fmtlegacy/test/util-test.cc
Victor Zverovich a4c7d99f70 Add bit_cast
2018-05-06 11:52:51 -07:00

898 lines
26 KiB
C++

// Formatting library for C++ - utility tests
//
// Copyright (c) 2012 - present, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.
#include "test-assert.h"
#include <cfloat>
#include <climits>
#include <cstring>
#include <functional>
#include <limits>
#if FMT_USE_TYPE_TRAITS
# include <type_traits>
#endif
#include "fmt/locale.h"
#include "gmock/gmock.h"
#include "gtest-extra.h"
#include "mock-allocator.h"
#include "util.h"
// Check if format.h compiles with windows.h included.
#ifdef _WIN32
# include <windows.h>
#endif
#include "fmt/core.h"
#undef min
#undef max
using fmt::basic_format_arg;
using fmt::internal::basic_buffer;
using fmt::basic_memory_buffer;
using fmt::string_view;
using fmt::internal::fp;
using fmt::internal::value;
using testing::_;
using testing::Return;
using testing::StrictMock;
namespace {
struct Test {};
template <typename Context, typename T>
basic_format_arg<Context> make_arg(const T &value) {
return fmt::internal::make_arg<Context>(value);
}
} // namespace
namespace fmt {
template <typename Char>
struct formatter<Test, Char> {
template <typename ParseContext>
auto parse(ParseContext &ctx) -> decltype(ctx.begin()) {
return ctx.begin();
}
typedef std::back_insert_iterator<basic_buffer<Char>> iterator;
auto format(Test, basic_format_context<iterator, char> &ctx)
-> decltype(ctx.out()) {
const Char *test = "test";
return std::copy_n(test, std::strlen(test), ctx.out());
}
};
}
void CheckForwarding(
MockAllocator<int> &alloc, AllocatorRef< MockAllocator<int> > &ref) {
int mem;
// Check if value_type is properly defined.
AllocatorRef< MockAllocator<int> >::value_type *ptr = &mem;
// Check forwarding.
EXPECT_CALL(alloc, allocate(42)).WillOnce(Return(ptr));
ref.allocate(42);
EXPECT_CALL(alloc, deallocate(ptr, 42));
ref.deallocate(ptr, 42);
}
TEST(AllocatorTest, AllocatorRef) {
StrictMock< MockAllocator<int> > alloc;
typedef AllocatorRef< MockAllocator<int> > TestAllocatorRef;
TestAllocatorRef ref(&alloc);
// Check if AllocatorRef forwards to the underlying allocator.
CheckForwarding(alloc, ref);
TestAllocatorRef ref2(ref);
CheckForwarding(alloc, ref2);
TestAllocatorRef ref3;
EXPECT_EQ(0, ref3.get());
ref3 = ref;
CheckForwarding(alloc, ref3);
}
#if FMT_USE_TYPE_TRAITS
TEST(BufferTest, Noncopyable) {
EXPECT_FALSE(std::is_copy_constructible<basic_buffer<char> >::value);
EXPECT_FALSE(std::is_copy_assignable<basic_buffer<char> >::value);
}
TEST(BufferTest, Nonmoveable) {
EXPECT_FALSE(std::is_move_constructible<basic_buffer<char> >::value);
EXPECT_FALSE(std::is_move_assignable<basic_buffer<char> >::value);
}
#endif
// A test buffer with a dummy grow method.
template <typename T>
struct TestBuffer : basic_buffer<T> {
void grow(std::size_t capacity) { this->set(0, capacity); }
};
template <typename T>
struct MockBuffer : basic_buffer<T> {
MOCK_METHOD1(do_grow, void (std::size_t capacity));
void grow(std::size_t capacity) {
this->set(this->data(), capacity);
do_grow(capacity);
}
MockBuffer() {}
MockBuffer(T *data) { this->set(data, 0); }
MockBuffer(T *data, std::size_t capacity) { this->set(data, capacity); }
};
TEST(BufferTest, Ctor) {
{
MockBuffer<int> buffer;
EXPECT_EQ(0, &buffer[0]);
EXPECT_EQ(0u, buffer.size());
EXPECT_EQ(0u, buffer.capacity());
}
{
int dummy;
MockBuffer<int> buffer(&dummy);
EXPECT_EQ(&dummy, &buffer[0]);
EXPECT_EQ(0u, buffer.size());
EXPECT_EQ(0u, buffer.capacity());
}
{
int dummy;
std::size_t capacity = std::numeric_limits<std::size_t>::max();
MockBuffer<int> buffer(&dummy, capacity);
EXPECT_EQ(&dummy, &buffer[0]);
EXPECT_EQ(0u, buffer.size());
EXPECT_EQ(capacity, buffer.capacity());
}
}
struct DyingBuffer : TestBuffer<int> {
MOCK_METHOD0(die, void());
~DyingBuffer() { die(); }
};
TEST(BufferTest, VirtualDtor) {
typedef StrictMock<DyingBuffer> StictMockBuffer;
StictMockBuffer *mock_buffer = new StictMockBuffer();
EXPECT_CALL(*mock_buffer, die());
basic_buffer<int> *buffer = mock_buffer;
delete buffer;
}
TEST(BufferTest, Access) {
char data[10];
MockBuffer<char> buffer(data, sizeof(data));
buffer[0] = 11;
EXPECT_EQ(11, buffer[0]);
buffer[3] = 42;
EXPECT_EQ(42, *(&buffer[0] + 3));
const basic_buffer<char> &const_buffer = buffer;
EXPECT_EQ(42, const_buffer[3]);
}
TEST(BufferTest, Resize) {
char data[123];
MockBuffer<char> buffer(data, sizeof(data));
buffer[10] = 42;
EXPECT_EQ(42, buffer[10]);
buffer.resize(20);
EXPECT_EQ(20u, buffer.size());
EXPECT_EQ(123u, buffer.capacity());
EXPECT_EQ(42, buffer[10]);
buffer.resize(5);
EXPECT_EQ(5u, buffer.size());
EXPECT_EQ(123u, buffer.capacity());
EXPECT_EQ(42, buffer[10]);
// Check if resize calls grow.
EXPECT_CALL(buffer, do_grow(124));
buffer.resize(124);
EXPECT_CALL(buffer, do_grow(200));
buffer.resize(200);
}
TEST(BufferTest, Clear) {
TestBuffer<char> buffer;
buffer.resize(20);
buffer.resize(0);
EXPECT_EQ(0u, buffer.size());
EXPECT_EQ(20u, buffer.capacity());
}
TEST(BufferTest, Append) {
char data[15];
MockBuffer<char> buffer(data, 10);
const char *test = "test";
buffer.append(test, test + 5);
EXPECT_STREQ(test, &buffer[0]);
EXPECT_EQ(5u, buffer.size());
buffer.resize(10);
EXPECT_CALL(buffer, do_grow(12));
buffer.append(test, test + 2);
EXPECT_EQ('t', buffer[10]);
EXPECT_EQ('e', buffer[11]);
EXPECT_EQ(12u, buffer.size());
}
TEST(BufferTest, AppendAllocatesEnoughStorage) {
char data[19];
MockBuffer<char> buffer(data, 10);
const char *test = "abcdefgh";
buffer.resize(10);
EXPECT_CALL(buffer, do_grow(19));
buffer.append(test, test + 9);
}
TEST(MemoryBufferTest, Ctor) {
basic_memory_buffer<char, 123> buffer;
EXPECT_EQ(0u, buffer.size());
EXPECT_EQ(123u, buffer.capacity());
}
#if FMT_USE_RVALUE_REFERENCES
typedef AllocatorRef< std::allocator<char> > TestAllocator;
void check_move_buffer(const char *str,
basic_memory_buffer<char, 5, TestAllocator> &buffer) {
std::allocator<char> *alloc = buffer.get_allocator().get();
basic_memory_buffer<char, 5, TestAllocator> buffer2(std::move(buffer));
// Move shouldn't destroy the inline content of the first buffer.
EXPECT_EQ(str, std::string(&buffer[0], buffer.size()));
EXPECT_EQ(str, std::string(&buffer2[0], buffer2.size()));
EXPECT_EQ(5u, buffer2.capacity());
// Move should transfer allocator.
EXPECT_EQ(0, buffer.get_allocator().get());
EXPECT_EQ(alloc, buffer2.get_allocator().get());
}
TEST(MemoryBufferTest, MoveCtor) {
std::allocator<char> alloc;
basic_memory_buffer<char, 5, TestAllocator> buffer((TestAllocator(&alloc)));
const char test[] = "test";
buffer.append(test, test + 4);
check_move_buffer("test", buffer);
// Adding one more character fills the inline buffer, but doesn't cause
// dynamic allocation.
buffer.push_back('a');
check_move_buffer("testa", buffer);
const char *inline_buffer_ptr = &buffer[0];
// Adding one more character causes the content to move from the inline to
// a dynamically allocated buffer.
buffer.push_back('b');
basic_memory_buffer<char, 5, TestAllocator> buffer2(std::move(buffer));
// Move should rip the guts of the first buffer.
EXPECT_EQ(inline_buffer_ptr, &buffer[0]);
EXPECT_EQ("testab", std::string(&buffer2[0], buffer2.size()));
EXPECT_GT(buffer2.capacity(), 5u);
}
void check_move_assign_buffer(
const char *str, basic_memory_buffer<char, 5> &buffer) {
basic_memory_buffer<char, 5> buffer2;
buffer2 = std::move(buffer);
// Move shouldn't destroy the inline content of the first buffer.
EXPECT_EQ(str, std::string(&buffer[0], buffer.size()));
EXPECT_EQ(str, std::string(&buffer2[0], buffer2.size()));
EXPECT_EQ(5u, buffer2.capacity());
}
TEST(MemoryBufferTest, MoveAssignment) {
basic_memory_buffer<char, 5> buffer;
const char test[] = "test";
buffer.append(test, test + 4);
check_move_assign_buffer("test", buffer);
// Adding one more character fills the inline buffer, but doesn't cause
// dynamic allocation.
buffer.push_back('a');
check_move_assign_buffer("testa", buffer);
const char *inline_buffer_ptr = &buffer[0];
// Adding one more character causes the content to move from the inline to
// a dynamically allocated buffer.
buffer.push_back('b');
basic_memory_buffer<char, 5> buffer2;
buffer2 = std::move(buffer);
// Move should rip the guts of the first buffer.
EXPECT_EQ(inline_buffer_ptr, &buffer[0]);
EXPECT_EQ("testab", std::string(&buffer2[0], buffer2.size()));
EXPECT_GT(buffer2.capacity(), 5u);
}
#endif // FMT_USE_RVALUE_REFERENCES
TEST(MemoryBufferTest, Grow) {
typedef AllocatorRef< MockAllocator<int> > Allocator;
typedef basic_memory_buffer<int, 10, Allocator> Base;
MockAllocator<int> alloc;
struct TestMemoryBuffer : Base {
TestMemoryBuffer(Allocator alloc) : Base(alloc) {}
void grow(std::size_t size) { Base::grow(size); }
} buffer((Allocator(&alloc)));
buffer.resize(7);
using fmt::internal::to_unsigned;
for (int i = 0; i < 7; ++i)
buffer[to_unsigned(i)] = i * i;
EXPECT_EQ(10u, buffer.capacity());
int mem[20];
mem[7] = 0xdead;
EXPECT_CALL(alloc, allocate(20)).WillOnce(Return(mem));
buffer.grow(20);
EXPECT_EQ(20u, buffer.capacity());
// Check if size elements have been copied
for (int i = 0; i < 7; ++i)
EXPECT_EQ(i * i, buffer[to_unsigned(i)]);
// and no more than that.
EXPECT_EQ(0xdead, buffer[7]);
EXPECT_CALL(alloc, deallocate(mem, 20));
}
TEST(MemoryBufferTest, Allocator) {
typedef AllocatorRef< MockAllocator<char> > TestAllocator;
basic_memory_buffer<char, 10, TestAllocator> buffer;
EXPECT_EQ(0, buffer.get_allocator().get());
StrictMock< MockAllocator<char> > alloc;
char mem;
{
basic_memory_buffer<char, 10, TestAllocator> buffer2((TestAllocator(&alloc)));
EXPECT_EQ(&alloc, buffer2.get_allocator().get());
std::size_t size = 2 * fmt::inline_buffer_size;
EXPECT_CALL(alloc, allocate(size)).WillOnce(Return(&mem));
buffer2.reserve(size);
EXPECT_CALL(alloc, deallocate(&mem, size));
}
}
TEST(MemoryBufferTest, ExceptionInDeallocate) {
typedef AllocatorRef< MockAllocator<char> > TestAllocator;
StrictMock< MockAllocator<char> > alloc;
basic_memory_buffer<char, 10, TestAllocator> buffer((TestAllocator(&alloc)));
std::size_t size = 2 * fmt::inline_buffer_size;
std::vector<char> mem(size);
{
EXPECT_CALL(alloc, allocate(size)).WillOnce(Return(&mem[0]));
buffer.resize(size);
std::fill(&buffer[0], &buffer[0] + size, 'x');
}
std::vector<char> mem2(2 * size);
{
EXPECT_CALL(alloc, allocate(2 * size)).WillOnce(Return(&mem2[0]));
std::exception e;
EXPECT_CALL(alloc, deallocate(&mem[0], size)).WillOnce(testing::Throw(e));
EXPECT_THROW(buffer.reserve(2 * size), std::exception);
EXPECT_EQ(&mem2[0], &buffer[0]);
// Check that the data has been copied.
for (std::size_t i = 0; i < size; ++i)
EXPECT_EQ('x', buffer[i]);
}
EXPECT_CALL(alloc, deallocate(&mem2[0], 2 * size));
}
TEST(FixedBufferTest, Ctor) {
char array[10] = "garbage";
fmt::basic_fixed_buffer<char> buffer(array, sizeof(array));
EXPECT_EQ(0u, buffer.size());
EXPECT_EQ(10u, buffer.capacity());
EXPECT_EQ(array, buffer.data());
}
TEST(FixedBufferTest, CompileTimeSizeCtor) {
char array[10] = "garbage";
fmt::basic_fixed_buffer<char> buffer(array);
EXPECT_EQ(0u, buffer.size());
EXPECT_EQ(10u, buffer.capacity());
EXPECT_EQ(array, buffer.data());
}
TEST(FixedBufferTest, BufferOverflow) {
char array[10];
fmt::basic_fixed_buffer<char> buffer(array);
buffer.resize(10);
EXPECT_THROW_MSG(buffer.resize(11), std::runtime_error, "buffer overflow");
}
TEST(UtilTest, BitCast) {
struct S {
uint32_t u[2];
};
auto s = fmt::internal::bit_cast<S>(uint64_t(42));
EXPECT_EQ(fmt::internal::bit_cast<uint64_t>(s), 42);
s = fmt::internal::bit_cast<S>(uint64_t(~0ull));
EXPECT_EQ(fmt::internal::bit_cast<uint64_t>(s), ~0ull);
}
TEST(UtilTest, Increment) {
char s[10] = "123";
increment(s);
EXPECT_STREQ("124", s);
s[2] = '8';
increment(s);
EXPECT_STREQ("129", s);
increment(s);
EXPECT_STREQ("130", s);
s[1] = s[2] = '9';
increment(s);
EXPECT_STREQ("200", s);
}
TEST(UtilTest, FormatArgs) {
fmt::format_args args;
EXPECT_FALSE(args.get(1));
}
struct custom_context {
typedef char char_type;
template <typename T>
struct formatter_type {
struct type {
template <typename ParseContext>
auto parse(ParseContext &ctx) -> decltype(ctx.begin()) {
return ctx.begin();
}
const char *format(const T &, custom_context& ctx) {
ctx.called = true;
return 0;
}
};
};
bool called;
fmt::parse_context parse_context() { return fmt::parse_context(""); }
void advance_to(const char *) {}
};
TEST(UtilTest, MakeValueWithCustomFormatter) {
::Test t;
fmt::internal::value<custom_context> arg =
fmt::internal::make_value<custom_context>(t);
custom_context ctx = {false};
arg.custom.format(&t, ctx);
EXPECT_TRUE(ctx.called);
}
namespace fmt {
namespace internal {
template <typename Char>
bool operator==(custom_value<Char> lhs, custom_value<Char> rhs) {
return lhs.value == rhs.value;
}
}
}
// Use a unique result type to make sure that there are no undesirable
// conversions.
struct Result {};
template <typename T>
struct MockVisitor: fmt::internal::function<Result> {
MockVisitor() {
ON_CALL(*this, visit(_)).WillByDefault(Return(Result()));
}
MOCK_METHOD1_T(visit, Result (T value));
MOCK_METHOD0_T(unexpected, void ());
Result operator()(T value) { return visit(value); }
template <typename U>
Result operator()(U) {
unexpected();
return Result();
}
};
template <typename T>
struct VisitType { typedef T Type; };
#define VISIT_TYPE(Type_, VisitType_) \
template <> \
struct VisitType<Type_> { typedef VisitType_ Type; }
VISIT_TYPE(signed char, int);
VISIT_TYPE(unsigned char, unsigned);
VISIT_TYPE(short, int);
VISIT_TYPE(unsigned short, unsigned);
#if LONG_MAX == INT_MAX
VISIT_TYPE(long, int);
VISIT_TYPE(unsigned long, unsigned);
#else
VISIT_TYPE(long, long long);
VISIT_TYPE(unsigned long, unsigned long long);
#endif
VISIT_TYPE(float, double);
#define CHECK_ARG_(Char, expected, value) { \
testing::StrictMock<MockVisitor<decltype(expected)>> visitor; \
EXPECT_CALL(visitor, visit(expected)); \
typedef std::back_insert_iterator<basic_buffer<Char>> iterator; \
fmt::visit(visitor, \
make_arg<fmt::basic_format_context<iterator, Char>>(value)); \
}
#define CHECK_ARG(value, typename_) { \
typedef decltype(value) value_type; \
typename_ VisitType<value_type>::Type expected = value; \
CHECK_ARG_(char, expected, value) \
CHECK_ARG_(wchar_t, expected, value) \
}
template <typename T>
class NumericArgTest : public testing::Test {};
typedef ::testing::Types<
bool, signed char, unsigned char, signed, unsigned short,
int, unsigned, long, unsigned long, long long, unsigned long long,
float, double, long double> Types;
TYPED_TEST_CASE(NumericArgTest, Types);
template <typename T>
typename std::enable_if<std::is_integral<T>::value, T>::type test_value() {
return static_cast<T>(42);
}
template <typename T>
typename std::enable_if<std::is_floating_point<T>::value, T>::type
test_value() {
return static_cast<T>(4.2);
}
TYPED_TEST(NumericArgTest, MakeAndVisit) {
CHECK_ARG(test_value<TypeParam>(), typename);
CHECK_ARG(std::numeric_limits<TypeParam>::min(), typename);
CHECK_ARG(std::numeric_limits<TypeParam>::max(), typename);
}
TEST(UtilTest, CharArg) {
CHECK_ARG_(char, 'a', 'a');
CHECK_ARG_(wchar_t, L'a', 'a');
CHECK_ARG_(wchar_t, L'a', L'a');
}
TEST(UtilTest, StringArg) {
char str_data[] = "test";
char *str = str_data;
const char *cstr = str;
CHECK_ARG_(char, cstr, str);
string_view sref(str);
CHECK_ARG_(char, sref, std::string(str));
}
TEST(UtilTest, WStringArg) {
wchar_t str_data[] = L"test";
wchar_t *str = str_data;
const wchar_t *cstr = str;
fmt::wstring_view sref(str);
CHECK_ARG_(wchar_t, cstr, str);
CHECK_ARG_(wchar_t, cstr, cstr);
CHECK_ARG_(wchar_t, sref, std::wstring(str));
CHECK_ARG_(wchar_t, sref, fmt::wstring_view(str));
}
TEST(UtilTest, PointerArg) {
void *p = 0;
const void *cp = 0;
CHECK_ARG_(char, cp, p);
CHECK_ARG_(wchar_t, cp, p);
CHECK_ARG(cp, );
}
struct check_custom {
Result operator()(fmt::basic_format_arg<fmt::format_context>::handle h) const {
fmt::memory_buffer buffer;
fmt::internal::basic_buffer<char> &base = buffer;
fmt::format_context ctx(std::back_inserter(base), "", fmt::format_args());
h.format(ctx);
EXPECT_EQ("test", std::string(buffer.data(), buffer.size()));
return Result();
}
};
TEST(UtilTest, CustomArg) {
::Test test;
typedef MockVisitor<fmt::basic_format_arg<fmt::format_context>::handle>
visitor;
testing::StrictMock<visitor> v;
EXPECT_CALL(v, visit(_)).WillOnce(testing::Invoke(check_custom()));
fmt::visit(v, make_arg<fmt::format_context>(test));
}
TEST(ArgVisitorTest, VisitInvalidArg) {
typedef MockVisitor<fmt::monostate> Visitor;
testing::StrictMock<Visitor> visitor;
EXPECT_CALL(visitor, visit(_));
fmt::basic_format_arg<fmt::format_context> arg;
visit(visitor, arg);
}
// Tests fmt::internal::count_digits for integer type Int.
template <typename Int>
void test_count_digits() {
for (Int i = 0; i < 10; ++i)
EXPECT_EQ(1u, fmt::internal::count_digits(i));
for (Int i = 1, n = 1,
end = std::numeric_limits<Int>::max() / 10; n <= end; ++i) {
n *= 10;
EXPECT_EQ(i, fmt::internal::count_digits(n - 1));
EXPECT_EQ(i + 1, fmt::internal::count_digits(n));
}
}
TEST(UtilTest, StringRef) {
// Test that StringRef::size() returns string length, not buffer size.
char str[100] = "some string";
EXPECT_EQ(std::strlen(str), string_view(str).size());
EXPECT_LT(std::strlen(str), sizeof(str));
}
// Check StringRef's comparison operator.
template <template <typename> class Op>
void CheckOp() {
const char *inputs[] = {"foo", "fop", "fo"};
std::size_t num_inputs = sizeof(inputs) / sizeof(*inputs);
for (std::size_t i = 0; i < num_inputs; ++i) {
for (std::size_t j = 0; j < num_inputs; ++j) {
string_view lhs(inputs[i]), rhs(inputs[j]);
EXPECT_EQ(Op<int>()(lhs.compare(rhs), 0), Op<string_view>()(lhs, rhs));
}
}
}
TEST(UtilTest, StringRefCompare) {
EXPECT_EQ(0, string_view("foo").compare(string_view("foo")));
EXPECT_GT(string_view("fop").compare(string_view("foo")), 0);
EXPECT_LT(string_view("foo").compare(string_view("fop")), 0);
EXPECT_GT(string_view("foo").compare(string_view("fo")), 0);
EXPECT_LT(string_view("fo").compare(string_view("foo")), 0);
CheckOp<std::equal_to>();
CheckOp<std::not_equal_to>();
CheckOp<std::less>();
CheckOp<std::less_equal>();
CheckOp<std::greater>();
CheckOp<std::greater_equal>();
}
TEST(UtilTest, CountDigits) {
test_count_digits<uint32_t>();
test_count_digits<uint64_t>();
}
#ifdef _WIN32
TEST(UtilTest, UTF16ToUTF8) {
std::string s = "ёжик";
fmt::internal::utf16_to_utf8 u(L"\x0451\x0436\x0438\x043A");
EXPECT_EQ(s, u.str());
EXPECT_EQ(s.size(), u.size());
}
TEST(UtilTest, UTF16ToUTF8EmptyString) {
std::string s = "";
fmt::internal::utf16_to_utf8 u(L"");
EXPECT_EQ(s, u.str());
EXPECT_EQ(s.size(), u.size());
}
TEST(UtilTest, UTF8ToUTF16) {
std::string s = "лошадка";
fmt::internal::utf8_to_utf16 u(s.c_str());
EXPECT_EQ(L"\x043B\x043E\x0448\x0430\x0434\x043A\x0430", u.str());
EXPECT_EQ(7, u.size());
}
TEST(UtilTest, UTF8ToUTF16EmptyString) {
std::string s = "";
fmt::internal::utf8_to_utf16 u(s.c_str());
EXPECT_EQ(L"", u.str());
EXPECT_EQ(s.size(), u.size());
}
template <typename Converter, typename Char>
void check_utf_conversion_error(
const char *message,
fmt::basic_string_view<Char> str = fmt::basic_string_view<Char>(0, 1)) {
fmt::memory_buffer out;
fmt::internal::format_windows_error(out, ERROR_INVALID_PARAMETER, message);
fmt::system_error error(0, "");
try {
(Converter)(str);
} catch (const fmt::system_error &e) {
error = e;
}
EXPECT_EQ(ERROR_INVALID_PARAMETER, error.error_code());
EXPECT_EQ(fmt::to_string(out), error.what());
}
TEST(UtilTest, UTF16ToUTF8Error) {
check_utf_conversion_error<fmt::internal::utf16_to_utf8, wchar_t>(
"cannot convert string from UTF-16 to UTF-8");
}
TEST(UtilTest, UTF8ToUTF16Error) {
const char *message = "cannot convert string from UTF-8 to UTF-16";
check_utf_conversion_error<fmt::internal::utf8_to_utf16, char>(message);
check_utf_conversion_error<fmt::internal::utf8_to_utf16, char>(
message, fmt::string_view("foo", INT_MAX + 1u));
}
TEST(UtilTest, UTF16ToUTF8Convert) {
fmt::internal::utf16_to_utf8 u;
EXPECT_EQ(ERROR_INVALID_PARAMETER, u.convert(fmt::wstring_view(0, 1)));
EXPECT_EQ(ERROR_INVALID_PARAMETER,
u.convert(fmt::wstring_view(L"foo", INT_MAX + 1u)));
}
#endif // _WIN32
typedef void (*FormatErrorMessage)(
fmt::internal::buffer &out, int error_code, string_view message);
template <typename Error>
void check_throw_error(int error_code, FormatErrorMessage format) {
fmt::system_error error(0, "");
try {
throw Error(error_code, "test {}", "error");
} catch (const fmt::system_error &e) {
error = e;
}
fmt::memory_buffer message;
format(message, error_code, "test error");
EXPECT_EQ(to_string(message), error.what());
EXPECT_EQ(error_code, error.error_code());
}
TEST(UtilTest, FormatSystemError) {
fmt::memory_buffer message;
fmt::format_system_error(message, EDOM, "test");
EXPECT_EQ(fmt::format("test: {}", get_system_error(EDOM)),
to_string(message));
message = fmt::memory_buffer();
// Check if std::allocator throws on allocating max size_t / 2 chars.
size_t max_size = std::numeric_limits<size_t>::max() / 2;
bool throws_on_alloc = false;
try {
std::allocator<char> alloc;
alloc.deallocate(alloc.allocate(max_size), max_size);
} catch (std::bad_alloc) {
throws_on_alloc = true;
}
if (!throws_on_alloc) {
fmt::print("warning: std::allocator allocates {} chars", max_size);
return;
}
fmt::format_system_error(message, EDOM, fmt::string_view(0, max_size));
EXPECT_EQ(fmt::format("error {}", EDOM), to_string(message));
}
TEST(UtilTest, SystemError) {
fmt::system_error e(EDOM, "test");
EXPECT_EQ(fmt::format("test: {}", get_system_error(EDOM)), e.what());
EXPECT_EQ(EDOM, e.error_code());
check_throw_error<fmt::system_error>(EDOM, fmt::format_system_error);
}
TEST(UtilTest, ReportSystemError) {
fmt::memory_buffer out;
fmt::format_system_error(out, EDOM, "test error");
out.push_back('\n');
EXPECT_WRITE(stderr, fmt::report_system_error(EDOM, "test error"),
to_string(out));
}
#ifdef _WIN32
TEST(UtilTest, FormatWindowsError) {
LPWSTR message = 0;
FormatMessageW(FORMAT_MESSAGE_ALLOCATE_BUFFER |
FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, 0,
ERROR_FILE_EXISTS, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
reinterpret_cast<LPWSTR>(&message), 0, 0);
fmt::internal::utf16_to_utf8 utf8_message(message);
LocalFree(message);
fmt::memory_buffer actual_message;
fmt::internal::format_windows_error(
actual_message, ERROR_FILE_EXISTS, "test");
EXPECT_EQ(fmt::format("test: {}", utf8_message.str()),
fmt::to_string(actual_message));
actual_message.resize(0);
fmt::internal::format_windows_error(
actual_message, ERROR_FILE_EXISTS,
fmt::string_view(0, std::numeric_limits<size_t>::max()));
EXPECT_EQ(fmt::format("error {}", ERROR_FILE_EXISTS),
fmt::to_string(actual_message));
}
TEST(UtilTest, FormatLongWindowsError) {
LPWSTR message = 0;
// this error code is not available on all Windows platforms and
// Windows SDKs, so do not fail the test if the error string cannot
// be retrieved.
const int provisioning_not_allowed = 0x80284013L /*TBS_E_PROVISIONING_NOT_ALLOWED*/;
if (FormatMessageW(FORMAT_MESSAGE_ALLOCATE_BUFFER |
FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, 0,
provisioning_not_allowed, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
reinterpret_cast<LPWSTR>(&message), 0, 0) == 0) {
return;
}
fmt::internal::utf16_to_utf8 utf8_message(message);
LocalFree(message);
fmt::memory_buffer actual_message;
fmt::internal::format_windows_error(
actual_message, provisioning_not_allowed, "test");
EXPECT_EQ(fmt::format("test: {}", utf8_message.str()),
fmt::to_string(actual_message));
}
TEST(UtilTest, WindowsError) {
check_throw_error<fmt::windows_error>(
ERROR_FILE_EXISTS, fmt::internal::format_windows_error);
}
TEST(UtilTest, ReportWindowsError) {
fmt::memory_buffer out;
fmt::internal::format_windows_error(out, ERROR_FILE_EXISTS, "test error");
out.push_back('\n');
EXPECT_WRITE(stderr,
fmt::report_windows_error(ERROR_FILE_EXISTS, "test error"),
fmt::to_string(out));
}
#endif // _WIN32
enum TestEnum2 {};
TEST(UtilTest, ConvertToInt) {
EXPECT_FALSE((fmt::internal::convert_to_int<char, char>::value));
EXPECT_FALSE((fmt::internal::convert_to_int<const char *, char>::value));
EXPECT_TRUE((fmt::internal::convert_to_int<TestEnum2, char>::value));
}
#if FMT_USE_ENUM_BASE
enum TestEnum : char {TestValue};
TEST(UtilTest, IsEnumConvertibleToInt) {
EXPECT_TRUE((fmt::internal::convert_to_int<TestEnum, char>::value));
}
#endif
TEST(UtilTest, ParseNonnegativeInt) {
if (std::numeric_limits<int>::max() != (1 << 31)) {
fmt::print("Skipping parse_nonnegative_int test\n");
return;
}
const char *s = "10000000000";
EXPECT_THROW_MSG(
parse_nonnegative_int(s, fmt::internal::error_handler()),
fmt::format_error, "number is too big");
s = "2147483649";
EXPECT_THROW_MSG(
parse_nonnegative_int(s, fmt::internal::error_handler()),
fmt::format_error, "number is too big");
}
TEST(UtilTest, FPSubtract) {
auto r = fp(123, 1) - fp(102, 1);
EXPECT_EQ(r.f, 21u);
EXPECT_EQ(r.e, 1);
}
TEST(UtilTest, FPMultiply) {
auto r = fp(123ULL << 32, 4) * fp(56ULL << 32, 7);
EXPECT_EQ(r.f, 123u * 56u);
EXPECT_EQ(r.e, 4 + 7 + 64);
r = fp(123ULL << 32, 4) * fp(567ULL << 31, 8);
EXPECT_EQ(r.f, (123 * 567 + 1u) / 2);
EXPECT_EQ(r.e, 4 + 8 + 64);
}