StringPiece&>(impl) {}
// Allows the user to write str instead of Eq(str) sometimes, where
// str is a string object.
Matcher(const internal::string& s); // NOLINT
// Allows the user to write "foo" instead of Eq("foo") sometimes.
Matcher(const char* s); // NOLINT
// Allows the user to pass StringPieces directly.
Matcher(StringPiece s); // NOLINT
};
template <>
class GTEST_API_ Matcher<StringPiece>
: public internal::MatcherBase<StringPiece> {
public:
Matcher() {}
explicit Matcher(const MatcherInterface<StringPiece>* impl)
: internal::MatcherBase<StringPiece>(impl) {}
// Allows the user to write str instead of Eq(str) sometimes, where
// str is a string object.
Matcher(const internal::string& s); // NOLINT
// Allows the user to write "foo" instead of Eq("foo") sometimes.
Matcher(const char* s); // NOLINT
// Allows the user to pass StringPieces directly.
Matcher(StringPiece s); // NOLINT
};
#endif // GTEST_HAS_STRING_PIECE_
// The PolymorphicMatcher class template makes it easy to implement a
// polymorphic matcher (i.e. a matcher that can match values of more
// than one type, e.g. Eq(n) and NotNull()).
//
// To define a polymorphic matcher, a user should provide an Impl
// class that has a DescribeTo() method and a DescribeNegationTo()
// method, and define a member function (or member function template)
//
// bool MatchAndExplain(const Value& value,
// MatchResultListener* listener) const;
//
// See the definition of NotNull() for a complete example.
template <class Impl>
class PolymorphicMatcher {
public:
explicit PolymorphicMatcher(const Impl& an_impl) : impl_(an_impl) {}
// Returns a mutable reference to the underlying matcher
// implementation object.
Impl& mutable_impl() { return impl_; }
// Returns an immutable reference to the underlying matcher
// implementation object.
const Impl& impl() const { return impl_; }
template <typename T>
operator Matcher<T>() const {
return Matcher<T>(new MonomorphicImpl<T>(impl_));
}
private:
template <typename T>
class MonomorphicImpl : public MatcherInterface<T> {
public:
explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
virtual void DescribeTo(::std::ostream* os) const {
impl_.DescribeTo(os);
}
virtual void DescribeNegationTo(::std::ostream* os) const {
impl_.DescribeNegationTo(os);
}
virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
return impl_.MatchAndExplain(x, listener);
}
private:
const Impl impl_;
GTEST_DISALLOW_ASSIGN_(MonomorphicImpl);
};
Impl impl_;
GTEST_DISALLOW_ASSIGN_(PolymorphicMatcher);
};
// Creates a matcher from its implementation. This is easier to use
// than the Matcher<T> constructor as it doesn't require you to
// explicitly write the template argument, e.g.
//
// MakeMatcher(foo);
// vs
// Matcher<const string&>(foo);
template <typename T>
inline Matcher<T> MakeMatcher(const MatcherInterface<T>* impl) {
return Matcher<T>(impl);
}
// Creates a polymorphic matcher from its implementation. This is
// easier to use than the PolymorphicMatcher<Impl> constructor as it
// doesn't require you to explicitly write the template argument, e.g.
//
// MakePolymorphicMatcher(foo);
// vs
// PolymorphicMatcher<TypeOfFoo>(foo);
template <class Impl>
inline PolymorphicMatcher<Impl> MakePolymorphicMatcher(const Impl& impl) {
return PolymorphicMatcher<Impl>(impl);
}
// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
// and MUST NOT BE USED IN USER CODE!!!
namespace internal {
// The MatcherCastImpl class template is a helper for implementing
// MatcherCast(). We need this helper in order to partially
// specialize the implementation of MatcherCast() (C++ allows
// class/struct templates to be partially specialized, but not
// function templates.).
// This general version is used when MatcherCast()'s argument is a
// polymorphic matcher (i.e. something that can be converted to a
// Matcher but is not one yet; for example, Eq(value)) or a value (for
// example, "hello").
template <typename T, typename M>
class MatcherCastImpl {
public:
static Matcher<T> Cast(M polymorphic_matcher_or_value) {
// M can be a polymorhic matcher, in which case we want to use
// its conversion operator to create Matcher<T>. Or it can be a value
// that should be passed to the Matcher<T>'s constructor.
//
// We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a
// polymorphic matcher because it'll be ambiguous if T has an implicit
// constructor from M (this usually happens when T has an implicit
// constructor from any type).
//
// It won't work to unconditionally implict_cast
// polymorphic_matcher_or_value to Matcher<T> because it won't trigger
// a user-defined conversion from M to T if one exists (assuming M is
// a value).
return CastImpl(
polymorphic_matcher_or_value,
BooleanConstant<
internal::ImplicitlyConvertible<M, Matcher<T> >::value>());
}
private:
static Matcher<T> CastImpl(M value, BooleanConstant<false>) {
// M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic
// matcher. It must be a value then. Use direct initialization to create
// a matcher.
return Matcher<T>(ImplicitCast_<T>(value));
}
static Matcher<T> CastImpl(M polymorphic_matcher_or_value,
BooleanConstant<true>) {
// M is implicitly convertible to Matcher<T>, which means that either
// M is a polymorhpic matcher or Matcher<T> has an implicit constructor
// from M. In both cases using the implicit conversion will produce a
// matcher.
//
// Even if T has an implicit constructor from M, it won't be called because
// creating Matcher<T> would require a chain of two user-defined conversions
// (first to create T from M and then to create Matcher<T> from T).
return polymorphic_matcher_or_value;
}
};
// This more specialized version is used when MatcherCast()'s argument
// is already a Matcher. This only compiles when type T can be
// statically converted to type U.
template <typename T, typename U>
class MatcherCastImpl<T, Matcher<U> > {
public:
static Matcher<T> Cast(const Matcher<U>& source_matcher) {
return Matcher<T>(new Impl(source_matcher));
}
private:
class Impl : public MatcherInterface<T> {
public:
explicit Impl(const Matcher<U>& source_matcher)
: source_matcher_(source_matcher) {}
// We delegate the matching logic to the source matcher.
virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
return source_matcher_.MatchAndExplain(static_cast<U>(x), listener);
}
virtual void DescribeTo(::std::ostream* os) const {
source_matcher_.DescribeTo(os);
}
virtual void DescribeNegationTo(::std::ostream* os) const {
source_matcher_.DescribeNegationTo(os);
}
private:
const Matcher<U> source_matcher_;
GTEST_DISALLOW_ASSIGN_(Impl);
};
};
// This even more specialized version is used for efficiently casting
// a matcher to its own type.
template <typename T>
class MatcherCastImpl<T, Matcher<T> > {
public:
static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; }
};
} // namespace internal
// In order to be safe and clear, casting between different matcher
// types is done explicitly via MatcherCast<T>(m), which takes a
// matcher m and returns a Matcher<T>. It compiles only when T can be
// statically converted to the argument type of m.
template <typename T, typename M>
inline Matcher<T> MatcherCast(M matcher) {
return internal::MatcherCastImpl<T, M>::Cast(matcher);
}
// Implements SafeMatcherCast().
//
// We use an intermediate class to do the actual safe casting as Nokia's
// Symbian compiler cannot decide between
// template <T, M> ... (M) and
// template <T, U> ... (const Matcher<U>&)
// for function templates but can for member function templates.
template <typename T>
class SafeMatcherCastImpl {
public:
// This overload handles polymorphic matchers and values only since
// monomorphic matchers are handled by the next one.
template <typename M>
static inline Matcher<T> Cast(M polymorphic_matcher_or_value) {
return internal::MatcherCastImpl<T, M>::Cast(polymorphic_matcher_or_value);
}
// This overload handles monomorphic matchers.
//
// In general, if type T can be implicitly converted to type U, we can
// safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is
// contravariant): just keep a copy of the original Matcher<U>, convert the
// argument from type T to U, and then pass it to the underlying Matcher<U>.
// The only exception is when U is a reference and T is not, as the
// underlying Matcher<U> may be interested in the argument's address, which
// is not preserved in the conversion from T to U.
template <typename U>
static inline Matcher<T> Cast(const Matcher<U>& matcher) {
// Enforce that T can be implicitly converted to U.
GTEST_COMPILE_ASSERT_((internal::ImplicitlyConvertible<T, U>::value),
T_must_be_implicitly_convertible_to_U);
// Enforce that we are not converting a non-reference type T to a reference
// type U.
GTEST_COMPILE_ASSERT_(
internal::is_reference<T>::value || !internal::is_reference<U>::value,
cannot_convert_non_referentce_arg_to_reference);
// In case both T and U are arithmetic types, enforce that the
// conversion is not lossy.
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT;
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU;
const bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther;
const bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther;
GTEST_COMPILE_ASSERT_(
kTIsOther || kUIsOther ||
(internal::LosslessArithmeticConvertible<RawT, RawU>::value),
conversion_of_arithmetic_types_must_be_lossless);
return MatcherCast<T>(matcher);
}
};
template <typename T, typename M>
inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher) {
return SafeMatcherCastImpl<T>::Cast(polymorphic_matcher);
}
// A<T>() returns a matcher that matches any value of type T.
template <typename T>
Matcher<T> A();
// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
// and MUST NOT BE USED IN USER CODE!!!
namespace internal {
// If the explanation is not empty, prints it to the ostream.
inline void PrintIfNotEmpty(const internal::string& explanation,
::std::ostream* os) {
if (explanation != "" && os != NULL) {
*os << ", " << explanation;
}
}
// Returns true if the given type name is easy to read by a human.
// This is used to decide whether printing the type of a value might
// be helpful.
inline bool IsReadableTypeName(const string& type_name) {
// We consider a type name readable if it's short or doesn't contain
// a template or function type.
return (type_name.length() <= 20 ||
type_name.find_first_of("<(") == string::npos);
}
// Matches the value against the given matcher, prints the value and explains
// the match result to the listener. Returns the match result.
// 'listener' must not be NULL.
// Value cannot be passed by const reference, because some matchers take a
// non-const argument.
template <typename Value, typename T>
bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher,
MatchResultListener* listener) {
if (!listener->IsInterested()) {
// If the listener is not interested, we do not need to construct the
// inner explanation.
return matcher.Matches(value);
}
StringMatchResultListener inner_listener;
const bool match = matcher.MatchAndExplain(value, &inner_listener);
UniversalPrint(value, listener->stream());
#if GTEST_HAS_RTTI
const string& type_name = GetTypeName<Value>();
if (IsReadableTypeName(type_name))
*listener->stream() << " (of type " << type_name << ")";
#endif
PrintIfNotEmpty(inner_listener.str(), listener->stream());
return match;
}
// An internal helper class for doing compile-time loop on a tuple's
// fields.
template <size_t N>
class TuplePrefix {
public:
// TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true
// iff the first N fields of matcher_tuple matches the first N
// fields of value_tuple, respectively.
template <typename MatcherTuple, typename ValueTuple>
static bool Matches(const MatcherTuple& matcher_tuple,
const ValueTuple& value_tuple) {
using ::std::tr1::get;
return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple)
&& get<N - 1>(matcher_tuple).Matches(get<N - 1>(value_tuple));
}
// TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os)
// describes failures in matching the first N fields of matchers
// against the first N fields of values. If there is no failure,
// nothing will be streamed to os.
template <typename MatcherTuple, typename ValueTuple>
static void ExplainMatchFailuresTo(const MatcherTuple& matchers,
const ValueTuple& values,
::std::ostream* os) {
using ::std::tr1::tuple_element;
using ::std::tr1::get;
// First, describes failures in the first N - 1 fields.
TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os);
// Then describes the failure (if any) in the (N - 1)-th (0-based)
// field.
typename tuple_element<N - 1, MatcherTuple>::type matcher =
get<N - 1>(matchers);
typedef typename tuple_element<N - 1, ValueTuple>::type Value;
Value value = get<N - 1>(values);
StringMatchResultListener listener;
if (!matcher.MatchAndExplain(value, &listener)) {
// TODO(wan): include in the message the name of the parameter
// as used in MOCK_METHOD*() when possible.
*os << " Expected arg #" << N - 1 << ": ";
get<N - 1>(matchers).DescribeTo(os);
*os << "\n Actual: ";
// We remove the reference in type Value to prevent the
// universal printer from printing the address of value, which
// isn't interesting to the user most of the time. The
// matcher's MatchAndExplain() method handles the case when
// the address is interesting.
internal::UniversalPrint(value, os);
PrintIfNotEmpty(listener.str(), os);
*os << "\n";
}
}
};
// The base case.
template <>
class TuplePrefix<0> {
public:
template <typename MatcherTuple, typename ValueTuple>
static bool Matches(const MatcherTuple& /* matcher_tuple */,
const ValueTuple& /* value_tuple */) {
return true;
}
template <typename MatcherTuple, typename ValueTuple>
static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */,
const ValueTuple& /* values */,
::std::ostream* /* os */) {}
};
// TupleMatches(matcher_tuple, value_tuple) returns true iff all
// matchers in matcher_tuple match the corresponding fields in
// value_tuple. It is a compiler error if matcher_tuple and
// value_tuple have different number of fields or incompatible field
// types.
template <typename MatcherTuple, typename ValueTuple>
bool TupleMatches(const MatcherTuple& matcher_tuple,
const ValueTuple& value_tuple) {
using ::std::tr1::tuple_size;
// Makes sure that matcher_tuple and value_tuple have the same
// number of fields.
GTEST_COMPILE_ASSERT_(tuple_size<MatcherTuple>::value ==
tuple_size<ValueTuple>::value,
matcher_and_value_have_different_numbers_of_fields);
return TuplePrefix<tuple_size<ValueTuple>::value>::
Matches(matcher_tuple, value_tuple);
}
// Describes failures in matching matchers against values. If there
// is no failure, nothing will be streamed to os.
template <typename MatcherTuple, typename ValueTuple>
void ExplainMatchFailureTupleTo(const MatcherTuple& matchers,
const ValueTuple& values,
::std::ostream* os) {
using ::std::tr1::tuple_size;
TuplePrefix<tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo(
matchers, values, os);
}
// TransformTupleValues and its helper.
//
// TransformTupleValuesHelper hides the internal machinery that
// TransformTupleValues uses to implement a tuple traversal.
template <typename Tuple, typename Func, typename OutIter>
class TransformTupleValuesHelper {
private:
typedef typename ::std::tr1::tuple_size<Tuple> TupleSize;
public:
// For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'.
// Returns the final value of 'out' in case the caller needs it.
static OutIter Run(Func f, const Tuple& t, OutIter out) {
return IterateOverTuple<Tuple, TupleSize::value>()(f, t, out);
}
private:
template <typename Tup, size_t kRemainingSize>
struct IterateOverTuple {
OutIter operator() (Func f, const Tup& t, OutIter out) const {
*out++ = f(::std::tr1::get<TupleSize::value - kRemainingSize>(t));
return IterateOverTuple<Tup, kRemainingSize - 1>()(f, t, out);
}
};
template <typename Tup>
struct IterateOverTuple<Tup, 0> {
OutIter operator() (Func /* f */, const Tup& /* t */, OutIter out) const {
return out;
}
};
};
// Successively invokes 'f(element)' on each element of the tuple 't',
// appending each result to the 'out' iterator. Returns the final value
// of 'out'.
template <typename Tuple, typename Func, typename OutIter>
OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) {
return TransformTupleValuesHelper<Tuple, Func, OutIter>::Run(f, t, out);
}
// Implements A<T>().
template <typename T>
class AnyMatcherImpl : public MatcherInterface<T> {
public:
virtual bool MatchAndExplain(
T /* x */, MatchResultListener* /* listener */) const { return true; }
virtual void DescribeTo(::std::ostream* os) const { *os << "is anything"; }
virtual void DescribeNegationTo(::std::ostream* os) const {
// This is mostly for completeness' safe, as it's not very useful
// to write Not(A<bool>()). However we cannot completely rule out
// such a possibility, and it doesn't hurt to be prepared.
*os << "never matches";
}
};
// Implements _, a matcher that matches any value of any
// type. This is a polymorphic matcher, so we need a template type
// conversion operator to make it appearing as a Matcher<T> for any
// type T.
class AnythingMatcher {
public:
template <typename T>
operator Matcher<T>() const { return A<T>(); }
};
// Implements a matcher that compares a given value with a
// pre-supplied value using one of the ==, <=, <, etc, operators. The
// two values being compared don't have to have the same type.
//
// The matcher defined here is polymorphic (for example, Eq(5) can be
// used to match an int, a short, a double, etc). Therefore we use
// a template type conversion operator in the implementation.
//
// We define this as a macro in order to eliminate duplicated source
// code.
//
// The following template definition assumes that the Rhs parameter is
// a "bare" type (i.e. neither 'const T' nor 'T&').
#define GMOCK_IMPLEMENT_COMPARISON_MATCHER_( \
name, op, relation, negated_relation) \
template <typename Rhs> class name##Matcher { \
public: \
explicit name##Matcher(const Rhs& rhs) : rhs_(rhs) {} \
template <typename Lhs> \
operator Matcher<Lhs>() const { \
return MakeMatcher(new Impl<Lhs>(rhs_)); \
} \
private: \
template <typename Lhs> \
class Impl : public MatcherInterface<Lhs> { \
public: \
explicit Impl(const Rhs& rhs) : rhs_(rhs) {} \
virtual bool MatchAndExplain(\
Lhs lhs, MatchResultListener* /* listener */) const { \
return lhs op rhs_; \
} \
virtual void DescribeTo(::std::ostream* os) const { \
*os << relation " "; \
UniversalPrint(rhs_, os); \
} \
virtual void DescribeNegationTo(::std::ostream* os) const { \
*os << negated_relation " "; \
UniversalPrint(rhs_, os); \
} \
private: \
Rhs rhs_; \
GTEST_DISALLOW_ASSIGN_(Impl); \
}; \
Rhs rhs_; \
GTEST_DISALLOW_ASSIGN_(name##Matcher); \
}
// Implements Eq(v), Ge(v), Gt(v), Le(v), Lt(v), and Ne(v)
// respectively.
GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Eq, ==, "is equal to", "isn't equal to");
GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Ge, >=, "is >=", "isn't >=");
GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Gt, >, "is >", "isn't >");
GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Le, <=, "is <=", "isn't <=");
GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Lt, <, "is <", "isn't <");
GMOCK_IMPLEMENT_COMPARISON_MATCHER_(Ne, !=, "isn't equal to", "is equal to");
#undef GMOCK_IMPLEMENT_COMPARISON_MATCHER_
// Implements the polymorphic IsNull() matcher, which matches any raw or smart
// pointer that is NULL.
class IsNullMatcher {
public:
template <typename Pointer>
bool MatchAndExplain(const Pointer& p,
MatchResultListener* /* listener */) const {
return GetRawPointer(p) == NULL;
}
void DescribeTo(::std::ostream* os) const { *os << "is NULL"; }
void DescribeNegationTo(::std::ostream* os) const {
*os << "isn't NULL";
}
};
// Implements the polymorphic NotNull() matcher, which matches any raw or smart
// pointer that is not NULL.
class NotNullMatcher {
public:
template <typename Pointer>
bool MatchAndExplain(const Pointer& p,
MatchResultListener* /* listener */) const {
return GetRawPointer(p) != NULL;
}
void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; }
void DescribeNegationTo(::std::ostream* os) const {
*os << "is NULL";
}
};
// Ref(variable) matches any argument that is a reference to
// 'variable'. This matcher is polymorphic as it can match any
// super type of the type of 'variable'.
//
// The RefMatcher template class implements Ref(variable). It can
// only be instantiated with a reference type. This prevents a user
// from mistakenly using Ref(x) to match a non-reference function
// argument. For example, the following will righteously cause a
// compiler error:
//
// int n;
// Matcher<int> m1 = Ref(n); // This won't compile.
// Matcher<int&> m2 = Ref(n); // This will compile.
template <typename T>
class RefMatcher;
template <typename T>
class RefMatcher<T&> {
// Google Mock is a generic framework and thus needs to support
// mocking any function types, including those that take non-const
// reference arguments. Therefore the template parameter T (and
// Super below) can be instantiated to either a const type or a
// non-const type.
public:
// RefMatcher() takes a T& instead of const T&, as we want the
// compiler to catch using Ref(const_value) as a matcher for a
// non-const reference.
explicit RefMatcher(T& x) : object_(x) {} // NOLINT
template <typename Super>
operator Matcher<Super&>() const {
// By passing object_ (type T&) to Impl(), which expects a Super&,
// we make sure that Super is a super type of T. In particular,
// this catches using Ref(const_value) as a matcher for a
// non-const reference, as you cannot implicitly convert a const
// reference to a non-const reference.
return MakeMatcher(new Impl<Super>(object_));
}
private:
template <typename Super>
class Impl : public MatcherInterface<Super&> {
public:
explicit Impl(Super& x) : object_(x) {} // NOLINT
// MatchAndExplain() takes a Super& (as opposed to const Super&)
// in order to match the interface MatcherInterface<Super&>.
virtual bool MatchAndExplain(
Super& x, MatchResultListener* listener) const {
*listener << "which is located @" << static_cast<const void*>(&x);
return &x == &object_;
}
virtual void DescribeTo(::std::ostream* os) const {
*os << "references the variable ";
UniversalPrinter<Super&>::Print(object_, os);
}
virtual void DescribeNegationTo(::std::ostream* os) const {
*os << "does not reference the variable ";
UniversalPrinter<Super&>::Print(object_, os);
}
private:
const Super& object_;
GTEST_DISALLOW_ASSIGN_(Impl);
};
T& object_;
GTEST_DISALLOW_ASSIGN_(RefMatcher);
};
// Polymorphic helper functions for narrow and wide string matchers.
inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) {
return String::CaseInsensitiveCStringEquals(lhs, rhs);
}
inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs,
const wchar_t* rhs) {
return String::CaseInsensitiveWideCStringEquals(lhs, rhs);
}
// String comparison for narrow or wide strings that can have embedded NUL
// characters.
template <typename StringType>
bool CaseInsensitiveStringEquals(const StringType& s1,
const StringType& s2) {
// Are the heads equal?
if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) {
return false;
}
// Skip the equal heads.
const typename StringType::value_type nul = 0;
const size_t i1 = s1.find(nul), i2 = s2.find(nul);
// Are we at the end of either s1 or s2?
if (i1 == StringType::npos || i2 == StringType::npos) {
return i1 == i2;
}
// Are the tails equal?
return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1));
}
// String matchers.
// Implements equality-based string matchers like StrEq, StrCaseNe, and etc.
template <typename StringType>
class StrEqualityMatcher {
public:
StrEqualityMatcher(const StringType& str, bool expect_eq,
bool case_sensitive)
: string_(str), expect_eq_(expect_eq), case_sensitive_(case_sensitive) {}
// Accepts pointer types, particularly:
// const char*
// char*
// const wchar_t*
// wchar_t*
template <typename CharType>
bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
if (s == NULL) {
return !expect_eq_;
}
return MatchAndExplain(StringType(s), listener);
}
// Matches anything that can convert to StringType.
//
// This is a template, not just a plain function with const StringType&,
// because StringPiece has some interfering non-explicit constructors.
template <typename MatcheeStringType>
bool MatchAndExplain(const MatcheeStringType& s,
MatchResultListener* /* listener */) const {
const StringType& s2(s);
const bool eq = case_sensitive_ ? s2 == string_ :
CaseInsensitiveStringEquals(s2, string_);
return expect_eq_ == eq;
}
void DescribeTo(::std::ostream* os) const {
DescribeToHelper(expect_eq_, os);
}
void DescribeNegationTo(::std::ostream* os) const {
DescribeToHelper(!expect_eq_, os);
}
private:
void DescribeToHelper(bool expect_eq, ::std::ostream* os) const {
*os << (expect_eq ? "is " : "isn't ");
*os << "equal to ";
if (!case_sensitive_) {
*os << "(ignoring case) ";
}
UniversalPrint(string_, os);
}
const StringType string_;
const bool expect_eq_;
const bool case_sensitive_;
GTEST_DISALLOW_ASSIGN_(StrEqualityMatcher);
};
// Implements the polymorphic HasSubstr(substring) matcher, which
// can be used as a Matcher<T> as long as T can be converted to a
// string.
template <typename StringType>
class HasSubstrMatcher {
public:
explicit HasSubstrMatcher(const StringType& substring)
: substring_(substring) {}
// Accepts pointer types, particularly:
// const char*
// char*
// const wchar_t*
// wchar_t*
template <typename CharType>
bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
return s != NULL && MatchAndExplain(StringType(s), listener);
}
// Matches anything that can convert to StringType.
//
// This is a template, not just a plain function with const StringType&,
// because StringPiece has some interfering non-explicit constructors.
template <typename MatcheeStringType>
bool MatchAndExplain(const MatcheeStringType& s,
MatchResultListener* /* listener */) const {
const StringType& s2(s);
return s2.find(substring_) != StringType::npos;
}
// Describes what this matcher matches.
void DescribeTo(::std::ostream* os) const {
*os << "has substring ";
UniversalPrint(substring_, os);
}
void DescribeNegationTo(::std::ostream* os) const {
*os << "has no substring ";
UniversalPrint(substring_, os);
}
private:
const StringType substring_;
GTEST_DISALLOW_ASSIGN_(HasSubstrMatcher);
};
// Implements the polymorphic StartsWith(substring) matcher, which
// can be used as a Matcher<T> as long as T can be converted to a
// string.
template <typename StringType>
class StartsWithMatcher {
public:
explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) {
}
// Accepts pointer types, particularly:
// const char*
// char*
// const wchar_t*
// wchar_t*
template <typename CharType>
bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
return s != NULL && MatchAndExplain(StringType(s), listener);
}
// Matches anything that can convert to StringType.
//
// This is a template, not just a plain function with const StringType&,
// because StringPiece has some interfering non-explicit constructors.
template <typename MatcheeStringType>
bool MatchAndExplain(const MatcheeStringType& s,
MatchResultListener* /* listener */) const {
const StringType& s2(s);
return s2.length() >= prefix_.length() &&
s2.substr(0, prefix_.length()) == prefix_;
}
void DescribeTo(::std::ostream* os) const {
*os << "starts with ";
UniversalPrint(prefix_, os);
}
void DescribeNegationTo(::std::ostream* os) const {
*os << "doesn't start with ";
UniversalPrint(prefix_, os);
}
private:
const StringType prefix_;
GTEST_DISALLOW_ASSIGN_(StartsWithMatcher);
};
// Implements the polymorphic EndsWith(substring) matcher, which
// can be used as a Matcher<T> as long as T can be converted to a
// string.
template <typename StringType>
class EndsWithMatcher {
public:
explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {}
// Accepts pointer types, particularly:
// const char*
// char*
// const wchar_t*
// wchar_t*
template <typename CharType>
bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
return s != NULL && MatchAndExplain(StringType(s), listener);
}
// Matches anything that can convert to StringType.
//
// This is a template, not just a plain function with const StringType&,
// because StringPiece has some interfering non-explicit constructors.
template <typename MatcheeStringType>
bool MatchAndExplain(const MatcheeStringType& s,
MatchResultListener* /* listener */) const {
const StringType& s2(s);
return s2.length() >= suffix_.length() &&
s2.substr(s2.length() - suffix_.length()) == suffix_;
}
void DescribeTo(::std::ostream* os) const {
*os << "ends with ";
UniversalPrint(suffix_, os);
}
void DescribeNegationTo(::std::ostream* os) const {
*os << "doesn't end with ";
UniversalPrint(suffix_, os);
}
private:
const StringType suffix_;
GTEST_DISALLOW_ASSIGN_(EndsWithMatcher);
};
// Implements polymorphic matchers MatchesRegex(regex) and
// ContainsRegex(regex), which can be used as a Matcher<T> as long as
// T can be converted to a string.
class MatchesRegexMatcher {
public:
MatchesRegexMatcher(const RE* regex, bool full_match)
: regex_(regex), full_match_(full_match) {}
// Accepts pointer types, particularly:
// const char*
// char*
// const wchar_t*
// wchar_t*
template <typename CharType>
bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
return s != NULL && MatchAndExplain(internal::string(s), listener);
}
// Matches anything that can convert to internal::string.
//
// This is a template, not just a plain function with const internal::string&,
// because StringPiece has some interfering non-explicit constructors.
template <class MatcheeStringType>
bool MatchAndExplain(const MatcheeStringType& s,
MatchResultListener* /* listener */) const {
const internal::string& s2(s);
return full_match_ ? RE::FullMatch(s2, *regex_) :
RE::PartialMatch(s2, *regex_);
}
void DescribeTo(::std::ostream* os) const {
*os << (full_match_ ? "matches" : "contains")
<< " regular expression ";
UniversalPrinter<internal::string>::Print(regex_->pattern(), os);
}
void DescribeNegationTo(::std::ostream* os) const {
*os << "doesn't " << (full_match_ ? "match" : "contain")
<< " regular expression ";
UniversalPrinter<internal::string>::Print(regex_->pattern(), os);
}
private:
const internal::linked_ptr<const RE> regex_;
const bool full_match_;
GTEST_DISALLOW_ASSIGN_(MatchesRegexMatcher);
};
// Implements a matcher that compares the two fields of a 2-tuple
// using one of the ==, <=, <, etc, operators. The two fields being
// compared don't have to have the same type.
//
// The matcher defined here is polymorphic (for example, Eq() can be
// used to match a tuple<int, short>, a tuple<const long&, double>,
// etc). Therefore we use a template type conversion operator in the
// implementation.
//
// We define this as a macro in order to eliminate duplicated source
// code.
#define GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(name, op, relation) \
class name##2Matcher { \
public: \
template <typename T1, typename T2> \
operator Matcher< ::std::tr1::tuple<T1, T2> >() const { \
return MakeMatcher(new Impl< ::std::tr1::tuple<T1, T2> >); \
} \
template <typename T1, typename T2> \
operator Matcher<const ::std::tr1::tuple<T1, T2>&>() const { \
return MakeMatcher(new Impl<const ::std::tr1::tuple<T1, T2>&>); \
} \
private: \
template <typename Tuple> \
class Impl : public MatcherInterface<Tuple> { \
public: \
virtual bool MatchAndExplain( \
Tuple args, \
MatchResultListener* /* listener */) const { \
return ::std::tr1::get<0>(args) op ::std::tr1::get<1>(args); \
} \
virtual void DescribeTo(::std::ostream* os) const { \
*os << "are " relation; \
} \
virtual void DescribeNegationTo(::std::ostream* os) const { \
*os << "aren't " relation; \
} \
}; \
}
// Implements Eq(), Ge(), Gt(), Le(), Lt(), and Ne() respectively.
GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Eq, ==, "an equal pair");
GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(
Ge, >=, "a pair where the first >= the second");
GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(
Gt, >, "a pair where the first > the second");
GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(
Le, <=, "a pair where the first <= the second");
GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(
Lt, <, "a pair where the first < the second");
GMOCK_IMPLEMENT_COMPARISON2_MATCHER_(Ne, !=, "an unequal pair");
#undef GMOCK_IMPLEMENT_COMPARISON2_MATCHER_
// Implements the Not(...) matcher for a particular argument type T.
// We do not nest it inside the NotMatcher class template, as that
// will prevent different instantiations of NotMatcher from sharing
// the same NotMatcherImpl<T> class.
template <typename T>
class NotMatcherImpl : public MatcherInterface<T> {
public:
explicit NotMatcherImpl(const Matcher<T>& matcher)
: matcher_(matcher) {}
virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
return !matcher_.MatchAndExplain(x, listener);
}
virtual void DescribeTo(::std::ostream* os) const {
matcher_.DescribeNegationTo(os);
}
virtual void DescribeNegationTo(::std::ostream* os) const {
matcher_.DescribeTo(os);
}
private:
const Matcher<T> matcher_;
GTEST_DISALLOW_ASSIGN_(NotMatcherImpl);
};
// Implements the Not(m) matcher, which matches a value that doesn't
// match matcher m.
template <typename InnerMatcher>
class NotMatcher {
public:
explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {}
// This template type conversion operator allows Not(m) to be used
// to match any type m can match.
template <typename T>
operator Matcher<T>() const {
return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_)));
}
private:
InnerMatcher matcher_;
GTEST_DISALLOW_ASSIGN_(NotMatcher);
};
// Implements the AllOf(m1, m2) matcher for a particular argument type
// T. We do not nest it inside the BothOfMatcher class template, as
// that will prevent different instantiations of BothOfMatcher from
// sharing the same BothOfMatcherImpl<T> class.
template <typename T>
class BothOfMatcherImpl : public MatcherInterface<T> {
public:
BothOfMatcherImpl(const Matcher<T>& matcher1, const Matcher<T>& matcher2)
: matcher1_(matcher1), matcher2_(matcher2) {}
virtual void DescribeTo(::std::ostream* os) const {
*os << "(";
matcher1_.DescribeTo(os);
*os << ") and (";
matcher2_.DescribeTo(os);
*os << ")";
}
virtual void DescribeNegationTo(::std::ostream* os) const {
*os << "(";
matcher1_.DescribeNegationTo(os);
*os << ") or (";
matcher2_.DescribeNegationTo(os);
*os << ")";
}
virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
// If either matcher1_ or matcher2_ doesn't match x, we only need
// to explain why one of them fails.
StringMatchResultListener listener1;
if (!matcher1_.MatchAndExplain(x, &listener1)) {
*listener << listener1.str();
return false;
}
StringMatchResultListener listener2;
if (!matcher2_.MatchAndExplain(x, &listener2)) {
*listener << listener2.str();
return false;
}
// Otherwise we need to explain why *both* of them match.
const internal::string s1 = listener1.str();
const internal::string s2 = listener2.str();
if (s1 == "") {
*listener << s2;
} else {
*listener << s1;
if (s2 != "") {
*listener << ", and " << s2;
}
}
return true;
}
private:
const Matcher<T> matcher1_;
const Matcher<T> matcher2_;
GTEST_DISALLOW_ASSIGN_(BothOfMatcherImpl);
};
#if GTEST_LANG_CXX11
// MatcherList provides mechanisms for storing a variable number of matchers in
// a list structure (ListType) and creating a combining matcher from such a
// list.
// The template is defined recursively using the following template paramters:
// * kSize is the length of the MatcherList.
// * Head is the type of the first matcher of the list.
// * Tail denotes the types of the remaining matchers of the list.
template <int kSize, typename Head, typename... Tail>
struct MatcherList {
typedef MatcherList<kSize - 1, Tail...> MatcherListTail;
typedef ::std::pair<Head, typename MatcherListTail::ListType> ListType;
// BuildList stores variadic type values in a nested pair structure.
// Example:
// MatcherList<3, int, string, float>::BuildList(5, "foo", 2.0) will return
// the corresponding result of type pair<int, pair<string, float>>.
static ListType BuildList(const Head& matcher, const Tail&... tail) {
return ListType(matcher, MatcherListTail::BuildList(tail...));
}
// CreateMatcher<T> creates a Matcher<T> from a given list of matchers (built
// by BuildList()). CombiningMatcher<T> is used to combine the matchers of the
// list. CombiningMatcher<T> must implement MatcherInterface<T> and have a
// constructor taking two Matcher<T>s as input.
template <typename T, template <typename /* T */> class CombiningMatcher>
static Matcher<T> CreateMatcher(const ListType& matchers) {
return Matcher<T>(new CombiningMatcher<T>(
SafeMatcherCast<T>(matchers.first),
MatcherListTail::template CreateMatcher<T, CombiningMatcher>(
matchers.second)));
}
};
// The following defines the base case for the recursive definition of
// MatcherList.
template <typename Matcher1, typename Matcher2>
struct MatcherList<2, Matcher1, Matcher2> {
typedef ::std::pair<Matcher1, Matcher2> ListType;
static ListType BuildList(const Matcher1& matcher1,
const Matcher2& matcher2) {
return ::std::pair<Matcher1, Matcher2>(matcher1, matcher2);
}
template <typename T, template <typename /* T */> class CombiningMatcher>
static Matcher<T> CreateMatcher(const ListType& matchers) {
return Matcher<T>(new CombiningMatcher<T>(
SafeMatcherCast<T>(matchers.first),
SafeMatcherCast<T>(matchers.second)));
}
};
// VariadicMatcher is used for the variadic implementation of
// AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...).
// CombiningMatcher<T> is used to recursively combine the provided matchers
// (of type Args...).
template <template <typename T> class CombiningMatcher, typename... Args>
class VariadicMatcher {
public:
VariadicMatcher(const Args&... matchers) // NOLINT
: matchers_(MatcherListType::BuildList(matchers...)) {}
// This template type conversion operator allows an
// VariadicMatcher<Matcher1, Matcher2...> object to match any type that
// all of the provided matchers (Matcher1, Matcher2, ...) can match.
template <typename T>
operator Matcher<T>() const {
return MatcherListType::template CreateMatcher<T, CombiningMatcher>(
matchers_);
}
private:
typedef MatcherList<sizeof...(Args), Args...> MatcherListType;
const typename MatcherListType::ListType matchers_;
GTEST_DISALLOW_ASSIGN_(VariadicMatcher);
};
template <typename... Args>
using AllOfMatcher = VariadicMatcher<BothOfMatcherImpl, Args...>;
#endif // GTEST_LANG_CXX11
// Used for implementing the AllOf(m_1, ..., m_n) matcher, which
// matches a value that matches all of the matchers m_1, ..., and m_n.
template <typename Matcher1, typename Matcher2>
class BothOfMatcher {
public:
BothOfMatcher(Matcher1 matcher1, Matcher2 matcher2)
: matcher1_(matcher1), matcher2_(matcher2) {}
// This template type conversion operator allows a
// BothOfMatcher<Matcher1, Matcher2> object to match any type that
// both Matcher1 and Matcher2 can match.
template <typename T>
operator Matcher<T>() const {
return Matcher<T>(new BothOfMatcherImpl<T>(SafeMatcherCast<T>(matcher1_),
SafeMatcherCast<T>(matcher2_)));
}
private:
Matcher1 matcher1_;
Matcher2 matcher2_;
GTEST_DISALLOW_ASSIGN_(BothOfMatcher);
};
// Implements the AnyOf(m1, m2) matcher for a particular argument type
// T. We do not nest it inside the AnyOfMatcher class template, as
// that will prevent different instantiations of AnyOfMatcher from
// sharing the same EitherOfMatcherImpl<T> class.
template <typename T>
class EitherOfMatcherImpl : public MatcherInterface<T> {
public:
EitherOfMatcherImpl(const Matcher<T>& matcher1, const Matcher<T>& matcher2)
: matcher1_(matcher1), matcher2_(matcher2) {}
virtual void DescribeTo(::std::ostream* os) const {
*os << "(";
matcher1_.DescribeTo(os);
*os << ") or (";
matcher2_.DescribeTo(os);
*os << ")";
}
virtual void DescribeNegationTo(::std::ostream* os) const {
*os << "(";
matcher1_.DescribeNegationTo(os);
*os << ") and (";
matcher2_.DescribeNegationTo(os);
*os << ")";
}
virtual bool MatchAndExplain(T x, MatchResultListener* listener) const {
// If either matcher1_ or matcher2_ matches x, we just need to
// explain why *one* of them matches.
StringMatchResultListener listener1;
if (matcher1_.MatchAndExplain(x, &listener1)) {
*listener << listener1.str();
return true;
}
StringMatchResultListener listener2;
if (matcher2_.MatchAndExplain(x, &listener2)) {
*listener << listener2.str();
return true;
}
// Otherwise we need to explain why *both* of them fail.
const internal::string s1 = listener1.str();
const internal::string s2 = listener2.str();
if (s1 == "") {
*listener << s2;
} else {
*listener << s1;
if (s2 != "") {
*listener << ", and " << s2;
}
}
return false;
}
private:
const Matcher<T> matcher1_;
const Matcher<T> matcher2_;
GTEST_DISALLOW_ASSIGN_(EitherOfMatcherImpl);
};
#if GTEST_LANG_CXX11
// AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...).
template <typename... Args>
using AnyOfMatcher = VariadicMatcher<EitherOfMatcherImpl, Args...>;
#endif // GTEST_LANG_CXX11
// Used for implementing the AnyOf(m_1, ..., m_n) matcher, which
// matches a value that matches at least one of the matchers m_1, ...,
// and m_n.
template <typename Matcher1, typename Matcher2>
class EitherOfMatcher {
public:
EitherOfMatcher(Matcher1 matcher1, Matcher2 matcher2)
: matcher1_(matcher1), matcher2_(matcher2) {}
// This template type conversion operator allows a
// EitherOfMatcher<Matcher1, Matcher2> object to match any type that
// both Matcher1 and Matcher2 can match.
template <typename T>
operator Matcher<T>() const {
return Matcher<T>(new EitherOfMatcherImpl<T>(
SafeMatcherCast<T>(matcher1_), SafeMatcherCast<T>(matcher2_)));
}
private:
Matcher1 matcher1_;
Matcher2 matcher2_;
GTEST_DISALLOW_ASSIGN_(EitherOfMatcher);
};
// Used for implementing Truly(pred), which turns a predicate into a
// matcher.
template <typename Predicate>
class TrulyMatcher {
public:
explicit TrulyMatcher(Predicate pred) : predicate_(pred) {}
// This method template allows Truly(pred) to be used as a matcher
// for type T where T is the argument type of predicate 'pred'. The
// argument is passed by reference as the predicate may be
// interested in the address of the argument.
template <typename T>
bool MatchAndExplain(T& x, // NOLINT
MatchResultListener* /* listener */) const {
// Without the if-statement, MSVC sometimes warns about converting
// a value to bool (warning 4800).
//
// We cannot write 'return !!predicate_(x);' as that doesn't work
// when predicate_(x) returns a class convertible to bool but
// having no operator!().
if (predicate_(x))
return true;
return false;
}
void DescribeTo(::std::ostream* os) const {
*os << "satisfies the given predicate";
}
void DescribeNegationTo(::std::ostream* os) const {
*os << "doesn't satisfy the given predicate";
}
private:
Predicate predicate_;
GTEST_DISALLOW_ASSIGN_(TrulyMatcher);
};
// Used for implementing Matches(matcher), which turns a matcher into
// a predicate.
template <typename M>
class MatcherAsPredicate {
public:
explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {}
// This template operator() allows Matches(m) to be used as a
// predicate on type T where m is a matcher on type T.
//
// The argument x is passed by reference instead of by value, as
// some matcher may be interested in its address (e.g. as in
// Matches(Ref(n))(x)).
template <typename T>
bool operator()(const T& x) const {
// We let matcher_ commit to a particular type here instead of
// when the MatcherAsPredicate object was constructed. This
// allows us to write Matches(m) where m is a polymorphic matcher
// (e.g. Eq(5)).
//
// If we write Matcher<T>(matcher_).Matches(x) here, it won't
// compile when matcher_ has type Matcher<const T&>; if we write
// Matcher<const T&>(matcher_).Matches(x) here, it won't compile
// when matcher_ has type Matcher<T>; if we just write
// matcher_.Matches(x), it won't compile when matcher_ is
// polymorphic, e.g. Eq(5).
//
// MatcherCast<const T&>() is necessary for making the code work
// in all of the above situations.
return MatcherCast<const T&>(matcher_).Matches(x);
}
private:
M matcher_;
GTEST_DISALLOW_ASSIGN_(MatcherAsPredicate);
};
// For implementing ASSERT_THAT() and EXPECT_THAT(). The template
// argument M must be a type that can be converted to a matcher.
template <typename M>
class PredicateFormatterFromMatcher {
public:
explicit PredicateFormatterFromMatcher(const M& m) : matcher_(m) {}
// This template () operator allows a PredicateFormatterFromMatcher
// object to act as a predicate-formatter suitable for using with
// Google Test's EXPECT_PRED_FORMAT1() macro.
template <typename T>
AssertionResult operator()(const char* value_text, const T& x) const {
// We convert matcher_ to a Matcher<const T&> *now* instead of
// when the PredicateFormatterFromMatcher object was constructed,
// as matcher_ may be polymorphic (e.g. NotNull()) and we won't
// know which type to instantiate it to until we actually see the
// type of x here.
//
// We write SafeMatcherCast<const T&>(matcher_) instead of
// Matcher<const T&>(matcher_), as the latter won't compile when
// matcher_ has type Matcher<T> (e.g. An<int>()).
// We don't write MatcherCast<const T&> either, as that allows
// potentially unsafe downcasting of the matcher argument.
const Matcher<const T&> matcher = SafeMatcherCast<const T&>(matcher_);
StringMatchResultListener listener;
if (MatchPrintAndExplain(x, matcher, &listener))
return AssertionSuccess();
::std::stringstream ss;
ss << "Value of: " << value_text << "\n"
<< "Expected: ";
matcher.DescribeTo(&ss);
ss << "\n Actual: " << listener.str();
return AssertionFailure() << ss.str();
}
private:
const M matcher_;
GTEST_DISALLOW_ASSIGN_(PredicateFormatterFromMatcher);
};
// A helper function for converting a matcher to a predicate-formatter
// without the user needing to explicitly write the type. This is
// used for implementing ASSERT_THAT() and EXPECT_THAT().
template <typename M>
inline PredicateFormatterFromMatcher<M>
MakePredicateFormatterFromMatcher(const M& matcher) {
return PredicateFormatterFromMatcher<M>(matcher);
}
// Implements the polymorphic floating point equality matcher, which matches
// two float values using ULP-based approximation or, optionally, a
// user-specified epsilon. The template is meant to be instantiated with
// FloatType being either float or double.
template <typename FloatType>
class FloatingEqMatcher {
public:
// Constructor for FloatingEqMatcher.
// The matcher's input will be compared with rhs. The matcher treats two
// NANs as equal if nan_eq_nan is true. Otherwise, under IEEE standards,
// equality comparisons between NANs will always return false. We specify a
// negative max_abs_error_ term to indicate that ULP-based approximation will
// be used for comparison.
FloatingEqMatcher(FloatType rhs, bool nan_eq_nan) :
rhs_(rhs), nan_eq_nan_(nan_eq_nan), max_abs_error_(-1) {
}
// Constructor that supports a user-specified max_abs_error that will be used
// for comparison instead of ULP-based approximation. The max absolute
// should be non-negative.
FloatingEqMatcher(FloatType rhs, bool nan_eq_nan, FloatType max_abs_error) :
rhs_(rhs), nan_eq_nan_(nan_eq_nan), max_abs_error_(max_abs_error) {
GTEST_CHECK_(max_abs_error >= 0)
<< ", where max_abs_error is" << max_abs_error;
}
// Implements floating point equality matcher as a Matcher<T>.
template <typename T>
class Impl : public MatcherInterface<T> {
public:
Impl(FloatType rhs, bool nan_eq_nan, FloatType max_abs_error) :
rhs_(rhs), nan_eq_nan_(nan_eq_nan), max_abs_error_(max_abs_error) {}
virtual bool MatchAndExplain(T value,
MatchResultListener* /* listener */) const {
const FloatingPoint<FloatType> lhs(value), rhs(rhs_);
// Compares NaNs first, if nan_eq_nan_ is true.
if (lhs.is_nan() || rhs.is_nan()) {
if (lhs.is_nan() && rhs.is_nan()) {
return nan_eq_nan_;
}
// One is nan; the other is not nan.
return false;
}
if (HasMaxAbsError()) {
// We perform an equality check so that inf will match inf, regardless
// of error bounds. If the result of value - rhs_ would result in
// overflow or if either value is inf, the default result is infinity,
// which should only match if max_abs_error_ is also infinity.
return value == rhs_ || fabs(value - rhs_) <= max_abs_error_;
} else {
return lhs.AlmostEquals(rhs);
}
}
virtual void DescribeTo(::std::ostream* os) const {
// os->precision() returns the previously set precision, which we
// store to restore the ostream to its original configuration
// after outputting.
const ::std::streamsize old_precision = os->precision(
::std::numeric_limits<FloatType>::digits10 + 2);
if (FloatingPoint<FloatType>(rhs_).is_nan()) {
if (nan_eq_nan_) {
*os << "is NaN";
} else {
*os << "never matches";
}
} else {
*os << "is approximately " << rhs_;
if (HasMaxAbsError()) {
*os << " (absolute error <= " << max_abs_error_ << ")";
}
}
os->precision(old_precision);
}
virtual void DescribeNegationTo(::std::ostream* os) const {
// As before, get original precision.
const ::std::streamsize old_precision = os->precision(
::std::numeric_limits<FloatType>::digits10 + 2);
if (FloatingPoint<FloatType>(rhs_).is_nan()) {
if (nan_eq_nan_) {
*os << "isn't NaN";
} else {
*os << "is anything";
}
} else {
*os << "isn't approximately " << rhs_;
if (HasMaxAbsError()) {
*os << " (absolute error > " << max_abs_error_ << ")";
}
}
// Restore original precision.
os->precision(old_precision);
}
private:
bool HasMaxAbsError() const {
return max_abs_error_ >= 0;
}
const FloatType rhs_;
const bool nan_eq_nan_;
// max_abs_error will be used for value comparison when >= 0.
const FloatType max_abs_error_;
GTEST_DISALLOW_ASSIGN_(Impl);
};
// The following 3 type conversion operators allow FloatEq(rhs) and
// NanSensitiveFloatEq(rhs) to be used as a Matcher<float>, a
// Matcher<const float&>, or a Matcher<float&>, but nothing else.
// (While Google's C++ coding style doesn't allow arguments passed
// by non-const reference, we may see them in code not conforming to
// the style. Therefore Google Mock needs to support them.)
operator Matcher<FloatType>() const {
return MakeMatcher(new Impl<FloatType>(rhs_, nan_eq_nan_, max_abs_error_));
}
operator Matcher<const FloatType&>() const {
return MakeMatcher(
new Impl<const FloatType&>(rhs_, nan_eq_nan_, max_abs_error_));
}
operator Matcher<FloatType&>() const {
return MakeMatcher(new Impl<FloatType&>(rhs_, nan_eq_nan_, max_abs_error_));
}
private:
const FloatType rhs_;
const bool nan_eq_nan_;
// max_abs_error will be used for value comparison when >= 0.
const FloatType max_abs_error_;
GTEST_DISALLOW_ASSIGN_(FloatingEqMatcher);
};
// Implements the Pointee(m) matcher for matching a pointer whose
// pointee matches matcher m. The pointer can be either raw or smart.
template <typename InnerMatcher>
class PointeeMatcher {
public:
explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
// This type conversion operator template allows Pointee(m) to be
// used as a matcher for any pointer type whose pointee type is
// compatible with the inner matcher, where type Pointer can be
// either a raw pointer or a smart pointer.
//
// The reason we do this instead of relying on
// MakePolymorphicMatcher() is that the latter is not flexible
// enough for implementing the DescribeTo() method of Pointee().
template <typename Pointer>
operator Matcher<Pointer>() const {
return MakeMatcher(new Impl<Pointer>(matcher_));
}
private:
// The monomorphic implementation that works for a particular pointer type.
template <typename Pointer>
class Impl : public MatcherInterface<Pointer> {
public:
typedef typename PointeeOf<GTEST_REMOVE_CONST_( // NOLINT
GTEST_REMOVE_REFERENCE_(Pointer))>::type Pointee;
explicit Impl(const InnerMatcher& matcher)
: matcher_(MatcherCast<const Pointee&>(matcher)) {}
virtual void DescribeTo(::std::ostream* os) const {
*os << "points to a value that ";
matcher_.DescribeTo(os);
}
virtual void DescribeNegationTo(::std::ostream* os) const {
*os << "does not point to a value that ";
matcher_.DescribeTo(os);
}
virtual bool MatchAndExplain(Pointer pointer,
MatchResultListener* listener) const {
if (GetRawPointer(pointer) == NULL)
return false;
*listener << "which points to ";
return MatchPrintAndExplain(*pointer, matcher_, listener);
}
private:
const Matcher<const Pointee&> matcher_;
GTEST_DISALLOW_ASSIGN_(Impl);
};
const InnerMatcher matcher_;
GTEST_DISALLOW_ASSIGN_(PointeeMatcher);
};
// Implements the Field() matcher for matching a field (i.e. member
// variable) of an object.
template <typename Class, typename FieldType>
class FieldMatcher {
public:
FieldMatcher(FieldType Class::*field,
const Matcher<const FieldType&>& matcher)
: field_(field), matcher_(matcher) {}
void DescribeTo(::std::ostream* os) const {
*os << "is an object whose given field ";
matcher_.DescribeTo(os);
}
void DescribeNegationTo(::std::ostream* os) const {
*os << "is an object whose given field ";
matcher_.DescribeNegationTo(os);
}
template <typename T>
bool MatchAndExplain(const T& value, MatchResultListener* listener) const {
return MatchAndExplainImpl(
typename ::testing::internal::
is_pointer<GTEST_REMOVE_CONST_(T)>::type(),
value, listener);
}
private:
// The first argument of MatchAndExplainImpl() is needed to help
// Symbian's C++ compiler choose which overload to use. Its type is
// true_type iff the Field() matcher is used to match a pointer.
bool MatchAndExplainImpl(false_type /* is_not_pointer */, const Class& obj,
MatchResultListener* listener) const {
*listener << "whose given field is ";
return MatchPrintAndExplain(obj.*field_, matcher_, listener);
}
bool MatchAndExplainImpl(true_type /* is_pointer */, const Class* p,
MatchResultListener* listener) const {
if (p == NULL)
return false;
*listener << "which points to an object ";
// Since *p has a field, it must be a class/struct/union type and
// thus cannot be a pointer. Therefore we pass false_type() as
// the first argument.
return MatchAndExplainImpl(false_type(), *p, listener);
}
const FieldType Class::*field_;
const Matcher<const FieldType&> matcher_;
GTEST_DISALLOW_ASSIGN_(FieldMatcher);
};
// Implements the Property() matcher for matching a property
// (i.e. return value of a getter method) of an object.
template <typename Class, typename PropertyType>
class PropertyMatcher {
public:
// The property may have a reference type, so 'const PropertyType&'
// may cause double references and fail to compile. That's why we
// need GTEST_REFERENCE_TO_CONST, which works regardless of
// PropertyType being a reference or not.
typedef GTEST_REFERENCE_TO_CONST_(PropertyType) RefToConstProperty;
PropertyMatcher(PropertyType (Class::*property)() const,
const Matcher<RefToConstProperty>& matcher)
: property_(property), matcher_(matcher) {}
void DescribeTo(::std::ostream* os) const {
*os << "is an object whose given property ";
matcher_.DescribeTo(os);
}
void DescribeNegationTo(::std::ostream* os) const {
*os << "is an object whose given property ";
matcher_.DescribeNegationTo(os);
}
template <typename T>
bool MatchAndExplain(const T&value, MatchResultListener* listener) const {
return MatchAndExplainImpl(
typename ::testing::internal::
is_pointer<GTEST_REMOVE_CONST_(T)>::type(),
value, listener);
}
private:
// The first argument of MatchAndExplainImpl() is needed to help
// Symbian's C++ compiler choose which overload to use. Its type is
// true_type iff the Property() matcher is used to match a pointer.
bool MatchAndExplainImpl(false_type /* is_not_pointer */, const Class& obj,
MatchResultListener* listener) const {
*listener << "whose given property is ";
// Cannot pass the return value (for example, int) to MatchPrintAndExplain,
// which takes a non-const reference as argument.
RefToConstProperty result = (obj.*property_)();
return MatchPrintAndExplain(result, matcher_, listener);
}
bool MatchAndExplainImpl(true_type /* is_pointer */, const Class* p,
MatchResultListener* listener) const {
if (p == NULL)
return false;
*listener << "which points to an object ";
// Since *p has a property method, it must be a class/struct/union
// type and thus cannot be a pointer. Therefore we pass
// false_type() as the first argument.
return MatchAndExplainImpl(false_type(), *p, listener);
}
PropertyType (Class::*property_)() const;
const Matcher<RefToConstProperty> matcher_;
GTEST_DISALLOW_ASSIGN_(PropertyMatcher);
};
// Type traits specifying various features of different functors for ResultOf.
// The default template specifies features for functor objects.
// Functor classes have to typedef argument_type and result_type
// to be compatible with ResultOf.
template <typename Functor>
struct CallableTraits {
typedef typename Functor::result_type ResultType;
typedef Functor StorageType;
static void CheckIsValid(Functor /* functor */) {}
template <typename T>
static ResultType Invoke(Functor f, T arg) { return f(arg); }
};
// Specialization for function pointers.
template <typename ArgType, typename ResType>
struct CallableTraits<ResType(*)(ArgType)> {
typedef ResType ResultType;
typedef ResType(*StorageType)(ArgType);
static void CheckIsValid(ResType(*f)(ArgType)) {
GTEST_CHECK_(f != NULL)
<< "NULL function pointer is passed into ResultOf().";
}
template <typename T>
static ResType Invoke(ResType(*f)(ArgType), T arg) {
return (*f)(arg);
}
};
// Implements the ResultOf() matcher for matching a return value of a
// unary function of an object.
template <typename Callable>
class ResultOfMatcher {
public:
typedef typename CallableTraits<Callable>::ResultType ResultType;
ResultOfMatcher(Callable callable, const Matcher<ResultType>& matcher)
: callable_(callable), matcher_(matcher) {
CallableTraits<Callable>::CheckIsValid(callable_);
}
template <typename T>
operator Matcher<T>() const {
return Matcher<T>(new Impl<T>(callable_, matcher_));
}
private:
typedef typename CallableTraits<Callable>::StorageType CallableStorageType;
template <typename T>
class Impl : public MatcherInterface<T> {
public:
Impl(CallableStorageType callable, const Matcher<ResultType>& matcher)
: callable_(callable), matcher_(matcher) {}
virtual void DescribeTo(::std::ostream* os) const {
*os << "is mapped by the given callable to a value that ";
matcher_.DescribeTo(os);
}
virtual void DescribeNegationTo(::std::ostream* os) const {
*os << "is mapped by the given callable to a value that ";
matcher_.DescribeNegationTo(os);
}
virtual bool MatchAndExplain(T obj, MatchResultListener* listener) const {
*listener << "which is mapped by the given callable to ";
// Cannot pass the return value (for example, int) to
// MatchPrintAndExplain, which takes a non-const reference as argument.
ResultType result =
CallableTraits<Callable>::template Invoke<T>(callable_, obj);
return MatchPrintAndExplain(result, matcher_, listener);
}
private:
// Functors often define operator() as non-const method even though
// they are actualy stateless. But we need to use them even when
// 'this' is a const pointer. It's the user's responsibility not to
// use stateful callables with ResultOf(), which does't guarantee
// how many times the callable will be invoked.
mutable CallableStorageType callable_;
const Matcher<ResultType> matcher_;
GTEST_DISALLOW_ASSIGN_(Impl);
}; // class Impl
const CallableStorageType callable_;
const Matcher<ResultType> matcher_;
GTEST_DISALLOW_ASSIGN_(ResultOfMatcher);
};
// Implements a matcher that checks the size of an STL-style container.
template <typename SizeMatcher>
class SizeIsMatcher {
public:
explicit SizeIsMatcher(const SizeMatcher& size_matcher)
: size_matcher_(size_matcher) {
}
template <typename Container>
operator Matcher<Container>() const {
return MakeMatcher(new Impl<Container>(size_matcher_));
}
template <typename Container>
class Impl : public MatcherInterface<Container> {
public:
typedef internal::StlContainerView<
GTEST_REMOVE_REFERENCE_AND_CONST_(Container)> ContainerView;
typedef typename ContainerView::type::size_type SizeType;
explicit Impl(const SizeMatcher& size_matcher)
: size_matcher_(MatcherCast<SizeType>(size_matcher)) {}
virtual void DescribeTo(::std::ostream* os) const {
*os << "size ";
size_matcher_.DescribeTo(os);
}
virtual void DescribeNegationTo(::std::ostream* os) const {
*os << "size ";
size_matcher_.DescribeNegationTo(os);
}
virtual bool MatchAndExplain(Container container,
MatchResultListener* listener) const {
SizeType size = container.size();
StringMatchResultListener size_listener;
const bool result = size_matcher_.MatchAndExplain(size, &size_listener);
*listener
<< "whose size " << size << (result ? " matches" : " doesn't match");
PrintIfNotEmpty(size_listener.str(), listener->stream());
return result;
}
private:
const Matcher<SizeType> size_matcher_;
GTEST_DISALLOW_ASSIGN_(Impl);
};
private:
const SizeMatcher size_matcher_;
GTEST_DISALLOW_ASSIGN_(SizeIsMatcher);
};
// Implements an equality matcher for any STL-style container whose elements
// support ==. This matcher is like Eq(), but its failure explanations provide
// more detailed information that is useful when the container is used as a set.
// The failure message reports elements that are in one of the operands but not
// the other. The failure messages do not report duplicate or out-of-order
// elements in the containers (which don't properly matter to sets, but can
// occur if the containers are vectors or lists, for example).
//
// Uses the container's const_iterator, value_type, operator ==,
// begin(), and end().
template <typename Container>
class ContainerEqMatcher {
public:
typedef internal::StlContainerView<Container> View;
typedef typename View::type StlContainer;
typedef typename View::const_reference StlContainerReference;
// We make a copy of rhs in case the elements in it are modified
// after this matcher is created.
explicit ContainerEqMatcher(const Container& rhs) : rhs_(View::Copy(rhs)) {
// Makes sure the user doesn't instantiate this class template
// with a const or reference type.
(void)testing::StaticAssertTypeEq<Container,
GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>();
}
void DescribeTo(::std::ostream* os) const {
*os << "equals ";
UniversalPrint(rhs_, os);
}
void DescribeNegationTo(::std::ostream* os) const {
*os << "does not equal ";
UniversalPrint(rhs_, os);
}
template <typename LhsContainer>
bool MatchAndExplain(const LhsContainer& lhs,
MatchResultListener* listener) const {
// GTEST_REMOVE_CONST_() is needed to work around an MSVC 8.0 bug
// that causes LhsContainer to be a const type sometimes.
typedef internal::StlContainerView<GTEST_REMOVE_CONST_(LhsContainer)>
LhsView;
typedef typename LhsView::type LhsStlContainer;
StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
if (lhs_stl_container == rhs_)
return true;
::std::ostream* const os = listener->stream();
if (os != NULL) {
// Something is different. Check for extra values first.
bool printed_header = false;
for (typename LhsStlContainer::const_iterator it =
lhs_stl_container.begin();
it != lhs_stl_container.end(); ++it) {
if (internal::ArrayAwareFind(rhs_.begin(), rhs_.end(), *it) ==
rhs_.end()) {
if (printed_header) {
*os << ", ";
} else {
*os << "which has these unexpected elements: ";
printed_header = true;
}
UniversalPrint(*it, os);
}
}
// Now check for missing values.
bool printed_header2 = false;
for (typename StlContainer::const_iterator it = rhs_.begin();
it != rhs_.end(); ++it) {
if (internal::ArrayAwareFind(
lhs_stl_container.begin(), lhs_stl_container.end(), *it) ==
lhs_stl_container.end()) {
if (printed_header2) {
*os << ", ";
} else {
*os << (printed_header ? ",\nand" : "which")
<< " doesn't have these expected elements: ";
printed_header2 = true;
}
UniversalPrint(*it, os);
}
}
}
return false;
}
private:
const StlContainer rhs_;
GTEST_DISALLOW_ASSIGN_(ContainerEqMatcher);
};
// A comparator functor that uses the < operator to compare two values.
struct LessComparator {
template <typename T, typename U>
bool operator()(const T& lhs, const U& rhs) const { return lhs < rhs; }
};
// Implements WhenSortedBy(comparator, container_matcher).
template <typename Comparator, typename ContainerMatcher>
class WhenSortedByMatcher {
public:
WhenSortedByMatcher(const Comparator& comparator,
const ContainerMatcher& matcher)
: comparator_(comparator), matcher_(matcher) {}
template <typename LhsContainer>
operator Matcher<LhsContainer>() const {
return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_));
}
template <typename LhsContainer>
class Impl : public MatcherInterface<LhsContainer> {
public:
typedef internal::StlContainerView<
GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView;
typedef typename LhsView::type LhsStlContainer;
typedef typename LhsView::const_reference LhsStlContainerReference;
// Transforms std::pair<const Key, Value> into std::pair<Key, Value>
// so that we can match associative containers.
typedef typename RemoveConstFromKey<
typename LhsStlContainer::value_type>::type LhsValue;
Impl(const Comparator& comparator, const ContainerMatcher& matcher)
: comparator_(comparator), matcher_(matcher) {}
virtual void DescribeTo(::std::ostream* os) const {
*os << "(when sorted) ";
matcher_.DescribeTo(os);
}
virtual void DescribeNegationTo(::std::ostream* os) const {
*os << "(when sorted) ";
matcher_.DescribeNegationTo(os);
}
virtual bool MatchAndExplain(LhsContainer lhs,
MatchResultListener* listener) const {
LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
::std::vector<LhsValue> sorted_container(lhs_stl_container.begin(),
lhs_stl_container.end());
::std::sort(
sorted_container.begin(), sorted_container.end(), comparator_);
if (!listener->IsInterested()) {
// If the listener is not interested, we do not need to
// construct the inner explanation.
return matcher_.Matches(sorted_container);
}
*listener << "which is ";
UniversalPrint(sorted_container, listener->stream());
*listener << " when sorted";
StringMatchResultListener inner_listener;
const bool match = matcher_.MatchAndExplain(sorted_container,
&inner_listener);
PrintIfNotEmpty(inner_listener.str(), listener->stream());
return match;
}
private:
const Comparator comparator_;
const Matcher<const ::std::vector<LhsValue>&> matcher_;
GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl);
};
private:
const Comparator comparator_;
const ContainerMatcher matcher_;
GTEST_DISALLOW_ASSIGN_(WhenSortedByMatcher);
};
// Implements Pointwise(tuple_matcher, rhs_container). tuple_matcher
// must be able to be safely cast to Matcher<tuple<const T1&, const
// T2&> >, where T1 and T2 are the types of elements in the LHS
// container and the RHS container respectively.
template <typename TupleMatcher, typename RhsContainer>
class PointwiseMatcher {
public:
typedef internal::StlContainerView<RhsContainer> RhsView;
typedef typename RhsView::type RhsStlContainer;
typedef typename RhsStlContainer::value_type RhsValue;
// Like ContainerEq, we make a copy of rhs in case the elements in
// it are modified after this matcher is created.
PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs)
: tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) {
// Makes sure the user doesn't instantiate this class template
// with a const or reference type.
(void)testing::StaticAssertTypeEq<RhsContainer,
GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>();
}
template <typename LhsContainer>
operator Matcher<LhsContainer>() const {
return MakeMatcher(new Impl<LhsContainer>(tuple_matcher_, rhs_));
}
template <typename LhsContainer>
class Impl : public MatcherInterface<LhsContainer> {
public:
typedef internal::StlContainerView<
GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView;
typedef typename LhsView::type LhsStlContainer;
typedef typename LhsView::const_reference LhsStlContainerReference;
typedef typename LhsStlContainer::value_type LhsValue;
// We pass the LHS value and the RHS value to the inner matcher by
// reference, as they may be expensive to copy. We must use tuple
// instead of pair here, as a pair cannot hold references (C++ 98,
// 20.2.2 [lib.pairs]).
typedef ::std::tr1::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg;
Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs)
// mono_tuple_matcher_ holds a monomorphic version of the tuple matcher.
: mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)),
rhs_(rhs) {}
virtual void DescribeTo(::std::ostream* os) const {
*os << "contains " << rhs_.size()
<< " values, where each value and its corresponding value in ";
UniversalPrinter<RhsStlContainer>::Print(rhs_, os);
*os << " ";
mono_tuple_matcher_.DescribeTo(os);
}
virtual void DescribeNegationTo(::std::ostream* os) const {
*os << "doesn't contain exactly " << rhs_.size()
<< " values, or contains a value x at some index i"
<< " where x and the i-th value of ";
UniversalPrint(rhs_, os);
*os << " ";
mono_tuple_matcher_.DescribeNegationTo(os);
}
virtual bool MatchAndExplain(LhsContainer lhs,
MatchResultListener* listener) const {
LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
const size_t actual_size = lhs_stl_container.size();
if (actual_size != rhs_.size()) {
*listener << "which contains " << actual_size << " values";
return false;
}
typename LhsStlContainer::const_iterator left = lhs_stl_container.begin();
typename RhsStlContainer::const_iterator right = rhs_.begin();
for (size_t i = 0; i != actual_size; ++i, ++left, ++right) {
const InnerMatcherArg value_pair(*left, *right);
if (listener->IsInterested()) {
StringMatchResultListener inner_listener;
if (!mono_tuple_matcher_.MatchAndExplain(
value_pair, &inner_listener)) {
*listener << "where the value pair (";
UniversalPrint(*left, listener->stream());
*listener << ", ";
UniversalPrint(*right, listener->stream());
*listener << ") at index #" << i << " don't match";
PrintIfNotEmpty(inner_listener.str(), listener->stream());
return false;
}
} else {
if (!mono_tuple_matcher_.Matches(value_pair))
return false;
}
}
return true;
}
private:
const Matcher<InnerMatcherArg> mono_tuple_matcher_;
const RhsStlContainer rhs_;
GTEST_DISALLOW_ASSIGN_(Impl);
};
private:
const TupleMatcher tuple_matcher_;
const RhsStlContainer rhs_;
GTEST_DISALLOW_ASSIGN_(PointwiseMatcher);
};
// Holds the logic common to ContainsMatcherImpl and EachMatcherImpl.
template <typename Container>
class QuantifierMatcherImpl : public MatcherInterface<Container> {
public:
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
typedef StlContainerView<RawContainer> View;
typedef typename View::type StlContainer;
typedef typename View::const_reference StlContainerReference;
typedef typename StlContainer::value_type Element;
template <typename InnerMatcher>
explicit QuantifierMatcherImpl(InnerMatcher inner_matcher)
: inner_matcher_(
testing::SafeMatcherCast<const Element&>(inner_matcher)) {}
// Checks whether:
// * All elements in the container match, if all_elements_should_match.
// * Any element in the container matches, if !all_elements_should_match.
bool MatchAndExplainImpl(bool all_elements_should_match,
Container container,
MatchResultListener* listener) const {
StlContainerReference stl_container = View::ConstReference(container);
size_t i = 0;
for (typename StlContainer::const_iterator it = stl_container.begin();
it != stl_container.end(); ++it, ++i) {
StringMatchResultListener inner_listener;
const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener);
if (matches != all_elements_should_match) {
*listener << "whose element #" << i
<< (matches ? " matches" : " doesn't match");
PrintIfNotEmpty(inner_listener.str(), listener->stream());
return !all_elements_should_match;
}
}
return all_elements_should_match;
}
protected:
const Matcher<const Element&> inner_matcher_;
GTEST_DISALLOW_ASSIGN_(QuantifierMatcherImpl);
};
// Implements Contains(element_matcher) for the given argument type Container.
// Symmetric to EachMatcherImpl.
template <typename Container>
class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> {
public:
template <typename InnerMatcher>
explicit ContainsMatcherImpl(InnerMatcher inner_matcher)
: QuantifierMatcherImpl<Container>(inner_matcher) {}
// Describes what this matcher does.
virtual void DescribeTo(::std::ostream* os) const {
*os << "contains at least one element that ";
this->inner_matcher_.DescribeTo(os);
}
virtual void DescribeNegationTo(::std::ostream* os) const {
*os << "doesn't contain any element that ";
this->inner_matcher_.DescribeTo(os);
}
virtual bool MatchAndExplain(Container container,
MatchResultListener* listener) const {
return this->MatchAndExplainImpl(false, container, listener);
}
private:
GTEST_DISALLOW_ASSIGN_(ContainsMatcherImpl);
};
// Implements Each(element_matcher) for the given argument type Container.
// Symmetric to ContainsMatcherImpl.
template <typename Container>
class EachMatcherImpl : public QuantifierMatcherImpl<Container> {
public:
template <typename InnerMatcher>
explicit EachMatcherImpl(InnerMatcher inner_matcher)
: QuantifierMatcherImpl<Container>(inner_matcher) {}
// Describes what this matcher does.
virtual void DescribeTo(::std::ostream* os) const {
*os << "only contains elements that ";
this->inner_matcher_.DescribeTo(os);
}
virtual void DescribeNegationTo(::std::ostream* os) const {
*os << "contains some element that ";
this->inner_matcher_.DescribeNegationTo(os);
}
virtual bool MatchAndExplain(Container container,
MatchResultListener* listener) const {
return this->MatchAndExplainImpl(true, container, listener);
}
private:
GTEST_DISALLOW_ASSIGN_(EachMatcherImpl);
};
// Implements polymorphic Contains(element_matcher).
template <typename M>
class ContainsMatcher {
public:
explicit ContainsMatcher(M m) : inner_matcher_(m) {}
template <typename Container>
operator Matcher<Container>() const {
return MakeMatcher(new ContainsMatcherImpl<Container>(inner_matcher_));
}
private:
const M inner_matcher_;
GTEST_DISALLOW_ASSIGN_(ContainsMatcher);
};
// Implements polymorphic Each(element_matcher).
template <typename M>
class EachMatcher {
public:
explicit EachMatcher(M m) : inner_matcher_(m) {}
template <typename Container>
operator Matcher<Container>() const {
return MakeMatcher(new EachMatcherImpl<Container>(inner_matcher_));
}
private:
const M inner_matcher_;
GTEST_DISALLOW_ASSIGN_(EachMatcher);
};
// Implements Key(inner_matcher) for the given argument pair type.
// Key(inner_matcher) matches an std::pair whose 'first' field matches
// inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an
// std::map that contains at least one element whose key is >= 5.
template <typename PairType>
class KeyMatcherImpl : public MatcherInterface<PairType> {
public:
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
typedef typename RawPairType::first_type KeyType;
template <typename InnerMatcher>
explicit KeyMatcherImpl(InnerMatcher inner_matcher)
: inner_matcher_(
testing::SafeMatcherCast<const KeyType&>(inner_matcher)) {
}
// Returns true iff 'key_value.first' (the key) matches the inner matcher.
virtual bool MatchAndExplain(PairType key_value,
MatchResultListener* listener) const {
StringMatchResultListener inner_listener;
const bool match = inner_matcher_.MatchAndExplain(key_value.first,
&inner_listener);
const internal::string explanation = inner_listener.str();
if (explanation != "") {
*listener << "whose first field is a value " << explanation;
}
return match;
}
// Describes what this matcher does.
virtual void DescribeTo(::std::ostream* os) const {
*os << "has a key that ";
inner_matcher_.DescribeTo(os);
}
// Describes what the negation of this matcher does.
virtual void DescribeNegationTo(::std::ostream* os) const {
*os << "doesn't have a key that ";
inner_matcher_.DescribeTo(os);
}
private:
const Matcher<const KeyType&> inner_matcher_;
GTEST_DISALLOW_ASSIGN_(KeyMatcherImpl);
};
// Implements polymorphic Key(matcher_for_key).
template <typename M>
class KeyMatcher {
public:
explicit KeyMatcher(M m) : matcher_for_key_(m) {}
template <typename PairType>
operator Matcher<PairType>() const {
return MakeMatcher(new KeyMatcherImpl<PairType>(matcher_for_key_));
}
private:
const M matcher_for_key_;
GTEST_DISALLOW_ASSIGN_(KeyMatcher);
};
// Implements Pair(first_matcher, second_matcher) for the given argument pair
// type with its two matchers. See Pair() function below.
template <typename PairType>
class PairMatcherImpl : public MatcherInterface<PairType> {
public:
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
typedef typename RawPairType::first_type FirstType;
typedef typename RawPairType::second_type SecondType;
template <typename FirstMatcher, typename SecondMatcher>
PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher)
: first_matcher_(
testing::SafeMatcherCast<const FirstType&>(first_matcher)),
second_matcher_(
testing::SafeMatcherCast<const SecondType&>(second_matcher)) {
}
// Describes what this matcher does.
virtual void DescribeTo(::std::ostream* os) const {
*os << "has a first field that ";
first_matcher_.DescribeTo(os);
*os << ", and has a second field that ";
second_matcher_.DescribeTo(os);
}
// Describes what the negation of this matcher does.
virtual void DescribeNegationTo(::std::ostream* os) const {
*os << "has a first field that ";
first_matcher_.DescribeNegationTo(os);
*os << ", or has a second field that ";
second_matcher_.DescribeNegationTo(os);
}
// Returns true iff 'a_pair.first' matches first_matcher and 'a_pair.second'
// matches second_matcher.
virtual bool MatchAndExplain(PairType a_pair,
MatchResultListener* listener) const {
if (!listener->IsInterested()) {
// If the listener is not interested, we don't need to construct the
// explanation.
return first_matcher_.Matches(a_pair.first) &&
second_matcher_.Matches(a_pair.second);
}
StringMatchResultListener first_inner_listener;
if (!first_matcher_.MatchAndExplain(a_pair.first,
&first_inner_listener)) {
*listener << "whose first field does not match";
PrintIfNotEmpty(first_inner_listener.str(), listener->stream());
return false;
}
StringMatchResultListener second_inner_listener;
if (!second_matcher_.MatchAndExplain(a_pair.second,
&second_inner_listener)) {
*listener << "whose second field does not match";
PrintIfNotEmpty(second_inner_listener.str(), listener->stream());
return false;
}
ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(),
listener);
return true;
}
private:
void ExplainSuccess(const internal::string& first_explanation,
const internal::string& second_explanation,
MatchResultListener* listener) const {
*listener << "whose both fields match";
if (first_explanation != "") {
*listener << ", where the first field is a value " << first_explanation;
}
if (second_explanation != "") {
*listener << ", ";
if (first_explanation != "") {
*listener << "and ";
} else {
*listener << "where ";
}
*listener << "the second field is a value " << second_explanation;
}
}
const Matcher<const FirstType&> first_matcher_;
const Matcher<const SecondType&> second_matcher_;
GTEST_DISALLOW_ASSIGN_(PairMatcherImpl);
};
// Implements polymorphic Pair(first_matcher, second_matcher).
template <typename FirstMatcher, typename SecondMatcher>
class PairMatcher {
public:
PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher)
: first_matcher_(first_matcher), second_matcher_(second_matcher) {}
template <typename PairType>
operator Matcher<PairType> () const {
return MakeMatcher(
new PairMatcherImpl<PairType>(
first_matcher_, second_matcher_));
}
private:
const FirstMatcher first_matcher_;
const SecondMatcher second_matcher_;
GTEST_DISALLOW_ASSIGN_(PairMatcher);
};
// Implements ElementsAre() and ElementsAreArray().
template <typename Container>
class ElementsAreMatcherImpl : public MatcherInterface<Container> {
public:
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
typedef internal::StlContainerView<RawContainer> View;
typedef typename View::type StlContainer;
typedef typename View::const_reference StlContainerReference;
typedef typename StlContainer::value_type Element;
// Constructs the matcher from a sequence of element values or
// element matchers.
template <typename InputIter>
ElementsAreMatcherImpl(InputIter first, InputIter last) {
while (first != last) {
matchers_.push_back(MatcherCast<const Element&>(*first++));
}
}
// Describes what this matcher does.
virtual void DescribeTo(::std::ostream* os) const {
if (count() == 0) {
*os << "is empty";
} else if (count() == 1) {
*os << "has 1 element that ";
matchers_[0].DescribeTo(os);
} else {
*os << "has " << Elements(count()) << " where\n";
for (size_t i = 0; i != count(); ++i) {
*os << "element #" << i << " ";
matchers_[i].DescribeTo(os);
if (i + 1 < count()) {
*os << ",\n";
}
}
}
}
// Describes what the negation of this matcher does.
virtual void DescribeNegationTo(::std::ostream* os) const {
if (count() == 0) {
*os << "isn't empty";
return;
}
*os << "doesn't have " << Elements(count()) << ", or\n";
for (size_t i = 0; i != count(); ++i) {
*os << "element #" << i << " ";
matchers_[i].DescribeNegationTo(os);
if (i + 1 < count()) {
*os << ", or\n";
}
}
}
virtual bool MatchAndExplain(Container container,
MatchResultListener* listener) const {
// To work with stream-like "containers", we must only walk
// through the elements in one pass.
const bool listener_interested = listener->IsInterested();
// explanations[i] is the explanation of the element at index i.
::std::vector<internal::string> explanations(count());
StlContainerReference stl_container = View::ConstReference(container);
typename StlContainer::const_iterator it = stl_container.begin();
size_t exam_pos = 0;
bool mismatch_found = false; // Have we found a mismatched element yet?
// Go through the elements and matchers in pairs, until we reach
// the end of either the elements or the matchers, or until we find a
// mismatch.
for (; it != stl_container.end() && exam_pos != count(); ++it, ++exam_pos) {
bool match; // Does the current element match the current matcher?
if (listener_interested) {
StringMatchResultListener s;
match = matchers_[exam_pos].MatchAndExplain(*it, &s);
explanations[exam_pos] = s.str();
} else {
match = matchers_[exam_pos].Matches(*it);
}
if (!match) {
mismatch_found = true;
break;
}
}
// If mismatch_found is true, 'exam_pos' is the index of the mismatch.
// Find how many elements the actual container has. We avoid
// calling size() s.t. this code works for stream-like "containers"
// that don't define size().
size_t actual_count = exam_pos;
for (; it != stl_container.end(); ++it) {
++actual_count;
}
if (actual_count != count()) {
// The element count doesn't match. If the container is empty,
// there's no need to explain anything as Google Mock already
// prints the empty container. Otherwise we just need to show
// how many elements there actually are.
if (listener_interested && (actual_count != 0)) {
*listener << "which has " << Elements(actual_count);
}
return false;
}
if (mismatch_found) {
// The element count matches, but the exam_pos-th element doesn't match.
if (listener_interested) {
*listener << "whose element #" << exam_pos << " doesn't match";
PrintIfNotEmpty(explanations[exam_pos], listener->stream());
}
return false;
}
// Every element matches its expectation. We need to explain why
// (the obvious ones can be skipped).
if (listener_interested) {
bool reason_printed = false;
for (size_t i = 0; i != count(); ++i) {
const internal::string& s = explanations[i];
if (!s.empty()) {
if (reason_printed) {
*listener << ",\nand ";
}
*listener << "whose element #" << i << " matches, " << s;
reason_printed = true;
}
}
}
return true;
}
private:
static Message Elements(size_t count) {
return Message() << count << (count == 1 ? " element" : " elements");
}
size_t count() const { return matchers_.size(); }
::std::vector<Matcher<const Element&> > matchers_;
GTEST_DISALLOW_ASSIGN_(ElementsAreMatcherImpl);
};
// Connectivity matrix of (elements X matchers), in element-major order.
// Initially, there are no edges.
// Use NextGraph() to iterate over all possible edge configurations.
// Use Randomize() to generate a random edge configuration.
class GTEST_API_ MatchMatrix {
public:
MatchMatrix(size_t num_elements, size_t num_matchers)
: num_elements_(num_elements),
num_matchers_(num_matchers),
matched_(num_elements_* num_matchers_, 0) {
}
size_t LhsSize() const { return num_elements_; }
size_t RhsSize() const { return num_matchers_; }
bool HasEdge(size_t ilhs, size_t irhs) const {
return matched_[SpaceIndex(ilhs, irhs)] == 1;
}
void SetEdge(size_t ilhs, size_t irhs, bool b) {
matched_[SpaceIndex(ilhs, irhs)] = b ? 1 : 0;
}
// Treating the connectivity matrix as a (LhsSize()*RhsSize())-bit number,
// adds 1 to that number; returns false if incrementing the graph left it
// empty.
bool NextGraph();
void Randomize();
string DebugString() const;
private:
size_t SpaceIndex(size_t ilhs, size_t irhs) const {
return ilhs * num_matchers_ + irhs;
}
size_t num_elements_;
size_t num_matchers_;
// Each element is a char interpreted as bool. They are stored as a
// flattened array in lhs-major order, use 'SpaceIndex()' to translate
// a (ilhs, irhs) matrix coordinate into an offset.
::std::vector<char> matched_;
};
typedef ::std::pair<size_t, size_t> ElementMatcherPair;
typedef ::std::vector<ElementMatcherPair> ElementMatcherPairs;
// Returns a maximum bipartite matching for the specified graph 'g'.
// The matching is represented as a vector of {element, matcher} pairs.
GTEST_API_ ElementMatcherPairs
FindMaxBipartiteMatching(const MatchMatrix& g);
GTEST_API_ bool FindPairing(const MatchMatrix& matrix,
MatchResultListener* listener);
// Untyped base class for implementing UnorderedElementsAre. By
// putting logic that's not specific to the element type here, we
// reduce binary bloat and increase compilation speed.
class GTEST_API_ UnorderedElementsAreMatcherImplBase {
protected:
// A vector of matcher describers, one for each element matcher.
// Does not own the describers (and thus can be used only when the
// element matchers are alive).
typedef ::std::vector<const MatcherDescriberInterface*> MatcherDescriberVec;
// Describes this UnorderedElementsAre matcher.
void DescribeToImpl(::std::ostream* os) const;
// Describes the negation of this UnorderedElementsAre matcher.
void DescribeNegationToImpl(::std::ostream* os) const;
bool VerifyAllElementsAndMatchersAreMatched(
const ::std::vector<string>& element_printouts,
const MatchMatrix& matrix,
MatchResultListener* listener) const;
MatcherDescriberVec& matcher_describers() {
return matcher_describers_;
}
static Message Elements(size_t n) {
return Message() << n << " element" << (n == 1 ? "" : "s");
}
private:
MatcherDescriberVec matcher_describers_;
GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreMatcherImplBase);
};
// Implements unordered ElementsAre and unordered ElementsAreArray.
template <typename Container>
class UnorderedElementsAreMatcherImpl
: public MatcherInterface<Container>,
public UnorderedElementsAreMatcherImplBase {
public:
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
typedef internal::StlContainerView<RawContainer> View;
typedef typename View::type StlContainer;
typedef typename View::const_reference StlContainerReference;
typedef typename StlContainer::const_iterator StlContainerConstIterator;
typedef typename StlContainer::value_type Element;
// Constructs the matcher from a sequence of element values or
// element matchers.
template <typename InputIter>
UnorderedElementsAreMatcherImpl(InputIter first, InputIter last) {
for (; first != last; ++first) {
matchers_.push_back(MatcherCast<const Element&>(*first));
matcher_describers().push_back(matchers_.back().GetDescriber());
}
}
// Describes what this matcher does.
virtual void DescribeTo(::std::ostream* os) const {
return UnorderedElementsAreMatcherImplBase::DescribeToImpl(os);
}
// Describes what the negation of this matcher does.
virtual void DescribeNegationTo(::std::ostream* os) const {
return UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(os);
}
virtual bool MatchAndExplain(Container container,
MatchResultListener* listener) const {
StlContainerReference stl_container = View::ConstReference(container);
::std::vector<string> element_printouts;
MatchMatrix matrix = AnalyzeElements(stl_container.begin(),
stl_container.end(),
&element_printouts,
listener);
const size_t actual_count = matrix.LhsSize();
if (actual_count == 0 && matchers_.empty()) {
return true;
}
if (actual_count != matchers_.size()) {
// The element count doesn't match. If the container is empty,
// there's no need to explain anything as Google Mock already
// prints the empty container. Otherwise we just need to show
// how many elements there actually are.
if (actual_count != 0 && listener->IsInterested()) {
*listener << "which has " << Elements(actual_count);
}
return false;
}
return VerifyAllElementsAndMatchersAreMatched(element_printouts,
matrix, listener) &&
FindPairing(matrix, listener);
}
private:
typedef ::std::vector<Matcher<const Element&> > MatcherVec;
template <typename ElementIter>
MatchMatrix AnalyzeElements(ElementIter elem_first, ElementIter elem_last,
::std::vector<string>* element_printouts,
MatchResultListener* listener) const {
element_printouts->clear();
::std::vector<char> did_match;
size_t num_elements = 0;
for (; elem_first != elem_last; ++num_elements, ++elem_first) {
if (listener->IsInterested()) {
element_printouts->push_back(PrintToString(*elem_first));
}
for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
did_match.push_back(Matches(matchers_[irhs])(*elem_first));
}
}
MatchMatrix matrix(num_elements, matchers_.size());
::std::vector<char>::const_iterator did_match_iter = did_match.begin();
for (size_t ilhs = 0; ilhs != num_elements; ++ilhs) {
for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
matrix.SetEdge(ilhs, irhs, *did_match_iter++ != 0);
}
}
return matrix;
}
MatcherVec matchers_;
GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreMatcherImpl);
};
// Functor for use in TransformTuple.
// Performs MatcherCast<Target> on an input argument of any type.
template <typename Target>
struct CastAndAppendTransform {
template <typename Arg>
Matcher<Target> operator()(const Arg& a) const {
return MatcherCast<Target>(a);
}
};
// Implements UnorderedElementsAre.
template <typename MatcherTuple>
class UnorderedElementsAreMatcher {
public:
explicit UnorderedElementsAreMatcher(const MatcherTuple& args)
: matchers_(args) {}
template <typename Container>
operator Matcher<Container>() const {
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
typedef typename internal::StlContainerView<RawContainer>::type View;
typedef typename View::value_type Element;
typedef ::std::vector<Matcher<const Element&> > MatcherVec;
MatcherVec matchers;
matchers.reserve(::std::tr1::tuple_size<MatcherTuple>::value);
TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
::std::back_inserter(matchers));
return MakeMatcher(new UnorderedElementsAreMatcherImpl<Container>(
matchers.begin(), matchers.end()));
}
private:
const MatcherTuple matchers_;
GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreMatcher);
};
// Implements ElementsAre.
template <typename MatcherTuple>
class ElementsAreMatcher {
public:
explicit ElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {}
template <typename Container>
operator Matcher<Container>() const {
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
typedef typename internal::StlContainerView<RawContainer>::type View;
typedef typename View::value_type Element;
typedef ::std::vector<Matcher<const Element&> > MatcherVec;
MatcherVec matchers;
matchers.reserve(::std::tr1::tuple_size<MatcherTuple>::value);
TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
::std::back_inserter(matchers));
return MakeMatcher(new ElementsAreMatcherImpl<Container>(
matchers.begin(), matchers.end()));
}
private:
const MatcherTuple matchers_;
GTEST_DISALLOW_ASSIGN_(ElementsAreMatcher);
};
// Implements UnorderedElementsAreArray().
template <typename T>
class UnorderedElementsAreArrayMatcher {
public:
UnorderedElementsAreArrayMatcher() {}
template <typename Iter>
UnorderedElementsAreArrayMatcher(Iter first, Iter last)
: matchers_(first, last) {}
template <typename Container>
operator Matcher<Container>() const {
return MakeMatcher(
new UnorderedElementsAreMatcherImpl<Container>(matchers_.begin(),
matchers_.end()));
}
private:
::std::vector<T> matchers_;
GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreArrayMatcher);
};
// Implements ElementsAreArray().
template <typename T>
class ElementsAreArrayMatcher {
public:
template <typename Iter>
ElementsAreArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}
template <typename Container>
operator Matcher<Container>() const {
return MakeMatcher(new ElementsAreMatcherImpl<Container>(
matchers_.begin(), matchers_.end()));
}
private:
const ::std::vector<T> matchers_;
GTEST_DISALLOW_ASSIGN_(ElementsAreArrayMatcher);
};
// Returns the description for a matcher defined using the MATCHER*()
// macro where the user-supplied description string is "", if
// 'negation' is false; otherwise returns the description of the
// negation of the matcher. 'param_values' contains a list of strings
// that are the print-out of the matcher's parameters.
GTEST_API_ string FormatMatcherDescription(bool negation,
const char* matcher_name,
const Strings& param_values);
} // namespace internal
// ElementsAreArray(first, last)
// ElementsAreArray(pointer, count)
// ElementsAreArray(array)
// ElementsAreArray(vector)
// ElementsAreArray({ e1, e2, ..., en })
//
// The ElementsAreArray() functions are like ElementsAre(...), except
// that they are given a homogeneous sequence rather than taking each
// element as a function argument. The sequence can be specified as an
// array, a pointer and count, a vector, an initializer list, or an
// STL iterator range. In each of these cases, the underlying sequence
// can be either a sequence of values or a sequence of matchers.
//
// All forms of ElementsAreArray() make a copy of the input matcher sequence.
template <typename Iter>
inline internal::ElementsAreArrayMatcher<
typename ::std::iterator_traits<Iter>::value_type>
ElementsAreArray(Iter first, Iter last) {
typedef typename ::std::iterator_traits<Iter>::value_type T;
return internal::ElementsAreArrayMatcher<T>(first, last);
}
template <typename T>
inline internal::ElementsAreArrayMatcher<T> ElementsAreArray(
const T* pointer, size_t count) {
return ElementsAreArray(pointer, pointer + count);
}
template <typename T, size_t N>
inline internal::ElementsAreArrayMatcher<T> ElementsAreArray(
const T (&array)[N]) {
return ElementsAreArray(array, N);
}
template <typename T, typename A>
inline internal::ElementsAreArrayMatcher<T> ElementsAreArray(
const ::std::vector<T, A>& vec) {
return ElementsAreArray(vec.begin(), vec.end());
}
#if GTEST_LANG_CXX11
template <typename T>
inline internal::ElementsAreArrayMatcher<T>
ElementsAreArray(::std::initializer_list<T> xs) {
return ElementsAreArray(xs.begin(), xs.end());
}
#endif
// UnorderedElementsAreArray(first, last)
// UnorderedElementsAreArray(pointer, count)
// UnorderedElementsAreArray(array)
// UnorderedElementsAreArray(vector)
// UnorderedElementsAreArray({ e1, e2, ..., en })
//
// The UnorderedElementsAreArray() functions are like
// ElementsAreArray(...), but allow matching the elements in any order.
template <typename Iter>
inline internal::UnorderedElementsAreArrayMatcher<
typename ::std::iterator_traits<Iter>::value_type>
UnorderedElementsAreArray(Iter first, Iter last) {
typedef typename ::std::iterator_traits<Iter>::value_type T;
return internal::UnorderedElementsAreArrayMatcher<T>(first, last);
}
template <typename T>
inline internal::UnorderedElementsAreArrayMatcher<T>
UnorderedElementsAreArray(const T* pointer, size_t count) {
return UnorderedElementsAreArray(pointer, pointer + count);
}
template <typename T, size_t N>
inline internal::UnorderedElementsAreArrayMatcher<T>
UnorderedElementsAreArray(const T (&array)[N]) {
return UnorderedElementsAreArray(array, N);
}
template <typename T, typename A>
inline internal::UnorderedElementsAreArrayMatcher<T>
UnorderedElementsAreArray(const ::std::vector<T, A>& vec) {
return UnorderedElementsAreArray(vec.begin(), vec.end());
}
#if GTEST_LANG_CXX11
template <typename T>
inline internal::UnorderedElementsAreArrayMatcher<T>
UnorderedElementsAreArray(::std::initializer_list<T> xs) {
return UnorderedElementsAreArray(xs.begin(), xs.end());
}
#endif
// _ is a matcher that matches anything of any type.
//
// This definition is fine as:
//
// 1. The C++ standard permits using the name _ in a namespace that
// is not the global namespace or ::std.
// 2. The AnythingMatcher class has no data member or constructor,
// so it's OK to create global variables of this type.
// 3. c-style has approved of using _ in this case.
const internal::AnythingMatcher _ = {};
// Creates a matcher that matches any value of the given type T.
template <typename T>
inline Matcher<T> A() { return MakeMatcher(new internal::AnyMatcherImpl<T>()); }
// Creates a matcher that matches any value of the given type T.
template <typename T>
inline Matcher<T> An() { return A<T>(); }
// Creates a polymorphic matcher that matches anything equal to x.
// Note: if the parameter of Eq() were declared as const T&, Eq("foo")
// wouldn't compile.
template <typename T>
inline internal::EqMatcher<T> Eq(T x) { return internal::EqMatcher<T>(x); }
// Constructs a Matcher<T> from a 'value' of type T. The constructed
// matcher matches any value that's equal to 'value'.
template <typename T>
Matcher<T>::Matcher(T value) { *this = Eq(value); }
// Creates a monomorphic matcher that matches anything with type Lhs
// and equal to rhs. A user may need to use this instead of Eq(...)
// in order to resolve an overloading ambiguity.
//
// TypedEq<T>(x) is just a convenient short-hand for Matcher<T>(Eq(x))
// or Matcher<T>(x), but more readable than the latter.
//
// We could define similar monomorphic matchers for other comparison
// operations (e.g. TypedLt, TypedGe, and etc), but decided not to do
// it yet as those are used much less than Eq() in practice. A user
// can always write Matcher<T>(Lt(5)) to be explicit about the type,
// for example.
template <typename Lhs, typename Rhs>
inline Matcher<Lhs> TypedEq(const Rhs& rhs) { return Eq(rhs); }
// Creates a polymorphic matcher that matches anything >= x.
template <typename Rhs>
inline internal::GeMatcher<Rhs> Ge(Rhs x) {
return internal::GeMatcher<Rhs>(x);
}
// Creates a polymorphic matcher that matches anything > x.
template <typename Rhs>
inline internal::GtMatcher<Rhs> Gt(Rhs x) {
return internal::GtMatcher<Rhs>(x);
}
// Creates a polymorphic matcher that matches anything <= x.
template <typename Rhs>
inline internal::LeMatcher<Rhs> Le(Rhs x) {
return internal::LeMatcher<Rhs>(x);
}
// Creates a polymorphic matcher that matches anything < x.
template <typename Rhs>
inline internal::LtMatcher<Rhs> Lt(Rhs x) {
return internal::LtMatcher<Rhs>(x);
}
// Creates a polymorphic matcher that matches anything != x.
template <typename Rhs>
inline internal::NeMatcher<Rhs> Ne(Rhs x) {
return internal::NeMatcher<Rhs>(x);
}
// Creates a polymorphic matcher that matches any NULL pointer.
inline PolymorphicMatcher<internal::IsNullMatcher > IsNull() {
return MakePolymorphicMatcher(internal::IsNullMatcher());
}
// Creates a polymorphic matcher that matches any non-NULL pointer.
// This is convenient as Not(NULL) doesn't compile (the compiler
// thinks that that expression is comparing a pointer with an integer).
inline PolymorphicMatcher<internal::NotNullMatcher > NotNull() {
return MakePolymorphicMatcher(internal::NotNullMatcher());
}
// Creates a polymorphic matcher that matches any argument that
// references variable x.
template <typename T>
inline internal::RefMatcher<T&> Ref(T& x) { // NOLINT
return internal::RefMatcher<T&>(x);
}
// Creates a matcher that matches any double argument approximately
// equal to rhs, where two NANs are considered unequal.
inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) {
return internal::FloatingEqMatcher<double>(rhs, false);
}
// Creates a matcher that matches any double argument approximately
// equal to rhs, including NaN values when rhs is NaN.
inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) {
return internal::FloatingEqMatcher<double>(rhs, true);
}
// Creates a matcher that matches any double argument approximately equal to
// rhs, up to the specified max absolute error bound, where two NANs are
// considered unequal. The max absolute error bound must be non-negative.
inline internal::FloatingEqMatcher<double> DoubleNear(
double rhs, double max_abs_error) {
return internal::FloatingEqMatcher<double>(rhs, false, max_abs_error);
}
// Creates a matcher that matches any double argument approximately equal to
// rhs, up to the specified max absolute error bound, including NaN values when
// rhs is NaN. The max absolute error bound must be non-negative.
inline internal::FloatingEqMatcher<double> NanSensitiveDoubleNear(
double rhs, double max_abs_error) {
return internal::FloatingEqMatcher<double>(rhs, true, max_abs_error);
}
// Creates a matcher that matches any float argument approximately
// equal to rhs, where two NANs are considered unequal.
inline internal::FloatingEqMatcher<float> FloatEq(float rhs) {
return internal::FloatingEqMatcher<float>(rhs, false);
}
// Creates a matcher that matches any float argument approximately
// equal to rhs, including NaN values when rhs is NaN.
inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) {
return internal::FloatingEqMatcher<float>(rhs, true);
}
// Creates a matcher that matches any float argument approximately equal to
// rhs, up to the specified max absolute error bound, where two NANs are
// considered unequal. The max absolute error bound must be non-negative.
inline internal::FloatingEqMatcher<float> FloatNear(
float rhs, float max_abs_error) {
return internal::FloatingEqMatcher<float>(rhs, false, max_abs_error);
}
// Creates a matcher that matches any float argument approximately equal to
// rhs, up to the specified max absolute error bound, including NaN values when
// rhs is NaN. The max absolute error bound must be non-negative.
inline internal::FloatingEqMatcher<float> NanSensitiveFloatNear(
float rhs, float max_abs_error) {
return internal::FloatingEqMatcher<float>(rhs, true, max_abs_error);
}
// Creates a matcher that matches a pointer (raw or smart) that points
// to a value that matches inner_matcher.
template <typename InnerMatcher>
inline internal::PointeeMatcher<InnerMatcher> Pointee(
const InnerMatcher& inner_matcher) {
return internal::PointeeMatcher<InnerMatcher>(inner_matcher);
}
// Creates a matcher that matches an object whose given field matches
// 'matcher'. For example,
// Field(&Foo::number, Ge(5))
// matches a Foo object x iff x.number >= 5.
template <typename Class, typename FieldType, typename FieldMatcher>
inline PolymorphicMatcher<
internal::FieldMatcher<Class, FieldType> > Field(
FieldType Class::*field, const FieldMatcher& matcher) {
return MakePolymorphicMatcher(
internal::FieldMatcher<Class, FieldType>(
field, MatcherCast<const FieldType&>(matcher)));
// The call to MatcherCast() is required for supporting inner
// matchers of compatible types. For example, it allows
// Field(&Foo::bar, m)
// to compile where bar is an int32 and m is a matcher for int64.
}
// Creates a matcher that matches an object whose given property
// matches 'matcher'. For example,
// Property(&Foo::str, StartsWith("hi"))
// matches a Foo object x iff x.str() starts with "hi".
template <typename Class, typename PropertyType, typename PropertyMatcher>
inline PolymorphicMatcher<
internal::PropertyMatcher<Class, PropertyType> > Property(
PropertyType (Class::*property)() const, const PropertyMatcher& matcher) {
return MakePolymorphicMatcher(
internal::PropertyMatcher<Class, PropertyType>(
property,
MatcherCast<GTEST_REFERENCE_TO_CONST_(PropertyType)>(matcher)));
// The call to MatcherCast() is required for supporting inner
// matchers of compatible types. For example, it allows
// Property(&Foo::bar, m)
// to compile where bar() returns an int32 and m is a matcher for int64.
}
// Creates a matcher that matches an object iff the result of applying
// a callable to x matches 'matcher'.
// For example,
// ResultOf(f, StartsWith("hi"))
// matches a Foo object x iff f(x) starts with "hi".
// callable parameter can be a function, function pointer, or a functor.
// Callable has to satisfy the following conditions:
// * It is required to keep no state affecting the results of
// the calls on it and make no assumptions about how many calls
// will be made. Any state it keeps must be protected from the
// concurrent access.
// * If it is a function object, it has to define type result_type.
// We recommend deriving your functor classes from std::unary_function.
template <typename Callable, typename ResultOfMatcher>
internal::ResultOfMatcher<Callable> ResultOf(
Callable callable, const ResultOfMatcher& matcher) {
return internal::ResultOfMatcher<Callable>(
callable,
MatcherCast<typename internal::CallableTraits<Callable>::ResultType>(
matcher));
// The call to MatcherCast() is required for supporting inner
// matchers of compatible types. For example, it allows
// ResultOf(Function, m)
// to compile where Function() returns an int32 and m is a matcher for int64.
}
// String matchers.
// Matches a string equal to str.
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
StrEq(const internal::string& str) {
return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
str, true, true));
}
// Matches a string not equal to str.
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
StrNe(const internal::string& str) {
return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
str, false, true));
}
// Matches a string equal to str, ignoring case.
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
StrCaseEq(const internal::string& str) {
return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
str, true, false));
}
// Matches a string not equal to str, ignoring case.
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> >
StrCaseNe(const internal::string& str) {
return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>(
str, false, false));
}
// Creates a matcher that matches any string, std::string, or C string
// that contains the given substring.
inline PolymorphicMatcher<internal::HasSubstrMatcher<internal::string> >
HasSubstr(const internal::string& substring) {
return MakePolymorphicMatcher(internal::HasSubstrMatcher<internal::string>(
substring));
}
// Matches a string that starts with 'prefix' (case-sensitive).
inline PolymorphicMatcher<internal::StartsWithMatcher<internal::string> >
StartsWith(const internal::string& prefix) {
return MakePolymorphicMatcher(internal::StartsWithMatcher<internal::string>(
prefix));
}
// Matches a string that ends with 'suffix' (case-sensitive).
inline PolymorphicMatcher<internal::EndsWithMatcher<internal::string> >
EndsWith(const internal::string& suffix) {
return MakePolymorphicMatcher(internal::EndsWithMatcher<internal::string>(
suffix));
}
// Matches a string that fully matches regular expression 'regex'.
// The matcher takes ownership of 'regex'.
inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex(
const internal::RE* regex) {
return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, true));
}
inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex(
const internal::string& regex) {
return MatchesRegex(new internal::RE(regex));
}
// Matches a string that contains regular expression 'regex'.
// The matcher takes ownership of 'regex'.
inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex(
const internal::RE* regex) {
return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, false));
}
inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex(
const internal::string& regex) {
return ContainsRegex(new internal::RE(regex));
}
#if GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING
// Wide string matchers.
// Matches a string equal to str.
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
StrEq(const internal::wstring& str) {
return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
str, true, true));
}
// Matches a string not equal to str.
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
StrNe(const internal::wstring& str) {
return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
str, false, true));
}
// Matches a string equal to str, ignoring case.
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
StrCaseEq(const internal::wstring& str) {
return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
str, true, false));
}
// Matches a string not equal to str, ignoring case.
inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> >
StrCaseNe(const internal::wstring& str) {
return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>(
str, false, false));
}
// Creates a matcher that matches any wstring, std::wstring, or C wide string
// that contains the given substring.
inline PolymorphicMatcher<internal::HasSubstrMatcher<internal::wstring> >
HasSubstr(const internal::wstring& substring) {
return MakePolymorphicMatcher(internal::HasSubstrMatcher<internal::wstring>(
substring));
}
// Matches a string that starts with 'prefix' (case-sensitive).
inline PolymorphicMatcher<internal::StartsWithMatcher<internal::wstring> >
StartsWith(const internal::wstring& prefix) {
return MakePolymorphicMatcher(internal::StartsWithMatcher<internal::wstring>(
prefix));
}
// Matches a string that ends with 'suffix' (case-sensitive).
inline PolymorphicMatcher<internal::EndsWithMatcher<internal::wstring> >
EndsWith(const internal::wstring& suffix) {
return MakePolymorphicMatcher(internal::EndsWithMatcher<internal::wstring>(
suffix));
}
#endif // GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING
// Creates a polymorphic matcher that matches a 2-tuple where the
// first field == the second field.
inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); }
// Creates a polymorphic matcher that matches a 2-tuple where the
// first field >= the second field.
inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); }
// Creates a polymorphic matcher that matches a 2-tuple where the
// first field > the second field.
inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); }
// Creates a polymorphic matcher that matches a 2-tuple where the
// first field <= the second field.
inline internal::Le2Matcher Le() { return internal::Le2Matcher(); }
// Creates a polymorphic matcher that matches a 2-tuple where the
// first field < the second field.
inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); }
// Creates a polymorphic matcher that matches a 2-tuple where the
// first field != the second field.
inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); }
// Creates a matcher that matches any value of type T that m doesn't
// match.
template <typename InnerMatcher>
inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) {
return internal::NotMatcher<InnerMatcher>(m);
}
// Returns a matcher that matches anything that satisfies the given
// predicate. The predicate can be any unary function or functor
// whose return type can be implicitly converted to bool.
template <typename Predicate>
inline PolymorphicMatcher<internal::TrulyMatcher<Predicate> >
Truly(Predicate pred) {
return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred));
}
// Returns a matcher that matches the container size. The container must
// support both size() and size_type which all STL-like containers provide.
// Note that the parameter 'size' can be a value of type size_type as well as
// matcher. For instance:
// EXPECT_THAT(container, SizeIs(2)); // Checks container has 2 elements.
// EXPECT_THAT(container, SizeIs(Le(2)); // Checks container has at most 2.
template <typename SizeMatcher>
inline internal::SizeIsMatcher<SizeMatcher>
SizeIs(const SizeMatcher& size_matcher) {
return internal::SizeIsMatcher<SizeMatcher>(size_matcher);
}
// Returns a matcher that matches an equal container.
// This matcher behaves like Eq(), but in the event of mismatch lists the
// values that are included in one container but not the other. (Duplicate
// values and order differences are not explained.)
template <typename Container>
inline PolymorphicMatcher<internal::ContainerEqMatcher< // NOLINT
GTEST_REMOVE_CONST_(Container)> >
ContainerEq(const Container& rhs) {
// This following line is for working around a bug in MSVC 8.0,
// which causes Container to be a const type sometimes.
typedef GTEST_REMOVE_CONST_(Container) RawContainer;
return MakePolymorphicMatcher(
internal::ContainerEqMatcher<RawContainer>(rhs));
}
// Returns a matcher that matches a container that, when sorted using
// the given comparator, matches container_matcher.
template <typename Comparator, typename ContainerMatcher>
inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher>
WhenSortedBy(const Comparator& comparator,
const ContainerMatcher& container_matcher) {
return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>(
comparator, container_matcher);
}
// Returns a matcher that matches a container that, when sorted using
// the < operator, matches container_matcher.
template <typename ContainerMatcher>
inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>
WhenSorted(const ContainerMatcher& container_matcher) {
return
internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>(
internal::LessComparator(), container_matcher);
}
// Matches an STL-style container or a native array that contains the
// same number of elements as in rhs, where its i-th element and rhs's
// i-th element (as a pair) satisfy the given pair matcher, for all i.
// TupleMatcher must be able to be safely cast to Matcher<tuple<const
// T1&, const T2&> >, where T1 and T2 are the types of elements in the
// LHS container and the RHS container respectively.
template <typename TupleMatcher, typename Container>
inline internal::PointwiseMatcher<TupleMatcher,
GTEST_REMOVE_CONST_(Container)>
Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) {
// This following line is for working around a bug in MSVC 8.0,
// which causes Container to be a const type sometimes.
typedef GTEST_REMOVE_CONST_(Container) RawContainer;
return internal::PointwiseMatcher<TupleMatcher, RawContainer>(
tuple_matcher, rhs);
}
// Matches an STL-style container or a native array that contains at
// least one element matching the given value or matcher.
//
// Examples:
// ::std::set<int> page_ids;
// page_ids.insert(3);
// page_ids.insert(1);
// EXPECT_THAT(page_ids, Contains(1));
// EXPECT_THAT(page_ids, Contains(Gt(2)));
// EXPECT_THAT(page_ids, Not(Contains(4)));
//
// ::std::map<int, size_t> page_lengths;
// page_lengths[1] = 100;
// EXPECT_THAT(page_lengths,
// Contains(::std::pair<const int, size_t>(1, 100)));
//
// const char* user_ids[] = { "joe", "mike", "tom" };
// EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom"))));
template <typename M>
inline internal::ContainsMatcher<M> Contains(M matcher) {
return internal::ContainsMatcher<M>(matcher);
}
// Matches an STL-style container or a native array that contains only
// elements matching the given value or matcher.
//
// Each(m) is semantically equivalent to Not(Contains(Not(m))). Only
// the messages are different.
//
// Examples:
// ::std::set<int> page_ids;
// // Each(m) matches an empty container, regardless of what m is.
// EXPECT_THAT(page_ids, Each(Eq(1)));
// EXPECT_THAT(page_ids, Each(Eq(77)));
//
// page_ids.insert(3);
// EXPECT_THAT(page_ids, Each(Gt(0)));
// EXPECT_THAT(page_ids, Not(Each(Gt(4))));
// page_ids.insert(1);
// EXPECT_THAT(page_ids, Not(Each(Lt(2))));
//
// ::std::map<int, size_t> page_lengths;
// page_lengths[1] = 100;
// page_lengths[2] = 200;
// page_lengths[3] = 300;
// EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100))));
// EXPECT_THAT(page_lengths, Each(Key(Le(3))));
//
// const char* user_ids[] = { "joe", "mike", "tom" };
// EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom")))));
template <typename M>
inline internal::EachMatcher<M> Each(M matcher) {
return internal::EachMatcher<M>(matcher);
}
// Key(inner_matcher) matches an std::pair whose 'first' field matches
// inner_matcher. For example, Contains(Key(Ge(5))) can be used to match an
// std::map that contains at least one element whose key is >= 5.
template <typename M>
inline internal::KeyMatcher<M> Key(M inner_matcher) {
return internal::KeyMatcher<M>(inner_matcher);
}
// Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field
// matches first_matcher and whose 'second' field matches second_matcher. For
// example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used
// to match a std::map<int, string> that contains exactly one element whose key
// is >= 5 and whose value equals "foo".
template <typename FirstMatcher, typename SecondMatcher>
inline internal::PairMatcher<FirstMatcher, SecondMatcher>
Pair(FirstMatcher first_matcher, SecondMatcher second_matcher) {
return internal::PairMatcher<FirstMatcher, SecondMatcher>(
first_matcher, second_matcher);
}
// Returns a predicate that is satisfied by anything that matches the
// given matcher.
template <typename M>
inline internal::MatcherAsPredicate<M> Matches(M matcher) {
return internal::MatcherAsPredicate<M>(matcher);
}
// Returns true iff the value matches the matcher.
template <typename T, typename M>
inline bool Value(const T& value, M matcher) {
return testing::Matches(matcher)(value);
}
// Matches the value against the given matcher and explains the match
// result to listener.
template <typename T, typename M>
inline bool ExplainMatchResult(
M matcher, const T& value, MatchResultListener* listener) {
return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener);
}
#if GTEST_LANG_CXX11
// Define variadic matcher versions. They are overloaded in
// gmock-generated-matchers.h for the cases supported by pre C++11 compilers.
template <typename... Args>
inline internal::AllOfMatcher<Args...> AllOf(const Args&... matchers) {
return internal::AllOfMatcher<Args...>(matchers...);
}
template <typename... Args>
inline internal::AnyOfMatcher<Args...> AnyOf(const Args&... matchers) {
return internal::AnyOfMatcher<Args...>(matchers...);
}
#endif // GTEST_LANG_CXX11
// AllArgs(m) is a synonym of m. This is useful in
//
// EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq()));
//
// which is easier to read than
//
// EXPECT_CALL(foo, Bar(_, _)).With(Eq());
template <typename InnerMatcher>
inline InnerMatcher AllArgs(const InnerMatcher& matcher) { return matcher; }
// These macros allow using matchers to check values in Google Test
// tests. ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher)
// succeed iff the value matches the matcher. If the assertion fails,
// the value and the description of the matcher will be printed.
#define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\
::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
#define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\
::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
} // namespace testing
#endif // GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
namespace testing {
// An abstract handle of an expectation.
class Expectation;
// A set of expectation handles.
class ExpectationSet;
// Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
// and MUST NOT BE USED IN USER CODE!!!
namespace internal {
// Implements a mock function.
template <typename F> class FunctionMocker;
// Base class for expectations.
class ExpectationBase;
// Implements an expectation.
template <typename F> class TypedExpectation;
// Helper class for testing the Expectation class template.
class ExpectationTester;
// Base class for function mockers.
template <typename F> class FunctionMockerBase;
// Protects the mock object registry (in class Mock), all function
// mockers, and all expectations.
//
// The reason we don't use more fine-grained protection is: when a
// mock function Foo() is called, it needs to consult its expectations
// to see which one should be picked. If another thread is allowed to
// call a mock function (either Foo() or a different one) at the same
// time, it could affect the "retired" attributes of Foo()'s
// expectations when InSequence() is used, and thus affect which
// expectation gets picked. Therefore, we sequence all mock function
// calls to ensure the integrity of the mock objects' states.
GTEST_API_ GTEST_DECLARE_STATIC_MUTEX_(g_gmock_mutex);
// Untyped base class for ActionResultHolder<R>.
class UntypedActionResultHolderBase;
// Abstract base class of FunctionMockerBase. This is the
// type-agnostic part of the function mocker interface. Its pure
// virtual methods are implemented by FunctionMockerBase.
class GTEST_API_ UntypedFunctionMockerBase {
public:
UntypedFunctionMockerBase();
virtual ~UntypedFunctionMockerBase();
// Verifies that all expectations on this mock function have been
// satisfied. Reports one or more Google Test non-fatal failures
// and returns false if not.
bool VerifyAndClearExpectationsLocked()
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex);
// Clears the ON_CALL()s set on this mock function.
virtual void ClearDefaultActionsLocked()
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) = 0;
// In all of the following Untyped* functions, it's the caller's
// responsibility to guarantee the correctness of the arguments'
// types.
// Performs the default action with the given arguments and returns
// the action's result. The call description string will be used in
// the error message to describe the call in the case the default
// action fails.
// L = *
virtual UntypedActionResultHolderBase* UntypedPerformDefaultAction(
const void* untyped_args,
const string& call_description) const = 0;
// Performs the given action with the given arguments and returns
// the action's result.
// L = *
virtual UntypedActionResultHolderBase* UntypedPerformAction(
const void* untyped_action,
const void* untyped_args) const = 0;
// Writes a message that the call is uninteresting (i.e. neither
// explicitly expected nor explicitly unexpected) to the given
// ostream.
virtual void UntypedDescribeUninterestingCall(
const void* untyped_args,
::std::ostream* os) const
GTEST_LOCK_EXCLUDED_(g_gmock_mutex) = 0;
// Returns the expectation that matches the given function arguments
// (or NULL is there's no match); when a match is found,
// untyped_action is set to point to the action that should be
// performed (or NULL if the action is "do default"), and
// is_excessive is modified to indicate whether the call exceeds the
// expected number.
virtual const ExpectationBase* UntypedFindMatchingExpectation(
const void* untyped_args,
const void** untyped_action, bool* is_excessive,
::std::ostream* what, ::std::ostream* why)
GTEST_LOCK_EXCLUDED_(g_gmock_mutex) = 0;
// Prints the given function arguments to the ostream.
virtual void UntypedPrintArgs(const void* untyped_args,
::std::ostream* os) const = 0;
// Sets the mock object this mock method belongs to, and registers
// this information in the global mock registry. Will be called
// whenever an EXPECT_CALL() or ON_CALL() is executed on this mock
// method.
// TODO(wan@google.com): rename to SetAndRegisterOwner().
void RegisterOwner(const void* mock_obj)
GTEST_LOCK_EXCLUDED_(g_gmock_mutex);
// Sets the mock object this mock method belongs to, and sets the
// name of the mock function. Will be called upon each invocation
// of this mock function.
void SetOwnerAndName(const void* mock_obj, const char* name)
GTEST_LOCK_EXCLUDED_(g_gmock_mutex);
// Returns the mock object this mock method belongs to. Must be
// called after RegisterOwner() or SetOwnerAndName() has been
// called.
const void* MockObject() const
GTEST_LOCK_EXCLUDED_(g_gmock_mutex);
// Returns the name of this mock method. Must be called after
// SetOwnerAndName() has been called.
const char* Name() const
GTEST_LOCK_EXCLUDED_(g_gmock_mutex);
// Returns the result of invoking this mock function with the given
// arguments. This function can be safely called from multiple
// threads concurrently. The caller is responsible for deleting the
// result.
const UntypedActionResultHolderBase* UntypedInvokeWith(
const void* untyped_args)
GTEST_LOCK_EXCLUDED_(g_gmock_mutex);
protected:
typedef std::vector<const void*> UntypedOnCallSpecs;
typedef std::vector<internal::linked_ptr<ExpectationBase> >
UntypedExpectations;
// Returns an Expectation object that references and co-owns exp,
// which must be an expectation on this mock function.
Expectation GetHandleOf(ExpectationBase* exp);
// Address of the mock object this mock method belongs to. Only
// valid after this mock method has been called or
// ON_CALL/EXPECT_CALL has been invoked on it.
const void* mock_obj_; // Protected by g_gmock_mutex.
// Name of the function being mocked. Only valid after this mock
// method has been called.
const char* name_; // Protected by g_gmock_mutex.
// All default action specs for this function mocker.
UntypedOnCallSpecs untyped_on_call_specs_;
// All expectations for this function mocker.
UntypedExpectations untyped_expectations_;
}; // class UntypedFunctionMockerBase
// Untyped base class for OnCallSpec<F>.
class UntypedOnCallSpecBase {
public:
// The arguments are the location of the ON_CALL() statement.
UntypedOnCallSpecBase(const char* a_file, int a_line)
: file_(a_file), line_(a_line), last_clause_(kNone) {}
// Where in the source file was the default action spec defined?
const char* file() const { return file_; }
int line() const { return line_; }
protected:
// Gives each clause in the ON_CALL() statement a name.
enum Clause {
// Do not change the order of the enum members! The run-time
// syntax checking relies on it.
kNone,
kWith,
kWillByDefault
};
// Asserts that the ON_CALL() statement has a certain property.
void AssertSpecProperty(bool property, const string& failure_message) const {
Assert(property, file_, line_, failure_message);
}
// Expects that the ON_CALL() statement has a certain property.
void ExpectSpecProperty(bool property, const string& failure_message) const {
Expect(property, file_, line_, failure_message);
}
const char* file_;
int line_;
// The last clause in the ON_CALL() statement as seen so far.
// Initially kNone and changes as the statement is parsed.
Clause last_clause_;
}; // class UntypedOnCallSpecBase
// This template class implements an ON_CALL spec.
template <typename F>
class OnCallSpec : public UntypedOnCallSpecBase {
public:
typedef typename Function<F>::ArgumentTuple ArgumentTuple;
typedef typename Function<F>::ArgumentMatcherTuple ArgumentMatcherTuple;
// Constructs an OnCallSpec object from the information inside
// the parenthesis of an ON_CALL() statement.
OnCallSpec(const char* a_file, int a_line,
const ArgumentMatcherTuple& matchers)
: UntypedOnCallSpecBase(a_file, a_line),
matchers_(matchers),
// By default, extra_matcher_ should match anything. However,
// we cannot initialize it with _ as that triggers a compiler
// bug in Symbian's C++ compiler (cannot decide between two
// overloaded constructors of Matcher<const ArgumentTuple&>).
extra_matcher_(A<const ArgumentTuple&>()) {
}
// Implements the .With() clause.
OnCallSpec& With(const Matcher<const ArgumentTuple&>& m) {
// Makes sure this is called at most once.
ExpectSpecProperty(last_clause_ < kWith,
".With() cannot appear "
"more than once in an ON_CALL().");
last_clause_ = kWith;
extra_matcher_ = m;
return *this;
}
// Implements the .WillByDefault() clause.
OnCallSpec& WillByDefault(const Action<F>& action) {
ExpectSpecProperty(last_clause_ < kWillByDefault,
".WillByDefault() must appear "
"exactly once in an ON_CALL().");
last_clause_ = kWillByDefault;
ExpectSpecProperty(!action.IsDoDefault(),
"DoDefault() cannot be used in ON_CALL().");
action_ = action;
return *this;
}
// Returns true iff the given arguments match the matchers.
bool Matches(const ArgumentTuple& args) const {
return TupleMatches(matchers_, args) && extra_matcher_.Matches(args);
}
// Returns the action specified by the user.
const Action<F>& GetAction() const {
AssertSpecProperty(last_clause_ == kWillByDefault,
".WillByDefault() must appear exactly "
"once in an ON_CALL().");
return action_;
}
private:
// The information in statement
//
// ON_CALL(mock_object, Method(matchers))
// .With(multi-argument-matcher)
// .WillByDefault(action);
//
// is recorded in the data members like this:
//
// source file that contains the statement => file_
// line number of the statement => line_
// matchers => matchers_
// multi-argument-matcher => extra_matcher_
// action => action_
ArgumentMatcherTuple matchers_;
Matcher<const ArgumentTuple&> extra_matcher_;
Action<F> action_;
}; // class OnCallSpec
// Possible reactions on uninteresting calls.
enum CallReaction {
kAllow,
kWarn,
kFail,
kDefault = kWarn // By default, warn about uninteresting calls.
};
} // namespace internal
// Utilities for manipulating mock objects.
class GTEST_API_ Mock {
public:
// The following public methods can be called concurrently.
// Tells Google Mock to ignore mock_obj when checking for leaked
// mock objects.
static void AllowLeak(const void* mock_obj)
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
// Verifies and clears all expectations on the given mock object.
// If the expectations aren't satisfied, generates one or more
// Google Test non-fatal failures and returns false.
static bool VerifyAndClearExpectations(void* mock_obj)
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
// Verifies all expectations on the given mock object and clears its
// default actions and expectations. Returns true iff the
// verification was successful.
static bool VerifyAndClear(void* mock_obj)
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
private:
friend class internal::UntypedFunctionMockerBase;
// Needed for a function mocker to register itself (so that we know
// how to clear a mock object).
template <typename F>
friend class internal::FunctionMockerBase;
template <typename M>
friend class NiceMock;
template <typename M>
friend class NaggyMock;
template <typename M>
friend class StrictMock;
// Tells Google Mock to allow uninteresting calls on the given mock
// object.
static void AllowUninterestingCalls(const void* mock_obj)
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
// Tells Google Mock to warn the user about uninteresting calls on
// the given mock object.
static void WarnUninterestingCalls(const void* mock_obj)
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
// Tells Google Mock to fail uninteresting calls on the given mock
// object.
static void FailUninterestingCalls(const void* mock_obj)
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
// Tells Google Mock the given mock object is being destroyed and
// its entry in the call-reaction table should be removed.
static void UnregisterCallReaction(const void* mock_obj)
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
// Returns the reaction Google Mock will have on uninteresting calls
// made on the given mock object.
static internal::CallReaction GetReactionOnUninterestingCalls(
const void* mock_obj)
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
// Verifies that all expectations on the given mock object have been
// satisfied. Reports one or more Google Test non-fatal failures
// and returns false if not.
static bool VerifyAndClearExpectationsLocked(void* mock_obj)
GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex);
// Clears all ON_CALL()s set on the given mock object.
static void ClearDefaultActionsLocked(void* mock_obj)
GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex);
// Registers a mock object and a mock method it owns.
static void Register(
const void* mock_obj,
internal::UntypedFunctionMockerBase* mocker)
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
// Tells Google Mock where in the source code mock_obj is used in an
// ON_CALL or EXPECT_CALL. In case mock_obj is leaked, this
// information helps the user identify which object it is.
static void RegisterUseByOnCallOrExpectCall(
const void* mock_obj, const char* file, int line)
GTEST_LOCK_EXCLUDED_(internal::g_gmock_mutex);
// Unregisters a mock method; removes the owning mock object from
// the registry when the last mock method associated with it has
// been unregistered. This is called only in the destructor of
// FunctionMockerBase.
static void UnregisterLocked(internal::UntypedFunctionMockerBase* mocker)
GTEST_EXCLUSIVE_LOCK_REQUIRED_(internal::g_gmock_mutex);
}; // class Mock
// An abstract handle of an expectation. Useful in the .After()
// clause of EXPECT_CALL() for setting the (partial) order of
// expectations. The syntax:
//
// Expectation e1 = EXPECT_CALL(...)...;
// EXPECT_CALL(...).After(e1)...;
//
// sets two expectations where the latter can only be matched after
// the former has been satisfied.
//
// Notes:
// - This class is copyable and has value semantics.
// - Constness is shallow: a const Expectation object itself cannot
// be modified, but the mutable methods of the ExpectationBase
// object it references can be called via expectation_base().
// - The constructors and destructor are defined out-of-line because
// the Symbian WINSCW compiler wants to otherwise instantiate them
// when it sees this class definition, at which point it doesn't have
// ExpectationBase available yet, leading to incorrect destruction
// in the linked_ptr (or compilation errors if using a checking
// linked_ptr).
class GTEST_API_ Expectation {
public:
// Constructs a null object that doesn't reference any expectation.
Expectation();
~Expectation();
// This single-argument ctor must not be explicit, in order to support the
// Expectation e = EXPECT_CALL(...);
// syntax.
//
// A TypedExpectation object stores its pre-requisites as
// Expectation objects, and needs to call the non-const Retire()
// method on the ExpectationBase objects they reference. Therefore
// Expectation must receive a *non-const* reference to the
// ExpectationBase object.
Expectation(internal::ExpectationBase& exp); // NOLINT
// The compiler-generated copy ctor and operator= work exactly as
// intended, so we don't need to define our own.
// Returns true iff rhs references the same expectation as this object does.
bool operator==(const Expectation& rhs) const {
return expectation_base_ == rhs.expectation_base_;
}
bool operator!=(const Expectation& rhs) const { return !(*this == rhs); }
private:
friend class ExpectationSet;
friend class Sequence;
friend class ::testing::internal::ExpectationBase;
friend class ::testing::internal::UntypedFunctionMockerBase;
template <typename F>
friend class ::testing::internal::FunctionMockerBase;
template <typename F>
friend class ::testing::internal::TypedExpectation;
// This comparator is needed for putting Expectation objects into a set.
class Less {
public:
bool operator()(const Expectation& lhs, const Expectation& rhs) const {
return lhs.expectation_base_.get() < rhs.expectation_base_.get();
}
};
typedef ::std::set<Expectation, Less> Set;
Expectation(
const internal::linked_ptr<internal::ExpectationBase>& expectation_base);
// Returns the expectation this object references.
const internal::linked_ptr<internal::ExpectationBase>&
expectation_base() const {
return expectation_base_;
}
// A linked_ptr that co-owns the expectation this handle references.
internal::linked_ptr<internal::ExpectationBase> expectation_base_;
};
// A set of expectation handles. Useful in the .After() clause of
// EXPECT_CALL() for setting the (partial) order of expectations. The
// syntax:
//
// ExpectationSet es;
// es += EXPECT_CALL(...)...;
// es += EXPECT_CALL(...)...;
// EXPECT_CALL(...).After(es)...;
//
// sets three expectations where the last one can only be matched
// after the first two have both been satisfied.
//
// This class is copyable and has value semantics.
class ExpectationSet {
public:
// A bidirectional iterator that can read a const element in the set.
typedef Expectation::Set::const_iterator const_iterator;
// An object stored in the set. This is an alias of Expectation.
typedef Expectation::Set::value_type value_type;
// Constructs an empty set.
ExpectationSet() {}
// This single-argument ctor must not be explicit, in order to support the
// ExpectationSet es = EXPECT_CALL(...);
// syntax.
ExpectationSet(internal::ExpectationBase& exp) { // NOLINT
*this += Expectation(exp);
}
// This single-argument ctor implements implicit conversion from
// Expectation and thus must not be explicit. This allows either an
// Expectation or an ExpectationSet to be used in .After().
ExpectationSet(const Expectation& e) { // NOLINT
*this += e;
}
// The compiler-generator ctor and operator= works exactly as
// intended, so we don't need to define our own.
// Returns true iff rhs contains the same set of Expectation objects
// as this does.
bool operator==(const ExpectationSet& rhs) const {
return expectations_ == rhs.expectations_;
}
bool operator!=(const ExpectationSet& rhs) const { return !(*this == rhs); }
// Implements the syntax
// expectation_set += EXPECT_CALL(...);
ExpectationSet& operator+=(const Expectation& e) {
expectations_.insert(e);
return *this;
}
int size() const { return static_cast<int>(expectations_.size()); }
const_iterator begin() const { return expectations_.begin(); }
const_iterator end() const { return expectations_.end(); }
private:
Expectation::Set expectations_;
};
// Sequence objects are used by a user to specify the relative order
// in which the expectations should match. They are copyable (we rely
// on the compiler-defined copy constructor and assignment operator).
class GTEST_API_ Sequence {
public:
// Constructs an empty sequence.
Sequence() : last_expectation_(new Expectation) {}
// Adds an expectation to this sequence. The caller must ensure
// that no other thread is accessing this Sequence object.
void AddExpectation(const Expectation& expectation) const;
private:
// The last expectation in this sequence. We use a linked_ptr here
// because Sequence objects are copyable and we want the copies to
// be aliases. The linked_ptr allows the copies to co-own and share
// the same Expectation object.
internal::linked_ptr<Expectation> last_expectation_;
}; // class Sequence
// An object of this type causes all EXPECT_CALL() statements
// encountered in its scope to be put in an anonymous sequence. The
// work is done in the constructor and destructor. You should only
// create an InSequence object on the stack.
//
// The sole purpose for this class is to support easy definition of
// sequential expectations, e.g.
//
// {
// InSequence dummy; // The name of the object doesn't matter.
//
// // The following expectations must match in the order they appear.
// EXPECT_CALL(a, Bar())...;
// EXPECT_CALL(a, Baz())...;
// ...
// EXPECT_CALL(b, Xyz())...;
// }
//
// You can create InSequence objects in multiple threads, as long as
// they are used to affect different mock objects. The idea is that
// each thread can create and set up its own mocks as if it's the only
// thread. However, for clarity of your tests we recommend you to set
// up mocks in the main thread unless you have a good reason not to do
// so.
class GTEST_API_ InSequence {
public:
InSequence();
~InSequence();
private:
bool sequence_created_;
GTEST_DISALLOW_COPY_AND_ASSIGN_(InSequence); // NOLINT
} GTEST_ATTRIBUTE_UNUSED_;
namespace internal {
// Points to the implicit sequence introduced by a living InSequence
// object (if any) in the current thread or NULL.
GTEST_API_ extern ThreadLocal<Sequence*> g_gmock_implicit_sequence;
// Base class for implementing expectations.
//
// There are two reasons for having a type-agnostic base class for
// Expectation:
//
// 1. We need to store collections of expectations of different
// types (e.g. all pre-requisites of a particular expectation, all
// expectations in a sequence). Therefore these expectation objects
// must share a common base class.
//
// 2. We can avoid binary code bloat by moving methods not depending
// on the template argument of Expectation to the base class.
//
// This class is internal and mustn't be used by user code directly.
class GTEST_API_ ExpectationBase {
public:
// source_text is the EXPECT_CALL(...) source that created this Expectation.
ExpectationBase(const char* file, int line, const string& source_text);
virtual ~ExpectationBase();
// Where in the source file was the expectation spec defined?
const char* file() const { return file_; }
int line() const { return line_; }
const char* source_text() const { return source_text_.c_str(); }
// Returns the cardinality specified in the expectation spec.
const Cardinality& cardinality() const { return cardinality_; }
// Describes the source file location of this expectation.
void DescribeLocationTo(::std::ostream* os) const {
*os << FormatFileLocation(file(), line()) << " ";
}
// Describes how many times a function call matching this
// expectation has occurred.
void DescribeCallCountTo(::std::ostream* os) const
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex);
// If this mock method has an extra matcher (i.e. .With(matcher)),
// describes it to the ostream.
virtual void MaybeDescribeExtraMatcherTo(::std::ostream* os) = 0;
protected:
friend class ::testing::Expectation;
friend class UntypedFunctionMockerBase;
enum Clause {
// Don't change the order of the enum members!
kNone,
kWith,
kTimes,
kInSequence,
kAfter,
kWillOnce,
kWillRepeatedly,
kRetiresOnSaturation
};
typedef std::vector<const void*> UntypedActions;
// Returns an Expectation object that references and co-owns this
// expectation.
virtual Expectation GetHandle() = 0;
// Asserts that the EXPECT_CALL() statement has the given property.
void AssertSpecProperty(bool property, const string& failure_message) const {
Assert(property, file_, line_, failure_message);
}
// Expects that the EXPECT_CALL() statement has the given property.
void ExpectSpecProperty(bool property, const string& failure_message) const {
Expect(property, file_, line_, failure_message);
}
// Explicitly specifies the cardinality of this expectation. Used
// by the subclasses to implement the .Times() clause.
void SpecifyCardinality(const Cardinality& cardinality);
// Returns true iff the user specified the cardinality explicitly
// using a .Times().
bool cardinality_specified() const { return cardinality_specified_; }
// Sets the cardinality of this expectation spec.
void set_cardinality(const Cardinality& a_cardinality) {
cardinality_ = a_cardinality;
}
// The following group of methods should only be called after the
// EXPECT_CALL() statement, and only when g_gmock_mutex is held by
// the current thread.
// Retires all pre-requisites of this expectation.
void RetireAllPreRequisites()
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex);
// Returns true iff this expectation is retired.
bool is_retired() const
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
g_gmock_mutex.AssertHeld();
return retired_;
}
// Retires this expectation.
void Retire()
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
g_gmock_mutex.AssertHeld();
retired_ = true;
}
// Returns true iff this expectation is satisfied.
bool IsSatisfied() const
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
g_gmock_mutex.AssertHeld();
return cardinality().IsSatisfiedByCallCount(call_count_);
}
// Returns true iff this expectation is saturated.
bool IsSaturated() const
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
g_gmock_mutex.AssertHeld();
return cardinality().IsSaturatedByCallCount(call_count_);
}
// Returns true iff this expectation is over-saturated.
bool IsOverSaturated() const
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
g_gmock_mutex.AssertHeld();
return cardinality().IsOverSaturatedByCallCount(call_count_);
}
// Returns true iff all pre-requisites of this expectation are satisfied.
bool AllPrerequisitesAreSatisfied() const
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex);
// Adds unsatisfied pre-requisites of this expectation to 'result'.
void FindUnsatisfiedPrerequisites(ExpectationSet* result) const
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex);
// Returns the number this expectation has been invoked.
int call_count() const
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
g_gmock_mutex.AssertHeld();
return call_count_;
}
// Increments the number this expectation has been invoked.
void IncrementCallCount()
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
g_gmock_mutex.AssertHeld();
call_count_++;
}
// Checks the action count (i.e. the number of WillOnce() and
// WillRepeatedly() clauses) against the cardinality if this hasn't
// been done before. Prints a warning if there are too many or too
// few actions.
void CheckActionCountIfNotDone() const
GTEST_LOCK_EXCLUDED_(mutex_);
friend class ::testing::Sequence;
friend class ::testing::internal::ExpectationTester;
template <typename Function>
friend class TypedExpectation;
// Implements the .Times() clause.
void UntypedTimes(const Cardinality& a_cardinality);
// This group of fields are part of the spec and won't change after
// an EXPECT_CALL() statement finishes.
const char* file_; // The file that contains the expectation.
int line_; // The line number of the expectation.
const string source_text_; // The EXPECT_CALL(...) source text.
// True iff the cardinality is specified explicitly.
bool cardinality_specified_;
Cardinality cardinality_; // The cardinality of the expectation.
// The immediate pre-requisites (i.e. expectations that must be
// satisfied before this expectation can be matched) of this
// expectation. We use linked_ptr in the set because we want an
// Expectation object to be co-owned by its FunctionMocker and its
// successors. This allows multiple mock objects to be deleted at
// different times.
ExpectationSet immediate_prerequisites_;
// This group of fields are the current state of the expectation,
// and can change as the mock function is called.
int call_count_; // How many times this expectation has been invoked.
bool retired_; // True iff this expectation has retired.
UntypedActions untyped_actions_;
bool extra_matcher_specified_;
bool repeated_action_specified_; // True if a WillRepeatedly() was specified.
bool retires_on_saturation_;
Clause last_clause_;
mutable bool action_count_checked_; // Under mutex_.
mutable Mutex mutex_; // Protects action_count_checked_.
GTEST_DISALLOW_ASSIGN_(ExpectationBase);
}; // class ExpectationBase
// Impements an expectation for the given function type.
template <typename F>
class TypedExpectation : public ExpectationBase {
public:
typedef typename Function<F>::ArgumentTuple ArgumentTuple;
typedef typename Function<F>::ArgumentMatcherTuple ArgumentMatcherTuple;
typedef typename Function<F>::Result Result;
TypedExpectation(FunctionMockerBase<F>* owner,
const char* a_file, int a_line, const string& a_source_text,
const ArgumentMatcherTuple& m)
: ExpectationBase(a_file, a_line, a_source_text),
owner_(owner),
matchers_(m),
// By default, extra_matcher_ should match anything. However,
// we cannot initialize it with _ as that triggers a compiler
// bug in Symbian's C++ compiler (cannot decide between two
// overloaded constructors of Matcher<const ArgumentTuple&>).
extra_matcher_(A<const ArgumentTuple&>()),
repeated_action_(DoDefault()) {}
virtual ~TypedExpectation() {
// Check the validity of the action count if it hasn't been done
// yet (for example, if the expectation was never used).
CheckActionCountIfNotDone();
for (UntypedActions::const_iterator it = untyped_actions_.begin();
it != untyped_actions_.end(); ++it) {
delete static_cast<const Action<F>*>(*it);
}
}
// Implements the .With() clause.
TypedExpectation& With(const Matcher<const ArgumentTuple&>& m) {
if (last_clause_ == kWith) {
ExpectSpecProperty(false,
".With() cannot appear "
"more than once in an EXPECT_CALL().");
} else {
ExpectSpecProperty(last_clause_ < kWith,
".With() must be the first "
"clause in an EXPECT_CALL().");
}
last_clause_ = kWith;
extra_matcher_ = m;
extra_matcher_specified_ = true;
return *this;
}
// Implements the .Times() clause.
TypedExpectation& Times(const Cardinality& a_cardinality) {
ExpectationBase::UntypedTimes(a_cardinality);
return *this;
}
// Implements the .Times() clause.
TypedExpectation& Times(int n) {
return Times(Exactly(n));
}
// Implements the .InSequence() clause.
TypedExpectation& InSequence(const Sequence& s) {
ExpectSpecProperty(last_clause_ <= kInSequence,
".InSequence() cannot appear after .After(),"
" .WillOnce(), .WillRepeatedly(), or "
".RetiresOnSaturation().");
last_clause_ = kInSequence;
s.AddExpectation(GetHandle());
return *this;
}
TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2) {
return InSequence(s1).InSequence(s2);
}
TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2,
const Sequence& s3) {
return InSequence(s1, s2).InSequence(s3);
}
TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2,
const Sequence& s3, const Sequence& s4) {
return InSequence(s1, s2, s3).InSequence(s4);
}
TypedExpectation& InSequence(const Sequence& s1, const Sequence& s2,
const Sequence& s3, const Sequence& s4,
const Sequence& s5) {
return InSequence(s1, s2, s3, s4).InSequence(s5);
}
// Implements that .After() clause.
TypedExpectation& After(const ExpectationSet& s) {
ExpectSpecProperty(last_clause_ <= kAfter,
".After() cannot appear after .WillOnce(),"
" .WillRepeatedly(), or "
".RetiresOnSaturation().");
last_clause_ = kAfter;
for (ExpectationSet::const_iterator it = s.begin(); it != s.end(); ++it) {
immediate_prerequisites_ += *it;
}
return *this;
}
TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2) {
return After(s1).After(s2);
}
TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2,
const ExpectationSet& s3) {
return After(s1, s2).After(s3);
}
TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2,
const ExpectationSet& s3, const ExpectationSet& s4) {
return After(s1, s2, s3).After(s4);
}
TypedExpectation& After(const ExpectationSet& s1, const ExpectationSet& s2,
const ExpectationSet& s3, const ExpectationSet& s4,
const ExpectationSet& s5) {
return After(s1, s2, s3, s4).After(s5);
}
// Implements the .WillOnce() clause.
TypedExpectation& WillOnce(const Action<F>& action) {
ExpectSpecProperty(last_clause_ <= kWillOnce,
".WillOnce() cannot appear after "
".WillRepeatedly() or .RetiresOnSaturation().");
last_clause_ = kWillOnce;
untyped_actions_.push_back(new Action<F>(action));
if (!cardinality_specified()) {
set_cardinality(Exactly(static_cast<int>(untyped_actions_.size())));
}
return *this;
}
// Implements the .WillRepeatedly() clause.
TypedExpectation& WillRepeatedly(const Action<F>& action) {
if (last_clause_ == kWillRepeatedly) {
ExpectSpecProperty(false,
".WillRepeatedly() cannot appear "
"more than once in an EXPECT_CALL().");
} else {
ExpectSpecProperty(last_clause_ < kWillRepeatedly,
".WillRepeatedly() cannot appear "
"after .RetiresOnSaturation().");
}
last_clause_ = kWillRepeatedly;
repeated_action_specified_ = true;
repeated_action_ = action;
if (!cardinality_specified()) {
set_cardinality(AtLeast(static_cast<int>(untyped_actions_.size())));
}
// Now that no more action clauses can be specified, we check
// whether their count makes sense.
CheckActionCountIfNotDone();
return *this;
}
// Implements the .RetiresOnSaturation() clause.
TypedExpectation& RetiresOnSaturation() {
ExpectSpecProperty(last_clause_ < kRetiresOnSaturation,
".RetiresOnSaturation() cannot appear "
"more than once.");
last_clause_ = kRetiresOnSaturation;
retires_on_saturation_ = true;
// Now that no more action clauses can be specified, we check
// whether their count makes sense.
CheckActionCountIfNotDone();
return *this;
}
// Returns the matchers for the arguments as specified inside the
// EXPECT_CALL() macro.
const ArgumentMatcherTuple& matchers() const {
return matchers_;
}
// Returns the matcher specified by the .With() clause.
const Matcher<const ArgumentTuple&>& extra_matcher() const {
return extra_matcher_;
}
// Returns the action specified by the .WillRepeatedly() clause.
const Action<F>& repeated_action() const { return repeated_action_; }
// If this mock method has an extra matcher (i.e. .With(matcher)),
// describes it to the ostream.
virtual void MaybeDescribeExtraMatcherTo(::std::ostream* os) {
if (extra_matcher_specified_) {
*os << " Expected args: ";
extra_matcher_.DescribeTo(os);
*os << "\n";
}
}
private:
template <typename Function>
friend class FunctionMockerBase;
// Returns an Expectation object that references and co-owns this
// expectation.
virtual Expectation GetHandle() {
return owner_->GetHandleOf(this);
}
// The following methods will be called only after the EXPECT_CALL()
// statement finishes and when the current thread holds
// g_gmock_mutex.
// Returns true iff this expectation matches the given arguments.
bool Matches(const ArgumentTuple& args) const
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
g_gmock_mutex.AssertHeld();
return TupleMatches(matchers_, args) && extra_matcher_.Matches(args);
}
// Returns true iff this expectation should handle the given arguments.
bool ShouldHandleArguments(const ArgumentTuple& args) const
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
g_gmock_mutex.AssertHeld();
// In case the action count wasn't checked when the expectation
// was defined (e.g. if this expectation has no WillRepeatedly()
// or RetiresOnSaturation() clause), we check it when the
// expectation is used for the first time.
CheckActionCountIfNotDone();
return !is_retired() && AllPrerequisitesAreSatisfied() && Matches(args);
}
// Describes the result of matching the arguments against this
// expectation to the given ostream.
void ExplainMatchResultTo(
const ArgumentTuple& args,
::std::ostream* os) const
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
g_gmock_mutex.AssertHeld();
if (is_retired()) {
*os << " Expected: the expectation is active\n"
<< " Actual: it is retired\n";
} else if (!Matches(args)) {
if (!TupleMatches(matchers_, args)) {
ExplainMatchFailureTupleTo(matchers_, args, os);
}
StringMatchResultListener listener;
if (!extra_matcher_.MatchAndExplain(args, &listener)) {
*os << " Expected args: ";
extra_matcher_.DescribeTo(os);
*os << "\n Actual: don't match";
internal::PrintIfNotEmpty(listener.str(), os);
*os << "\n";
}
} else if (!AllPrerequisitesAreSatisfied()) {
*os << " Expected: all pre-requisites are satisfied\n"
<< " Actual: the following immediate pre-requisites "
<< "are not satisfied:\n";
ExpectationSet unsatisfied_prereqs;
FindUnsatisfiedPrerequisites(&unsatisfied_prereqs);
int i = 0;
for (ExpectationSet::const_iterator it = unsatisfied_prereqs.begin();
it != unsatisfied_prereqs.end(); ++it) {
it->expectation_base()->DescribeLocationTo(os);
*os << "pre-requisite #" << i++ << "\n";
}
*os << " (end of pre-requisites)\n";
} else {
// This line is here just for completeness' sake. It will never
// be executed as currently the ExplainMatchResultTo() function
// is called only when the mock function call does NOT match the
// expectation.
*os << "The call matches the expectation.\n";
}
}
// Returns the action that should be taken for the current invocation.
const Action<F>& GetCurrentAction(
const FunctionMockerBase<F>* mocker,
const ArgumentTuple& args) const
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
g_gmock_mutex.AssertHeld();
const int count = call_count();
Assert(count >= 1, __FILE__, __LINE__,
"call_count() is <= 0 when GetCurrentAction() is "
"called - this should never happen.");
const int action_count = static_cast<int>(untyped_actions_.size());
if (action_count > 0 && !repeated_action_specified_ &&
count > action_count) {
// If there is at least one WillOnce() and no WillRepeatedly(),
// we warn the user when the WillOnce() clauses ran out.
::std::stringstream ss;
DescribeLocationTo(&ss);
ss << "Actions ran out in " << source_text() << "...\n"
<< "Called " << count << " times, but only "
<< action_count << " WillOnce()"
<< (action_count == 1 ? " is" : "s are") << " specified - ";
mocker->DescribeDefaultActionTo(args, &ss);
Log(kWarning, ss.str(), 1);
}
return count <= action_count ?
*static_cast<const Action<F>*>(untyped_actions_[count - 1]) :
repeated_action();
}
// Given the arguments of a mock function call, if the call will
// over-saturate this expectation, returns the default action;
// otherwise, returns the next action in this expectation. Also
// describes *what* happened to 'what', and explains *why* Google
// Mock does it to 'why'. This method is not const as it calls
// IncrementCallCount(). A return value of NULL means the default
// action.
const Action<F>* GetActionForArguments(
const FunctionMockerBase<F>* mocker,
const ArgumentTuple& args,
::std::ostream* what,
::std::ostream* why)
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
g_gmock_mutex.AssertHeld();
if (IsSaturated()) {
// We have an excessive call.
IncrementCallCount();
*what << "Mock function called more times than expected - ";
mocker->DescribeDefaultActionTo(args, what);
DescribeCallCountTo(why);
// TODO(wan@google.com): allow the user to control whether
// unexpected calls should fail immediately or continue using a
// flag --gmock_unexpected_calls_are_fatal.
return NULL;
}
IncrementCallCount();
RetireAllPreRequisites();
if (retires_on_saturation_ && IsSaturated()) {
Retire();
}
// Must be done after IncrementCount()!
*what << "Mock function call matches " << source_text() <<"...\n";
return &(GetCurrentAction(mocker, args));
}
// All the fields below won't change once the EXPECT_CALL()
// statement finishes.
FunctionMockerBase<F>* const owner_;
ArgumentMatcherTuple matchers_;
Matcher<const ArgumentTuple&> extra_matcher_;
Action<F> repeated_action_;
GTEST_DISALLOW_COPY_AND_ASSIGN_(TypedExpectation);
}; // class TypedExpectation
// A MockSpec object is used by ON_CALL() or EXPECT_CALL() for
// specifying the default behavior of, or expectation on, a mock
// function.
// Note: class MockSpec really belongs to the ::testing namespace.
// However if we define it in ::testing, MSVC will complain when
// classes in ::testing::internal declare it as a friend class
// template. To workaround this compiler bug, we define MockSpec in
// ::testing::internal and import it into ::testing.
// Logs a message including file and line number information.
GTEST_API_ void LogWithLocation(testing::internal::LogSeverity severity,
const char* file, int line,
const string& message);
template <typename F>
class MockSpec {
public:
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
typedef typename internal::Function<F>::ArgumentMatcherTuple
ArgumentMatcherTuple;
// Constructs a MockSpec object, given the function mocker object
// that the spec is associated with.
explicit MockSpec(internal::FunctionMockerBase<F>* function_mocker)
: function_mocker_(function_mocker) {}
// Adds a new default action spec to the function mocker and returns
// the newly created spec.
internal::OnCallSpec<F>& InternalDefaultActionSetAt(
const char* file, int line, const char* obj, const char* call) {
LogWithLocation(internal::kInfo, file, line,
string("ON_CALL(") + obj + ", " + call + ") invoked");
return function_mocker_->AddNewOnCallSpec(file, line, matchers_);
}
// Adds a new expectation spec to the function mocker and returns
// the newly created spec.
internal::TypedExpectation<F>& InternalExpectedAt(
const char* file, int line, const char* obj, const char* call) {
const string source_text(string("EXPECT_CALL(") + obj + ", " + call + ")");
LogWithLocation(internal::kInfo, file, line, source_text + " invoked");
return function_mocker_->AddNewExpectation(
file, line, source_text, matchers_);
}
private:
template <typename Function>
friend class internal::FunctionMocker;
void SetMatchers(const ArgumentMatcherTuple& matchers) {
matchers_ = matchers;
}
// The function mocker that owns this spec.
internal::FunctionMockerBase<F>* const function_mocker_;
// The argument matchers specified in the spec.
ArgumentMatcherTuple matchers_;
GTEST_DISALLOW_ASSIGN_(MockSpec);
}; // class MockSpec
// MSVC warns about using 'this' in base member initializer list, so
// we need to temporarily disable the warning. We have to do it for
// the entire class to suppress the warning, even though it's about
// the constructor only.
#ifdef _MSC_VER
# pragma warning(push) // Saves the current warning state.
# pragma warning(disable:4355) // Temporarily disables warning 4355.
#endif // _MSV_VER
// C++ treats the void type specially. For example, you cannot define
// a void-typed variable or pass a void value to a function.
// ActionResultHolder<T> holds a value of type T, where T must be a
// copyable type or void (T doesn't need to be default-constructable).
// It hides the syntactic difference between void and other types, and
// is used to unify the code for invoking both void-returning and
// non-void-returning mock functions.
// Untyped base class for ActionResultHolder<T>.
class UntypedActionResultHolderBase {
public:
virtual ~UntypedActionResultHolderBase() {}
// Prints the held value as an action's result to os.
virtual void PrintAsActionResult(::std::ostream* os) const = 0;
};
// This generic definition is used when T is not void.
template <typename T>
class ActionResultHolder : public UntypedActionResultHolderBase {
public:
explicit ActionResultHolder(T a_value) : value_(a_value) {}
// The compiler-generated copy constructor and assignment operator
// are exactly what we need, so we don't need to define them.
// Returns the held value and deletes this object.
T GetValueAndDelete() const {
T retval(value_);
delete this;
return retval;
}
// Prints the held value as an action's result to os.
virtual void PrintAsActionResult(::std::ostream* os) const {
*os << "\n Returns: ";
// T may be a reference type, so we don't use UniversalPrint().
UniversalPrinter<T>::Print(value_, os);
}
// Performs the given mock function's default action and returns the
// result in a new-ed ActionResultHolder.
template <typename F>
static ActionResultHolder* PerformDefaultAction(
const FunctionMockerBase<F>* func_mocker,
const typename Function<F>::ArgumentTuple& args,
const string& call_description) {
return new ActionResultHolder(
func_mocker->PerformDefaultAction(args, call_description));
}
// Performs the given action and returns the result in a new-ed
// ActionResultHolder.
template <typename F>
static ActionResultHolder*
PerformAction(const Action<F>& action,
const typename Function<F>::ArgumentTuple& args) {
return new ActionResultHolder(action.Perform(args));
}
private:
T value_;
// T could be a reference type, so = isn't supported.
GTEST_DISALLOW_ASSIGN_(ActionResultHolder);
};
// Specialization for T = void.
template <>
class ActionResultHolder<void> : public UntypedActionResultHolderBase {
public:
void GetValueAndDelete() const { delete this; }
virtual void PrintAsActionResult(::std::ostream* /* os */) const {}
// Performs the given mock function's default action and returns NULL;
template <typename F>
static ActionResultHolder* PerformDefaultAction(
const FunctionMockerBase<F>* func_mocker,
const typename Function<F>::ArgumentTuple& args,
const string& call_description) {
func_mocker->PerformDefaultAction(args, call_description);
return NULL;
}
// Performs the given action and returns NULL.
template <typename F>
static ActionResultHolder* PerformAction(
const Action<F>& action,
const typename Function<F>::ArgumentTuple& args) {
action.Perform(args);
return NULL;
}
};
// The base of the function mocker class for the given function type.
// We put the methods in this class instead of its child to avoid code
// bloat.
template <typename F>
class FunctionMockerBase : public UntypedFunctionMockerBase {
public:
typedef typename Function<F>::Result Result;
typedef typename Function<F>::ArgumentTuple ArgumentTuple;
typedef typename Function<F>::ArgumentMatcherTuple ArgumentMatcherTuple;
FunctionMockerBase() : current_spec_(this) {}
// The destructor verifies that all expectations on this mock
// function have been satisfied. If not, it will report Google Test
// non-fatal failures for the violations.
virtual ~FunctionMockerBase()
GTEST_LOCK_EXCLUDED_(g_gmock_mutex) {
MutexLock l(&g_gmock_mutex);
VerifyAndClearExpectationsLocked();
Mock::UnregisterLocked(this);
ClearDefaultActionsLocked();
}
// Returns the ON_CALL spec that matches this mock function with the
// given arguments; returns NULL if no matching ON_CALL is found.
// L = *
const OnCallSpec<F>* FindOnCallSpec(
const ArgumentTuple& args) const {
for (UntypedOnCallSpecs::const_reverse_iterator it
= untyped_on_call_specs_.rbegin();
it != untyped_on_call_specs_.rend(); ++it) {
const OnCallSpec<F>* spec = static_cast<const OnCallSpec<F>*>(*it);
if (spec->Matches(args))
return spec;
}
return NULL;
}
// Performs the default action of this mock function on the given
// arguments and returns the result. Asserts (or throws if
// exceptions are enabled) with a helpful call descrption if there
// is no valid return value. This method doesn't depend on the
// mutable state of this object, and thus can be called concurrently
// without locking.
// L = *
Result PerformDefaultAction(const ArgumentTuple& args,
const string& call_description) const {
const OnCallSpec<F>* const spec =
this->FindOnCallSpec(args);
if (spec != NULL) {
return spec->GetAction().Perform(args);
}
const string message = call_description +
"\n The mock function has no default action "
"set, and its return type has no default value set.";
#if GTEST_HAS_EXCEPTIONS
if (!DefaultValue<Result>::Exists()) {
throw std::runtime_error(message);
}
#else
Assert(DefaultValue<Result>::Exists(), "", -1, message);
#endif
return DefaultValue<Result>::Get();
}
// Performs the default action with the given arguments and returns
// the action's result. The call description string will be used in
// the error message to describe the call in the case the default
// action fails. The caller is responsible for deleting the result.
// L = *
virtual UntypedActionResultHolderBase* UntypedPerformDefaultAction(
const void* untyped_args, // must point to an ArgumentTuple
const string& call_description) const {
const ArgumentTuple& args =
*static_cast<const ArgumentTuple*>(untyped_args);
return ResultHolder::PerformDefaultAction(this, args, call_description);
}
// Performs the given action with the given arguments and returns
// the action's result. The caller is responsible for deleting the
// result.
// L = *
virtual UntypedActionResultHolderBase* UntypedPerformAction(
const void* untyped_action, const void* untyped_args) const {
// Make a copy of the action before performing it, in case the
// action deletes the mock object (and thus deletes itself).
const Action<F> action = *static_cast<const Action<F>*>(untyped_action);
const ArgumentTuple& args =
*static_cast<const ArgumentTuple*>(untyped_args);
return ResultHolder::PerformAction(action, args);
}
// Implements UntypedFunctionMockerBase::ClearDefaultActionsLocked():
// clears the ON_CALL()s set on this mock function.
virtual void ClearDefaultActionsLocked()
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
g_gmock_mutex.AssertHeld();
// Deleting our default actions may trigger other mock objects to be
// deleted, for example if an action contains a reference counted smart
// pointer to that mock object, and that is the last reference. So if we
// delete our actions within the context of the global mutex we may deadlock
// when this method is called again. Instead, make a copy of the set of
// actions to delete, clear our set within the mutex, and then delete the
// actions outside of the mutex.
UntypedOnCallSpecs specs_to_delete;
untyped_on_call_specs_.swap(specs_to_delete);
g_gmock_mutex.Unlock();
for (UntypedOnCallSpecs::const_iterator it =
specs_to_delete.begin();
it != specs_to_delete.end(); ++it) {
delete static_cast<const OnCallSpec<F>*>(*it);
}
// Lock the mutex again, since the caller expects it to be locked when we
// return.
g_gmock_mutex.Lock();
}
protected:
template <typename Function>
friend class MockSpec;
typedef ActionResultHolder<Result> ResultHolder;
// Returns the result of invoking this mock function with the given
// arguments. This function can be safely called from multiple
// threads concurrently.
Result InvokeWith(const ArgumentTuple& args)
GTEST_LOCK_EXCLUDED_(g_gmock_mutex) {
return static_cast<const ResultHolder*>(
this->UntypedInvokeWith(&args))->GetValueAndDelete();
}
// Adds and returns a default action spec for this mock function.
OnCallSpec<F>& AddNewOnCallSpec(
const char* file, int line,
const ArgumentMatcherTuple& m)
GTEST_LOCK_EXCLUDED_(g_gmock_mutex) {
Mock::RegisterUseByOnCallOrExpectCall(MockObject(), file, line);
OnCallSpec<F>* const on_call_spec = new OnCallSpec<F>(file, line, m);
untyped_on_call_specs_.push_back(on_call_spec);
return *on_call_spec;
}
// Adds and returns an expectation spec for this mock function.
TypedExpectation<F>& AddNewExpectation(
const char* file,
int line,
const string& source_text,
const ArgumentMatcherTuple& m)
GTEST_LOCK_EXCLUDED_(g_gmock_mutex) {
Mock::RegisterUseByOnCallOrExpectCall(MockObject(), file, line);
TypedExpectation<F>* const expectation =
new TypedExpectation<F>(this, file, line, source_text, m);
const linked_ptr<ExpectationBase> untyped_expectation(expectation);
untyped_expectations_.push_back(untyped_expectation);
// Adds this expectation into the implicit sequence if there is one.
Sequence* const implicit_sequence = g_gmock_implicit_sequence.get();
if (implicit_sequence != NULL) {
implicit_sequence->AddExpectation(Expectation(untyped_expectation));
}
return *expectation;
}
// The current spec (either default action spec or expectation spec)
// being described on this function mocker.
MockSpec<F>& current_spec() { return current_spec_; }
private:
template <typename Func> friend class TypedExpectation;
// Some utilities needed for implementing UntypedInvokeWith().
// Describes what default action will be performed for the given
// arguments.
// L = *
void DescribeDefaultActionTo(const ArgumentTuple& args,
::std::ostream* os) const {
const OnCallSpec<F>* const spec = FindOnCallSpec(args);
if (spec == NULL) {
*os << (internal::type_equals<Result, void>::value ?
"returning directly.\n" :
"returning default value.\n");
} else {
*os << "taking default action specified at:\n"
<< FormatFileLocation(spec->file(), spec->line()) << "\n";
}
}
// Writes a message that the call is uninteresting (i.e. neither
// explicitly expected nor explicitly unexpected) to the given
// ostream.
virtual void UntypedDescribeUninterestingCall(
const void* untyped_args,
::std::ostream* os) const
GTEST_LOCK_EXCLUDED_(g_gmock_mutex) {
const ArgumentTuple& args =
*static_cast<const ArgumentTuple*>(untyped_args);
*os << "Uninteresting mock function call - ";
DescribeDefaultActionTo(args, os);
*os << " Function call: " << Name();
UniversalPrint(args, os);
}
// Returns the expectation that matches the given function arguments
// (or NULL is there's no match); when a match is found,
// untyped_action is set to point to the action that should be
// performed (or NULL if the action is "do default"), and
// is_excessive is modified to indicate whether the call exceeds the
// expected number.
//
// Critical section: We must find the matching expectation and the
// corresponding action that needs to be taken in an ATOMIC
// transaction. Otherwise another thread may call this mock
// method in the middle and mess up the state.
//
// However, performing the action has to be left out of the critical
// section. The reason is that we have no control on what the
// action does (it can invoke an arbitrary user function or even a
// mock function) and excessive locking could cause a dead lock.
virtual const ExpectationBase* UntypedFindMatchingExpectation(
const void* untyped_args,
const void** untyped_action, bool* is_excessive,
::std::ostream* what, ::std::ostream* why)
GTEST_LOCK_EXCLUDED_(g_gmock_mutex) {
const ArgumentTuple& args =
*static_cast<const ArgumentTuple*>(untyped_args);
MutexLock l(&g_gmock_mutex);
TypedExpectation<F>* exp = this->FindMatchingExpectationLocked(args);
if (exp == NULL) { // A match wasn't found.
this->FormatUnexpectedCallMessageLocked(args, what, why);
return NULL;
}
// This line must be done before calling GetActionForArguments(),
// which will increment the call count for *exp and thus affect
// its saturation status.
*is_excessive = exp->IsSaturated();
const Action<F>* action = exp->GetActionForArguments(this, args, what, why);
if (action != NULL && action->IsDoDefault())
action = NULL; // Normalize "do default" to NULL.
*untyped_action = action;
return exp;
}
// Prints the given function arguments to the ostream.
virtual void UntypedPrintArgs(const void* untyped_args,
::std::ostream* os) const {
const ArgumentTuple& args =
*static_cast<const ArgumentTuple*>(untyped_args);
UniversalPrint(args, os);
}
// Returns the expectation that matches the arguments, or NULL if no
// expectation matches them.
TypedExpectation<F>* FindMatchingExpectationLocked(
const ArgumentTuple& args) const
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
g_gmock_mutex.AssertHeld();
for (typename UntypedExpectations::const_reverse_iterator it =
untyped_expectations_.rbegin();
it != untyped_expectations_.rend(); ++it) {
TypedExpectation<F>* const exp =
static_cast<TypedExpectation<F>*>(it->get());
if (exp->ShouldHandleArguments(args)) {
return exp;
}
}
return NULL;
}
// Returns a message that the arguments don't match any expectation.
void FormatUnexpectedCallMessageLocked(
const ArgumentTuple& args,
::std::ostream* os,
::std::ostream* why) const
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
g_gmock_mutex.AssertHeld();
*os << "\nUnexpected mock function call - ";
DescribeDefaultActionTo(args, os);
PrintTriedExpectationsLocked(args, why);
}
// Prints a list of expectations that have been tried against the
// current mock function call.
void PrintTriedExpectationsLocked(
const ArgumentTuple& args,
::std::ostream* why) const
GTEST_EXCLUSIVE_LOCK_REQUIRED_(g_gmock_mutex) {
g_gmock_mutex.AssertHeld();
const int count = static_cast<int>(untyped_expectations_.size());
*why << "Google Mock tried the following " << count << " "
<< (count == 1 ? "expectation, but it didn't match" :
"expectations, but none matched")
<< ":\n";
for (int i = 0; i < count; i++) {
TypedExpectation<F>* const expectation =
static_cast<TypedExpectation<F>*>(untyped_expectations_[i].get());
*why << "\n";
expectation->DescribeLocationTo(why);
if (count > 1) {
*why << "tried expectation #" << i << ": ";
}
*why << expectation->source_text() << "...\n";
expectation->ExplainMatchResultTo(args, why);
expectation->DescribeCallCountTo(why);
}
}
// The current spec (either default action spec or expectation spec)
// being described on this function mocker.
MockSpec<F> current_spec_;
// There is no generally useful and implementable semantics of
// copying a mock object, so copying a mock is usually a user error.
// Thus we disallow copying function mockers. If the user really
// wants to copy a mock object, he should implement his own copy
// operation, for example:
//
// class MockFoo : public Foo {
// public:
// // Defines a copy constructor explicitly.
// MockFoo(const MockFoo& src) {}
// ...
// };
GTEST_DISALLOW_COPY_AND_ASSIGN_(FunctionMockerBase);
}; // class FunctionMockerBase
#ifdef _MSC_VER
# pragma warning(pop) // Restores the warning state.
#endif // _MSV_VER
// Implements methods of FunctionMockerBase.
// Verifies that all expectations on this mock function have been
// satisfied. Reports one or more Google Test non-fatal failures and
// returns false if not.
// Reports an uninteresting call (whose description is in msg) in the
// manner specified by 'reaction'.
void ReportUninterestingCall(CallReaction reaction, const string& msg);
} // namespace internal
// The style guide prohibits "using" statements in a namespace scope
// inside a header file. However, the MockSpec class template is
// meant to be defined in the ::testing namespace. The following line
// is just a trick for working around a bug in MSVC 8.0, which cannot
// handle it if we define MockSpec in ::testing.
using internal::MockSpec;
// Const(x) is a convenient function for obtaining a const reference
// to x. This is useful for setting expectations on an overloaded
// const mock method, e.g.
//
// class MockFoo : public FooInterface {
// public:
// MOCK_METHOD0(Bar, int());
// MOCK_CONST_METHOD0(Bar, int&());
// };
//
// MockFoo foo;
// // Expects a call to non-const MockFoo::Bar().
// EXPECT_CALL(foo, Bar());
// // Expects a call to const MockFoo::Bar().
// EXPECT_CALL(Const(foo), Bar());
template <typename T>
inline const T& Const(const T& x) { return x; }
// Constructs an Expectation object that references and co-owns exp.
inline Expectation::Expectation(internal::ExpectationBase& exp) // NOLINT
: expectation_base_(exp.GetHandle().expectation_base()) {}
} // namespace testing
// A separate macro is required to avoid compile errors when the name
// of the method used in call is a result of macro expansion.
// See CompilesWithMethodNameExpandedFromMacro tests in
// internal/gmock-spec-builders_test.cc for more details.
#define GMOCK_ON_CALL_IMPL_(obj, call) \
((obj).gmock_##call).InternalDefaultActionSetAt(__FILE__, __LINE__, \
#obj, #call)
#define ON_CALL(obj, call) GMOCK_ON_CALL_IMPL_(obj, call)
#define GMOCK_EXPECT_CALL_IMPL_(obj, call) \
((obj).gmock_##call).InternalExpectedAt(__FILE__, __LINE__, #obj, #call)
#define EXPECT_CALL(obj, call) GMOCK_EXPECT_CALL_IMPL_(obj, call)
#endif // GMOCK_INCLUDE_GMOCK_GMOCK_SPEC_BUILDERS_H_
namespace testing {
namespace internal {
template <typename F>
class FunctionMockerBase;
// Note: class FunctionMocker really belongs to the ::testing
// namespace. However if we define it in ::testing, MSVC will
// complain when classes in ::testing::internal declare it as a
// friend class template. To workaround this compiler bug, we define
// FunctionMocker in ::testing::internal and import it into ::testing.
template <typename F>
class FunctionMocker;
template <typename R>
class FunctionMocker<R()> : public
internal::FunctionMockerBase<R()> {
public:
typedef R F();
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
MockSpec<F>& With() {
return this->current_spec();
}
R Invoke() {
// Even though gcc and MSVC don't enforce it, 'this->' is required
// by the C++ standard [14.6.4] here, as the base class type is
// dependent on the template argument (and thus shouldn't be
// looked into when resolving InvokeWith).
return this->InvokeWith(ArgumentTuple());
}
};
template <typename R, typename A1>
class FunctionMocker<R(A1)> : public
internal::FunctionMockerBase<R(A1)> {
public:
typedef R F(A1);
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
MockSpec<F>& With(const Matcher<A1>& m1) {
this->current_spec().SetMatchers(::std::tr1::make_tuple(m1));
return this->current_spec();
}
R Invoke(A1 a1) {
// Even though gcc and MSVC don't enforce it, 'this->' is required
// by the C++ standard [14.6.4] here, as the base class type is
// dependent on the template argument (and thus shouldn't be
// looked into when resolving InvokeWith).
return this->InvokeWith(ArgumentTuple(a1));
}
};
template <typename R, typename A1, typename A2>
class FunctionMocker<R(A1, A2)> : public
internal::FunctionMockerBase<R(A1, A2)> {
public:
typedef R F(A1, A2);
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
MockSpec<F>& With(const Matcher<A1>& m1, const Matcher<A2>& m2) {
this->current_spec().SetMatchers(::std::tr1::make_tuple(m1, m2));
return this->current_spec();
}
R Invoke(A1 a1, A2 a2) {
// Even though gcc and MSVC don't enforce it, 'this->' is required
// by the C++ standard [14.6.4] here, as the base class type is
// dependent on the template argument (and thus shouldn't be
// looked into when resolving InvokeWith).
return this->InvokeWith(ArgumentTuple(a1, a2));
}
};
template <typename R, typename A1, typename A2, typename A3>
class FunctionMocker<R(A1, A2, A3)> : public
internal::FunctionMockerBase<R(A1, A2, A3)> {
public:
typedef R F(A1, A2, A3);
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
MockSpec<F>& With(const Matcher<A1>& m1, const Matcher<A2>& m2,
const Matcher<A3>& m3) {
this->current_spec().SetMatchers(::std::tr1::make_tuple(m1, m2, m3));
return this->current_spec();
}
R Invoke(A1 a1, A2 a2, A3 a3) {
// Even though gcc and MSVC don't enforce it, 'this->' is required
// by the C++ standard [14.6.4] here, as the base class type is
// dependent on the template argument (and thus shouldn't be
// looked into when resolving InvokeWith).
return this->InvokeWith(ArgumentTuple(a1, a2, a3));
}
};
template <typename R, typename A1, typename A2, typename A3, typename A4>
class FunctionMocker<R(A1, A2, A3, A4)> : public
internal::FunctionMockerBase<R(A1, A2, A3, A4)> {
public:
typedef R F(A1, A2, A3, A4);
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
MockSpec<F>& With(const Matcher<A1>& m1, const Matcher<A2>& m2,
const Matcher<A3>& m3, const Matcher<A4>& m4) {
this->current_spec().SetMatchers(::std::tr1::make_tuple(m1, m2, m3, m4));
return this->current_spec();
}
R Invoke(A1 a1, A2 a2, A3 a3, A4 a4) {
// Even though gcc and MSVC don't enforce it, 'this->' is required
// by the C++ standard [14.6.4] here, as the base class type is
// dependent on the template argument (and thus shouldn't be
// looked into when resolving InvokeWith).
return this->InvokeWith(ArgumentTuple(a1, a2, a3, a4));
}
};
template <typename R, typename A1, typename A2, typename A3, typename A4,
typename A5>
class FunctionMocker<R(A1, A2, A3, A4, A5)> : public
internal::FunctionMockerBase<R(A1, A2, A3, A4, A5)> {
public:
typedef R F(A1, A2, A3, A4, A5);
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
MockSpec<F>& With(const Matcher<A1>& m1, const Matcher<A2>& m2,
const Matcher<A3>& m3, const Matcher<A4>& m4, const Matcher<A5>& m5) {
this->current_spec().SetMatchers(::std::tr1::make_tuple(m1, m2, m3, m4,
m5));
return this->current_spec();
}
R Invoke(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5) {
// Even though gcc and MSVC don't enforce it, 'this->' is required
// by the C++ standard [14.6.4] here, as the base class type is
// dependent on the template argument (and thus shouldn't be
// looked into when resolving InvokeWith).
return this->InvokeWith(ArgumentTuple(a1, a2, a3, a4, a5));
}
};
template <typename R, typename A1, typename A2, typename A3, typename A4,
typename A5, typename A6>
class FunctionMocker<R(A1, A2, A3, A4, A5, A6)> : public
internal::FunctionMockerBase<R(A1, A2, A3, A4, A5, A6)> {
public:
typedef R F(A1, A2, A3, A4, A5, A6);
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
MockSpec<F>& With(const Matcher<A1>& m1, const Matcher<A2>& m2,
const Matcher<A3>& m3, const Matcher<A4>& m4, const Matcher<A5>& m5,
const Matcher<A6>& m6) {
this->current_spec().SetMatchers(::std::tr1::make_tuple(m1, m2, m3, m4, m5,
m6));
return this->current_spec();
}
R Invoke(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6) {
// Even though gcc and MSVC don't enforce it, 'this->' is required
// by the C++ standard [14.6.4] here, as the base class type is
// dependent on the template argument (and thus shouldn't be
// looked into when resolving InvokeWith).
return this->InvokeWith(ArgumentTuple(a1, a2, a3, a4, a5, a6));
}
};
template <typename R, typename A1, typename A2, typename A3, typename A4,
typename A5, typename A6, typename A7>
class FunctionMocker<R(A1, A2, A3, A4, A5, A6, A7)> : public
internal::FunctionMockerBase<R(A1, A2, A3, A4, A5, A6, A7)> {
public:
typedef R F(A1, A2, A3, A4, A5, A6, A7);
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
MockSpec<F>& With(const Matcher<A1>& m1, const Matcher<A2>& m2,
const Matcher<A3>& m3, const Matcher<A4>& m4, const Matcher<A5>& m5,
const Matcher<A6>& m6, const Matcher<A7>& m7) {
this->current_spec().SetMatchers(::std::tr1::make_tuple(m1, m2, m3, m4, m5,
m6, m7));
return this->current_spec();
}
R Invoke(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7) {
// Even though gcc and MSVC don't enforce it, 'this->' is required
// by the C++ standard [14.6.4] here, as the base class type is
// dependent on the template argument (and thus shouldn't be
// looked into when resolving InvokeWith).
return this->InvokeWith(ArgumentTuple(a1, a2, a3, a4, a5, a6, a7));
}
};
template <typename R, typename A1, typename A2, typename A3, typename A4,
typename A5, typename A6, typename A7, typename A8>
class FunctionMocker<R(A1, A2, A3, A4, A5, A6, A7, A8)> : public
internal::FunctionMockerBase<R(A1, A2, A3, A4, A5, A6, A7, A8)> {
public:
typedef R F(A1, A2, A3, A4, A5, A6, A7, A8);
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
MockSpec<F>& With(const Matcher<A1>& m1, const Matcher<A2>& m2,
const Matcher<A3>& m3, const Matcher<A4>& m4, const Matcher<A5>& m5,
const Matcher<A6>& m6, const Matcher<A7>& m7, const Matcher<A8>& m8) {
this->current_spec().SetMatchers(::std::tr1::make_tuple(m1, m2, m3, m4, m5,
m6, m7, m8));
return this->current_spec();
}
R Invoke(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7, A8 a8) {
// Even though gcc and MSVC don't enforce it, 'this->' is required
// by the C++ standard [14.6.4] here, as the base class type is
// dependent on the template argument (and thus shouldn't be
// looked into when resolving InvokeWith).
return this->InvokeWith(ArgumentTuple(a1, a2, a3, a4, a5, a6, a7, a8));
}
};
template <typename R, typename A1, typename A2, typename A3, typename A4,
typename A5, typename A6, typename A7, typename A8, typename A9>
class FunctionMocker<R(A1, A2, A3, A4, A5, A6, A7, A8, A9)> : public
internal::FunctionMockerBase<R(A1, A2, A3, A4, A5, A6, A7, A8, A9)> {
public:
typedef R F(A1, A2, A3, A4, A5, A6, A7, A8, A9);
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
MockSpec<F>& With(const Matcher<A1>& m1, const Matcher<A2>& m2,
const Matcher<A3>& m3, const Matcher<A4>& m4, const Matcher<A5>& m5,
const Matcher<A6>& m6, const Matcher<A7>& m7, const Matcher<A8>& m8,
const Matcher<A9>& m9) {
this->current_spec().SetMatchers(::std::tr1::make_tuple(m1, m2, m3, m4, m5,
m6, m7, m8, m9));
return this->current_spec();
}
R Invoke(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7, A8 a8, A9 a9) {
// Even though gcc and MSVC don't enforce it, 'this->' is required
// by the C++ standard [14.6.4] here, as the base class type is
// dependent on the template argument (and thus shouldn't be
// looked into when resolving InvokeWith).
return this->InvokeWith(ArgumentTuple(a1, a2, a3, a4, a5, a6, a7, a8, a9));
}
};
template <typename R, typename A1, typename A2, typename A3, typename A4,
typename A5, typename A6, typename A7, typename A8, typename A9,
typename A10>
class FunctionMocker<R(A1, A2, A3, A4, A5, A6, A7, A8, A9, A10)> : public
internal::FunctionMockerBase<R(A1, A2, A3, A4, A5, A6, A7, A8, A9, A10)> {
public:
typedef R F(A1, A2, A3, A4, A5, A6, A7, A8, A9, A10);
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
MockSpec<F>& With(const Matcher<A1>& m1, const Matcher<A2>& m2,
const Matcher<A3>& m3, const Matcher<A4>& m4, const Matcher<A5>& m5,
const Matcher<A6>& m6, const Matcher<A7>& m7, const Matcher<A8>& m8,
const Matcher<A9>& m9, const Matcher<A10>& m10) {
this->current_spec().SetMatchers(::std::tr1::make_tuple(m1, m2, m3, m4, m5,
m6, m7, m8, m9, m10));
return this->current_spec();
}
R Invoke(A1 a1, A2 a2, A3 a3, A4 a4, A5 a5, A6 a6, A7 a7, A8 a8, A9 a9,
A10 a10) {
// Even though gcc and MSVC don't enforce it, 'this->' is required
// by the C++ standard [14.6.4] here, as the base class type is
// dependent on the template argument (and thus shouldn't be
// looked into when resolving InvokeWith).
return this->InvokeWith(ArgumentTuple(a1, a2, a3, a4, a5, a6, a7, a8, a9,
a10));
}
};
} // namespace internal
// The style guide prohibits "using" statements in a namespace scope
// inside a header file. However, the FunctionMocker class template
// is meant to be defined in the ::testing namespace. The following
// line is just a trick for working around a bug in MSVC 8.0, which
// cannot handle it if we define FunctionMocker in ::testing.
using internal::FunctionMocker;
// GMOCK_RESULT_(tn, F) expands to the result type of function type F.
// We define this as a variadic macro in case F contains unprotected
// commas (the same reason that we use variadic macros in other places
// in this file).
// INTERNAL IMPLEMENTATION - DON'T USE IN USER CODE!!!
#define GMOCK_RESULT_(tn, ...) \
tn ::testing::internal::Function<__VA_ARGS__>::Result
// The type of argument N of the given function type.
// INTERNAL IMPLEMENTATION - DON'T USE IN USER CODE!!!
#define GMOCK_ARG_(tn, N, ...) \
tn ::testing::internal::Function<__VA_ARGS__>::Argument##N
// The matcher type for argument N of the given function type.
// INTERNAL IMPLEMENTATION - DON'T USE IN USER CODE!!!
#define GMOCK_MATCHER_(tn, N, ...) \
const ::testing::Matcher<GMOCK_ARG_(tn, N, __VA_ARGS__)>&
// The variable for mocking the given method.
// INTERNAL IMPLEMENTATION - DON'T USE IN USER CODE!!!
#define GMOCK_MOCKER_(arity, constness, Method) \
GTEST_CONCAT_TOKEN_(gmock##constness##arity##_##Method##_, __LINE__)
// INTERNAL IMPLEMENTATION - DON'T USE IN USER CODE!!!
#define GMOCK_METHOD0_(tn, constness, ct, Method, ...) \
GMOCK_RESULT_(tn, __VA_ARGS__) ct Method( \
) constness { \
GTEST_COMPILE_ASSERT_((::std::tr1::tuple_size< \
tn ::testing::internal::Function<__VA_ARGS__>::ArgumentTuple>::value \
== 0), \
this_method_does_not_take_0_arguments); \
GMOCK_MOCKER_(0, constness, Method).SetOwnerAndName(this, #Method); \
return GMOCK_MOCKER_(0, constness, Method).Invoke(); \
} \
::testing::MockSpec<__VA_ARGS__>& \
gmock_##Method() constness { \
GMOCK_MOCKER_(0, constness, Method).RegisterOwner(this); \
return GMOCK_MOCKER_(0, constness, Method).With(); \
} \
mutable ::testing::FunctionMocker<__VA_ARGS__> GMOCK_MOCKER_(0, constness, \
Method)
// INTERNAL IMPLEMENTATION - DON'T USE IN USER CODE!!!
#define GMOCK_METHOD1_(tn, constness, ct, Method, ...) \
GMOCK_RESULT_(tn, __VA_ARGS__) ct Method( \
GMOCK_ARG_(tn, 1, __VA_ARGS__) gmock_a1) constness { \
GTEST_COMPILE_ASSERT_((::std::tr1::tuple_size< \
tn ::testing::internal::Function<__VA_ARGS__>::ArgumentTuple>::value \
== 1), \
this_method_does_not_take_1_argument); \
GMOCK_MOCKER_(1, constness, Method).SetOwnerAndName(this, #Method); \
return GMOCK_MOCKER_(1, constness, Method).Invoke(gmock_a1); \
} \
::testing::MockSpec<__VA_ARGS__>& \
gmock_##Method(GMOCK_MATCHER_(tn, 1, __VA_ARGS__) gmock_a1) constness { \
GMOCK_MOCKER_(1, constness, Method).RegisterOwner(this); \
return GMOCK_MOCKER_(1, constness, Method).With(gmock_a1); \
} \
mutable ::testing::FunctionMocker<__VA_ARGS__> GMOCK_MOCKER_(1, constness, \
Method)
// INTERNAL IMPLEMENTATION - DON'T USE IN USER CODE!!!
#define GMOCK_METHOD2_(tn, constness, ct, Method, ...) \
GMOCK_RESULT_(tn, __VA_ARGS__) ct Method( \
GMOCK_ARG_(tn, 1, __VA_ARGS__) gmock_a1, \
GMOCK_ARG_(tn, 2, __VA_ARGS__) gmock_a2) constness { \
GTEST_COMPILE_ASSERT_((::std::tr1::tuple_size< \
tn ::testing::internal::Function<__VA_ARGS__>::ArgumentTuple>::value \
== 2), \
this_method_does_not_take_2_arguments); \
GMOCK_MOCKER_(2, constness, Method).SetOwnerAndName(this, #Method); \
return GMOCK_MOCKER_(2, constness, Method).Invoke(gmock_a1, gmock_a2); \
} \
::testing::MockSpec<__VA_ARGS__>& \
gmock_##Method(GMOCK_MATCHER_(tn, 1, __VA_ARGS__) gmock_a1, \
GMOCK_MATCHER_(tn, 2, __VA_ARGS__) gmock_a2) constness { \
GMOCK_MOCKER_(2, constness, Method).RegisterOwner(this); \
return GMOCK_MOCKER_(2, constness, Method).With(gmock_a1, gmock_a2); \
} \
mutable ::testing::FunctionMocker<__VA_ARGS__> GMOCK_MOCKER_(2, constness, \
Method)
// INTERNAL IMPLEMENTATION - DON'T USE IN USER CODE!!!
#define GMOCK_METHOD3_(tn, constness, ct, Method, ...) \
GMOCK_RESULT_(tn, __VA_ARGS__) ct Method( \
GMOCK_ARG_(tn, 1, __VA_ARGS__) gmock_a1, \
GMOCK_ARG_(tn, 2, __VA_ARGS__) gmock_a2, \
GMOCK_ARG_(tn, 3, __VA_ARGS__) gmock_a3) constness { \
GTEST_COMPILE_ASSERT_((::std::tr1::tuple_size< \
tn ::testing::internal::Function<__VA_ARGS__>::ArgumentTuple>::value \
== 3), \
this_method_does_not_take_3_arguments); \
GMOCK_MOCKER_(3, constness, Method).SetOwnerAndName(this, #Method); \
return GMOCK_MOCKER_(3, constness, Method).Invoke(gmock_a1, gmock_a2, \
gmock_a3); \
} \
::testing::MockSpec<__VA_ARGS__>& \
gmock_##Method(GMOCK_MATCHER_(tn, 1, __VA_ARGS__) gmock_a1, \
GMOCK_MATCHER_(tn, 2, __VA_ARGS__) gmock_a2, \
GMOCK_MATCHER_(tn, 3, __VA_ARGS__) gmock_a3) constness { \
GMOCK_MOCKER_(3, constness, Method).RegisterOwner(this); \
return GMOCK_MOCKER_(3, constness, Method).With(gmock_a1, gmock_a2, \
gmock_a3); \
} \
mutable ::testing::FunctionMocker<__VA_ARGS__> GMOCK_MOCKER_(3, constness, \
Method)
// INTERNAL IMPLEMENTATION - DON'T USE IN USER CODE!!!
#define GMOCK_METHOD4_(tn, constness, ct, Method, ...) \
GMOCK_RESULT_(tn, __VA_ARGS__) ct Method( \
GMOCK_ARG_(tn, 1, __VA_ARGS__) gmock_a1, \
GMOCK_ARG_(tn, 2, __VA_ARGS__) gmock_a2, \
GMOCK_ARG_(tn, 3, __VA_ARGS__) gmock_a3, \
GMOCK_ARG_(tn, 4, __VA_ARGS__) gmock_a4) constness { \
GTEST_COMPILE_ASSERT_((::std::tr1::tuple_size< \
tn ::testing::internal::Function<__VA_ARGS__>::ArgumentTuple>::value \
== 4), \
this_method_does_not_take_4_arguments); \
GMOCK_MOCKER_(4, constness, Method).SetOwnerAndName(this, #Method); \
return GMOCK_MOCKER_(4, constness, Method).Invoke(gmock_a1, gmock_a2, \
gmock_a3, gmock_a4); \
} \
::testing::MockSpec<__VA_ARGS__>& \
gmock_##Method(GMOCK_MATCHER_(tn, 1, __VA_ARGS__) gmock_a1, \
GMOCK_MATCHER_(tn, 2, __VA_ARGS__) gmock_a2, \
GMOCK_MATCHER_(tn, 3, __VA_ARGS__) gmock_a3, \
GMOCK_MATCHER_(tn, 4, __VA_ARGS__) gmock_a4) constness { \
GMOCK_MOCKER_(4, constness, Method).RegisterOwner(this); \
return GMOCK_MOCKER_(4, constness, Method).With(gmock_a1, gmock_a2, \
gmock_a3, gmock_a4); \
} \
mutable ::testing::FunctionMocker<__VA_ARGS__> GMOCK_MOCKER_(4, constness, \
Method)
// INTERNAL IMPLEMENTATION - DON'T USE IN USER CODE!!!
#define GMOCK_METHOD5_(tn, constness, ct, Method, ...) \
GMOCK_RESULT_(tn, __VA_ARGS__) ct Method( \
GMOCK_ARG_(tn, 1, __VA_ARGS__) gmock_a1, \
GMOCK_ARG_(tn, 2, __VA_ARGS__) gmock_a2, \
GMOCK_ARG_(tn, 3, __VA_ARGS__) gmock_a3, \
GMOCK_ARG_(tn, 4, __VA_ARGS__) gmock_a4, \
GMOCK_ARG_(tn, 5, __VA_ARGS__) gmock_a5) constness { \
GTEST_COMPILE_ASSERT_((::std::tr1::tuple_size< \
tn ::testing::internal::Function<__VA_ARGS__>::ArgumentTuple>::value \
== 5), \
this_method_does_not_take_5_arguments); \
GMOCK_MOCKER_(5, constness, Method).SetOwnerAndName(this, #Method); \
return GMOCK_MOCKER_(5, constness, Method).Invoke(gmock_a1, gmock_a2, \
gmock_a3, gmock_a4, gmock_a5); \
} \
::testing::MockSpec<__VA_ARGS__>& \
gmock_##Method(GMOCK_MATCHER_(tn, 1, __VA_ARGS__) gmock_a1, \
GMOCK_MATCHER_(tn, 2, __VA_ARGS__) gmock_a2, \
GMOCK_MATCHER_(tn, 3, __VA_ARGS__) gmock_a3, \
GMOCK_MATCHER_(tn, 4, __VA_ARGS__) gmock_a4, \
GMOCK_MATCHER_(tn, 5, __VA_ARGS__) gmock_a5) constness { \
GMOCK_MOCKER_(5, constness, Method).RegisterOwner(this); \
return GMOCK_MOCKER_(5, constness, Method).With(gmock_a1, gmock_a2, \
gmock_a3, gmock_a4, gmock_a5); \
} \
mutable ::testing::FunctionMocker<__VA_ARGS__> GMOCK_MOCKER_(5, constness, \
Method)
// INTERNAL IMPLEMENTATION - DON'T USE IN USER CODE!!!
#define GMOCK_METHOD6_(tn, constness, ct, Method, ...) \
GMOCK_RESULT_(tn, __VA_ARGS__) ct Method( \
GMOCK_ARG_(tn, 1, __VA_ARGS__) gmock_a1, \
GMOCK_ARG_(tn, 2, __VA_ARGS__) gmock_a2, \
GMOCK_ARG_(tn, 3, __VA_ARGS__) gmock_a3, \
GMOCK_ARG_(tn, 4, __VA_ARGS__) gmock_a4, \
GMOCK_ARG_(tn, 5, __VA_ARGS__) gmock_a5, \
GMOCK_ARG_(tn, 6, __VA_ARGS__) gmock_a6) constness { \
GTEST_COMPILE_ASSERT_((::std::tr1::tuple_size< \
tn ::testing::internal::Function<__VA_ARGS__>::ArgumentTuple>::value \
== 6), \
this_method_does_not_take_6_arguments); \
GMOCK_MOCKER_(6, constness, Method).SetOwnerAndName(this, #Method); \
return GMOCK_MOCKER_(6, constness, Method).Invoke(gmock_a1, gmock_a2, \
gmock_a3, gmock_a4, gmock_a5, gmock_a6); \
} \
::testing::MockSpec<__VA_ARGS__>& \
gmock_##Method(GMOCK_MATCHER_(tn, 1, __VA_ARGS__) gmock_a1, \
GMOCK_MATCHER_(tn, 2, __VA_ARGS__) gmock_a2, \
GMOCK_MATCHER_(tn, 3, __VA_ARGS__) gmock_a3, \
GMOCK_MATCHER_(tn, 4, __VA_ARGS__) gmock_a4, \
GMOCK_MATCHER_(tn, 5, __VA_ARGS__) gmock_a5, \
GMOCK_MATCHER_(tn, 6, __VA_ARGS__) gmock_a6) constness { \
GMOCK_MOCKER_(6, constness, Method).RegisterOwner(this); \
return GMOCK_MOCKER_(6, constness, Method).With(gmock_a1, gmock_a2, \
gmock_a3, gmock_a4, gmock_a5, gmock_a6); \
} \
mutable ::testing::FunctionMocker<__VA_ARGS__> GMOCK_MOCKER_(6, constness, \
Method)
// INTERNAL IMPLEMENTATION - DON'T USE IN USER CODE!!!
#define GMOCK_METHOD7_(tn, constness, ct, Method, ...) \
GMOCK_RESULT_(tn, __VA_ARGS__) ct Method( \
GMOCK_ARG_(tn, 1, __VA_ARGS__) gmock_a1, \
GMOCK_ARG_(tn, 2, __VA_ARGS__) gmock_a2, \
GMOCK_ARG_(tn, 3, __VA_ARGS__) gmock_a3, \
GMOCK_ARG_(tn, 4, __VA_ARGS__) gmock_a4, \
GMOCK_ARG_(tn, 5, __VA_ARGS__) gmock_a5, \
GMOCK_ARG_(tn, 6, __VA_ARGS__) gmock_a6, \
GMOCK_ARG_(tn, 7, __VA_ARGS__) gmock_a7) constness { \
GTEST_COMPILE_ASSERT_((::std::tr1::tuple_size< \
tn ::testing::internal::Function<__VA_ARGS__>::ArgumentTuple>::value \
== 7), \
this_method_does_not_take_7_arguments); \
GMOCK_MOCKER_(7, constness, Method).SetOwnerAndName(this, #Method); \
return GMOCK_MOCKER_(7, constness, Method).Invoke(gmock_a1, gmock_a2, \
gmock_a3, gmock_a4, gmock_a5, gmock_a6, gmock_a7); \
} \
::testing::MockSpec<__VA_ARGS__>& \
gmock_##Method(GMOCK_MATCHER_(tn, 1, __VA_ARGS__) gmock_a1, \
GMOCK_MATCHER_(tn, 2, __VA_ARGS__) gmock_a2, \
GMOCK_MATCHER_(tn, 3, __VA_ARGS__) gmock_a3, \
GMOCK_MATCHER_(tn, 4, __VA_ARGS__) gmock_a4, \
GMOCK_MATCHER_(tn, 5, __VA_ARGS__) gmock_a5, \
GMOCK_MATCHER_(tn, 6, __VA_ARGS__) gmock_a6, \
GMOCK_MATCHER_(tn, 7, __VA_ARGS__) gmock_a7) constness { \
GMOCK_MOCKER_(7, constness, Method).RegisterOwner(this); \
return GMOCK_MOCKER_(7, constness, Method).With(gmock_a1, gmock_a2, \
gmock_a3, gmock_a4, gmock_a5, gmock_a6, gmock_a7); \
} \
mutable ::testing::FunctionMocker<__VA_ARGS__> GMOCK_MOCKER_(7, constness, \
Method)
// INTERNAL IMPLEMENTATION - DON'T USE IN USER CODE!!!
#define GMOCK_METHOD8_(tn, constness, ct, Method, ...) \
GMOCK_RESULT_(tn, __VA_ARGS__) ct Method( \
GMOCK_ARG_(tn, 1, __VA_ARGS__) gmock_a1, \
GMOCK_ARG_(tn, 2, __VA_ARGS__) gmock_a2, \
GMOCK_ARG_(tn, 3, __VA_ARGS__) gmock_a3, \
GMOCK_ARG_(tn, 4, __VA_ARGS__) gmock_a4, \
GMOCK_ARG_(tn, 5, __VA_ARGS__) gmock_a5, \
GMOCK_ARG_(tn, 6, __VA_ARGS__) gmock_a6, \
GMOCK_ARG_(tn, 7, __VA_ARGS__) gmock_a7, \
GMOCK_ARG_(tn, 8, __VA_ARGS__) gmock_a8) constness { \
GTEST_COMPILE_ASSERT_((::std::tr1::tuple_size< \
tn ::testing::internal::Function<__VA_ARGS__>::ArgumentTuple>::value \
== 8), \
this_method_does_not_take_8_arguments); \
GMOCK_MOCKER_(8, constness, Method).SetOwnerAndName(this, #Method); \
return GMOCK_MOCKER_(8, constness, Method).Invoke(gmock_a1, gmock_a2, \
gmock_a3, gmock_a4, gmock_a5, gmock_a6, gmock_a7, gmock_a8); \
} \
::testing::MockSpec<__VA_ARGS__>& \
gmock_##Method(GMOCK_MATCHER_(tn, 1, __VA_ARGS__) gmock_a1, \
GMOCK_MATCHER_(tn, 2, __VA_ARGS__) gmock_a2, \
GMOCK_MATCHER_(tn, 3, __VA_ARGS__) gmock_a3, \
GMOCK_MATCHER_(tn, 4, __VA_ARGS__) gmock_a4, \
GMOCK_MATCHER_(tn, 5, __VA_ARGS__) gmock_a5, \
GMOCK_MATCHER_(tn, 6, __VA_ARGS__) gmock_a6, \
GMOCK_MATCHER_(tn, 7, __VA_ARGS__) gmock_a7, \
GMOCK_MATCHER_(tn, 8, __VA_ARGS__) gmock_a8) constness { \
GMOCK_MOCKER_(8, constness, Method).RegisterOwner(this); \
return GMOCK_MOCKER_(8, constness, Method).With(gmock_a1, gmock_a2, \
gmock_a3, gmock_a4, gmock_a5, gmock_a6, gmock_a7, gmock_a8); \
} \
mutable ::testing::FunctionMocker<__VA_ARGS__> GMOCK_MOCKER_(8, constness, \
Method)
// INTERNAL IMPLEMENTATION - DON'T USE IN USER CODE!!!
#define GMOCK_METHOD9_(tn, constness, ct, Method, ...) \
GMOCK_RESULT_(tn, __VA_ARGS__) ct Method( \
GMOCK_ARG_(tn, 1, __VA_ARGS__) gmock_a1, \
GMOCK_ARG_(tn, 2, __VA_ARGS__) gmock_a2, \
GMOCK_ARG_(tn, 3, __VA_ARGS__) gmock_a3, \
GMOCK_ARG_(tn, 4, __VA_ARGS__) gmock_a4, \
GMOCK_ARG_(tn, 5, __VA_ARGS__) gmock_a5, \
GMOCK_ARG_(tn, 6, __VA_ARGS__) gmock_a6, \
GMOCK_ARG_(tn, 7, __VA_ARGS__) gmock_a7, \
GMOCK_ARG_(tn, 8, __VA_ARGS__) gmock_a8, \
GMOCK_ARG_(tn, 9, __VA_ARGS__) gmock_a9) constness { \
GTEST_COMPILE_ASSERT_((::std::tr1::tuple_size< \
tn ::testing::internal::Function<__VA_ARGS__>::ArgumentTuple>::value \
== 9), \
this_method_does_not_take_9_arguments); \
GMOCK_MOCKER_(9, constness, Method).SetOwnerAndName(this, #Method); \
return GMOCK_MOCKER_(9, constness, Method).Invoke(gmock_a1, gmock_a2, \
gmock_a3, gmock_a4, gmock_a5, gmock_a6, gmock_a7, gmock_a8, \
gmock_a9); \
} \
::testing::MockSpec<__VA_ARGS__>& \
gmock_##Method(GMOCK_MATCHER_(tn, 1, __VA_ARGS__) gmock_a1, \
GMOCK_MATCHER_(tn, 2, __VA_ARGS__) gmock_a2, \
GMOCK_MATCHER_(tn, 3, __VA_ARGS__) gmock_a3, \
GMOCK_MATCHER_(tn, 4, __VA_ARGS__) gmock_a4, \
GMOCK_MATCHER_(tn, 5, __VA_ARGS__) gmock_a5, \
GMOCK_MATCHER_(tn, 6, __VA_ARGS__) gmock_a6, \
GMOCK_MATCHER_(tn, 7, __VA_ARGS__) gmock_a7, \
GMOCK_MATCHER_(tn, 8, __VA_ARGS__) gmock_a8, \
GMOCK_MATCHER_(tn, 9, __VA_ARGS__) gmock_a9) constness { \
GMOCK_MOCKER_(9, constness, Method).RegisterOwner(this); \
return GMOCK_MOCKER_(9, constness, Method).With(gmock_a1, gmock_a2, \
gmock_a3, gmock_a4, gmock_a5, gmock_a6, gmock_a7, gmock_a8, \
gmock_a9); \
} \
mutable ::testing::FunctionMocker<__VA_ARGS__> GMOCK_MOCKER_(9, constness, \
Method)
// INTERNAL IMPLEMENTATION - DON'T USE IN USER CODE!!!
#define GMOCK_METHOD10_(tn, constness, ct, Method, ...) \
GMOCK_RESULT_(tn, __VA_ARGS__) ct Method( \
GMOCK_ARG_(tn, 1, __VA_ARGS__) gmock_a1, \
GMOCK_ARG_(tn, 2, __VA_ARGS__) gmock_a2, \
GMOCK_ARG_(tn, 3, __VA_ARGS__) gmock_a3, \
GMOCK_ARG_(tn, 4, __VA_ARGS__) gmock_a4, \
GMOCK_ARG_(tn, 5, __VA_ARGS__) gmock_a5, \
GMOCK_ARG_(tn, 6, __VA_ARGS__) gmock_a6, \
GMOCK_ARG_(tn, 7, __VA_ARGS__) gmock_a7, \
GMOCK_ARG_(tn, 8, __VA_ARGS__) gmock_a8, \
GMOCK_ARG_(tn, 9, __VA_ARGS__) gmock_a9, \
GMOCK_ARG_(tn, 10, __VA_ARGS__) gmock_a10) constness { \
GTEST_COMPILE_ASSERT_((::std::tr1::tuple_size< \
tn ::testing::internal::Function<__VA_ARGS__>::ArgumentTuple>::value \
== 10), \
this_method_does_not_take_10_arguments); \
GMOCK_MOCKER_(10, constness, Method).SetOwnerAndName(this, #Method); \
return GMOCK_MOCKER_(10, constness, Method).Invoke(gmock_a1, gmock_a2, \
gmock_a3, gmock_a4, gmock_a5, gmock_a6, gmock_a7, gmock_a8, gmock_a9, \
gmock_a10); \
} \
::testing::MockSpec<__VA_ARGS__>& \
gmock_##Method(GMOCK_MATCHER_(tn, 1, __VA_ARGS__) gmock_a1, \
GMOCK_MATCHER_(tn, 2, __VA_ARGS__) gmock_a2, \
GMOCK_MATCHER_(tn, 3, __VA_ARGS__) gmock_a3, \
GMOCK_MATCHER_(tn, 4, __VA_ARGS__) gmock_a4, \
GMOCK_MATCHER_(tn, 5, __VA_ARGS__) gmock_a5, \
GMOCK_MATCHER_(tn, 6, __VA_ARGS__) gmock_a6, \
GMOCK_MATCHER_(tn, 7, __VA_ARGS__) gmock_a7, \
GMOCK_MATCHER_(tn, 8, __VA_ARGS__) gmock_a8, \
GMOCK_MATCHER_(tn, 9, __VA_ARGS__) gmock_a9, \
GMOCK_MATCHER_(tn, 10, \
__VA_ARGS__) gmock_a10) constness { \
GMOCK_MOCKER_(10, constness, Method).RegisterOwner(this); \
return GMOCK_MOCKER_(10, constness, Method).With(gmock_a1, gmock_a2, \
gmock_a3, gmock_a4, gmock_a5, gmock_a6, gmock_a7, gmock_a8, gmock_a9, \
gmock_a10); \
} \
mutable ::testing::FunctionMocker<__VA_ARGS__> GMOCK_MOCKER_(10, constness, \
Method)
#define MOCK_METHOD0(m, ...) GMOCK_METHOD0_(, , , m, __VA_ARGS__)
#define MOCK_METHOD1(m, ...) GMOCK_METHOD1_(, , , m, __VA_ARGS__)
#define MOCK_METHOD2(m, ...) GMOCK_METHOD2_(, , , m, __VA_ARGS__)
#define MOCK_METHOD3(m, ...) GMOCK_METHOD3_(, , , m, __VA_ARGS__)
#define MOCK_METHOD4(m, ...) GMOCK_METHOD4_(, , , m, __VA_ARGS__)
#define MOCK_METHOD5(m, ...) GMOCK_METHOD5_(, , , m, __VA_ARGS__)
#define MOCK_METHOD6(m, ...) GMOCK_METHOD6_(, , , m, __VA_ARGS__)
#define MOCK_METHOD7(m, ...) GMOCK_METHOD7_(, , , m, __VA_ARGS__)
#define MOCK_METHOD8(m, ...) GMOCK_METHOD8_(, , , m, __VA_ARGS__)
#define MOCK_METHOD9(m, ...) GMOCK_METHOD9_(, , , m, __VA_ARGS__)
#define MOCK_METHOD10(m, ...) GMOCK_METHOD10_(, , , m, __VA_ARGS__)
#define MOCK_CONST_METHOD0(m, ...) GMOCK_METHOD0_(, const, , m, __VA_ARGS__)
#define MOCK_CONST_METHOD1(m, ...) GMOCK_METHOD1_(, const, , m, __VA_ARGS__)
#define MOCK_CONST_METHOD2(m, ...) GMOCK_METHOD2_(, const, , m, __VA_ARGS__)
#define MOCK_CONST_METHOD3(m, ...) GMOCK_METHOD3_(, const, , m, __VA_ARGS__)
#define MOCK_CONST_METHOD4(m, ...) GMOCK_METHOD4_(, const, , m, __VA_ARGS__)
#define MOCK_CONST_METHOD5(m, ...) GMOCK_METHOD5_(, const, , m, __VA_ARGS__)
#define MOCK_CONST_METHOD6(m, ...) GMOCK_METHOD6_(, const, , m, __VA_ARGS__)
#define MOCK_CONST_METHOD7(m, ...) GMOCK_METHOD7_(, const, , m, __VA_ARGS__)
#define MOCK_CONST_METHOD8(m, ...) GMOCK_METHOD8_(, const, , m, __VA_ARGS__)
#define MOCK_CONST_METHOD9(m, ...) GMOCK_METHOD9_(, const, , m, __VA_ARGS__)
#define MOCK_CONST_METHOD10(m, ...) GMOCK_METHOD10_(, const, , m, __VA_ARGS__)
#define MOCK_METHOD0_T(m, ...) GMOCK_METHOD0_(typename, , , m, __VA_ARGS__)
#define MOCK_METHOD1_T(m, ...) GMOCK_METHOD1_(typename, , , m, __VA_ARGS__)
#define MOCK_METHOD2_T(m, ...) GMOCK_METHOD2_(typename, , , m, __VA_ARGS__)
#define MOCK_METHOD3_T(m, ...) GMOCK_METHOD3_(typename, , , m, __VA_ARGS__)
#define MOCK_METHOD4_T(m, ...) GMOCK_METHOD4_(typename, , , m, __VA_ARGS__)
#define MOCK_METHOD5_T(m, ...) GMOCK_METHOD5_(typename, , , m, __VA_ARGS__)
#define MOCK_METHOD6_T(m, ...) GMOCK_METHOD6_(typename, , , m, __VA_ARGS__)
#define MOCK_METHOD7_T(m, ...) GMOCK_METHOD7_(typename, , , m, __VA_ARGS__)
#define MOCK_METHOD8_T(m, ...) GMOCK_METHOD8_(typename, , , m, __VA_ARGS__)
#define MOCK_METHOD9_T(m, ...) GMOCK_METHOD9_(typename, , , m, __VA_ARGS__)
#define MOCK_METHOD10_T(m, ...) GMOCK_METHOD10_(typename, , , m, __VA_ARGS__)
#define MOCK_CONST_METHOD0_T(m, ...) \
GMOCK_METHOD0_(typename, const, , m, __VA_ARGS__)
#define MOCK_CONST_METHOD1_T(m, ...) \
GMOCK_METHOD1_(typename, const, , m, __VA_ARGS__)
#define MOCK_CONST_METHOD2_T(m, ...) \
GMOCK_METHOD2_(typename, const, , m, __VA_ARGS__)
#define MOCK_CONST_METHOD3_T(m, ...) \
GMOCK_METHOD3_(typename, const, , m, __VA_ARGS__)
#define MOCK_CONST_METHOD4_T(m, ...) \
GMOCK_METHOD4_(typename, const, , m, __VA_ARGS__)
#define MOCK_CONST_METHOD5_T(m, ...) \
GMOCK_METHOD5_(typename, const, , m, __VA_ARGS__)
#define MOCK_CONST_METHOD6_T(m, ...) \
GMOCK_METHOD6_(typename, const, , m, __VA_ARGS__)
#define MOCK_CONST_METHOD7_T(m, ...) \
GMOCK_METHOD7_(typename, const, , m, __VA_ARGS__)
#define MOCK_CONST_METHOD8_T(m, ...) \
GMOCK_METHOD8_(typename, const, , m, __VA_ARGS__)
#define MOCK_CONST_METHOD9_T(m, ...) \
GMOCK_METHOD9_(typename, const, , m, __VA_ARGS__)
#define MOCK_CONST_METHOD10_T(m, ...) \
GMOCK_METHOD10_(typename, const, , m, __VA_ARGS__)
#define MOCK_METHOD0_WITH_CALLTYPE(ct, m, ...) \
GMOCK_METHOD0_(, , ct, m, __VA_ARGS__)
#define MOCK_METHOD1_WITH_CALLTYPE(ct, m, ...) \
GMOCK_METHOD1_(, , ct, m, __VA_ARGS__)
#define MOCK_METHOD2_WITH_CALLTYPE(ct, m, ...) \
GMOCK_METHOD2_(, , ct, m, __VA_ARGS__)
#define MOCK_METHOD3_WITH_CALLTYPE(ct, m, ...) \
GMOCK_METHOD3_(, , ct, m, __VA_ARGS__)
#define MOCK_METHOD4_WITH_CALLTYPE(ct, m, ...) \
GMOCK_METHOD4_(, , ct, m, __VA_ARGS__)
#define MOCK_METHOD5_WITH_CALLTYPE(ct, m, ...) \
GMOCK_METHOD5_(, , ct, m, __VA_ARGS__)
#define MOCK_METHOD6_WITH_CALLTYPE(ct, m, ...) \
GMOCK_METHOD6_(, , ct, m, __VA_ARGS__)
#define MOCK_METHOD7_WITH_CALLTYPE(ct, m, ...) \
GMOCK_METHOD7_(, , ct, m, __VA_ARGS__)
#define MOCK_METHOD8_WITH_CALLTYPE(ct, m, ...) \
GMOCK_METHOD8_(, , ct, m, __VA_ARGS__)
#define MOCK_METHOD9_WITH_CALLTYPE(ct, m, ...) \
GMOCK_METHOD9_(, , ct, m, __VA_ARGS__)
#define MOCK_METHOD10_WITH_CALLTYPE(ct, m, ...) \
GMOCK_METHOD10_(, , ct, m, __VA_ARGS__)
#define MOCK_CONST_METHOD0_WITH_CALLTYPE(ct, m, ...) \
GMOCK_METHOD0_(, const, ct, m, __VA_ARGS__)
#define MOCK_CONST_METHOD1_WITH_CALLTYPE(ct, m, ...) \
GMOCK_METHOD1_(, const, ct, m, __VA_ARGS__)
#define MOCK_CONST_METHOD2_WITH_CALLTYPE(ct, m, ...) \
GMOCK_METHOD2_(, const, ct, m, __VA_ARGS__)
#define MOCK_CONST_METHOD3_WITH_CALLTYPE(ct, m, ...) \
GMOCK_METHOD3_(, const, ct, m, __VA_ARGS__)
#define MOCK_CONST_METHOD4_WITH_CALLTYPE(ct, m, ...) \
GMOCK_METHOD4_(, const, ct, m, __VA_ARGS__)
#define MOCK_CONST_METHOD5_WITH_CALLTYPE(ct, m, ...) \
GMOCK_METHOD5_(, const, ct, m, __VA_ARGS__)
#define MOCK_CONST_METHOD6_WITH_CALLTYPE(ct, m, ...) \
GMOCK_METHOD6_(, const, ct, m, __VA_ARGS__)
#define MOCK_CONST_METHOD7_WITH_CALLTYPE(ct, m, ...) \
GMOCK_METHOD7_(, const, ct, m, __VA_ARGS__)
#define MOCK_CONST_METHOD8_WITH_CALLTYPE(ct, m, ...) \
GMOCK_METHOD8_(, const, ct, m, __VA_ARGS__)
#define MOCK_CONST_METHOD9_WITH_CALLTYPE(ct, m, ...) \
GMOCK_METHOD9_(, const, ct, m, __VA_ARGS__)
#define MOCK_CONST_METHOD10_WITH_CALLTYPE(ct, m, ...) \
GMOCK_METHOD10_(, const, ct, m, __VA_ARGS__)
#define MOCK_METHOD0_T_WITH_CALLTYPE(ct, m, ...) \
GMOCK_METHOD0_(typename, , ct, m, __VA_ARGS__)
#define MOCK_METHOD1_T_WITH_CALLTYPE(ct, m, ...) \
GMOCK_METHOD1_(typename, , ct, m, __VA_ARGS__)
#define MOCK_METHOD2_T_WITH_CALLTYPE(ct, m, ...) \
GMOCK_METHOD2_(typename, , ct, m, __VA_ARGS__)
#define MOCK_METHOD3_T_WITH_CALLTYPE(ct, m, ...) \
GMOCK_METHOD3_(typename, , ct, m, __VA_ARGS__)
#define MOCK_METHOD4_T_WITH_CALLTYPE(ct, m, ...) \
GMOCK_METHOD4_(typename, , ct, m, __VA_ARGS__)
#define MOCK_METHOD5_T_WITH_CALLTYPE(ct, m, ...) \
GMOCK_METHOD5_(typename, , ct, m, __VA_ARGS__)
#define MOCK_METHOD6_T_WITH_CALLTYPE(ct, m, ...) \
GMOCK_METHOD6_(typename, , ct, m, __VA_ARGS__)
#define MOCK_METHOD7_T_WITH_CALLTYPE(ct, m, ...) \
GMOCK_METHOD7_(typename, , ct, m, __VA_ARGS__)
#define MOCK_METHOD8_T_WITH_CALLTYPE(ct, m, ...) \
GMOCK_METHOD8_(typename, , ct, m, __VA_ARGS__)
#define MOCK_METHOD9_T_WITH_CALLTYPE(ct, m, ...) \
GMOCK_METHOD9_(typename, , ct, m, __VA_ARGS__)
#define MOCK_METHOD10_T_WITH_CALLTYPE(ct, m, ...) \
GMOCK_METHOD10_(typename, , ct, m, __VA_ARGS__)
#define MOCK_CONST_METHOD0_T_WITH_CALLTYPE(ct, m, ...) \
GMOCK_METHOD0_(typename, const, ct, m, __VA_ARGS__)
#define MOCK_CONST_METHOD1_T_WITH_CALLTYPE(ct, m, ...) \
GMOCK_METHOD1_(typename, const, ct, m, __VA_ARGS__)
#define MOCK_CONST_METHOD2_T_WITH_CALLTYPE(ct, m, ...) \
GMOCK_METHOD2_(typename, const, ct, m, __VA_ARGS__)
#define MOCK_CONST_METHOD3_T_WITH_CALLTYPE(ct, m, ...) \
GMOCK_METHOD3_(typename, const, ct, m, __VA_ARGS__)
#define MOCK_CONST_METHOD4_T_WITH_CALLTYPE(ct, m, ...) \
GMOCK_METHOD4_(typename, const, ct, m, __VA_ARGS__)
#define MOCK_CONST_METHOD5_T_WITH_CALLTYPE(ct, m, ...) \
GMOCK_METHOD5_(typename, const, ct, m, __VA_ARGS__)
#define MOCK_CONST_METHOD6_T_WITH_CALLTYPE(ct, m, ...) \
GMOCK_METHOD6_(typename, const, ct, m, __VA_ARGS__)
#define MOCK_CONST_METHOD7_T_WITH_CALLTYPE(ct, m, ...) \
GMOCK_METHOD7_(typename, const, ct, m, __VA_ARGS__)
#define MOCK_CONST_METHOD8_T_WITH_CALLTYPE(ct, m, ...) \
GMOCK_METHOD8_(typename, const, ct, m, __VA_ARGS__)
#define MOCK_CONST_METHOD9_T_WITH_CALLTYPE(ct, m, ...) \
GMOCK_METHOD9_(typename, const, ct, m, __VA_ARGS__)
#define MOCK_CONST_METHOD10_T_WITH_CALLTYPE(ct, m, ...) \
GMOCK_METHOD10_(typename, const, ct, m, __VA_ARGS__)
// A MockFunction<F> class has one mock method whose type is F. It is
// useful when you just want your test code to emit some messages and
// have Google Mock verify the right messages are sent (and perhaps at
// the right times). For example, if you are exercising code:
//
// Foo(1);
// Foo(2);
// Foo(3);
//
// and want to verify that Foo(1) and Foo(3) both invoke
// mock.Bar("a"), but Foo(2) doesn't invoke anything, you can write:
//
// TEST(FooTest, InvokesBarCorrectly) {
// MyMock mock;
// MockFunction<void(string check_point_name)> check;
// {
// InSequence s;
//
// EXPECT_CALL(mock, Bar("a"));
// EXPECT_CALL(check, Call("1"));
// EXPECT_CALL(check, Call("2"));
// EXPECT_CALL(mock, Bar("a"));
// }
// Foo(1);
// check.Call("1");
// Foo(2);
// check.Call("2");
// Foo(3);
// }
//
// The expectation spec says that the first Bar("a") must happen
// before check point "1", the second Bar("a") must happen after check
// point "2", and nothing should happen between the two check
// points. The explicit check points make it easy to tell which
// Bar("a") is called by which call to Foo().
template <typename F>
class MockFunction;
template <typename R>
class MockFunction<R()> {
public:
MockFunction() {}
MOCK_METHOD0_T(Call, R());
private:
GTEST_DISALLOW_COPY_AND_ASSIGN_(MockFunction);
};
template <typename R, typename A0>
class MockFunction<R(A0)> {
public:
MockFunction() {}
MOCK_METHOD1_T(Call, R(A0));
private:
GTEST_DISALLOW_COPY_AND_ASSIGN_(MockFunction);
};
template <typename R, typename A0, typename A1>
class MockFunction<R(A0, A1)> {
public:
MockFunction() {}
MOCK_METHOD2_T(Call, R(A0, A1));
private:
GTEST_DISALLOW_COPY_AND_ASSIGN_(MockFunction);
};
template <typename R, typename A0, typename A1, typename A2>
class MockFunction<R(A0, A1, A2)> {
public:
MockFunction() {}
MOCK_METHOD3_T(Call, R(A0, A1, A2));
private:
GTEST_DISALLOW_COPY_AND_ASSIGN_(MockFunction);
};
template <typename R, typename A0, typename A1, typename A2, typename A3>
class MockFunction<R(A0, A1, A2, A3)> {
public:
MockFunction() {}
MOCK_METHOD4_T(Call, R(A0, A1, A2, A3));
private:
GTEST_DISALLOW_COPY_AND_ASSIGN_(MockFunction);
};
template <typename R, typename A0, typename A1, typename A2, typename A3,
typename A4>
class MockFunction<R(A0, A1, A2, A3, A4)> {
public:
MockFunction() {}
MOCK_METHOD5_T(Call, R(A0, A1, A2, A3, A4));
private:
GTEST_DISALLOW_COPY_AND_ASSIGN_(MockFunction);
};
template <typename R, typename A0, typename A1, typename A2, typename A3,
typename A4, typename A5>
class MockFunction<R(A0, A1, A2, A3, A4, A5)> {
public:
MockFunction() {}
MOCK_METHOD6_T(Call, R(A0, A1, A2, A3, A4, A5));
private:
GTEST_DISALLOW_COPY_AND_ASSIGN_(MockFunction);
};
template <typename R, typename A0, typename A1, typename A2, typename A3,
typename A4, typename A5, typename A6>
class MockFunction<R(A0, A1, A2, A3, A4, A5, A6)> {
public:
MockFunction() {}
MOCK_METHOD7_T(Call, R(A0, A1, A2, A3, A4, A5, A6));
private:
GTEST_DISALLOW_COPY_AND_ASSIGN_(MockFunction);
};
template <typename R, typename A0, typename A1, typename A2, typename A3,
typename A4, typename A5, typename A6, typename A7>
class MockFunction<R(A0, A1, A2, A3, A4, A5, A6, A7)> {
public:
MockFunction() {}
MOCK_METHOD8_T(Call, R(A0, A1, A2, A3, A4, A5, A6, A7));
private:
GTEST_DISALLOW_COPY_AND_ASSIGN_(MockFunction);
};
template <typename R, typename A0, typename A1, typename A2, typename A3,
typename A4, typename A5, typename A6, typename A7, typename A8>
class MockFunction<R(A0, A1, A2, A3, A4, A5, A6, A7, A8)> {
public:
MockFunction() {}
MOCK_METHOD9_T(Call, R(A0, A1, A2, A3, A4, A5, A6, A7, A8));
private:
GTEST_DISALLOW_COPY_AND_ASSIGN_(MockFunction);
};
template <typename R, typename A0, typename A1, typename A2, typename A3,
typename A4, typename A5, typename A6, typename A7, typename A8,
typename A9>
class MockFunction<R(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9)> {
public:
MockFunction() {}
MOCK_METHOD10_T(Call, R(A0, A1, A2, A3, A4, A5, A6, A7, A8, A9));
private:
GTEST_DISALLOW_COPY_AND_ASSIGN_(MockFunction);
};
} // namespace testing
#endif // GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_FUNCTION_MOCKERS_H_
// This file was GENERATED by command:
// pump.py gmock-generated-nice-strict.h.pump
// DO NOT EDIT BY HAND!!!
// Copyright 2008, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: wan@google.com (Zhanyong Wan)
// Implements class templates NiceMock, NaggyMock, and StrictMock.
//
// Given a mock class MockFoo that is created using Google Mock,
// NiceMock<MockFoo> is a subclass of MockFoo that allows
// uninteresting calls (i.e. calls to mock methods that have no
// EXPECT_CALL specs), NaggyMock<MockFoo> is a subclass of MockFoo
// that prints a warning when an uninteresting call occurs, and
// StrictMock<MockFoo> is a subclass of MockFoo that treats all
// uninteresting calls as errors.
//
// Currently a mock is naggy by default, so MockFoo and
// NaggyMock<MockFoo> behave like the same. However, we will soon
// switch the default behavior of mocks to be nice, as that in general
// leads to more maintainable tests. When that happens, MockFoo will
// stop behaving like NaggyMock<MockFoo> and start behaving like
// NiceMock<MockFoo>.
//
// NiceMock, NaggyMock, and StrictMock "inherit" the constructors of
// their respective base class, with up-to 10 arguments. Therefore
// you can write NiceMock<MockFoo>(5, "a") to construct a nice mock
// where MockFoo has a constructor that accepts (int, const char*),
// for example.
//
// A known limitation is that NiceMock<MockFoo>, NaggyMock<MockFoo>,
// and StrictMock<MockFoo> only works for mock methods defined using
// the MOCK_METHOD* family of macros DIRECTLY in the MockFoo class.
// If a mock method is defined in a base class of MockFoo, the "nice"
// or "strict" modifier may not affect it, depending on the compiler.
// In particular, nesting NiceMock, NaggyMock, and StrictMock is NOT
// supported.
//
// Another known limitation is that the constructors of the base mock
// cannot have arguments passed by non-const reference, which are
// banned by the Google C++ style guide anyway.
#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_NICE_STRICT_H_
#define GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_NICE_STRICT_H_
namespace testing {
template <class MockClass>
class NiceMock : public MockClass {
public:
// We don't factor out the constructor body to a common method, as
// we have to avoid a possible clash with members of MockClass.
NiceMock() {
::testing::Mock::AllowUninterestingCalls(
internal::ImplicitCast_<MockClass*>(this));
}
// C++ doesn't (yet) allow inheritance of constructors, so we have
// to define it for each arity.
template <typename A1>
explicit NiceMock(const A1& a1) : MockClass(a1) {
::testing::Mock::AllowUninterestingCalls(
internal::ImplicitCast_<MockClass*>(this));
}
template <typename A1, typename A2>
NiceMock(const A1& a1, const A2& a2) : MockClass(a1, a2) {
::testing::Mock::AllowUninterestingCalls(
internal::ImplicitCast_<MockClass*>(this));
}
template <typename A1, typename A2, typename A3>
NiceMock(const A1& a1, const A2& a2, const A3& a3) : MockClass(a1, a2, a3) {
::testing::Mock::AllowUninterestingCalls(
internal::ImplicitCast_<MockClass*>(this));
}
template <typename A1, typename A2, typename A3, typename A4>
NiceMock(const A1& a1, const A2& a2, const A3& a3,
const A4& a4) : MockClass(a1, a2, a3, a4) {
::testing::Mock::AllowUninterestingCalls(
internal::ImplicitCast_<MockClass*>(this));
}
template <typename A1, typename A2, typename A3, typename A4, typename A5>
NiceMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4,
const A5& a5) : MockClass(a1, a2, a3, a4, a5) {
::testing::Mock::AllowUninterestingCalls(
internal::ImplicitCast_<MockClass*>(this));
}
template <typename A1, typename A2, typename A3, typename A4, typename A5,
typename A6>
NiceMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4,
const A5& a5, const A6& a6) : MockClass(a1, a2, a3, a4, a5, a6) {
::testing::Mock::AllowUninterestingCalls(
internal::ImplicitCast_<MockClass*>(this));
}
template <typename A1, typename A2, typename A3, typename A4, typename A5,
typename A6, typename A7>
NiceMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4,
const A5& a5, const A6& a6, const A7& a7) : MockClass(a1, a2, a3, a4, a5,
a6, a7) {
::testing::Mock::AllowUninterestingCalls(
internal::ImplicitCast_<MockClass*>(this));
}
template <typename A1, typename A2, typename A3, typename A4, typename A5,
typename A6, typename A7, typename A8>
NiceMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4,
const A5& a5, const A6& a6, const A7& a7, const A8& a8) : MockClass(a1,
a2, a3, a4, a5, a6, a7, a8) {
::testing::Mock::AllowUninterestingCalls(
internal::ImplicitCast_<MockClass*>(this));
}
template <typename A1, typename A2, typename A3, typename A4, typename A5,
typename A6, typename A7, typename A8, typename A9>
NiceMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4,
const A5& a5, const A6& a6, const A7& a7, const A8& a8,
const A9& a9) : MockClass(a1, a2, a3, a4, a5, a6, a7, a8, a9) {
::testing::Mock::AllowUninterestingCalls(
internal::ImplicitCast_<MockClass*>(this));
}
template <typename A1, typename A2, typename A3, typename A4, typename A5,
typename A6, typename A7, typename A8, typename A9, typename A10>
NiceMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4,
const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9,
const A10& a10) : MockClass(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10) {
::testing::Mock::AllowUninterestingCalls(
internal::ImplicitCast_<MockClass*>(this));
}
virtual ~NiceMock() {
::testing::Mock::UnregisterCallReaction(
internal::ImplicitCast_<MockClass*>(this));
}
private:
GTEST_DISALLOW_COPY_AND_ASSIGN_(NiceMock);
};
template <class MockClass>
class NaggyMock : public MockClass {
public:
// We don't factor out the constructor body to a common method, as
// we have to avoid a possible clash with members of MockClass.
NaggyMock() {
::testing::Mock::WarnUninterestingCalls(
internal::ImplicitCast_<MockClass*>(this));
}
// C++ doesn't (yet) allow inheritance of constructors, so we have
// to define it for each arity.
template <typename A1>
explicit NaggyMock(const A1& a1) : MockClass(a1) {
::testing::Mock::WarnUninterestingCalls(
internal::ImplicitCast_<MockClass*>(this));
}
template <typename A1, typename A2>
NaggyMock(const A1& a1, const A2& a2) : MockClass(a1, a2) {
::testing::Mock::WarnUninterestingCalls(
internal::ImplicitCast_<MockClass*>(this));
}
template <typename A1, typename A2, typename A3>
NaggyMock(const A1& a1, const A2& a2, const A3& a3) : MockClass(a1, a2, a3) {
::testing::Mock::WarnUninterestingCalls(
internal::ImplicitCast_<MockClass*>(this));
}
template <typename A1, typename A2, typename A3, typename A4>
NaggyMock(const A1& a1, const A2& a2, const A3& a3,
const A4& a4) : MockClass(a1, a2, a3, a4) {
::testing::Mock::WarnUninterestingCalls(
internal::ImplicitCast_<MockClass*>(this));
}
template <typename A1, typename A2, typename A3, typename A4, typename A5>
NaggyMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4,
const A5& a5) : MockClass(a1, a2, a3, a4, a5) {
::testing::Mock::WarnUninterestingCalls(
internal::ImplicitCast_<MockClass*>(this));
}
template <typename A1, typename A2, typename A3, typename A4, typename A5,
typename A6>
NaggyMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4,
const A5& a5, const A6& a6) : MockClass(a1, a2, a3, a4, a5, a6) {
::testing::Mock::WarnUninterestingCalls(
internal::ImplicitCast_<MockClass*>(this));
}
template <typename A1, typename A2, typename A3, typename A4, typename A5,
typename A6, typename A7>
NaggyMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4,
const A5& a5, const A6& a6, const A7& a7) : MockClass(a1, a2, a3, a4, a5,
a6, a7) {
::testing::Mock::WarnUninterestingCalls(
internal::ImplicitCast_<MockClass*>(this));
}
template <typename A1, typename A2, typename A3, typename A4, typename A5,
typename A6, typename A7, typename A8>
NaggyMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4,
const A5& a5, const A6& a6, const A7& a7, const A8& a8) : MockClass(a1,
a2, a3, a4, a5, a6, a7, a8) {
::testing::Mock::WarnUninterestingCalls(
internal::ImplicitCast_<MockClass*>(this));
}
template <typename A1, typename A2, typename A3, typename A4, typename A5,
typename A6, typename A7, typename A8, typename A9>
NaggyMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4,
const A5& a5, const A6& a6, const A7& a7, const A8& a8,
const A9& a9) : MockClass(a1, a2, a3, a4, a5, a6, a7, a8, a9) {
::testing::Mock::WarnUninterestingCalls(
internal::ImplicitCast_<MockClass*>(this));
}
template <typename A1, typename A2, typename A3, typename A4, typename A5,
typename A6, typename A7, typename A8, typename A9, typename A10>
NaggyMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4,
const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9,
const A10& a10) : MockClass(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10) {
::testing::Mock::WarnUninterestingCalls(
internal::ImplicitCast_<MockClass*>(this));
}
virtual ~NaggyMock() {
::testing::Mock::UnregisterCallReaction(
internal::ImplicitCast_<MockClass*>(this));
}
private:
GTEST_DISALLOW_COPY_AND_ASSIGN_(NaggyMock);
};
template <class MockClass>
class StrictMock : public MockClass {
public:
// We don't factor out the constructor body to a common method, as
// we have to avoid a possible clash with members of MockClass.
StrictMock() {
::testing::Mock::FailUninterestingCalls(
internal::ImplicitCast_<MockClass*>(this));
}
// C++ doesn't (yet) allow inheritance of constructors, so we have
// to define it for each arity.
template <typename A1>
explicit StrictMock(const A1& a1) : MockClass(a1) {
::testing::Mock::FailUninterestingCalls(
internal::ImplicitCast_<MockClass*>(this));
}
template <typename A1, typename A2>
StrictMock(const A1& a1, const A2& a2) : MockClass(a1, a2) {
::testing::Mock::FailUninterestingCalls(
internal::ImplicitCast_<MockClass*>(this));
}
template <typename A1, typename A2, typename A3>
StrictMock(const A1& a1, const A2& a2, const A3& a3) : MockClass(a1, a2, a3) {
::testing::Mock::FailUninterestingCalls(
internal::ImplicitCast_<MockClass*>(this));
}
template <typename A1, typename A2, typename A3, typename A4>
StrictMock(const A1& a1, const A2& a2, const A3& a3,
const A4& a4) : MockClass(a1, a2, a3, a4) {
::testing::Mock::FailUninterestingCalls(
internal::ImplicitCast_<MockClass*>(this));
}
template <typename A1, typename A2, typename A3, typename A4, typename A5>
StrictMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4,
const A5& a5) : MockClass(a1, a2, a3, a4, a5) {
::testing::Mock::FailUninterestingCalls(
internal::ImplicitCast_<MockClass*>(this));
}
template <typename A1, typename A2, typename A3, typename A4, typename A5,
typename A6>
StrictMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4,
const A5& a5, const A6& a6) : MockClass(a1, a2, a3, a4, a5, a6) {
::testing::Mock::FailUninterestingCalls(
internal::ImplicitCast_<MockClass*>(this));
}
template <typename A1, typename A2, typename A3, typename A4, typename A5,
typename A6, typename A7>
StrictMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4,
const A5& a5, const A6& a6, const A7& a7) : MockClass(a1, a2, a3, a4, a5,
a6, a7) {
::testing::Mock::FailUninterestingCalls(
internal::ImplicitCast_<MockClass*>(this));
}
template <typename A1, typename A2, typename A3, typename A4, typename A5,
typename A6, typename A7, typename A8>
StrictMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4,
const A5& a5, const A6& a6, const A7& a7, const A8& a8) : MockClass(a1,
a2, a3, a4, a5, a6, a7, a8) {
::testing::Mock::FailUninterestingCalls(
internal::ImplicitCast_<MockClass*>(this));
}
template <typename A1, typename A2, typename A3, typename A4, typename A5,
typename A6, typename A7, typename A8, typename A9>
StrictMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4,
const A5& a5, const A6& a6, const A7& a7, const A8& a8,
const A9& a9) : MockClass(a1, a2, a3, a4, a5, a6, a7, a8, a9) {
::testing::Mock::FailUninterestingCalls(
internal::ImplicitCast_<MockClass*>(this));
}
template <typename A1, typename A2, typename A3, typename A4, typename A5,
typename A6, typename A7, typename A8, typename A9, typename A10>
StrictMock(const A1& a1, const A2& a2, const A3& a3, const A4& a4,
const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9,
const A10& a10) : MockClass(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10) {
::testing::Mock::FailUninterestingCalls(
internal::ImplicitCast_<MockClass*>(this));
}
virtual ~StrictMock() {
::testing::Mock::UnregisterCallReaction(
internal::ImplicitCast_<MockClass*>(this));
}
private:
GTEST_DISALLOW_COPY_AND_ASSIGN_(StrictMock);
};
// The following specializations catch some (relatively more common)
// user errors of nesting nice and strict mocks. They do NOT catch
// all possible errors.
// These specializations are declared but not defined, as NiceMock,
// NaggyMock, and StrictMock cannot be nested.
template <typename MockClass>
class NiceMock<NiceMock<MockClass> >;
template <typename MockClass>
class NiceMock<NaggyMock<MockClass> >;
template <typename MockClass>
class NiceMock<StrictMock<MockClass> >;
template <typename MockClass>
class NaggyMock<NiceMock<MockClass> >;
template <typename MockClass>
class NaggyMock<NaggyMock<MockClass> >;
template <typename MockClass>
class NaggyMock<StrictMock<MockClass> >;
template <typename MockClass>
class StrictMock<NiceMock<MockClass> >;
template <typename MockClass>
class StrictMock<NaggyMock<MockClass> >;
template <typename MockClass>
class StrictMock<StrictMock<MockClass> >;
} // namespace testing
#endif // GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_NICE_STRICT_H_
// This file was GENERATED by command:
// pump.py gmock-generated-matchers.h.pump
// DO NOT EDIT BY HAND!!!
// Copyright 2008, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Google Mock - a framework for writing C++ mock classes.
//
// This file implements some commonly used variadic matchers.
#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_MATCHERS_H_
#define GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_MATCHERS_H_
#include <iterator>
#include <sstream>
#include <string>
#include <vector>
namespace testing {
namespace internal {
// The type of the i-th (0-based) field of Tuple.
#define GMOCK_FIELD_TYPE_(Tuple, i) \
typename ::std::tr1::tuple_element<i, Tuple>::type
// TupleFields<Tuple, k0, ..., kn> is for selecting fields from a
// tuple of type Tuple. It has two members:
//
// type: a tuple type whose i-th field is the ki-th field of Tuple.
// GetSelectedFields(t): returns fields k0, ..., and kn of t as a tuple.
//
// For example, in class TupleFields<tuple<bool, char, int>, 2, 0>, we have:
//
// type is tuple<int, bool>, and
// GetSelectedFields(make_tuple(true, 'a', 42)) is (42, true).
template <class Tuple, int k0 = -1, int k1 = -1, int k2 = -1, int k3 = -1,
int k4 = -1, int k5 = -1, int k6 = -1, int k7 = -1, int k8 = -1,
int k9 = -1>
class TupleFields;
// This generic version is used when there are 10 selectors.
template <class Tuple, int k0, int k1, int k2, int k3, int k4, int k5, int k6,
int k7, int k8, int k9>
class TupleFields {
public:
typedef ::std::tr1::tuple<GMOCK_FIELD_TYPE_(Tuple, k0),
GMOCK_FIELD_TYPE_(Tuple, k1), GMOCK_FIELD_TYPE_(Tuple, k2),
GMOCK_FIELD_TYPE_(Tuple, k3), GMOCK_FIELD_TYPE_(Tuple, k4),
GMOCK_FIELD_TYPE_(Tuple, k5), GMOCK_FIELD_TYPE_(Tuple, k6),
GMOCK_FIELD_TYPE_(Tuple, k7), GMOCK_FIELD_TYPE_(Tuple, k8),
GMOCK_FIELD_TYPE_(Tuple, k9)> type;
static type GetSelectedFields(const Tuple& t) {
using ::std::tr1::get;
return type(get<k0>(t), get<k1>(t), get<k2>(t), get<k3>(t), get<k4>(t),
get<k5>(t), get<k6>(t), get<k7>(t), get<k8>(t), get<k9>(t));
}
};
// The following specialization is used for 0 ~ 9 selectors.
template <class Tuple>
class TupleFields<Tuple, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1> {
public:
typedef ::std::tr1::tuple<> type;
static type GetSelectedFields(const Tuple& /* t */) {
using ::std::tr1::get;
return type();
}
};
template <class Tuple, int k0>
class TupleFields<Tuple, k0, -1, -1, -1, -1, -1, -1, -1, -1, -1> {
public:
typedef ::std::tr1::tuple<GMOCK_FIELD_TYPE_(Tuple, k0)> type;
static type GetSelectedFields(const Tuple& t) {
using ::std::tr1::get;
return type(get<k0>(t));
}
};
template <class Tuple, int k0, int k1>
class TupleFields<Tuple, k0, k1, -1, -1, -1, -1, -1, -1, -1, -1> {
public:
typedef ::std::tr1::tuple<GMOCK_FIELD_TYPE_(Tuple, k0),
GMOCK_FIELD_TYPE_(Tuple, k1)> type;
static type GetSelectedFields(const Tuple& t) {
using ::std::tr1::get;
return type(get<k0>(t), get<k1>(t));
}
};
template <class Tuple, int k0, int k1, int k2>
class TupleFields<Tuple, k0, k1, k2, -1, -1, -1, -1, -1, -1, -1> {
public:
typedef ::std::tr1::tuple<GMOCK_FIELD_TYPE_(Tuple, k0),
GMOCK_FIELD_TYPE_(Tuple, k1), GMOCK_FIELD_TYPE_(Tuple, k2)> type;
static type GetSelectedFields(const Tuple& t) {
using ::std::tr1::get;
return type(get<k0>(t), get<k1>(t), get<k2>(t));
}
};
template <class Tuple, int k0, int k1, int k2, int k3>
class TupleFields<Tuple, k0, k1, k2, k3, -1, -1, -1, -1, -1, -1> {
public:
typedef ::std::tr1::tuple<GMOCK_FIELD_TYPE_(Tuple, k0),
GMOCK_FIELD_TYPE_(Tuple, k1), GMOCK_FIELD_TYPE_(Tuple, k2),
GMOCK_FIELD_TYPE_(Tuple, k3)> type;
static type GetSelectedFields(const Tuple& t) {
using ::std::tr1::get;
return type(get<k0>(t), get<k1>(t), get<k2>(t), get<k3>(t));
}
};
template <class Tuple, int k0, int k1, int k2, int k3, int k4>
class TupleFields<Tuple, k0, k1, k2, k3, k4, -1, -1, -1, -1, -1> {
public:
typedef ::std::tr1::tuple<GMOCK_FIELD_TYPE_(Tuple, k0),
GMOCK_FIELD_TYPE_(Tuple, k1), GMOCK_FIELD_TYPE_(Tuple, k2),
GMOCK_FIELD_TYPE_(Tuple, k3), GMOCK_FIELD_TYPE_(Tuple, k4)> type;
static type GetSelectedFields(const Tuple& t) {
using ::std::tr1::get;
return type(get<k0>(t), get<k1>(t), get<k2>(t), get<k3>(t), get<k4>(t));
}
};
template <class Tuple, int k0, int k1, int k2, int k3, int k4, int k5>
class TupleFields<Tuple, k0, k1, k2, k3, k4, k5, -1, -1, -1, -1> {
public:
typedef ::std::tr1::tuple<GMOCK_FIELD_TYPE_(Tuple, k0),
GMOCK_FIELD_TYPE_(Tuple, k1), GMOCK_FIELD_TYPE_(Tuple, k2),
GMOCK_FIELD_TYPE_(Tuple, k3), GMOCK_FIELD_TYPE_(Tuple, k4),
GMOCK_FIELD_TYPE_(Tuple, k5)> type;
static type GetSelectedFields(const Tuple& t) {
using ::std::tr1::get;
return type(get<k0>(t), get<k1>(t), get<k2>(t), get<k3>(t), get<k4>(t),
get<k5>(t));
}
};
template <class Tuple, int k0, int k1, int k2, int k3, int k4, int k5, int k6>
class TupleFields<Tuple, k0, k1, k2, k3, k4, k5, k6, -1, -1, -1> {
public:
typedef ::std::tr1::tuple<GMOCK_FIELD_TYPE_(Tuple, k0),
GMOCK_FIELD_TYPE_(Tuple, k1), GMOCK_FIELD_TYPE_(Tuple, k2),
GMOCK_FIELD_TYPE_(Tuple, k3), GMOCK_FIELD_TYPE_(Tuple, k4),
GMOCK_FIELD_TYPE_(Tuple, k5), GMOCK_FIELD_TYPE_(Tuple, k6)> type;
static type GetSelectedFields(const Tuple& t) {
using ::std::tr1::get;
return type(get<k0>(t), get<k1>(t), get<k2>(t), get<k3>(t), get<k4>(t),
get<k5>(t), get<k6>(t));
}
};
template <class Tuple, int k0, int k1, int k2, int k3, int k4, int k5, int k6,
int k7>
class TupleFields<Tuple, k0, k1, k2, k3, k4, k5, k6, k7, -1, -1> {
public:
typedef ::std::tr1::tuple<GMOCK_FIELD_TYPE_(Tuple, k0),
GMOCK_FIELD_TYPE_(Tuple, k1), GMOCK_FIELD_TYPE_(Tuple, k2),
GMOCK_FIELD_TYPE_(Tuple, k3), GMOCK_FIELD_TYPE_(Tuple, k4),
GMOCK_FIELD_TYPE_(Tuple, k5), GMOCK_FIELD_TYPE_(Tuple, k6),
GMOCK_FIELD_TYPE_(Tuple, k7)> type;
static type GetSelectedFields(const Tuple& t) {
using ::std::tr1::get;
return type(get<k0>(t), get<k1>(t), get<k2>(t), get<k3>(t), get<k4>(t),
get<k5>(t), get<k6>(t), get<k7>(t));
}
};
template <class Tuple, int k0, int k1, int k2, int k3, int k4, int k5, int k6,
int k7, int k8>
class TupleFields<Tuple, k0, k1, k2, k3, k4, k5, k6, k7, k8, -1> {
public:
typedef ::std::tr1::tuple<GMOCK_FIELD_TYPE_(Tuple, k0),
GMOCK_FIELD_TYPE_(Tuple, k1), GMOCK_FIELD_TYPE_(Tuple, k2),
GMOCK_FIELD_TYPE_(Tuple, k3), GMOCK_FIELD_TYPE_(Tuple, k4),
GMOCK_FIELD_TYPE_(Tuple, k5), GMOCK_FIELD_TYPE_(Tuple, k6),
GMOCK_FIELD_TYPE_(Tuple, k7), GMOCK_FIELD_TYPE_(Tuple, k8)> type;
static type GetSelectedFields(const Tuple& t) {
using ::std::tr1::get;
return type(get<k0>(t), get<k1>(t), get<k2>(t), get<k3>(t), get<k4>(t),
get<k5>(t), get<k6>(t), get<k7>(t), get<k8>(t));
}
};
#undef GMOCK_FIELD_TYPE_
// Implements the Args() matcher.
template <class ArgsTuple, int k0 = -1, int k1 = -1, int k2 = -1, int k3 = -1,
int k4 = -1, int k5 = -1, int k6 = -1, int k7 = -1, int k8 = -1,
int k9 = -1>
class ArgsMatcherImpl : public MatcherInterface<ArgsTuple> {
public:
// ArgsTuple may have top-level const or reference modifiers.
typedef GTEST_REMOVE_REFERENCE_AND_CONST_(ArgsTuple) RawArgsTuple;
typedef typename internal::TupleFields<RawArgsTuple, k0, k1, k2, k3, k4, k5,
k6, k7, k8, k9>::type SelectedArgs;
typedef Matcher<const SelectedArgs&> MonomorphicInnerMatcher;
template <typename InnerMatcher>
explicit ArgsMatcherImpl(const InnerMatcher& inner_matcher)
: inner_matcher_(SafeMatcherCast<const SelectedArgs&>(inner_matcher)) {}
virtual bool MatchAndExplain(ArgsTuple args,
MatchResultListener* listener) const {
const SelectedArgs& selected_args = GetSelectedArgs(args);
if (!listener->IsInterested())
return inner_matcher_.Matches(selected_args);
PrintIndices(listener->stream());
*listener << "are " << PrintToString(selected_args);
StringMatchResultListener inner_listener;
const bool match = inner_matcher_.MatchAndExplain(selected_args,
&inner_listener);
PrintIfNotEmpty(inner_listener.str(), listener->stream());
return match;
}
virtual void DescribeTo(::std::ostream* os) const {
*os << "are a tuple ";
PrintIndices(os);
inner_matcher_.DescribeTo(os);
}
virtual void DescribeNegationTo(::std::ostream* os) const {
*os << "are a tuple ";
PrintIndices(os);
inner_matcher_.DescribeNegationTo(os);
}
private:
static SelectedArgs GetSelectedArgs(ArgsTuple args) {
return TupleFields<RawArgsTuple, k0, k1, k2, k3, k4, k5, k6, k7, k8,
k9>::GetSelectedFields(args);
}
// Prints the indices of the selected fields.
static void PrintIndices(::std::ostream* os) {
*os << "whose fields (";
const int indices[10] = { k0, k1, k2, k3, k4, k5, k6, k7, k8, k9 };
for (int i = 0; i < 10; i++) {
if (indices[i] < 0)
break;
if (i >= 1)
*os << ", ";
*os << "#" << indices[i];
}
*os << ") ";
}
const MonomorphicInnerMatcher inner_matcher_;
GTEST_DISALLOW_ASSIGN_(ArgsMatcherImpl);
};
template <class InnerMatcher, int k0 = -1, int k1 = -1, int k2 = -1,
int k3 = -1, int k4 = -1, int k5 = -1, int k6 = -1, int k7 = -1,
int k8 = -1, int k9 = -1>
class ArgsMatcher {
public:
explicit ArgsMatcher(const InnerMatcher& inner_matcher)
: inner_matcher_(inner_matcher) {}
template <typename ArgsTuple>
operator Matcher<ArgsTuple>() const {
return MakeMatcher(new ArgsMatcherImpl<ArgsTuple, k0, k1, k2, k3, k4, k5,
k6, k7, k8, k9>(inner_matcher_));
}
private:
const InnerMatcher inner_matcher_;
GTEST_DISALLOW_ASSIGN_(ArgsMatcher);
};
// A set of metafunctions for computing the result type of AllOf.
// AllOf(m1, ..., mN) returns
// AllOfResultN<decltype(m1), ..., decltype(mN)>::type.
// Although AllOf isn't defined for one argument, AllOfResult1 is defined
// to simplify the implementation.
template <typename M1>
struct AllOfResult1 {
typedef M1 type;
};
template <typename M1, typename M2>
struct AllOfResult2 {
typedef BothOfMatcher<
typename AllOfResult1<M1>::type,
typename AllOfResult1<M2>::type
> type;
};
template <typename M1, typename M2, typename M3>
struct AllOfResult3 {
typedef BothOfMatcher<
typename AllOfResult1<M1>::type,
typename AllOfResult2<M2, M3>::type
> type;
};
template <typename M1, typename M2, typename M3, typename M4>
struct AllOfResult4 {
typedef BothOfMatcher<
typename AllOfResult2<M1, M2>::type,
typename AllOfResult2<M3, M4>::type
> type;
};
template <typename M1, typename M2, typename M3, typename M4, typename M5>
struct AllOfResult5 {
typedef BothOfMatcher<
typename AllOfResult2<M1, M2>::type,
typename AllOfResult3<M3, M4, M5>::type
> type;
};
template <typename M1, typename M2, typename M3, typename M4, typename M5,
typename M6>
struct AllOfResult6 {
typedef BothOfMatcher<
typename AllOfResult3<M1, M2, M3>::type,
typename AllOfResult3<M4, M5, M6>::type
> type;
};
template <typename M1, typename M2, typename M3, typename M4, typename M5,
typename M6, typename M7>
struct AllOfResult7 {
typedef BothOfMatcher<
typename AllOfResult3<M1, M2, M3>::type,
typename AllOfResult4<M4, M5, M6, M7>::type
> type;
};
template <typename M1, typename M2, typename M3, typename M4, typename M5,
typename M6, typename M7, typename M8>
struct AllOfResult8 {
typedef BothOfMatcher<
typename AllOfResult4<M1, M2, M3, M4>::type,
typename AllOfResult4<M5, M6, M7, M8>::type
> type;
};
template <typename M1, typename M2, typename M3, typename M4, typename M5,
typename M6, typename M7, typename M8, typename M9>
struct AllOfResult9 {
typedef BothOfMatcher<
typename AllOfResult4<M1, M2, M3, M4>::type,
typename AllOfResult5<M5, M6, M7, M8, M9>::type
> type;
};
template <typename M1, typename M2, typename M3, typename M4, typename M5,
typename M6, typename M7, typename M8, typename M9, typename M10>
struct AllOfResult10 {
typedef BothOfMatcher<
typename AllOfResult5<M1, M2, M3, M4, M5>::type,
typename AllOfResult5<M6, M7, M8, M9, M10>::type
> type;
};
// A set of metafunctions for computing the result type of AnyOf.
// AnyOf(m1, ..., mN) returns
// AnyOfResultN<decltype(m1), ..., decltype(mN)>::type.
// Although AnyOf isn't defined for one argument, AnyOfResult1 is defined
// to simplify the implementation.
template <typename M1>
struct AnyOfResult1 {
typedef M1 type;
};
template <typename M1, typename M2>
struct AnyOfResult2 {
typedef EitherOfMatcher<
typename AnyOfResult1<M1>::type,
typename AnyOfResult1<M2>::type
> type;
};
template <typename M1, typename M2, typename M3>
struct AnyOfResult3 {
typedef EitherOfMatcher<
typename AnyOfResult1<M1>::type,
typename AnyOfResult2<M2, M3>::type
> type;
};
template <typename M1, typename M2, typename M3, typename M4>
struct AnyOfResult4 {
typedef EitherOfMatcher<
typename AnyOfResult2<M1, M2>::type,
typename AnyOfResult2<M3, M4>::type
> type;
};
template <typename M1, typename M2, typename M3, typename M4, typename M5>
struct AnyOfResult5 {
typedef EitherOfMatcher<
typename AnyOfResult2<M1, M2>::type,
typename AnyOfResult3<M3, M4, M5>::type
> type;
};
template <typename M1, typename M2, typename M3, typename M4, typename M5,
typename M6>
struct AnyOfResult6 {
typedef EitherOfMatcher<
typename AnyOfResult3<M1, M2, M3>::type,
typename AnyOfResult3<M4, M5, M6>::type
> type;
};
template <typename M1, typename M2, typename M3, typename M4, typename M5,
typename M6, typename M7>
struct AnyOfResult7 {
typedef EitherOfMatcher<
typename AnyOfResult3<M1, M2, M3>::type,
typename AnyOfResult4<M4, M5, M6, M7>::type
> type;
};
template <typename M1, typename M2, typename M3, typename M4, typename M5,
typename M6, typename M7, typename M8>
struct AnyOfResult8 {
typedef EitherOfMatcher<
typename AnyOfResult4<M1, M2, M3, M4>::type,
typename AnyOfResult4<M5, M6, M7, M8>::type
> type;
};
template <typename M1, typename M2, typename M3, typename M4, typename M5,
typename M6, typename M7, typename M8, typename M9>
struct AnyOfResult9 {
typedef EitherOfMatcher<
typename AnyOfResult4<M1, M2, M3, M4>::type,
typename AnyOfResult5<M5, M6, M7, M8, M9>::type
> type;
};
template <typename M1, typename M2, typename M3, typename M4, typename M5,
typename M6, typename M7, typename M8, typename M9, typename M10>
struct AnyOfResult10 {
typedef EitherOfMatcher<
typename AnyOfResult5<M1, M2, M3, M4, M5>::type,
typename AnyOfResult5<M6, M7, M8, M9, M10>::type
> type;
};
} // namespace internal
// Args<N1, N2, ..., Nk>(a_matcher) matches a tuple if the selected
// fields of it matches a_matcher. C++ doesn't support default
// arguments for function templates, so we have to overload it.
template <typename InnerMatcher>
inline internal::ArgsMatcher<InnerMatcher>
Args(const InnerMatcher& matcher) {
return internal::ArgsMatcher<InnerMatcher>(matcher);
}
template <int k1, typename InnerMatcher>
inline internal::ArgsMatcher<InnerMatcher, k1>
Args(const InnerMatcher& matcher) {
return internal::ArgsMatcher<InnerMatcher, k1>(matcher);
}
template <int k1, int k2, typename InnerMatcher>
inline internal::ArgsMatcher<InnerMatcher, k1, k2>
Args(const InnerMatcher& matcher) {
return internal::ArgsMatcher<InnerMatcher, k1, k2>(matcher);
}
template <int k1, int k2, int k3, typename InnerMatcher>
inline internal::ArgsMatcher<InnerMatcher, k1, k2, k3>
Args(const InnerMatcher& matcher) {
return internal::ArgsMatcher<InnerMatcher, k1, k2, k3>(matcher);
}
template <int k1, int k2, int k3, int k4, typename InnerMatcher>
inline internal::ArgsMatcher<InnerMatcher, k1, k2, k3, k4>
Args(const InnerMatcher& matcher) {
return internal::ArgsMatcher<InnerMatcher, k1, k2, k3, k4>(matcher);
}
template <int k1, int k2, int k3, int k4, int k5, typename InnerMatcher>
inline internal::ArgsMatcher<InnerMatcher, k1, k2, k3, k4, k5>
Args(const InnerMatcher& matcher) {
return internal::ArgsMatcher<InnerMatcher, k1, k2, k3, k4, k5>(matcher);
}
template <int k1, int k2, int k3, int k4, int k5, int k6, typename InnerMatcher>
inline internal::ArgsMatcher<InnerMatcher, k1, k2, k3, k4, k5, k6>
Args(const InnerMatcher& matcher) {
return internal::ArgsMatcher<InnerMatcher, k1, k2, k3, k4, k5, k6>(matcher);
}
template <int k1, int k2, int k3, int k4, int k5, int k6, int k7,
typename InnerMatcher>
inline internal::ArgsMatcher<InnerMatcher, k1, k2, k3, k4, k5, k6, k7>
Args(const InnerMatcher& matcher) {
return internal::ArgsMatcher<InnerMatcher, k1, k2, k3, k4, k5, k6,
k7>(matcher);
}
template <int k1, int k2, int k3, int k4, int k5, int k6, int k7, int k8,
typename InnerMatcher>
inline internal::ArgsMatcher<InnerMatcher, k1, k2, k3, k4, k5, k6, k7, k8>
Args(const InnerMatcher& matcher) {
return internal::ArgsMatcher<InnerMatcher, k1, k2, k3, k4, k5, k6, k7,
k8>(matcher);
}
template <int k1, int k2, int k3, int k4, int k5, int k6, int k7, int k8,
int k9, typename InnerMatcher>
inline internal::ArgsMatcher<InnerMatcher, k1, k2, k3, k4, k5, k6, k7, k8, k9>
Args(const InnerMatcher& matcher) {
return internal::ArgsMatcher<InnerMatcher, k1, k2, k3, k4, k5, k6, k7, k8,
k9>(matcher);
}
template <int k1, int k2, int k3, int k4, int k5, int k6, int k7, int k8,
int k9, int k10, typename InnerMatcher>
inline internal::ArgsMatcher<InnerMatcher, k1, k2, k3, k4, k5, k6, k7, k8, k9,
k10>
Args(const InnerMatcher& matcher) {
return internal::ArgsMatcher<InnerMatcher, k1, k2, k3, k4, k5, k6, k7, k8,
k9, k10>(matcher);
}
// ElementsAre(e_1, e_2, ... e_n) matches an STL-style container with
// n elements, where the i-th element in the container must
// match the i-th argument in the list. Each argument of
// ElementsAre() can be either a value or a matcher. We support up to
// 10 arguments.
//
// The use of DecayArray in the implementation allows ElementsAre()
// to accept string literals, whose type is const char[N], but we
// want to treat them as const char*.
//
// NOTE: Since ElementsAre() cares about the order of the elements, it
// must not be used with containers whose elements's order is
// undefined (e.g. hash_map).
inline internal::ElementsAreMatcher<
std::tr1::tuple<> >
ElementsAre() {
typedef std::tr1::tuple<> Args;
return internal::ElementsAreMatcher<Args>(Args());
}
template <typename T1>
inline internal::ElementsAreMatcher<
std::tr1::tuple<
typename internal::DecayArray<T1>::type> >
ElementsAre(const T1& e1) {
typedef std::tr1::tuple<
typename internal::DecayArray<T1>::type> Args;
return internal::ElementsAreMatcher<Args>(Args(e1));
}
template <typename T1, typename T2>
inline internal::ElementsAreMatcher<
std::tr1::tuple<
typename internal::DecayArray<T1>::type,
typename internal::DecayArray<T2>::type> >
ElementsAre(const T1& e1, const T2& e2) {
typedef std::tr1::tuple<
typename internal::DecayArray<T1>::type,
typename internal::DecayArray<T2>::type> Args;
return internal::ElementsAreMatcher<Args>(Args(e1, e2));
}
template <typename T1, typename T2, typename T3>
inline internal::ElementsAreMatcher<
std::tr1::tuple<
typename internal::DecayArray<T1>::type,
typename internal::DecayArray<T2>::type,
typename internal::DecayArray<T3>::type> >
ElementsAre(const T1& e1, const T2& e2, const T3& e3) {
typedef std::tr1::tuple<
typename internal::DecayArray<T1>::type,
typename internal::DecayArray<T2>::type,
typename internal::DecayArray<T3>::type> Args;
return internal::ElementsAreMatcher<Args>(Args(e1, e2, e3));
}
template <typename T1, typename T2, typename T3, typename T4>
inline internal::ElementsAreMatcher<
std::tr1::tuple<
typename internal::DecayArray<T1>::type,
typename internal::DecayArray<T2>::type,
typename internal::DecayArray<T3>::type,
typename internal::DecayArray<T4>::type> >
ElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4) {
typedef std::tr1::tuple<
typename internal::DecayArray<T1>::type,
typename internal::DecayArray<T2>::type,
typename internal::DecayArray<T3>::type,
typename internal::DecayArray<T4>::type> Args;
return internal::ElementsAreMatcher<Args>(Args(e1, e2, e3, e4));
}
template <typename T1, typename T2, typename T3, typename T4, typename T5>
inline internal::ElementsAreMatcher<
std::tr1::tuple<
typename internal::DecayArray<T1>::type,
typename internal::DecayArray<T2>::type,
typename internal::DecayArray<T3>::type,
typename internal::DecayArray<T4>::type,
typename internal::DecayArray<T5>::type> >
ElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4,
const T5& e5) {
typedef std::tr1::tuple<
typename internal::DecayArray<T1>::type,
typename internal::DecayArray<T2>::type,
typename internal::DecayArray<T3>::type,
typename internal::DecayArray<T4>::type,
typename internal::DecayArray<T5>::type> Args;
return internal::ElementsAreMatcher<Args>(Args(e1, e2, e3, e4, e5));
}
template <typename T1, typename T2, typename T3, typename T4, typename T5,
typename T6>
inline internal::ElementsAreMatcher<
std::tr1::tuple<
typename internal::DecayArray<T1>::type,
typename internal::DecayArray<T2>::type,
typename internal::DecayArray<T3>::type,
typename internal::DecayArray<T4>::type,
typename internal::DecayArray<T5>::type,
typename internal::DecayArray<T6>::type> >
ElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4,
const T5& e5, const T6& e6) {
typedef std::tr1::tuple<
typename internal::DecayArray<T1>::type,
typename internal::DecayArray<T2>::type,
typename internal::DecayArray<T3>::type,
typename internal::DecayArray<T4>::type,
typename internal::DecayArray<T5>::type,
typename internal::DecayArray<T6>::type> Args;
return internal::ElementsAreMatcher<Args>(Args(e1, e2, e3, e4, e5, e6));
}
template <typename T1, typename T2, typename T3, typename T4, typename T5,
typename T6, typename T7>
inline internal::ElementsAreMatcher<
std::tr1::tuple<
typename internal::DecayArray<T1>::type,
typename internal::DecayArray<T2>::type,
typename internal::DecayArray<T3>::type,
typename internal::DecayArray<T4>::type,
typename internal::DecayArray<T5>::type,
typename internal::DecayArray<T6>::type,
typename internal::DecayArray<T7>::type> >
ElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4,
const T5& e5, const T6& e6, const T7& e7) {
typedef std::tr1::tuple<
typename internal::DecayArray<T1>::type,
typename internal::DecayArray<T2>::type,
typename internal::DecayArray<T3>::type,
typename internal::DecayArray<T4>::type,
typename internal::DecayArray<T5>::type,
typename internal::DecayArray<T6>::type,
typename internal::DecayArray<T7>::type> Args;
return internal::ElementsAreMatcher<Args>(Args(e1, e2, e3, e4, e5, e6, e7));
}
template <typename T1, typename T2, typename T3, typename T4, typename T5,
typename T6, typename T7, typename T8>
inline internal::ElementsAreMatcher<
std::tr1::tuple<
typename internal::DecayArray<T1>::type,
typename internal::DecayArray<T2>::type,
typename internal::DecayArray<T3>::type,
typename internal::DecayArray<T4>::type,
typename internal::DecayArray<T5>::type,
typename internal::DecayArray<T6>::type,
typename internal::DecayArray<T7>::type,
typename internal::DecayArray<T8>::type> >
ElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4,
const T5& e5, const T6& e6, const T7& e7, const T8& e8) {
typedef std::tr1::tuple<
typename internal::DecayArray<T1>::type,
typename internal::DecayArray<T2>::type,
typename internal::DecayArray<T3>::type,
typename internal::DecayArray<T4>::type,
typename internal::DecayArray<T5>::type,
typename internal::DecayArray<T6>::type,
typename internal::DecayArray<T7>::type,
typename internal::DecayArray<T8>::type> Args;
return internal::ElementsAreMatcher<Args>(Args(e1, e2, e3, e4, e5, e6, e7,
e8));
}
template <typename T1, typename T2, typename T3, typename T4, typename T5,
typename T6, typename T7, typename T8, typename T9>
inline internal::ElementsAreMatcher<
std::tr1::tuple<
typename internal::DecayArray<T1>::type,
typename internal::DecayArray<T2>::type,
typename internal::DecayArray<T3>::type,
typename internal::DecayArray<T4>::type,
typename internal::DecayArray<T5>::type,
typename internal::DecayArray<T6>::type,
typename internal::DecayArray<T7>::type,
typename internal::DecayArray<T8>::type,
typename internal::DecayArray<T9>::type> >
ElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4,
const T5& e5, const T6& e6, const T7& e7, const T8& e8, const T9& e9) {
typedef std::tr1::tuple<
typename internal::DecayArray<T1>::type,
typename internal::DecayArray<T2>::type,
typename internal::DecayArray<T3>::type,
typename internal::DecayArray<T4>::type,
typename internal::DecayArray<T5>::type,
typename internal::DecayArray<T6>::type,
typename internal::DecayArray<T7>::type,
typename internal::DecayArray<T8>::type,
typename internal::DecayArray<T9>::type> Args;
return internal::ElementsAreMatcher<Args>(Args(e1, e2, e3, e4, e5, e6, e7,
e8, e9));
}
template <typename T1, typename T2, typename T3, typename T4, typename T5,
typename T6, typename T7, typename T8, typename T9, typename T10>
inline internal::ElementsAreMatcher<
std::tr1::tuple<
typename internal::DecayArray<T1>::type,
typename internal::DecayArray<T2>::type,
typename internal::DecayArray<T3>::type,
typename internal::DecayArray<T4>::type,
typename internal::DecayArray<T5>::type,
typename internal::DecayArray<T6>::type,
typename internal::DecayArray<T7>::type,
typename internal::DecayArray<T8>::type,
typename internal::DecayArray<T9>::type,
typename internal::DecayArray<T10>::type> >
ElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4,
const T5& e5, const T6& e6, const T7& e7, const T8& e8, const T9& e9,
const T10& e10) {
typedef std::tr1::tuple<
typename internal::DecayArray<T1>::type,
typename internal::DecayArray<T2>::type,
typename internal::DecayArray<T3>::type,
typename internal::DecayArray<T4>::type,
typename internal::DecayArray<T5>::type,
typename internal::DecayArray<T6>::type,
typename internal::DecayArray<T7>::type,
typename internal::DecayArray<T8>::type,
typename internal::DecayArray<T9>::type,
typename internal::DecayArray<T10>::type> Args;
return internal::ElementsAreMatcher<Args>(Args(e1, e2, e3, e4, e5, e6, e7,
e8, e9, e10));
}
// UnorderedElementsAre(e_1, e_2, ..., e_n) is an ElementsAre extension
// that matches n elements in any order. We support up to n=10 arguments.
inline internal::UnorderedElementsAreMatcher<
std::tr1::tuple<> >
UnorderedElementsAre() {
typedef std::tr1::tuple<> Args;
return internal::UnorderedElementsAreMatcher<Args>(Args());
}
template <typename T1>
inline internal::UnorderedElementsAreMatcher<
std::tr1::tuple<
typename internal::DecayArray<T1>::type> >
UnorderedElementsAre(const T1& e1) {
typedef std::tr1::tuple<
typename internal::DecayArray<T1>::type> Args;
return internal::UnorderedElementsAreMatcher<Args>(Args(e1));
}
template <typename T1, typename T2>
inline internal::UnorderedElementsAreMatcher<
std::tr1::tuple<
typename internal::DecayArray<T1>::type,
typename internal::DecayArray<T2>::type> >
UnorderedElementsAre(const T1& e1, const T2& e2) {
typedef std::tr1::tuple<
typename internal::DecayArray<T1>::type,
typename internal::DecayArray<T2>::type> Args;
return internal::UnorderedElementsAreMatcher<Args>(Args(e1, e2));
}
template <typename T1, typename T2, typename T3>
inline internal::UnorderedElementsAreMatcher<
std::tr1::tuple<
typename internal::DecayArray<T1>::type,
typename internal::DecayArray<T2>::type,
typename internal::DecayArray<T3>::type> >
UnorderedElementsAre(const T1& e1, const T2& e2, const T3& e3) {
typedef std::tr1::tuple<
typename internal::DecayArray<T1>::type,
typename internal::DecayArray<T2>::type,
typename internal::DecayArray<T3>::type> Args;
return internal::UnorderedElementsAreMatcher<Args>(Args(e1, e2, e3));
}
template <typename T1, typename T2, typename T3, typename T4>
inline internal::UnorderedElementsAreMatcher<
std::tr1::tuple<
typename internal::DecayArray<T1>::type,
typename internal::DecayArray<T2>::type,
typename internal::DecayArray<T3>::type,
typename internal::DecayArray<T4>::type> >
UnorderedElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4) {
typedef std::tr1::tuple<
typename internal::DecayArray<T1>::type,
typename internal::DecayArray<T2>::type,
typename internal::DecayArray<T3>::type,
typename internal::DecayArray<T4>::type> Args;
return internal::UnorderedElementsAreMatcher<Args>(Args(e1, e2, e3, e4));
}
template <typename T1, typename T2, typename T3, typename T4, typename T5>
inline internal::UnorderedElementsAreMatcher<
std::tr1::tuple<
typename internal::DecayArray<T1>::type,
typename internal::DecayArray<T2>::type,
typename internal::DecayArray<T3>::type,
typename internal::DecayArray<T4>::type,
typename internal::DecayArray<T5>::type> >
UnorderedElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4,
const T5& e5) {
typedef std::tr1::tuple<
typename internal::DecayArray<T1>::type,
typename internal::DecayArray<T2>::type,
typename internal::DecayArray<T3>::type,
typename internal::DecayArray<T4>::type,
typename internal::DecayArray<T5>::type> Args;
return internal::UnorderedElementsAreMatcher<Args>(Args(e1, e2, e3, e4, e5));
}
template <typename T1, typename T2, typename T3, typename T4, typename T5,
typename T6>
inline internal::UnorderedElementsAreMatcher<
std::tr1::tuple<
typename internal::DecayArray<T1>::type,
typename internal::DecayArray<T2>::type,
typename internal::DecayArray<T3>::type,
typename internal::DecayArray<T4>::type,
typename internal::DecayArray<T5>::type,
typename internal::DecayArray<T6>::type> >
UnorderedElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4,
const T5& e5, const T6& e6) {
typedef std::tr1::tuple<
typename internal::DecayArray<T1>::type,
typename internal::DecayArray<T2>::type,
typename internal::DecayArray<T3>::type,
typename internal::DecayArray<T4>::type,
typename internal::DecayArray<T5>::type,
typename internal::DecayArray<T6>::type> Args;
return internal::UnorderedElementsAreMatcher<Args>(Args(e1, e2, e3, e4, e5,
e6));
}
template <typename T1, typename T2, typename T3, typename T4, typename T5,
typename T6, typename T7>
inline internal::UnorderedElementsAreMatcher<
std::tr1::tuple<
typename internal::DecayArray<T1>::type,
typename internal::DecayArray<T2>::type,
typename internal::DecayArray<T3>::type,
typename internal::DecayArray<T4>::type,
typename internal::DecayArray<T5>::type,
typename internal::DecayArray<T6>::type,
typename internal::DecayArray<T7>::type> >
UnorderedElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4,
const T5& e5, const T6& e6, const T7& e7) {
typedef std::tr1::tuple<
typename internal::DecayArray<T1>::type,
typename internal::DecayArray<T2>::type,
typename internal::DecayArray<T3>::type,
typename internal::DecayArray<T4>::type,
typename internal::DecayArray<T5>::type,
typename internal::DecayArray<T6>::type,
typename internal::DecayArray<T7>::type> Args;
return internal::UnorderedElementsAreMatcher<Args>(Args(e1, e2, e3, e4, e5,
e6, e7));
}
template <typename T1, typename T2, typename T3, typename T4, typename T5,
typename T6, typename T7, typename T8>
inline internal::UnorderedElementsAreMatcher<
std::tr1::tuple<
typename internal::DecayArray<T1>::type,
typename internal::DecayArray<T2>::type,
typename internal::DecayArray<T3>::type,
typename internal::DecayArray<T4>::type,
typename internal::DecayArray<T5>::type,
typename internal::DecayArray<T6>::type,
typename internal::DecayArray<T7>::type,
typename internal::DecayArray<T8>::type> >
UnorderedElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4,
const T5& e5, const T6& e6, const T7& e7, const T8& e8) {
typedef std::tr1::tuple<
typename internal::DecayArray<T1>::type,
typename internal::DecayArray<T2>::type,
typename internal::DecayArray<T3>::type,
typename internal::DecayArray<T4>::type,
typename internal::DecayArray<T5>::type,
typename internal::DecayArray<T6>::type,
typename internal::DecayArray<T7>::type,
typename internal::DecayArray<T8>::type> Args;
return internal::UnorderedElementsAreMatcher<Args>(Args(e1, e2, e3, e4, e5,
e6, e7, e8));
}
template <typename T1, typename T2, typename T3, typename T4, typename T5,
typename T6, typename T7, typename T8, typename T9>
inline internal::UnorderedElementsAreMatcher<
std::tr1::tuple<
typename internal::DecayArray<T1>::type,
typename internal::DecayArray<T2>::type,
typename internal::DecayArray<T3>::type,
typename internal::DecayArray<T4>::type,
typename internal::DecayArray<T5>::type,
typename internal::DecayArray<T6>::type,
typename internal::DecayArray<T7>::type,
typename internal::DecayArray<T8>::type,
typename internal::DecayArray<T9>::type> >
UnorderedElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4,
const T5& e5, const T6& e6, const T7& e7, const T8& e8, const T9& e9) {
typedef std::tr1::tuple<
typename internal::DecayArray<T1>::type,
typename internal::DecayArray<T2>::type,
typename internal::DecayArray<T3>::type,
typename internal::DecayArray<T4>::type,
typename internal::DecayArray<T5>::type,
typename internal::DecayArray<T6>::type,
typename internal::DecayArray<T7>::type,
typename internal::DecayArray<T8>::type,
typename internal::DecayArray<T9>::type> Args;
return internal::UnorderedElementsAreMatcher<Args>(Args(e1, e2, e3, e4, e5,
e6, e7, e8, e9));
}
template <typename T1, typename T2, typename T3, typename T4, typename T5,
typename T6, typename T7, typename T8, typename T9, typename T10>
inline internal::UnorderedElementsAreMatcher<
std::tr1::tuple<
typename internal::DecayArray<T1>::type,
typename internal::DecayArray<T2>::type,
typename internal::DecayArray<T3>::type,
typename internal::DecayArray<T4>::type,
typename internal::DecayArray<T5>::type,
typename internal::DecayArray<T6>::type,
typename internal::DecayArray<T7>::type,
typename internal::DecayArray<T8>::type,
typename internal::DecayArray<T9>::type,
typename internal::DecayArray<T10>::type> >
UnorderedElementsAre(const T1& e1, const T2& e2, const T3& e3, const T4& e4,
const T5& e5, const T6& e6, const T7& e7, const T8& e8, const T9& e9,
const T10& e10) {
typedef std::tr1::tuple<
typename internal::DecayArray<T1>::type,
typename internal::DecayArray<T2>::type,
typename internal::DecayArray<T3>::type,
typename internal::DecayArray<T4>::type,
typename internal::DecayArray<T5>::type,
typename internal::DecayArray<T6>::type,
typename internal::DecayArray<T7>::type,
typename internal::DecayArray<T8>::type,
typename internal::DecayArray<T9>::type,
typename internal::DecayArray<T10>::type> Args;
return internal::UnorderedElementsAreMatcher<Args>(Args(e1, e2, e3, e4, e5,
e6, e7, e8, e9, e10));
}
// AllOf(m1, m2, ..., mk) matches any value that matches all of the given
// sub-matchers. AllOf is called fully qualified to prevent ADL from firing.
template <typename M1, typename M2>
inline typename internal::AllOfResult2<M1, M2>::type
AllOf(M1 m1, M2 m2) {
return typename internal::AllOfResult2<M1, M2>::type(
m1,
m2);
}
template <typename M1, typename M2, typename M3>
inline typename internal::AllOfResult3<M1, M2, M3>::type
AllOf(M1 m1, M2 m2, M3 m3) {
return typename internal::AllOfResult3<M1, M2, M3>::type(
m1,
::testing::AllOf(m2, m3));
}
template <typename M1, typename M2, typename M3, typename M4>
inline typename internal::AllOfResult4<M1, M2, M3, M4>::type
AllOf(M1 m1, M2 m2, M3 m3, M4 m4) {
return typename internal::AllOfResult4<M1, M2, M3, M4>::type(
::testing::AllOf(m1, m2),
::testing::AllOf(m3, m4));
}
template <typename M1, typename M2, typename M3, typename M4, typename M5>
inline typename internal::AllOfResult5<M1, M2, M3, M4, M5>::type
AllOf(M1 m1, M2 m2, M3 m3, M4 m4, M5 m5) {
return typename internal::AllOfResult5<M1, M2, M3, M4, M5>::type(
::testing::AllOf(m1, m2),
::testing::AllOf(m3, m4, m5));
}
template <typename M1, typename M2, typename M3, typename M4, typename M5,
typename M6>
inline typename internal::AllOfResult6<M1, M2, M3, M4, M5, M6>::type
AllOf(M1 m1, M2 m2, M3 m3, M4 m4, M5 m5, M6 m6) {
return typename internal::AllOfResult6<M1, M2, M3, M4, M5, M6>::type(
::testing::AllOf(m1, m2, m3),
::testing::AllOf(m4, m5, m6));
}
template <typename M1, typename M2, typename M3, typename M4, typename M5,
typename M6, typename M7>
inline typename internal::AllOfResult7<M1, M2, M3, M4, M5, M6, M7>::type
AllOf(M1 m1, M2 m2, M3 m3, M4 m4, M5 m5, M6 m6, M7 m7) {
return typename internal::AllOfResult7<M1, M2, M3, M4, M5, M6, M7>::type(
::testing::AllOf(m1, m2, m3),
::testing::AllOf(m4, m5, m6, m7));
}
template <typename M1, typename M2, typename M3, typename M4, typename M5,
typename M6, typename M7, typename M8>
inline typename internal::AllOfResult8<M1, M2, M3, M4, M5, M6, M7, M8>::type
AllOf(M1 m1, M2 m2, M3 m3, M4 m4, M5 m5, M6 m6, M7 m7, M8 m8) {
return typename internal::AllOfResult8<M1, M2, M3, M4, M5, M6, M7, M8>::type(
::testing::AllOf(m1, m2, m3, m4),
::testing::AllOf(m5, m6, m7, m8));
}
template <typename M1, typename M2, typename M3, typename M4, typename M5,
typename M6, typename M7, typename M8, typename M9>
inline typename internal::AllOfResult9<M1, M2, M3, M4, M5, M6, M7, M8, M9>::type
AllOf(M1 m1, M2 m2, M3 m3, M4 m4, M5 m5, M6 m6, M7 m7, M8 m8, M9 m9) {
return typename internal::AllOfResult9<M1, M2, M3, M4, M5, M6, M7, M8,
M9>::type(
::testing::AllOf(m1, m2, m3, m4),
::testing::AllOf(m5, m6, m7, m8, m9));
}
template <typename M1, typename M2, typename M3, typename M4, typename M5,
typename M6, typename M7, typename M8, typename M9, typename M10>
inline typename internal::AllOfResult10<M1, M2, M3, M4, M5, M6, M7, M8, M9,
M10>::type
AllOf(M1 m1, M2 m2, M3 m3, M4 m4, M5 m5, M6 m6, M7 m7, M8 m8, M9 m9, M10 m10) {
return typename internal::AllOfResult10<M1, M2, M3, M4, M5, M6, M7, M8, M9,
M10>::type(
::testing::AllOf(m1, m2, m3, m4, m5),
::testing::AllOf(m6, m7, m8, m9, m10));
}
// AnyOf(m1, m2, ..., mk) matches any value that matches any of the given
// sub-matchers. AnyOf is called fully qualified to prevent ADL from firing.
template <typename M1, typename M2>
inline typename internal::AnyOfResult2<M1, M2>::type
AnyOf(M1 m1, M2 m2) {
return typename internal::AnyOfResult2<M1, M2>::type(
m1,
m2);
}
template <typename M1, typename M2, typename M3>
inline typename internal::AnyOfResult3<M1, M2, M3>::type
AnyOf(M1 m1, M2 m2, M3 m3) {
return typename internal::AnyOfResult3<M1, M2, M3>::type(
m1,
::testing::AnyOf(m2, m3));
}
template <typename M1, typename M2, typename M3, typename M4>
inline typename internal::AnyOfResult4<M1, M2, M3, M4>::type
AnyOf(M1 m1, M2 m2, M3 m3, M4 m4) {
return typename internal::AnyOfResult4<M1, M2, M3, M4>::type(
::testing::AnyOf(m1, m2),
::testing::AnyOf(m3, m4));
}
template <typename M1, typename M2, typename M3, typename M4, typename M5>
inline typename internal::AnyOfResult5<M1, M2, M3, M4, M5>::type
AnyOf(M1 m1, M2 m2, M3 m3, M4 m4, M5 m5) {
return typename internal::AnyOfResult5<M1, M2, M3, M4, M5>::type(
::testing::AnyOf(m1, m2),
::testing::AnyOf(m3, m4, m5));
}
template <typename M1, typename M2, typename M3, typename M4, typename M5,
typename M6>
inline typename internal::AnyOfResult6<M1, M2, M3, M4, M5, M6>::type
AnyOf(M1 m1, M2 m2, M3 m3, M4 m4, M5 m5, M6 m6) {
return typename internal::AnyOfResult6<M1, M2, M3, M4, M5, M6>::type(
::testing::AnyOf(m1, m2, m3),
::testing::AnyOf(m4, m5, m6));
}
template <typename M1, typename M2, typename M3, typename M4, typename M5,
typename M6, typename M7>
inline typename internal::AnyOfResult7<M1, M2, M3, M4, M5, M6, M7>::type
AnyOf(M1 m1, M2 m2, M3 m3, M4 m4, M5 m5, M6 m6, M7 m7) {
return typename internal::AnyOfResult7<M1, M2, M3, M4, M5, M6, M7>::type(
::testing::AnyOf(m1, m2, m3),
::testing::AnyOf(m4, m5, m6, m7));
}
template <typename M1, typename M2, typename M3, typename M4, typename M5,
typename M6, typename M7, typename M8>
inline typename internal::AnyOfResult8<M1, M2, M3, M4, M5, M6, M7, M8>::type
AnyOf(M1 m1, M2 m2, M3 m3, M4 m4, M5 m5, M6 m6, M7 m7, M8 m8) {
return typename internal::AnyOfResult8<M1, M2, M3, M4, M5, M6, M7, M8>::type(
::testing::AnyOf(m1, m2, m3, m4),
::testing::AnyOf(m5, m6, m7, m8));
}
template <typename M1, typename M2, typename M3, typename M4, typename M5,
typename M6, typename M7, typename M8, typename M9>
inline typename internal::AnyOfResult9<M1, M2, M3, M4, M5, M6, M7, M8, M9>::type
AnyOf(M1 m1, M2 m2, M3 m3, M4 m4, M5 m5, M6 m6, M7 m7, M8 m8, M9 m9) {
return typename internal::AnyOfResult9<M1, M2, M3, M4, M5, M6, M7, M8,
M9>::type(
::testing::AnyOf(m1, m2, m3, m4),
::testing::AnyOf(m5, m6, m7, m8, m9));
}
template <typename M1, typename M2, typename M3, typename M4, typename M5,
typename M6, typename M7, typename M8, typename M9, typename M10>
inline typename internal::AnyOfResult10<M1, M2, M3, M4, M5, M6, M7, M8, M9,
M10>::type
AnyOf(M1 m1, M2 m2, M3 m3, M4 m4, M5 m5, M6 m6, M7 m7, M8 m8, M9 m9, M10 m10) {
return typename internal::AnyOfResult10<M1, M2, M3, M4, M5, M6, M7, M8, M9,
M10>::type(
::testing::AnyOf(m1, m2, m3, m4, m5),
::testing::AnyOf(m6, m7, m8, m9, m10));
}
} // namespace testing
// The MATCHER* family of macros can be used in a namespace scope to
// define custom matchers easily.
//
// Basic Usage
// ===========
//
// The syntax
//
// MATCHER(name, description_string) { statements; }
//
// defines a matcher with the given name that executes the statements,
// which must return a bool to indicate if the match succeeds. Inside
// the statements, you can refer to the value being matched by 'arg',
// and refer to its type by 'arg_type'.
//
// The description string documents what the matcher does, and is used
// to generate the failure message when the match fails. Since a
// MATCHER() is usually defined in a header file shared by multiple
// C++ source files, we require the description to be a C-string
// literal to avoid possible side effects. It can be empty, in which
// case we'll use the sequence of words in the matcher name as the
// description.
//
// For example:
//
// MATCHER(IsEven, "") { return (arg % 2) == 0; }
//
// allows you to write
//
// // Expects mock_foo.Bar(n) to be called where n is even.
// EXPECT_CALL(mock_foo, Bar(IsEven()));
//
// or,
//
// // Verifies that the value of some_expression is even.
// EXPECT_THAT(some_expression, IsEven());
//
// If the above assertion fails, it will print something like:
//
// Value of: some_expression
// Expected: is even
// Actual: 7
//
// where the description "is even" is automatically calculated from the
// matcher name IsEven.
//
// Argument Type
// =============
//
// Note that the type of the value being matched (arg_type) is
// determined by the context in which you use the matcher and is
// supplied to you by the compiler, so you don't need to worry about
// declaring it (nor can you). This allows the matcher to be
// polymorphic. For example, IsEven() can be used to match any type
// where the value of "(arg % 2) == 0" can be implicitly converted to
// a bool. In the "Bar(IsEven())" example above, if method Bar()
// takes an int, 'arg_type' will be int; if it takes an unsigned long,
// 'arg_type' will be unsigned long; and so on.
//
// Parameterizing Matchers
// =======================
//
// Sometimes you'll want to parameterize the matcher. For that you
// can use another macro:
//
// MATCHER_P(name, param_name, description_string) { statements; }
//
// For example:
//
// MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; }
//
// will allow you to write:
//
// EXPECT_THAT(Blah("a"), HasAbsoluteValue(n));
//
// which may lead to this message (assuming n is 10):
//
// Value of: Blah("a")
// Expected: has absolute value 10
// Actual: -9
//
// Note that both the matcher description and its parameter are
// printed, making the message human-friendly.
//
// In the matcher definition body, you can write 'foo_type' to
// reference the type of a parameter named 'foo'. For example, in the
// body of MATCHER_P(HasAbsoluteValue, value) above, you can write
// 'value_type' to refer to the type of 'value'.
//
// We also provide MATCHER_P2, MATCHER_P3, ..., up to MATCHER_P10 to
// support multi-parameter matchers.
//
// Describing Parameterized Matchers
// =================================
//
// The last argument to MATCHER*() is a string-typed expression. The
// expression can reference all of the matcher's parameters and a
// special bool-typed variable named 'negation'. When 'negation' is
// false, the expression should evaluate to the matcher's description;
// otherwise it should evaluate to the description of the negation of
// the matcher. For example,
//
// using testing::PrintToString;
//
// MATCHER_P2(InClosedRange, low, hi,
// string(negation ? "is not" : "is") + " in range [" +
// PrintToString(low) + ", " + PrintToString(hi) + "]") {
// return low <= arg && arg <= hi;
// }
// ...
// EXPECT_THAT(3, InClosedRange(4, 6));
// EXPECT_THAT(3, Not(InClosedRange(2, 4)));
//
// would generate two failures that contain the text:
//
// Expected: is in range [4, 6]
// ...
// Expected: is not in range [2, 4]
//
// If you specify "" as the description, the failure message will
// contain the sequence of words in the matcher name followed by the
// parameter values printed as a tuple. For example,
//
// MATCHER_P2(InClosedRange, low, hi, "") { ... }
// ...
// EXPECT_THAT(3, InClosedRange(4, 6));
// EXPECT_THAT(3, Not(InClosedRange(2, 4)));
//
// would generate two failures that contain the text:
//
// Expected: in closed range (4, 6)
// ...
// Expected: not (in closed range (2, 4))
//
// Types of Matcher Parameters
// ===========================
//
// For the purpose of typing, you can view
//
// MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... }
//
// as shorthand for
//
// template <typename p1_type, ..., typename pk_type>
// FooMatcherPk<p1_type, ..., pk_type>
// Foo(p1_type p1, ..., pk_type pk) { ... }
//
// When you write Foo(v1, ..., vk), the compiler infers the types of
// the parameters v1, ..., and vk for you. If you are not happy with
// the result of the type inference, you can specify the types by
// explicitly instantiating the template, as in Foo<long, bool>(5,
// false). As said earlier, you don't get to (or need to) specify
// 'arg_type' as that's determined by the context in which the matcher
// is used. You can assign the result of expression Foo(p1, ..., pk)
// to a variable of type FooMatcherPk<p1_type, ..., pk_type>. This
// can be useful when composing matchers.
//
// While you can instantiate a matcher template with reference types,
// passing the parameters by pointer usually makes your code more
// readable. If, however, you still want to pass a parameter by
// reference, be aware that in the failure message generated by the
// matcher you will see the value of the referenced object but not its
// address.
//
// Explaining Match Results
// ========================
//
// Sometimes the matcher description alone isn't enough to explain why
// the match has failed or succeeded. For example, when expecting a
// long string, it can be very helpful to also print the diff between
// the expected string and the actual one. To achieve that, you can
// optionally stream additional information to a special variable
// named result_listener, whose type is a pointer to class
// MatchResultListener:
//
// MATCHER_P(EqualsLongString, str, "") {
// if (arg == str) return true;
//
// *result_listener << "the difference: "
/// << DiffStrings(str, arg);
// return false;
// }
//
// Overloading Matchers
// ====================
//
// You can overload matchers with different numbers of parameters:
//
// MATCHER_P(Blah, a, description_string1) { ... }
// MATCHER_P2(Blah, a, b, description_string2) { ... }
//
// Caveats
// =======
//
// When defining a new matcher, you should also consider implementing
// MatcherInterface or using MakePolymorphicMatcher(). These
// approaches require more work than the MATCHER* macros, but also
// give you more control on the types of the value being matched and
// the matcher parameters, which may leads to better compiler error
// messages when the matcher is used wrong. They also allow
// overloading matchers based on parameter types (as opposed to just
// based on the number of parameters).
//
// MATCHER*() can only be used in a namespace scope. The reason is
// that C++ doesn't yet allow function-local types to be used to
// instantiate templates. The up-coming C++0x standard will fix this.
// Once that's done, we'll consider supporting using MATCHER*() inside
// a function.
//
// More Information
// ================
//
// To learn more about using these macros, please search for 'MATCHER'
// on http://code.google.com/p/googlemock/wiki/CookBook.
#define MATCHER(name, description)\
class name##Matcher {\
public:\
template <typename arg_type>\
class gmock_Impl : public ::testing::MatcherInterface<arg_type> {\
public:\
gmock_Impl()\
{}\
virtual bool MatchAndExplain(\
arg_type arg, ::testing::MatchResultListener* result_listener) const;\
virtual void DescribeTo(::std::ostream* gmock_os) const {\
*gmock_os << FormatDescription(false);\
}\
virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\
*gmock_os << FormatDescription(true);\
}\
private:\
::testing::internal::string FormatDescription(bool negation) const {\
const ::testing::internal::string gmock_description = (description);\
if (!gmock_description.empty())\
return gmock_description;\
return ::testing::internal::FormatMatcherDescription(\
negation, #name, \
::testing::internal::UniversalTersePrintTupleFieldsToStrings(\
::std::tr1::tuple<>()));\
}\
GTEST_DISALLOW_ASSIGN_(gmock_Impl);\
};\
template <typename arg_type>\
operator ::testing::Matcher<arg_type>() const {\
return ::testing::Matcher<arg_type>(\
new gmock_Impl<arg_type>());\
}\
name##Matcher() {\
}\
private:\
GTEST_DISALLOW_ASSIGN_(name##Matcher);\
};\
inline name##Matcher name() {\
return name##Matcher();\
}\
template <typename arg_type>\
bool name##Matcher::gmock_Impl<arg_type>::MatchAndExplain(\
arg_type arg, \
::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\
const
#define MATCHER_P(name, p0, description)\
template <typename p0##_type>\
class name##MatcherP {\
public:\
template <typename arg_type>\
class gmock_Impl : public ::testing::MatcherInterface<arg_type> {\
public:\
explicit gmock_Impl(p0##_type gmock_p0)\
: p0(gmock_p0) {}\
virtual bool MatchAndExplain(\
arg_type arg, ::testing::MatchResultListener* result_listener) const;\
virtual void DescribeTo(::std::ostream* gmock_os) const {\
*gmock_os << FormatDescription(false);\
}\
virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\
*gmock_os << FormatDescription(true);\
}\
p0##_type p0;\
private:\
::testing::internal::string FormatDescription(bool negation) const {\
const ::testing::internal::string gmock_description = (description);\
if (!gmock_description.empty())\
return gmock_description;\
return ::testing::internal::FormatMatcherDescription(\
negation, #name, \
::testing::internal::UniversalTersePrintTupleFieldsToStrings(\
::std::tr1::tuple<p0##_type>(p0)));\
}\
GTEST_DISALLOW_ASSIGN_(gmock_Impl);\
};\
template <typename arg_type>\
operator ::testing::Matcher<arg_type>() const {\
return ::testing::Matcher<arg_type>(\
new gmock_Impl<arg_type>(p0));\
}\
name##MatcherP(p0##_type gmock_p0) : p0(gmock_p0) {\
}\
p0##_type p0;\
private:\
GTEST_DISALLOW_ASSIGN_(name##MatcherP);\
};\
template <typename p0##_type>\
inline name##MatcherP<p0##_type> name(p0##_type p0) {\
return name##MatcherP<p0##_type>(p0);\
}\
template <typename p0##_type>\
template <typename arg_type>\
bool name##MatcherP<p0##_type>::gmock_Impl<arg_type>::MatchAndExplain(\
arg_type arg, \
::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\
const
#define MATCHER_P2(name, p0, p1, description)\
template <typename p0##_type, typename p1##_type>\
class name##MatcherP2 {\
public:\
template <typename arg_type>\
class gmock_Impl : public ::testing::MatcherInterface<arg_type> {\
public:\
gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1)\
: p0(gmock_p0), p1(gmock_p1) {}\
virtual bool MatchAndExplain(\
arg_type arg, ::testing::MatchResultListener* result_listener) const;\
virtual void DescribeTo(::std::ostream* gmock_os) const {\
*gmock_os << FormatDescription(false);\
}\
virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\
*gmock_os << FormatDescription(true);\
}\
p0##_type p0;\
p1##_type p1;\
private:\
::testing::internal::string FormatDescription(bool negation) const {\
const ::testing::internal::string gmock_description = (description);\
if (!gmock_description.empty())\
return gmock_description;\
return ::testing::internal::FormatMatcherDescription(\
negation, #name, \
::testing::internal::UniversalTersePrintTupleFieldsToStrings(\
::std::tr1::tuple<p0##_type, p1##_type>(p0, p1)));\
}\
GTEST_DISALLOW_ASSIGN_(gmock_Impl);\
};\
template <typename arg_type>\
operator ::testing::Matcher<arg_type>() const {\
return ::testing::Matcher<arg_type>(\
new gmock_Impl<arg_type>(p0, p1));\
}\
name##MatcherP2(p0##_type gmock_p0, p1##_type gmock_p1) : p0(gmock_p0), \
p1(gmock_p1) {\
}\
p0##_type p0;\
p1##_type p1;\
private:\
GTEST_DISALLOW_ASSIGN_(name##MatcherP2);\
};\
template <typename p0##_type, typename p1##_type>\
inline name##MatcherP2<p0##_type, p1##_type> name(p0##_type p0, \
p1##_type p1) {\
return name##MatcherP2<p0##_type, p1##_type>(p0, p1);\
}\
template <typename p0##_type, typename p1##_type>\
template <typename arg_type>\
bool name##MatcherP2<p0##_type, \
p1##_type>::gmock_Impl<arg_type>::MatchAndExplain(\
arg_type arg, \
::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\
const
#define MATCHER_P3(name, p0, p1, p2, description)\
template <typename p0##_type, typename p1##_type, typename p2##_type>\
class name##MatcherP3 {\
public:\
template <typename arg_type>\
class gmock_Impl : public ::testing::MatcherInterface<arg_type> {\
public:\
gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2)\
: p0(gmock_p0), p1(gmock_p1), p2(gmock_p2) {}\
virtual bool MatchAndExplain(\
arg_type arg, ::testing::MatchResultListener* result_listener) const;\
virtual void DescribeTo(::std::ostream* gmock_os) const {\
*gmock_os << FormatDescription(false);\
}\
virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\
*gmock_os << FormatDescription(true);\
}\
p0##_type p0;\
p1##_type p1;\
p2##_type p2;\
private:\
::testing::internal::string FormatDescription(bool negation) const {\
const ::testing::internal::string gmock_description = (description);\
if (!gmock_description.empty())\
return gmock_description;\
return ::testing::internal::FormatMatcherDescription(\
negation, #name, \
::testing::internal::UniversalTersePrintTupleFieldsToStrings(\
::std::tr1::tuple<p0##_type, p1##_type, p2##_type>(p0, p1, \
p2)));\
}\
GTEST_DISALLOW_ASSIGN_(gmock_Impl);\
};\
template <typename arg_type>\
operator ::testing::Matcher<arg_type>() const {\
return ::testing::Matcher<arg_type>(\
new gmock_Impl<arg_type>(p0, p1, p2));\
}\
name##MatcherP3(p0##_type gmock_p0, p1##_type gmock_p1, \
p2##_type gmock_p2) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2) {\
}\
p0##_type p0;\
p1##_type p1;\
p2##_type p2;\
private:\
GTEST_DISALLOW_ASSIGN_(name##MatcherP3);\
};\
template <typename p0##_type, typename p1##_type, typename p2##_type>\
inline name##MatcherP3<p0##_type, p1##_type, p2##_type> name(p0##_type p0, \
p1##_type p1, p2##_type p2) {\
return name##MatcherP3<p0##_type, p1##_type, p2##_type>(p0, p1, p2);\
}\
template <typename p0##_type, typename p1##_type, typename p2##_type>\
template <typename arg_type>\
bool name##MatcherP3<p0##_type, p1##_type, \
p2##_type>::gmock_Impl<arg_type>::MatchAndExplain(\
arg_type arg, \
::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\
const
#define MATCHER_P4(name, p0, p1, p2, p3, description)\
template <typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type>\
class name##MatcherP4 {\
public:\
template <typename arg_type>\
class gmock_Impl : public ::testing::MatcherInterface<arg_type> {\
public:\
gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
p3##_type gmock_p3)\
: p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), p3(gmock_p3) {}\
virtual bool MatchAndExplain(\
arg_type arg, ::testing::MatchResultListener* result_listener) const;\
virtual void DescribeTo(::std::ostream* gmock_os) const {\
*gmock_os << FormatDescription(false);\
}\
virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\
*gmock_os << FormatDescription(true);\
}\
p0##_type p0;\
p1##_type p1;\
p2##_type p2;\
p3##_type p3;\
private:\
::testing::internal::string FormatDescription(bool negation) const {\
const ::testing::internal::string gmock_description = (description);\
if (!gmock_description.empty())\
return gmock_description;\
return ::testing::internal::FormatMatcherDescription(\
negation, #name, \
::testing::internal::UniversalTersePrintTupleFieldsToStrings(\
::std::tr1::tuple<p0##_type, p1##_type, p2##_type, \
p3##_type>(p0, p1, p2, p3)));\
}\
GTEST_DISALLOW_ASSIGN_(gmock_Impl);\
};\
template <typename arg_type>\
operator ::testing::Matcher<arg_type>() const {\
return ::testing::Matcher<arg_type>(\
new gmock_Impl<arg_type>(p0, p1, p2, p3));\
}\
name##MatcherP4(p0##_type gmock_p0, p1##_type gmock_p1, \
p2##_type gmock_p2, p3##_type gmock_p3) : p0(gmock_p0), p1(gmock_p1), \
p2(gmock_p2), p3(gmock_p3) {\
}\
p0##_type p0;\
p1##_type p1;\
p2##_type p2;\
p3##_type p3;\
private:\
GTEST_DISALLOW_ASSIGN_(name##MatcherP4);\
};\
template <typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type>\
inline name##MatcherP4<p0##_type, p1##_type, p2##_type, \
p3##_type> name(p0##_type p0, p1##_type p1, p2##_type p2, \
p3##_type p3) {\
return name##MatcherP4<p0##_type, p1##_type, p2##_type, p3##_type>(p0, \
p1, p2, p3);\
}\
template <typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type>\
template <typename arg_type>\
bool name##MatcherP4<p0##_type, p1##_type, p2##_type, \
p3##_type>::gmock_Impl<arg_type>::MatchAndExplain(\
arg_type arg, \
::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\
const
#define MATCHER_P5(name, p0, p1, p2, p3, p4, description)\
template <typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type, typename p4##_type>\
class name##MatcherP5 {\
public:\
template <typename arg_type>\
class gmock_Impl : public ::testing::MatcherInterface<arg_type> {\
public:\
gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
p3##_type gmock_p3, p4##_type gmock_p4)\
: p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), p3(gmock_p3), \
p4(gmock_p4) {}\
virtual bool MatchAndExplain(\
arg_type arg, ::testing::MatchResultListener* result_listener) const;\
virtual void DescribeTo(::std::ostream* gmock_os) const {\
*gmock_os << FormatDescription(false);\
}\
virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\
*gmock_os << FormatDescription(true);\
}\
p0##_type p0;\
p1##_type p1;\
p2##_type p2;\
p3##_type p3;\
p4##_type p4;\
private:\
::testing::internal::string FormatDescription(bool negation) const {\
const ::testing::internal::string gmock_description = (description);\
if (!gmock_description.empty())\
return gmock_description;\
return ::testing::internal::FormatMatcherDescription(\
negation, #name, \
::testing::internal::UniversalTersePrintTupleFieldsToStrings(\
::std::tr1::tuple<p0##_type, p1##_type, p2##_type, p3##_type, \
p4##_type>(p0, p1, p2, p3, p4)));\
}\
GTEST_DISALLOW_ASSIGN_(gmock_Impl);\
};\
template <typename arg_type>\
operator ::testing::Matcher<arg_type>() const {\
return ::testing::Matcher<arg_type>(\
new gmock_Impl<arg_type>(p0, p1, p2, p3, p4));\
}\
name##MatcherP5(p0##_type gmock_p0, p1##_type gmock_p1, \
p2##_type gmock_p2, p3##_type gmock_p3, \
p4##_type gmock_p4) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \
p3(gmock_p3), p4(gmock_p4) {\
}\
p0##_type p0;\
p1##_type p1;\
p2##_type p2;\
p3##_type p3;\
p4##_type p4;\
private:\
GTEST_DISALLOW_ASSIGN_(name##MatcherP5);\
};\
template <typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type, typename p4##_type>\
inline name##MatcherP5<p0##_type, p1##_type, p2##_type, p3##_type, \
p4##_type> name(p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \
p4##_type p4) {\
return name##MatcherP5<p0##_type, p1##_type, p2##_type, p3##_type, \
p4##_type>(p0, p1, p2, p3, p4);\
}\
template <typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type, typename p4##_type>\
template <typename arg_type>\
bool name##MatcherP5<p0##_type, p1##_type, p2##_type, p3##_type, \
p4##_type>::gmock_Impl<arg_type>::MatchAndExplain(\
arg_type arg, \
::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\
const
#define MATCHER_P6(name, p0, p1, p2, p3, p4, p5, description)\
template <typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type, typename p4##_type, typename p5##_type>\
class name##MatcherP6 {\
public:\
template <typename arg_type>\
class gmock_Impl : public ::testing::MatcherInterface<arg_type> {\
public:\
gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5)\
: p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), p3(gmock_p3), \
p4(gmock_p4), p5(gmock_p5) {}\
virtual bool MatchAndExplain(\
arg_type arg, ::testing::MatchResultListener* result_listener) const;\
virtual void DescribeTo(::std::ostream* gmock_os) const {\
*gmock_os << FormatDescription(false);\
}\
virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\
*gmock_os << FormatDescription(true);\
}\
p0##_type p0;\
p1##_type p1;\
p2##_type p2;\
p3##_type p3;\
p4##_type p4;\
p5##_type p5;\
private:\
::testing::internal::string FormatDescription(bool negation) const {\
const ::testing::internal::string gmock_description = (description);\
if (!gmock_description.empty())\
return gmock_description;\
return ::testing::internal::FormatMatcherDescription(\
negation, #name, \
::testing::internal::UniversalTersePrintTupleFieldsToStrings(\
::std::tr1::tuple<p0##_type, p1##_type, p2##_type, p3##_type, \
p4##_type, p5##_type>(p0, p1, p2, p3, p4, p5)));\
}\
GTEST_DISALLOW_ASSIGN_(gmock_Impl);\
};\
template <typename arg_type>\
operator ::testing::Matcher<arg_type>() const {\
return ::testing::Matcher<arg_type>(\
new gmock_Impl<arg_type>(p0, p1, p2, p3, p4, p5));\
}\
name##MatcherP6(p0##_type gmock_p0, p1##_type gmock_p1, \
p2##_type gmock_p2, p3##_type gmock_p3, p4##_type gmock_p4, \
p5##_type gmock_p5) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \
p3(gmock_p3), p4(gmock_p4), p5(gmock_p5) {\
}\
p0##_type p0;\
p1##_type p1;\
p2##_type p2;\
p3##_type p3;\
p4##_type p4;\
p5##_type p5;\
private:\
GTEST_DISALLOW_ASSIGN_(name##MatcherP6);\
};\
template <typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type, typename p4##_type, typename p5##_type>\
inline name##MatcherP6<p0##_type, p1##_type, p2##_type, p3##_type, \
p4##_type, p5##_type> name(p0##_type p0, p1##_type p1, p2##_type p2, \
p3##_type p3, p4##_type p4, p5##_type p5) {\
return name##MatcherP6<p0##_type, p1##_type, p2##_type, p3##_type, \
p4##_type, p5##_type>(p0, p1, p2, p3, p4, p5);\
}\
template <typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type, typename p4##_type, typename p5##_type>\
template <typename arg_type>\
bool name##MatcherP6<p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \
p5##_type>::gmock_Impl<arg_type>::MatchAndExplain(\
arg_type arg, \
::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\
const
#define MATCHER_P7(name, p0, p1, p2, p3, p4, p5, p6, description)\
template <typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type, typename p4##_type, typename p5##_type, \
typename p6##_type>\
class name##MatcherP7 {\
public:\
template <typename arg_type>\
class gmock_Impl : public ::testing::MatcherInterface<arg_type> {\
public:\
gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \
p6##_type gmock_p6)\
: p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), p3(gmock_p3), \
p4(gmock_p4), p5(gmock_p5), p6(gmock_p6) {}\
virtual bool MatchAndExplain(\
arg_type arg, ::testing::MatchResultListener* result_listener) const;\
virtual void DescribeTo(::std::ostream* gmock_os) const {\
*gmock_os << FormatDescription(false);\
}\
virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\
*gmock_os << FormatDescription(true);\
}\
p0##_type p0;\
p1##_type p1;\
p2##_type p2;\
p3##_type p3;\
p4##_type p4;\
p5##_type p5;\
p6##_type p6;\
private:\
::testing::internal::string FormatDescription(bool negation) const {\
const ::testing::internal::string gmock_description = (description);\
if (!gmock_description.empty())\
return gmock_description;\
return ::testing::internal::FormatMatcherDescription(\
negation, #name, \
::testing::internal::UniversalTersePrintTupleFieldsToStrings(\
::std::tr1::tuple<p0##_type, p1##_type, p2##_type, p3##_type, \
p4##_type, p5##_type, p6##_type>(p0, p1, p2, p3, p4, p5, \
p6)));\
}\
GTEST_DISALLOW_ASSIGN_(gmock_Impl);\
};\
template <typename arg_type>\
operator ::testing::Matcher<arg_type>() const {\
return ::testing::Matcher<arg_type>(\
new gmock_Impl<arg_type>(p0, p1, p2, p3, p4, p5, p6));\
}\
name##MatcherP7(p0##_type gmock_p0, p1##_type gmock_p1, \
p2##_type gmock_p2, p3##_type gmock_p3, p4##_type gmock_p4, \
p5##_type gmock_p5, p6##_type gmock_p6) : p0(gmock_p0), p1(gmock_p1), \
p2(gmock_p2), p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), \
p6(gmock_p6) {\
}\
p0##_type p0;\
p1##_type p1;\
p2##_type p2;\
p3##_type p3;\
p4##_type p4;\
p5##_type p5;\
p6##_type p6;\
private:\
GTEST_DISALLOW_ASSIGN_(name##MatcherP7);\
};\
template <typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type, typename p4##_type, typename p5##_type, \
typename p6##_type>\
inline name##MatcherP7<p0##_type, p1##_type, p2##_type, p3##_type, \
p4##_type, p5##_type, p6##_type> name(p0##_type p0, p1##_type p1, \
p2##_type p2, p3##_type p3, p4##_type p4, p5##_type p5, \
p6##_type p6) {\
return name##MatcherP7<p0##_type, p1##_type, p2##_type, p3##_type, \
p4##_type, p5##_type, p6##_type>(p0, p1, p2, p3, p4, p5, p6);\
}\
template <typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type, typename p4##_type, typename p5##_type, \
typename p6##_type>\
template <typename arg_type>\
bool name##MatcherP7<p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \
p5##_type, p6##_type>::gmock_Impl<arg_type>::MatchAndExplain(\
arg_type arg, \
::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\
const
#define MATCHER_P8(name, p0, p1, p2, p3, p4, p5, p6, p7, description)\
template <typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type, typename p4##_type, typename p5##_type, \
typename p6##_type, typename p7##_type>\
class name##MatcherP8 {\
public:\
template <typename arg_type>\
class gmock_Impl : public ::testing::MatcherInterface<arg_type> {\
public:\
gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \
p6##_type gmock_p6, p7##_type gmock_p7)\
: p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), p3(gmock_p3), \
p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), p7(gmock_p7) {}\
virtual bool MatchAndExplain(\
arg_type arg, ::testing::MatchResultListener* result_listener) const;\
virtual void DescribeTo(::std::ostream* gmock_os) const {\
*gmock_os << FormatDescription(false);\
}\
virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\
*gmock_os << FormatDescription(true);\
}\
p0##_type p0;\
p1##_type p1;\
p2##_type p2;\
p3##_type p3;\
p4##_type p4;\
p5##_type p5;\
p6##_type p6;\
p7##_type p7;\
private:\
::testing::internal::string FormatDescription(bool negation) const {\
const ::testing::internal::string gmock_description = (description);\
if (!gmock_description.empty())\
return gmock_description;\
return ::testing::internal::FormatMatcherDescription(\
negation, #name, \
::testing::internal::UniversalTersePrintTupleFieldsToStrings(\
::std::tr1::tuple<p0##_type, p1##_type, p2##_type, p3##_type, \
p4##_type, p5##_type, p6##_type, p7##_type>(p0, p1, p2, \
p3, p4, p5, p6, p7)));\
}\
GTEST_DISALLOW_ASSIGN_(gmock_Impl);\
};\
template <typename arg_type>\
operator ::testing::Matcher<arg_type>() const {\
return ::testing::Matcher<arg_type>(\
new gmock_Impl<arg_type>(p0, p1, p2, p3, p4, p5, p6, p7));\
}\
name##MatcherP8(p0##_type gmock_p0, p1##_type gmock_p1, \
p2##_type gmock_p2, p3##_type gmock_p3, p4##_type gmock_p4, \
p5##_type gmock_p5, p6##_type gmock_p6, \
p7##_type gmock_p7) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \
p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), \
p7(gmock_p7) {\
}\
p0##_type p0;\
p1##_type p1;\
p2##_type p2;\
p3##_type p3;\
p4##_type p4;\
p5##_type p5;\
p6##_type p6;\
p7##_type p7;\
private:\
GTEST_DISALLOW_ASSIGN_(name##MatcherP8);\
};\
template <typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type, typename p4##_type, typename p5##_type, \
typename p6##_type, typename p7##_type>\
inline name##MatcherP8<p0##_type, p1##_type, p2##_type, p3##_type, \
p4##_type, p5##_type, p6##_type, p7##_type> name(p0##_type p0, \
p1##_type p1, p2##_type p2, p3##_type p3, p4##_type p4, p5##_type p5, \
p6##_type p6, p7##_type p7) {\
return name##MatcherP8<p0##_type, p1##_type, p2##_type, p3##_type, \
p4##_type, p5##_type, p6##_type, p7##_type>(p0, p1, p2, p3, p4, p5, \
p6, p7);\
}\
template <typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type, typename p4##_type, typename p5##_type, \
typename p6##_type, typename p7##_type>\
template <typename arg_type>\
bool name##MatcherP8<p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \
p5##_type, p6##_type, \
p7##_type>::gmock_Impl<arg_type>::MatchAndExplain(\
arg_type arg, \
::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\
const
#define MATCHER_P9(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, description)\
template <typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type, typename p4##_type, typename p5##_type, \
typename p6##_type, typename p7##_type, typename p8##_type>\
class name##MatcherP9 {\
public:\
template <typename arg_type>\
class gmock_Impl : public ::testing::MatcherInterface<arg_type> {\
public:\
gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \
p6##_type gmock_p6, p7##_type gmock_p7, p8##_type gmock_p8)\
: p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), p3(gmock_p3), \
p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), p7(gmock_p7), \
p8(gmock_p8) {}\
virtual bool MatchAndExplain(\
arg_type arg, ::testing::MatchResultListener* result_listener) const;\
virtual void DescribeTo(::std::ostream* gmock_os) const {\
*gmock_os << FormatDescription(false);\
}\
virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\
*gmock_os << FormatDescription(true);\
}\
p0##_type p0;\
p1##_type p1;\
p2##_type p2;\
p3##_type p3;\
p4##_type p4;\
p5##_type p5;\
p6##_type p6;\
p7##_type p7;\
p8##_type p8;\
private:\
::testing::internal::string FormatDescription(bool negation) const {\
const ::testing::internal::string gmock_description = (description);\
if (!gmock_description.empty())\
return gmock_description;\
return ::testing::internal::FormatMatcherDescription(\
negation, #name, \
::testing::internal::UniversalTersePrintTupleFieldsToStrings(\
::std::tr1::tuple<p0##_type, p1##_type, p2##_type, p3##_type, \
p4##_type, p5##_type, p6##_type, p7##_type, \
p8##_type>(p0, p1, p2, p3, p4, p5, p6, p7, p8)));\
}\
GTEST_DISALLOW_ASSIGN_(gmock_Impl);\
};\
template <typename arg_type>\
operator ::testing::Matcher<arg_type>() const {\
return ::testing::Matcher<arg_type>(\
new gmock_Impl<arg_type>(p0, p1, p2, p3, p4, p5, p6, p7, p8));\
}\
name##MatcherP9(p0##_type gmock_p0, p1##_type gmock_p1, \
p2##_type gmock_p2, p3##_type gmock_p3, p4##_type gmock_p4, \
p5##_type gmock_p5, p6##_type gmock_p6, p7##_type gmock_p7, \
p8##_type gmock_p8) : p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), \
p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), p7(gmock_p7), \
p8(gmock_p8) {\
}\
p0##_type p0;\
p1##_type p1;\
p2##_type p2;\
p3##_type p3;\
p4##_type p4;\
p5##_type p5;\
p6##_type p6;\
p7##_type p7;\
p8##_type p8;\
private:\
GTEST_DISALLOW_ASSIGN_(name##MatcherP9);\
};\
template <typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type, typename p4##_type, typename p5##_type, \
typename p6##_type, typename p7##_type, typename p8##_type>\
inline name##MatcherP9<p0##_type, p1##_type, p2##_type, p3##_type, \
p4##_type, p5##_type, p6##_type, p7##_type, \
p8##_type> name(p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \
p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, \
p8##_type p8) {\
return name##MatcherP9<p0##_type, p1##_type, p2##_type, p3##_type, \
p4##_type, p5##_type, p6##_type, p7##_type, p8##_type>(p0, p1, p2, \
p3, p4, p5, p6, p7, p8);\
}\
template <typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type, typename p4##_type, typename p5##_type, \
typename p6##_type, typename p7##_type, typename p8##_type>\
template <typename arg_type>\
bool name##MatcherP9<p0##_type, p1##_type, p2##_type, p3##_type, p4##_type, \
p5##_type, p6##_type, p7##_type, \
p8##_type>::gmock_Impl<arg_type>::MatchAndExplain(\
arg_type arg, \
::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\
const
#define MATCHER_P10(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, description)\
template <typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type, typename p4##_type, typename p5##_type, \
typename p6##_type, typename p7##_type, typename p8##_type, \
typename p9##_type>\
class name##MatcherP10 {\
public:\
template <typename arg_type>\
class gmock_Impl : public ::testing::MatcherInterface<arg_type> {\
public:\
gmock_Impl(p0##_type gmock_p0, p1##_type gmock_p1, p2##_type gmock_p2, \
p3##_type gmock_p3, p4##_type gmock_p4, p5##_type gmock_p5, \
p6##_type gmock_p6, p7##_type gmock_p7, p8##_type gmock_p8, \
p9##_type gmock_p9)\
: p0(gmock_p0), p1(gmock_p1), p2(gmock_p2), p3(gmock_p3), \
p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), p7(gmock_p7), \
p8(gmock_p8), p9(gmock_p9) {}\
virtual bool MatchAndExplain(\
arg_type arg, ::testing::MatchResultListener* result_listener) const;\
virtual void DescribeTo(::std::ostream* gmock_os) const {\
*gmock_os << FormatDescription(false);\
}\
virtual void DescribeNegationTo(::std::ostream* gmock_os) const {\
*gmock_os << FormatDescription(true);\
}\
p0##_type p0;\
p1##_type p1;\
p2##_type p2;\
p3##_type p3;\
p4##_type p4;\
p5##_type p5;\
p6##_type p6;\
p7##_type p7;\
p8##_type p8;\
p9##_type p9;\
private:\
::testing::internal::string FormatDescription(bool negation) const {\
const ::testing::internal::string gmock_description = (description);\
if (!gmock_description.empty())\
return gmock_description;\
return ::testing::internal::FormatMatcherDescription(\
negation, #name, \
::testing::internal::UniversalTersePrintTupleFieldsToStrings(\
::std::tr1::tuple<p0##_type, p1##_type, p2##_type, p3##_type, \
p4##_type, p5##_type, p6##_type, p7##_type, p8##_type, \
p9##_type>(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9)));\
}\
GTEST_DISALLOW_ASSIGN_(gmock_Impl);\
};\
template <typename arg_type>\
operator ::testing::Matcher<arg_type>() const {\
return ::testing::Matcher<arg_type>(\
new gmock_Impl<arg_type>(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9));\
}\
name##MatcherP10(p0##_type gmock_p0, p1##_type gmock_p1, \
p2##_type gmock_p2, p3##_type gmock_p3, p4##_type gmock_p4, \
p5##_type gmock_p5, p6##_type gmock_p6, p7##_type gmock_p7, \
p8##_type gmock_p8, p9##_type gmock_p9) : p0(gmock_p0), p1(gmock_p1), \
p2(gmock_p2), p3(gmock_p3), p4(gmock_p4), p5(gmock_p5), p6(gmock_p6), \
p7(gmock_p7), p8(gmock_p8), p9(gmock_p9) {\
}\
p0##_type p0;\
p1##_type p1;\
p2##_type p2;\
p3##_type p3;\
p4##_type p4;\
p5##_type p5;\
p6##_type p6;\
p7##_type p7;\
p8##_type p8;\
p9##_type p9;\
private:\
GTEST_DISALLOW_ASSIGN_(name##MatcherP10);\
};\
template <typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type, typename p4##_type, typename p5##_type, \
typename p6##_type, typename p7##_type, typename p8##_type, \
typename p9##_type>\
inline name##MatcherP10<p0##_type, p1##_type, p2##_type, p3##_type, \
p4##_type, p5##_type, p6##_type, p7##_type, p8##_type, \
p9##_type> name(p0##_type p0, p1##_type p1, p2##_type p2, p3##_type p3, \
p4##_type p4, p5##_type p5, p6##_type p6, p7##_type p7, p8##_type p8, \
p9##_type p9) {\
return name##MatcherP10<p0##_type, p1##_type, p2##_type, p3##_type, \
p4##_type, p5##_type, p6##_type, p7##_type, p8##_type, p9##_type>(p0, \
p1, p2, p3, p4, p5, p6, p7, p8, p9);\
}\
template <typename p0##_type, typename p1##_type, typename p2##_type, \
typename p3##_type, typename p4##_type, typename p5##_type, \
typename p6##_type, typename p7##_type, typename p8##_type, \
typename p9##_type>\
template <typename arg_type>\
bool name##MatcherP10<p0##_type, p1##_type, p2##_type, p3##_type, \
p4##_type, p5##_type, p6##_type, p7##_type, p8##_type, \
p9##_type>::gmock_Impl<arg_type>::MatchAndExplain(\
arg_type arg, \
::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_)\
const
#endif // GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_MATCHERS_H_
// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: wan@google.com (Zhanyong Wan)
// Google Mock - a framework for writing C++ mock classes.
//
// This file implements some actions that depend on gmock-generated-actions.h.
#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_MORE_ACTIONS_H_
#define GMOCK_INCLUDE_GMOCK_GMOCK_MORE_ACTIONS_H_
#include <algorithm>
namespace testing {
namespace internal {
// Implements the Invoke(f) action. The template argument
// FunctionImpl is the implementation type of f, which can be either a
// function pointer or a functor. Invoke(f) can be used as an
// Action<F> as long as f's type is compatible with F (i.e. f can be
// assigned to a tr1::function<F>).
template <typename FunctionImpl>
class InvokeAction {
public:
// The c'tor makes a copy of function_impl (either a function
// pointer or a functor).
explicit InvokeAction(FunctionImpl function_impl)
: function_impl_(function_impl) {}
template <typename Result, typename ArgumentTuple>
Result Perform(const ArgumentTuple& args) {
return InvokeHelper<Result, ArgumentTuple>::Invoke(function_impl_, args);
}
private:
FunctionImpl function_impl_;
GTEST_DISALLOW_ASSIGN_(InvokeAction);
};
// Implements the Invoke(object_ptr, &Class::Method) action.
template <class Class, typename MethodPtr>
class InvokeMethodAction {
public:
InvokeMethodAction(Class* obj_ptr, MethodPtr method_ptr)
: obj_ptr_(obj_ptr), method_ptr_(method_ptr) {}
template <typename Result, typename ArgumentTuple>
Result Perform(const ArgumentTuple& args) const {
return InvokeHelper<Result, ArgumentTuple>::InvokeMethod(
obj_ptr_, method_ptr_, args);
}
private:
Class* const obj_ptr_;
const MethodPtr method_ptr_;
GTEST_DISALLOW_ASSIGN_(InvokeMethodAction);
};
} // namespace internal
// Various overloads for Invoke().
// Creates an action that invokes 'function_impl' with the mock
// function's arguments.
template <typename FunctionImpl>
PolymorphicAction<internal::InvokeAction<FunctionImpl> > Invoke(
FunctionImpl function_impl) {
return MakePolymorphicAction(
internal::InvokeAction<FunctionImpl>(function_impl));
}
// Creates an action that invokes the given method on the given object
// with the mock function's arguments.
template <class Class, typename MethodPtr>
PolymorphicAction<internal::InvokeMethodAction<Class, MethodPtr> > Invoke(
Class* obj_ptr, MethodPtr method_ptr) {
return MakePolymorphicAction(
internal::InvokeMethodAction<Class, MethodPtr>(obj_ptr, method_ptr));
}
// WithoutArgs(inner_action) can be used in a mock function with a
// non-empty argument list to perform inner_action, which takes no
// argument. In other words, it adapts an action accepting no
// argument to one that accepts (and ignores) arguments.
template <typename InnerAction>
inline internal::WithArgsAction<InnerAction>
WithoutArgs(const InnerAction& action) {
return internal::WithArgsAction<InnerAction>(action);
}
// WithArg<k>(an_action) creates an action that passes the k-th
// (0-based) argument of the mock function to an_action and performs
// it. It adapts an action accepting one argument to one that accepts
// multiple arguments. For convenience, we also provide
// WithArgs<k>(an_action) (defined below) as a synonym.
template <int k, typename InnerAction>
inline internal::WithArgsAction<InnerAction, k>
WithArg(const InnerAction& action) {
return internal::WithArgsAction<InnerAction, k>(action);
}
// The ACTION*() macros trigger warning C4100 (unreferenced formal
// parameter) in MSVC with -W4. Unfortunately they cannot be fixed in
// the macro definition, as the warnings are generated when the macro
// is expanded and macro expansion cannot contain #pragma. Therefore
// we suppress them here.
#ifdef _MSC_VER
# pragma warning(push)
# pragma warning(disable:4100)
#endif
// Action ReturnArg<k>() returns the k-th argument of the mock function.
ACTION_TEMPLATE(ReturnArg,
HAS_1_TEMPLATE_PARAMS(int, k),
AND_0_VALUE_PARAMS()) {
return std::tr1::get<k>(args);
}
// Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the
// mock function to *pointer.
ACTION_TEMPLATE(SaveArg,
HAS_1_TEMPLATE_PARAMS(int, k),
AND_1_VALUE_PARAMS(pointer)) {
*pointer = ::std::tr1::get<k>(args);
}
// Action SaveArgPointee<k>(pointer) saves the value pointed to
// by the k-th (0-based) argument of the mock function to *pointer.
ACTION_TEMPLATE(SaveArgPointee,
HAS_1_TEMPLATE_PARAMS(int, k),
AND_1_VALUE_PARAMS(pointer)) {
*pointer = *::std::tr1::get<k>(args);
}
// Action SetArgReferee<k>(value) assigns 'value' to the variable
// referenced by the k-th (0-based) argument of the mock function.
ACTION_TEMPLATE(SetArgReferee,
HAS_1_TEMPLATE_PARAMS(int, k),
AND_1_VALUE_PARAMS(value)) {
typedef typename ::std::tr1::tuple_element<k, args_type>::type argk_type;
// Ensures that argument #k is a reference. If you get a compiler
// error on the next line, you are using SetArgReferee<k>(value) in
// a mock function whose k-th (0-based) argument is not a reference.
GTEST_COMPILE_ASSERT_(internal::is_reference<argk_type>::value,
SetArgReferee_must_be_used_with_a_reference_argument);
::std::tr1::get<k>(args) = value;
}
// Action SetArrayArgument<k>(first, last) copies the elements in
// source range [first, last) to the array pointed to by the k-th
// (0-based) argument, which can be either a pointer or an
// iterator. The action does not take ownership of the elements in the
// source range.
ACTION_TEMPLATE(SetArrayArgument,
HAS_1_TEMPLATE_PARAMS(int, k),
AND_2_VALUE_PARAMS(first, last)) {
// Microsoft compiler deprecates ::std::copy, so we want to suppress warning
// 4996 (Function call with parameters that may be unsafe) there.
#ifdef _MSC_VER
# pragma warning(push) // Saves the current warning state.
# pragma warning(disable:4996) // Temporarily disables warning 4996.
#endif
::std::copy(first, last, ::std::tr1::get<k>(args));
#ifdef _MSC_VER
# pragma warning(pop) // Restores the warning state.
#endif
}
// Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock
// function.
ACTION_TEMPLATE(DeleteArg,
HAS_1_TEMPLATE_PARAMS(int, k),
AND_0_VALUE_PARAMS()) {
delete ::std::tr1::get<k>(args);
}
// This action returns the value pointed to by 'pointer'.
ACTION_P(ReturnPointee, pointer) { return *pointer; }
// Action Throw(exception) can be used in a mock function of any type
// to throw the given exception. Any copyable value can be thrown.
#if GTEST_HAS_EXCEPTIONS
// Suppresses the 'unreachable code' warning that VC generates in opt modes.
# ifdef _MSC_VER
# pragma warning(push) // Saves the current warning state.
# pragma warning(disable:4702) // Temporarily disables warning 4702.
# endif
ACTION_P(Throw, exception) { throw exception; }
# ifdef _MSC_VER
# pragma warning(pop) // Restores the warning state.
# endif
#endif // GTEST_HAS_EXCEPTIONS
#ifdef _MSC_VER
# pragma warning(pop)
#endif
} // namespace testing
#endif // GMOCK_INCLUDE_GMOCK_GMOCK_MORE_ACTIONS_H_
// Copyright 2013, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: marcus.boerger@google.com (Marcus Boerger)
// Google Mock - a framework for writing C++ mock classes.
//
// This file implements some matchers that depend on gmock-generated-matchers.h.
//
// Note that tests are implemented in gmock-matchers_test.cc rather than
// gmock-more-matchers-test.cc.
#ifndef GMOCK_GMOCK_MORE_MATCHERS_H_
#define GMOCK_GMOCK_MORE_MATCHERS_H_
namespace testing {
// Defines a matcher that matches an empty container. The container must
// support both size() and empty(), which all STL-like containers provide.
MATCHER(IsEmpty, negation ? "isn't empty" : "is empty") {
if (arg.empty()) {
return true;
}
*result_listener << "whose size is " << arg.size();
return false;
}
} // namespace testing
#endif // GMOCK_GMOCK_MORE_MATCHERS_H_
namespace testing {
// Declares Google Mock flags that we want a user to use programmatically.
GMOCK_DECLARE_bool_(catch_leaked_mocks);
GMOCK_DECLARE_string_(verbose);
// Initializes Google Mock. This must be called before running the
// tests. In particular, it parses the command line for the flags
// that Google Mock recognizes. Whenever a Google Mock flag is seen,
// it is removed from argv, and *argc is decremented.
//
// No value is returned. Instead, the Google Mock flag variables are
// updated.
//
// Since Google Test is needed for Google Mock to work, this function
// also initializes Google Test and parses its flags, if that hasn't
// been done.
GTEST_API_ void InitGoogleMock(int* argc, char** argv);
// This overloaded version can be used in Windows programs compiled in
// UNICODE mode.
GTEST_API_ void InitGoogleMock(int* argc, wchar_t** argv);
} // namespace testing
#endif // GMOCK_INCLUDE_GMOCK_GMOCK_H_