990 lines
35 KiB
C++
990 lines
35 KiB
C++
// Formatting library for C++
|
|
//
|
|
// Copyright (c) 2012 - 2016, Victor Zverovich
|
|
// All rights reserved.
|
|
//
|
|
// For the license information refer to format.h.
|
|
|
|
#ifndef FMT_FORMAT_INL_H_
|
|
#define FMT_FORMAT_INL_H_
|
|
|
|
#include "format.h"
|
|
|
|
#include <string.h>
|
|
|
|
#include <cctype>
|
|
#include <cerrno>
|
|
#include <climits>
|
|
#include <cmath>
|
|
#include <cstdarg>
|
|
#include <cstddef> // for std::ptrdiff_t
|
|
#include <cstring> // for std::memmove
|
|
#if !defined(FMT_STATIC_THOUSANDS_SEPARATOR)
|
|
# include <locale>
|
|
#endif
|
|
|
|
#if FMT_USE_WINDOWS_H
|
|
# if !defined(FMT_HEADER_ONLY) && !defined(WIN32_LEAN_AND_MEAN)
|
|
# define WIN32_LEAN_AND_MEAN
|
|
# endif
|
|
# if defined(NOMINMAX) || defined(FMT_WIN_MINMAX)
|
|
# include <windows.h>
|
|
# else
|
|
# define NOMINMAX
|
|
# include <windows.h>
|
|
# undef NOMINMAX
|
|
# endif
|
|
#endif
|
|
|
|
#if FMT_EXCEPTIONS
|
|
# define FMT_TRY try
|
|
# define FMT_CATCH(x) catch (x)
|
|
#else
|
|
# define FMT_TRY if (true)
|
|
# define FMT_CATCH(x) if (false)
|
|
#endif
|
|
|
|
#ifdef _MSC_VER
|
|
# pragma warning(push)
|
|
# pragma warning(disable : 4127) // conditional expression is constant
|
|
# pragma warning(disable : 4702) // unreachable code
|
|
// Disable deprecation warning for strerror. The latter is not called but
|
|
// MSVC fails to detect it.
|
|
# pragma warning(disable : 4996)
|
|
#endif
|
|
|
|
// Dummy implementations of strerror_r and strerror_s called if corresponding
|
|
// system functions are not available.
|
|
inline fmt::internal::null<> strerror_r(int, char*, ...) {
|
|
return fmt::internal::null<>();
|
|
}
|
|
inline fmt::internal::null<> strerror_s(char*, std::size_t, ...) {
|
|
return fmt::internal::null<>();
|
|
}
|
|
|
|
FMT_BEGIN_NAMESPACE
|
|
|
|
namespace {
|
|
|
|
#ifndef _MSC_VER
|
|
# define FMT_SNPRINTF snprintf
|
|
#else // _MSC_VER
|
|
inline int fmt_snprintf(char* buffer, size_t size, const char* format, ...) {
|
|
va_list args;
|
|
va_start(args, format);
|
|
int result = vsnprintf_s(buffer, size, _TRUNCATE, format, args);
|
|
va_end(args);
|
|
return result;
|
|
}
|
|
# define FMT_SNPRINTF fmt_snprintf
|
|
#endif // _MSC_VER
|
|
|
|
#if defined(_WIN32) && defined(__MINGW32__) && !defined(__NO_ISOCEXT)
|
|
# define FMT_SWPRINTF snwprintf
|
|
#else
|
|
# define FMT_SWPRINTF swprintf
|
|
#endif // defined(_WIN32) && defined(__MINGW32__) && !defined(__NO_ISOCEXT)
|
|
|
|
typedef void (*FormatFunc)(internal::buffer<char>&, int, string_view);
|
|
|
|
// Portable thread-safe version of strerror.
|
|
// Sets buffer to point to a string describing the error code.
|
|
// This can be either a pointer to a string stored in buffer,
|
|
// or a pointer to some static immutable string.
|
|
// Returns one of the following values:
|
|
// 0 - success
|
|
// ERANGE - buffer is not large enough to store the error message
|
|
// other - failure
|
|
// Buffer should be at least of size 1.
|
|
int safe_strerror(int error_code, char*& buffer,
|
|
std::size_t buffer_size) FMT_NOEXCEPT {
|
|
FMT_ASSERT(buffer != FMT_NULL && buffer_size != 0, "invalid buffer");
|
|
|
|
class dispatcher {
|
|
private:
|
|
int error_code_;
|
|
char*& buffer_;
|
|
std::size_t buffer_size_;
|
|
|
|
// A noop assignment operator to avoid bogus warnings.
|
|
void operator=(const dispatcher&) {}
|
|
|
|
// Handle the result of XSI-compliant version of strerror_r.
|
|
int handle(int result) {
|
|
// glibc versions before 2.13 return result in errno.
|
|
return result == -1 ? errno : result;
|
|
}
|
|
|
|
// Handle the result of GNU-specific version of strerror_r.
|
|
int handle(char* message) {
|
|
// If the buffer is full then the message is probably truncated.
|
|
if (message == buffer_ && strlen(buffer_) == buffer_size_ - 1)
|
|
return ERANGE;
|
|
buffer_ = message;
|
|
return 0;
|
|
}
|
|
|
|
// Handle the case when strerror_r is not available.
|
|
int handle(internal::null<>) {
|
|
return fallback(strerror_s(buffer_, buffer_size_, error_code_));
|
|
}
|
|
|
|
// Fallback to strerror_s when strerror_r is not available.
|
|
int fallback(int result) {
|
|
// If the buffer is full then the message is probably truncated.
|
|
return result == 0 && strlen(buffer_) == buffer_size_ - 1 ? ERANGE
|
|
: result;
|
|
}
|
|
|
|
#if !FMT_MSC_VER
|
|
// Fallback to strerror if strerror_r and strerror_s are not available.
|
|
int fallback(internal::null<>) {
|
|
errno = 0;
|
|
buffer_ = strerror(error_code_);
|
|
return errno;
|
|
}
|
|
#endif
|
|
|
|
public:
|
|
dispatcher(int err_code, char*& buf, std::size_t buf_size)
|
|
: error_code_(err_code), buffer_(buf), buffer_size_(buf_size) {}
|
|
|
|
int run() { return handle(strerror_r(error_code_, buffer_, buffer_size_)); }
|
|
};
|
|
return dispatcher(error_code, buffer, buffer_size).run();
|
|
}
|
|
|
|
void format_error_code(internal::buffer<char>& out, int error_code,
|
|
string_view message) FMT_NOEXCEPT {
|
|
// Report error code making sure that the output fits into
|
|
// inline_buffer_size to avoid dynamic memory allocation and potential
|
|
// bad_alloc.
|
|
out.resize(0);
|
|
static const char SEP[] = ": ";
|
|
static const char ERROR_STR[] = "error ";
|
|
// Subtract 2 to account for terminating null characters in SEP and ERROR_STR.
|
|
std::size_t error_code_size = sizeof(SEP) + sizeof(ERROR_STR) - 2;
|
|
typedef internal::int_traits<int>::main_type main_type;
|
|
main_type abs_value = static_cast<main_type>(error_code);
|
|
if (internal::is_negative(error_code)) {
|
|
abs_value = 0 - abs_value;
|
|
++error_code_size;
|
|
}
|
|
error_code_size += internal::to_unsigned(internal::count_digits(abs_value));
|
|
writer w(out);
|
|
if (message.size() <= inline_buffer_size - error_code_size) {
|
|
w.write(message);
|
|
w.write(SEP);
|
|
}
|
|
w.write(ERROR_STR);
|
|
w.write(error_code);
|
|
assert(out.size() <= inline_buffer_size);
|
|
}
|
|
|
|
// try an fwrite, FMT_THROW on failure
|
|
void fwrite_fully(const void* ptr, size_t size, size_t count, FILE* stream) {
|
|
size_t written = std::fwrite(ptr, size, count, stream);
|
|
if (written < count) {
|
|
FMT_THROW(system_error(errno, "cannot write to file"));
|
|
}
|
|
}
|
|
|
|
void report_error(FormatFunc func, int error_code,
|
|
string_view message) FMT_NOEXCEPT {
|
|
memory_buffer full_message;
|
|
func(full_message, error_code, message);
|
|
// Use Writer::data instead of Writer::c_str to avoid potential memory
|
|
// allocation.
|
|
fwrite_fully(full_message.data(), 1, full_message.size(), stderr);
|
|
std::fputc('\n', stderr);
|
|
}
|
|
} // namespace
|
|
|
|
FMT_FUNC size_t internal::count_code_points(basic_string_view<char8_t> s) {
|
|
const char8_t* data = s.data();
|
|
size_t num_code_points = 0;
|
|
for (size_t i = 0, size = s.size(); i != size; ++i) {
|
|
if ((data[i] & 0xc0) != 0x80) ++num_code_points;
|
|
}
|
|
return num_code_points;
|
|
}
|
|
|
|
#if !defined(FMT_STATIC_THOUSANDS_SEPARATOR)
|
|
namespace internal {
|
|
|
|
template <typename Locale>
|
|
locale_ref::locale_ref(const Locale& loc) : locale_(&loc) {
|
|
static_assert(std::is_same<Locale, std::locale>::value, "");
|
|
}
|
|
|
|
template <typename Locale> Locale locale_ref::get() const {
|
|
static_assert(std::is_same<Locale, std::locale>::value, "");
|
|
return locale_ ? *static_cast<const std::locale*>(locale_) : std::locale();
|
|
}
|
|
|
|
template <typename Char> FMT_FUNC Char thousands_sep_impl(locale_ref loc) {
|
|
return std::use_facet<std::numpunct<Char> >(loc.get<std::locale>())
|
|
.thousands_sep();
|
|
}
|
|
} // namespace internal
|
|
#else
|
|
template <typename Char>
|
|
FMT_FUNC Char internal::thousands_sep_impl(locale_ref) {
|
|
return FMT_STATIC_THOUSANDS_SEPARATOR;
|
|
}
|
|
#endif
|
|
|
|
FMT_FUNC void system_error::init(int err_code, string_view format_str,
|
|
format_args args) {
|
|
error_code_ = err_code;
|
|
memory_buffer buffer;
|
|
format_system_error(buffer, err_code, vformat(format_str, args));
|
|
std::runtime_error& base = *this;
|
|
base = std::runtime_error(to_string(buffer));
|
|
}
|
|
|
|
namespace internal {
|
|
|
|
template <> FMT_FUNC int count_digits<4>(internal::uintptr_t n) {
|
|
// Assume little endian; pointer formatting is implementation-defined anyway.
|
|
int i = static_cast<int>(sizeof(void*)) - 1;
|
|
while (i > 0 && n.value[i] == 0) --i;
|
|
auto char_digits = std::numeric_limits<unsigned char>::digits / 4;
|
|
return i >= 0 ? i * char_digits + count_digits<4, unsigned>(n.value[i]) : 1;
|
|
}
|
|
|
|
template <typename T>
|
|
int format_float(char* buf, std::size_t size, const char* format, int precision,
|
|
T value) {
|
|
return precision < 0 ? FMT_SNPRINTF(buf, size, format, value)
|
|
: FMT_SNPRINTF(buf, size, format, precision, value);
|
|
}
|
|
|
|
template <typename T>
|
|
const char basic_data<T>::DIGITS[] =
|
|
"0001020304050607080910111213141516171819"
|
|
"2021222324252627282930313233343536373839"
|
|
"4041424344454647484950515253545556575859"
|
|
"6061626364656667686970717273747576777879"
|
|
"8081828384858687888990919293949596979899";
|
|
|
|
template <typename T>
|
|
const char basic_data<T>::HEX_DIGITS[] = "0123456789abcdef";
|
|
|
|
#define FMT_POWERS_OF_10(factor) \
|
|
factor * 10, factor * 100, factor * 1000, factor * 10000, factor * 100000, \
|
|
factor * 1000000, factor * 10000000, factor * 100000000, \
|
|
factor * 1000000000
|
|
|
|
template <typename T>
|
|
const uint64_t basic_data<T>::POWERS_OF_10_64[] = {
|
|
1, FMT_POWERS_OF_10(1), FMT_POWERS_OF_10(1000000000ull),
|
|
10000000000000000000ull};
|
|
|
|
template <typename T>
|
|
const uint32_t basic_data<T>::ZERO_OR_POWERS_OF_10_32[] = {0,
|
|
FMT_POWERS_OF_10(1)};
|
|
|
|
template <typename T>
|
|
const uint64_t basic_data<T>::ZERO_OR_POWERS_OF_10_64[] = {
|
|
0, FMT_POWERS_OF_10(1), FMT_POWERS_OF_10(1000000000ull),
|
|
10000000000000000000ull};
|
|
|
|
// Normalized 64-bit significands of pow(10, k), for k = -348, -340, ..., 340.
|
|
// These are generated by support/compute-powers.py.
|
|
template <typename T>
|
|
const uint64_t basic_data<T>::POW10_SIGNIFICANDS[] = {
|
|
0xfa8fd5a0081c0288, 0xbaaee17fa23ebf76, 0x8b16fb203055ac76,
|
|
0xcf42894a5dce35ea, 0x9a6bb0aa55653b2d, 0xe61acf033d1a45df,
|
|
0xab70fe17c79ac6ca, 0xff77b1fcbebcdc4f, 0xbe5691ef416bd60c,
|
|
0x8dd01fad907ffc3c, 0xd3515c2831559a83, 0x9d71ac8fada6c9b5,
|
|
0xea9c227723ee8bcb, 0xaecc49914078536d, 0x823c12795db6ce57,
|
|
0xc21094364dfb5637, 0x9096ea6f3848984f, 0xd77485cb25823ac7,
|
|
0xa086cfcd97bf97f4, 0xef340a98172aace5, 0xb23867fb2a35b28e,
|
|
0x84c8d4dfd2c63f3b, 0xc5dd44271ad3cdba, 0x936b9fcebb25c996,
|
|
0xdbac6c247d62a584, 0xa3ab66580d5fdaf6, 0xf3e2f893dec3f126,
|
|
0xb5b5ada8aaff80b8, 0x87625f056c7c4a8b, 0xc9bcff6034c13053,
|
|
0x964e858c91ba2655, 0xdff9772470297ebd, 0xa6dfbd9fb8e5b88f,
|
|
0xf8a95fcf88747d94, 0xb94470938fa89bcf, 0x8a08f0f8bf0f156b,
|
|
0xcdb02555653131b6, 0x993fe2c6d07b7fac, 0xe45c10c42a2b3b06,
|
|
0xaa242499697392d3, 0xfd87b5f28300ca0e, 0xbce5086492111aeb,
|
|
0x8cbccc096f5088cc, 0xd1b71758e219652c, 0x9c40000000000000,
|
|
0xe8d4a51000000000, 0xad78ebc5ac620000, 0x813f3978f8940984,
|
|
0xc097ce7bc90715b3, 0x8f7e32ce7bea5c70, 0xd5d238a4abe98068,
|
|
0x9f4f2726179a2245, 0xed63a231d4c4fb27, 0xb0de65388cc8ada8,
|
|
0x83c7088e1aab65db, 0xc45d1df942711d9a, 0x924d692ca61be758,
|
|
0xda01ee641a708dea, 0xa26da3999aef774a, 0xf209787bb47d6b85,
|
|
0xb454e4a179dd1877, 0x865b86925b9bc5c2, 0xc83553c5c8965d3d,
|
|
0x952ab45cfa97a0b3, 0xde469fbd99a05fe3, 0xa59bc234db398c25,
|
|
0xf6c69a72a3989f5c, 0xb7dcbf5354e9bece, 0x88fcf317f22241e2,
|
|
0xcc20ce9bd35c78a5, 0x98165af37b2153df, 0xe2a0b5dc971f303a,
|
|
0xa8d9d1535ce3b396, 0xfb9b7cd9a4a7443c, 0xbb764c4ca7a44410,
|
|
0x8bab8eefb6409c1a, 0xd01fef10a657842c, 0x9b10a4e5e9913129,
|
|
0xe7109bfba19c0c9d, 0xac2820d9623bf429, 0x80444b5e7aa7cf85,
|
|
0xbf21e44003acdd2d, 0x8e679c2f5e44ff8f, 0xd433179d9c8cb841,
|
|
0x9e19db92b4e31ba9, 0xeb96bf6ebadf77d9, 0xaf87023b9bf0ee6b,
|
|
};
|
|
|
|
// Binary exponents of pow(10, k), for k = -348, -340, ..., 340, corresponding
|
|
// to significands above.
|
|
template <typename T>
|
|
const int16_t basic_data<T>::POW10_EXPONENTS[] = {
|
|
-1220, -1193, -1166, -1140, -1113, -1087, -1060, -1034, -1007, -980, -954,
|
|
-927, -901, -874, -847, -821, -794, -768, -741, -715, -688, -661,
|
|
-635, -608, -582, -555, -529, -502, -475, -449, -422, -396, -369,
|
|
-343, -316, -289, -263, -236, -210, -183, -157, -130, -103, -77,
|
|
-50, -24, 3, 30, 56, 83, 109, 136, 162, 189, 216,
|
|
242, 269, 295, 322, 348, 375, 402, 428, 455, 481, 508,
|
|
534, 561, 588, 614, 641, 667, 694, 720, 747, 774, 800,
|
|
827, 853, 880, 907, 933, 960, 986, 1013, 1039, 1066};
|
|
|
|
template <typename T>
|
|
const char basic_data<T>::FOREGROUND_COLOR[] = "\x1b[38;2;";
|
|
template <typename T>
|
|
const char basic_data<T>::BACKGROUND_COLOR[] = "\x1b[48;2;";
|
|
template <typename T> const char basic_data<T>::RESET_COLOR[] = "\x1b[0m";
|
|
template <typename T> const wchar_t basic_data<T>::WRESET_COLOR[] = L"\x1b[0m";
|
|
|
|
template <typename T> struct bits {
|
|
static FMT_CONSTEXPR_DECL const int value =
|
|
static_cast<int>(sizeof(T) * std::numeric_limits<unsigned char>::digits);
|
|
};
|
|
|
|
// A handmade floating-point number f * pow(2, e).
|
|
class fp {
|
|
private:
|
|
typedef uint64_t significand_type;
|
|
|
|
// All sizes are in bits.
|
|
// Subtract 1 to account for an implicit most significant bit in the
|
|
// normalized form.
|
|
static FMT_CONSTEXPR_DECL const int double_significand_size =
|
|
std::numeric_limits<double>::digits - 1;
|
|
static FMT_CONSTEXPR_DECL const uint64_t implicit_bit =
|
|
1ull << double_significand_size;
|
|
|
|
public:
|
|
significand_type f;
|
|
int e;
|
|
|
|
static FMT_CONSTEXPR_DECL const int significand_size =
|
|
bits<significand_type>::value;
|
|
|
|
fp() : f(0), e(0) {}
|
|
fp(uint64_t f_val, int e_val) : f(f_val), e(e_val) {}
|
|
|
|
// Constructs fp from an IEEE754 double. It is a template to prevent compile
|
|
// errors on platforms where double is not IEEE754.
|
|
template <typename Double> explicit fp(Double d) {
|
|
// Assume double is in the format [sign][exponent][significand].
|
|
typedef std::numeric_limits<Double> limits;
|
|
const int exponent_size =
|
|
bits<Double>::value - double_significand_size - 1; // -1 for sign
|
|
const uint64_t significand_mask = implicit_bit - 1;
|
|
const uint64_t exponent_mask = (~0ull >> 1) & ~significand_mask;
|
|
const int exponent_bias = (1 << exponent_size) - limits::max_exponent - 1;
|
|
auto u = bit_cast<uint64_t>(d);
|
|
auto biased_e = (u & exponent_mask) >> double_significand_size;
|
|
f = u & significand_mask;
|
|
if (biased_e != 0)
|
|
f += implicit_bit;
|
|
else
|
|
biased_e = 1; // Subnormals use biased exponent 1 (min exponent).
|
|
e = static_cast<int>(biased_e - exponent_bias - double_significand_size);
|
|
}
|
|
|
|
// Normalizes the value converted from double and multiplied by (1 << SHIFT).
|
|
template <int SHIFT = 0> void normalize() {
|
|
// Handle subnormals.
|
|
auto shifted_implicit_bit = implicit_bit << SHIFT;
|
|
while ((f & shifted_implicit_bit) == 0) {
|
|
f <<= 1;
|
|
--e;
|
|
}
|
|
// Subtract 1 to account for hidden bit.
|
|
auto offset = significand_size - double_significand_size - SHIFT - 1;
|
|
f <<= offset;
|
|
e -= offset;
|
|
}
|
|
|
|
// Compute lower and upper boundaries (m^- and m^+ in the Grisu paper), where
|
|
// a boundary is a value half way between the number and its predecessor
|
|
// (lower) or successor (upper). The upper boundary is normalized and lower
|
|
// has the same exponent but may be not normalized.
|
|
void compute_boundaries(fp& lower, fp& upper) const {
|
|
lower =
|
|
f == implicit_bit ? fp((f << 2) - 1, e - 2) : fp((f << 1) - 1, e - 1);
|
|
upper = fp((f << 1) + 1, e - 1);
|
|
upper.normalize<1>(); // 1 is to account for the exponent shift above.
|
|
lower.f <<= lower.e - upper.e;
|
|
lower.e = upper.e;
|
|
}
|
|
};
|
|
|
|
// Returns an fp number representing x - y. Result may not be normalized.
|
|
inline fp operator-(fp x, fp y) {
|
|
FMT_ASSERT(x.f >= y.f && x.e == y.e, "invalid operands");
|
|
return fp(x.f - y.f, x.e);
|
|
}
|
|
|
|
// Computes an fp number r with r.f = x.f * y.f / pow(2, 64) rounded to nearest
|
|
// with half-up tie breaking, r.e = x.e + y.e + 64. Result may not be
|
|
// normalized.
|
|
FMT_FUNC fp operator*(fp x, fp y) {
|
|
int exp = x.e + y.e + 64;
|
|
#if FMT_USE_INT128
|
|
auto product = static_cast<__uint128_t>(x.f) * y.f;
|
|
auto f = static_cast<uint64_t>(product >> 64);
|
|
if ((static_cast<uint64_t>(product) & (1ULL << 63)) != 0) ++f;
|
|
return fp(f, exp);
|
|
#else
|
|
// Multiply 32-bit parts of significands.
|
|
uint64_t mask = (1ULL << 32) - 1;
|
|
uint64_t a = x.f >> 32, b = x.f & mask;
|
|
uint64_t c = y.f >> 32, d = y.f & mask;
|
|
uint64_t ac = a * c, bc = b * c, ad = a * d, bd = b * d;
|
|
// Compute mid 64-bit of result and round.
|
|
uint64_t mid = (bd >> 32) + (ad & mask) + (bc & mask) + (1U << 31);
|
|
return fp(ac + (ad >> 32) + (bc >> 32) + (mid >> 32), exp);
|
|
#endif
|
|
}
|
|
|
|
// Returns cached power (of 10) c_k = c_k.f * pow(2, c_k.e) such that its
|
|
// (binary) exponent satisfies min_exponent <= c_k.e <= min_exponent + 28.
|
|
FMT_FUNC fp get_cached_power(int min_exponent, int& pow10_exponent) {
|
|
const double one_over_log2_10 = 0.30102999566398114; // 1 / log2(10)
|
|
int index = static_cast<int>(
|
|
std::ceil((min_exponent + fp::significand_size - 1) * one_over_log2_10));
|
|
// Decimal exponent of the first (smallest) cached power of 10.
|
|
const int first_dec_exp = -348;
|
|
// Difference between 2 consecutive decimal exponents in cached powers of 10.
|
|
const int dec_exp_step = 8;
|
|
index = (index - first_dec_exp - 1) / dec_exp_step + 1;
|
|
pow10_exponent = first_dec_exp + index * dec_exp_step;
|
|
return fp(data::POW10_SIGNIFICANDS[index], data::POW10_EXPONENTS[index]);
|
|
}
|
|
|
|
enum round_direction { unknown, up, down };
|
|
|
|
// Given the divisor (normally a power of 10), the remainder = v % divisor for
|
|
// some number v and the error, returns whether v should be rounded up, down, or
|
|
// whether the rounding direction can't be determined due to error.
|
|
// error should be less than divisor / 2.
|
|
inline round_direction get_round_direction(uint64_t divisor, uint64_t remainder,
|
|
uint64_t error) {
|
|
FMT_ASSERT(remainder < divisor, ""); // divisor - remainder won't overflow.
|
|
FMT_ASSERT(error < divisor, ""); // divisor - error won't overflow.
|
|
FMT_ASSERT(error < divisor - error, ""); // error * 2 won't overflow.
|
|
// Round down if (remainder + error) * 2 <= divisor.
|
|
if (remainder <= divisor - remainder && error * 2 <= divisor - remainder * 2)
|
|
return down;
|
|
// Round up if (remainder - error) * 2 >= divisor.
|
|
if (remainder >= error &&
|
|
remainder - error >= divisor - (remainder - error)) {
|
|
return up;
|
|
}
|
|
return unknown;
|
|
}
|
|
|
|
namespace digits {
|
|
enum result {
|
|
more, // Generate more digits.
|
|
done, // Done generating digits.
|
|
error // Digit generation cancelled due to an error.
|
|
};
|
|
}
|
|
|
|
// Generates output using the Grisu digit-gen algorithm.
|
|
// error: the size of the region (lower, upper) outside of which numbers
|
|
// definitely do not round to value (Delta in Grisu3).
|
|
template <typename Handler>
|
|
digits::result grisu_gen_digits(fp value, uint64_t error, int& exp,
|
|
Handler& handler) {
|
|
fp one(1ull << -value.e, value.e);
|
|
// The integral part of scaled value (p1 in Grisu) = value / one. It cannot be
|
|
// zero because it contains a product of two 64-bit numbers with MSB set (due
|
|
// to normalization) - 1, shifted right by at most 60 bits.
|
|
uint32_t integral = static_cast<uint32_t>(value.f >> -one.e);
|
|
FMT_ASSERT(integral != 0, "");
|
|
FMT_ASSERT(integral == value.f >> -one.e, "");
|
|
// The fractional part of scaled value (p2 in Grisu) c = value % one.
|
|
uint64_t fractional = value.f & (one.f - 1);
|
|
exp = count_digits(integral); // kappa in Grisu.
|
|
// Divide by 10 to prevent overflow.
|
|
auto result = handler.on_start(data::POWERS_OF_10_64[exp - 1] << -one.e,
|
|
value.f / 10, error * 10, exp);
|
|
if (result != digits::more) return result;
|
|
// Generate digits for the integral part. This can produce up to 10 digits.
|
|
do {
|
|
uint32_t digit = 0;
|
|
// This optimization by miloyip reduces the number of integer divisions by
|
|
// one per iteration.
|
|
switch (exp) {
|
|
case 10:
|
|
digit = integral / 1000000000;
|
|
integral %= 1000000000;
|
|
break;
|
|
case 9:
|
|
digit = integral / 100000000;
|
|
integral %= 100000000;
|
|
break;
|
|
case 8:
|
|
digit = integral / 10000000;
|
|
integral %= 10000000;
|
|
break;
|
|
case 7:
|
|
digit = integral / 1000000;
|
|
integral %= 1000000;
|
|
break;
|
|
case 6:
|
|
digit = integral / 100000;
|
|
integral %= 100000;
|
|
break;
|
|
case 5:
|
|
digit = integral / 10000;
|
|
integral %= 10000;
|
|
break;
|
|
case 4:
|
|
digit = integral / 1000;
|
|
integral %= 1000;
|
|
break;
|
|
case 3:
|
|
digit = integral / 100;
|
|
integral %= 100;
|
|
break;
|
|
case 2:
|
|
digit = integral / 10;
|
|
integral %= 10;
|
|
break;
|
|
case 1:
|
|
digit = integral;
|
|
integral = 0;
|
|
break;
|
|
default:
|
|
FMT_ASSERT(false, "invalid number of digits");
|
|
}
|
|
--exp;
|
|
uint64_t remainder =
|
|
(static_cast<uint64_t>(integral) << -one.e) + fractional;
|
|
result = handler.on_digit(static_cast<char>('0' + digit),
|
|
data::POWERS_OF_10_64[exp] << -one.e, remainder,
|
|
error, exp, true);
|
|
if (result != digits::more) return result;
|
|
} while (exp > 0);
|
|
// Generate digits for the fractional part.
|
|
for (;;) {
|
|
fractional *= 10;
|
|
error *= 10;
|
|
char digit =
|
|
static_cast<char>('0' + static_cast<char>(fractional >> -one.e));
|
|
fractional &= one.f - 1;
|
|
--exp;
|
|
result = handler.on_digit(digit, one.f, fractional, error, exp, false);
|
|
if (result != digits::more) return result;
|
|
}
|
|
}
|
|
|
|
// The fixed precision digit handler.
|
|
struct fixed_handler {
|
|
char* buf;
|
|
int size;
|
|
int precision;
|
|
int exp10;
|
|
bool fixed;
|
|
|
|
digits::result on_start(uint64_t divisor, uint64_t remainder, uint64_t error,
|
|
int& exp) {
|
|
// Non-fixed formats require at least one digit and no precision adjustment.
|
|
if (!fixed) return digits::more;
|
|
// Adjust fixed precision by exponent because it is relative to decimal
|
|
// point.
|
|
precision += exp + exp10;
|
|
// Check if precision is satisfied just by leading zeros, e.g.
|
|
// format("{:.2f}", 0.001) gives "0.00" without generating any digits.
|
|
if (precision > 0) return digits::more;
|
|
auto dir = get_round_direction(divisor, remainder, error);
|
|
if (dir == unknown) return digits::error;
|
|
buf[size++] = dir == up ? '1' : '0';
|
|
return digits::done;
|
|
}
|
|
|
|
digits::result on_digit(char digit, uint64_t divisor, uint64_t remainder,
|
|
uint64_t error, int, bool integral) {
|
|
FMT_ASSERT(remainder < divisor, "");
|
|
buf[size++] = digit;
|
|
if (size < precision) return digits::more;
|
|
if (!integral) {
|
|
// Check if error * 2 < divisor with overflow prevention.
|
|
// The check is not needed for the integral part because error = 1
|
|
// and divisor > (1 << 32) there.
|
|
if (error >= divisor || error >= divisor - error) return digits::error;
|
|
} else {
|
|
FMT_ASSERT(error == 1 && divisor > 2, "");
|
|
}
|
|
auto dir = get_round_direction(divisor, remainder, error);
|
|
if (dir != up) return dir == down ? digits::done : digits::error;
|
|
++buf[size - 1];
|
|
for (int i = size - 1; i > 0 && buf[i] > '9'; --i) {
|
|
buf[i] = '0';
|
|
++buf[i - 1];
|
|
}
|
|
if (buf[0] > '9') {
|
|
buf[0] = '1';
|
|
buf[size++] = '0';
|
|
}
|
|
return digits::done;
|
|
}
|
|
};
|
|
|
|
// The shortest representation digit handler.
|
|
template <int GRISU_VERSION> struct grisu_shortest_handler {
|
|
char* buf;
|
|
int size;
|
|
// Distance between scaled value and upper bound (wp_W in Grisu3).
|
|
uint64_t diff;
|
|
|
|
digits::result on_start(uint64_t, uint64_t, uint64_t, int&) {
|
|
return digits::more;
|
|
}
|
|
|
|
// Decrement the generated number approaching value from above.
|
|
void round(uint64_t d, uint64_t divisor, uint64_t& remainder,
|
|
uint64_t error) {
|
|
while (remainder < d && error - remainder >= divisor &&
|
|
(remainder + divisor < d ||
|
|
d - remainder >= remainder + divisor - d)) {
|
|
--buf[size - 1];
|
|
remainder += divisor;
|
|
}
|
|
}
|
|
|
|
// Implements Grisu's round_weed.
|
|
digits::result on_digit(char digit, uint64_t divisor, uint64_t remainder,
|
|
uint64_t error, int exp, bool integral) {
|
|
buf[size++] = digit;
|
|
if (remainder >= error) return digits::more;
|
|
if (GRISU_VERSION != 3) {
|
|
uint64_t d = integral ? diff : diff * data::POWERS_OF_10_64[-exp];
|
|
round(d, divisor, remainder, error);
|
|
return digits::done;
|
|
}
|
|
uint64_t unit = integral ? 1 : data::POWERS_OF_10_64[-exp];
|
|
uint64_t up = (diff - 1) * unit; // wp_Wup
|
|
round(up, divisor, remainder, error);
|
|
uint64_t down = (diff + 1) * unit; // wp_Wdown
|
|
if (remainder < down && error - remainder >= divisor &&
|
|
(remainder + divisor < down ||
|
|
down - remainder > remainder + divisor - down)) {
|
|
return digits::error;
|
|
}
|
|
return 2 * unit <= remainder && remainder <= error - 4 * unit
|
|
? digits::done
|
|
: digits::error;
|
|
}
|
|
};
|
|
|
|
template <typename Double, FMT_ENABLE_IF_T(sizeof(Double) == sizeof(uint64_t))>
|
|
FMT_API bool grisu_format(Double value, buffer<char>& buf, int precision,
|
|
unsigned options, int& exp) {
|
|
FMT_ASSERT(value >= 0, "value is negative");
|
|
bool fixed = (options & grisu_options::fixed) != 0;
|
|
if (value <= 0) { // <= instead of == to silence a warning.
|
|
if (precision < 0 || !fixed) {
|
|
exp = 0;
|
|
buf.push_back('0');
|
|
} else {
|
|
exp = -precision;
|
|
buf.resize(precision);
|
|
std::uninitialized_fill_n(buf.data(), precision, '0');
|
|
}
|
|
return true;
|
|
}
|
|
|
|
fp fp_value(value);
|
|
const int min_exp = -60; // alpha in Grisu.
|
|
int cached_exp10 = 0; // K in Grisu.
|
|
if (precision != -1) {
|
|
if (precision > 17) return false;
|
|
fp_value.normalize();
|
|
auto cached_pow = get_cached_power(
|
|
min_exp - (fp_value.e + fp::significand_size), cached_exp10);
|
|
fp_value = fp_value * cached_pow;
|
|
fixed_handler handler{buf.data(), 0, precision, -cached_exp10, fixed};
|
|
if (grisu_gen_digits(fp_value, 1, exp, handler) == digits::error)
|
|
return false;
|
|
buf.resize(to_unsigned(handler.size));
|
|
} else {
|
|
fp lower, upper; // w^- and w^+ in the Grisu paper.
|
|
fp_value.compute_boundaries(lower, upper);
|
|
// Find a cached power of 10 such that multiplying upper by it will bring
|
|
// the exponent in the range [min_exp, -32].
|
|
auto cached_pow = get_cached_power( // \tilde{c}_{-k} in Grisu.
|
|
min_exp - (upper.e + fp::significand_size), cached_exp10);
|
|
fp_value.normalize();
|
|
fp_value = fp_value * cached_pow;
|
|
lower = lower * cached_pow; // \tilde{M}^- in Grisu.
|
|
upper = upper * cached_pow; // \tilde{M}^+ in Grisu.
|
|
assert(min_exp <= upper.e && upper.e <= -32);
|
|
auto result = digits::result();
|
|
int size = 0;
|
|
if ((options & grisu_options::grisu3) != 0) {
|
|
--lower.f; // \tilde{M}^- - 1 ulp -> M^-_{\downarrow}.
|
|
++upper.f; // \tilde{M}^+ + 1 ulp -> M^+_{\uparrow}.
|
|
// Numbers outside of (lower, upper) definitely do not round to value.
|
|
grisu_shortest_handler<3> handler{buf.data(), 0, (upper - fp_value).f};
|
|
result = grisu_gen_digits(upper, upper.f - lower.f, exp, handler);
|
|
size = handler.size;
|
|
} else {
|
|
++lower.f; // \tilde{M}^- + 1 ulp -> M^-_{\uparrow}.
|
|
--upper.f; // \tilde{M}^+ - 1 ulp -> M^+_{\downarrow}.
|
|
grisu_shortest_handler<2> handler{buf.data(), 0, (upper - fp_value).f};
|
|
result = grisu_gen_digits(upper, upper.f - lower.f, exp, handler);
|
|
size = handler.size;
|
|
}
|
|
if (result == digits::error) return false;
|
|
buf.resize(to_unsigned(size));
|
|
}
|
|
exp -= cached_exp10;
|
|
return true;
|
|
}
|
|
|
|
template <typename Double>
|
|
void sprintf_format(Double value, internal::buffer<char>& buf,
|
|
core_format_specs spec) {
|
|
// Buffer capacity must be non-zero, otherwise MSVC's vsnprintf_s will fail.
|
|
FMT_ASSERT(buf.capacity() != 0, "empty buffer");
|
|
|
|
// Build format string.
|
|
enum { max_format_size = 10 }; // longest format: %#-*.*Lg
|
|
char format[max_format_size];
|
|
char* format_ptr = format;
|
|
*format_ptr++ = '%';
|
|
if (spec.has(HASH_FLAG) || !spec.type) *format_ptr++ = '#';
|
|
if (spec.precision >= 0) {
|
|
*format_ptr++ = '.';
|
|
*format_ptr++ = '*';
|
|
}
|
|
if (std::is_same<Double, long double>::value) *format_ptr++ = 'L';
|
|
|
|
char type = spec.type;
|
|
|
|
if (type == '%')
|
|
type = 'f';
|
|
else if (type == 0)
|
|
type = 'g';
|
|
#if FMT_MSC_VER
|
|
if (type == 'F') {
|
|
// MSVC's printf doesn't support 'F'.
|
|
type = 'f';
|
|
}
|
|
#endif
|
|
*format_ptr++ = type;
|
|
*format_ptr = '\0';
|
|
|
|
// Format using snprintf.
|
|
char* start = FMT_NULL;
|
|
for (;;) {
|
|
std::size_t buffer_size = buf.capacity();
|
|
start = &buf[0];
|
|
int result =
|
|
format_float(start, buffer_size, format, spec.precision, value);
|
|
if (result >= 0) {
|
|
unsigned n = internal::to_unsigned(result);
|
|
if (n < buf.capacity()) {
|
|
// Find the decimal point.
|
|
auto p = buf.data(), end = p + n;
|
|
if (*p == '+' || *p == '-') ++p;
|
|
if (spec.type == 'a' || spec.type == 'A') p += 2; // Skip "0x".
|
|
while (p < end && *p >= '0' && *p <= '9') ++p;
|
|
if (p < end && *p != 'e' && *p != 'E') {
|
|
if (*p != '.') *p = '.';
|
|
if (!spec.type) {
|
|
// Keep only one trailing zero after the decimal point.
|
|
++p;
|
|
if (*p == '0') ++p;
|
|
while (p != end && *p >= '1' && *p <= '9') ++p;
|
|
char* where = p;
|
|
while (p != end && *p == '0') ++p;
|
|
if (p == end || *p < '0' || *p > '9') {
|
|
if (p != end) std::memmove(where, p, to_unsigned(end - p));
|
|
n -= static_cast<unsigned>(p - where);
|
|
}
|
|
}
|
|
}
|
|
buf.resize(n);
|
|
break; // The buffer is large enough - continue with formatting.
|
|
}
|
|
buf.reserve(n + 1);
|
|
} else {
|
|
// If result is negative we ask to increase the capacity by at least 1,
|
|
// but as std::vector, the buffer grows exponentially.
|
|
buf.reserve(buf.capacity() + 1);
|
|
}
|
|
}
|
|
}
|
|
} // namespace internal
|
|
|
|
#if FMT_USE_WINDOWS_H
|
|
|
|
FMT_FUNC internal::utf8_to_utf16::utf8_to_utf16(string_view s) {
|
|
static const char ERROR_MSG[] = "cannot convert string from UTF-8 to UTF-16";
|
|
if (s.size() > INT_MAX)
|
|
FMT_THROW(windows_error(ERROR_INVALID_PARAMETER, ERROR_MSG));
|
|
int s_size = static_cast<int>(s.size());
|
|
if (s_size == 0) {
|
|
// MultiByteToWideChar does not support zero length, handle separately.
|
|
buffer_.resize(1);
|
|
buffer_[0] = 0;
|
|
return;
|
|
}
|
|
|
|
int length = MultiByteToWideChar(CP_UTF8, MB_ERR_INVALID_CHARS, s.data(),
|
|
s_size, FMT_NULL, 0);
|
|
if (length == 0) FMT_THROW(windows_error(GetLastError(), ERROR_MSG));
|
|
buffer_.resize(length + 1);
|
|
length = MultiByteToWideChar(CP_UTF8, MB_ERR_INVALID_CHARS, s.data(), s_size,
|
|
&buffer_[0], length);
|
|
if (length == 0) FMT_THROW(windows_error(GetLastError(), ERROR_MSG));
|
|
buffer_[length] = 0;
|
|
}
|
|
|
|
FMT_FUNC internal::utf16_to_utf8::utf16_to_utf8(wstring_view s) {
|
|
if (int error_code = convert(s)) {
|
|
FMT_THROW(windows_error(error_code,
|
|
"cannot convert string from UTF-16 to UTF-8"));
|
|
}
|
|
}
|
|
|
|
FMT_FUNC int internal::utf16_to_utf8::convert(wstring_view s) {
|
|
if (s.size() > INT_MAX) return ERROR_INVALID_PARAMETER;
|
|
int s_size = static_cast<int>(s.size());
|
|
if (s_size == 0) {
|
|
// WideCharToMultiByte does not support zero length, handle separately.
|
|
buffer_.resize(1);
|
|
buffer_[0] = 0;
|
|
return 0;
|
|
}
|
|
|
|
int length = WideCharToMultiByte(CP_UTF8, 0, s.data(), s_size, FMT_NULL, 0,
|
|
FMT_NULL, FMT_NULL);
|
|
if (length == 0) return GetLastError();
|
|
buffer_.resize(length + 1);
|
|
length = WideCharToMultiByte(CP_UTF8, 0, s.data(), s_size, &buffer_[0],
|
|
length, FMT_NULL, FMT_NULL);
|
|
if (length == 0) return GetLastError();
|
|
buffer_[length] = 0;
|
|
return 0;
|
|
}
|
|
|
|
FMT_FUNC void windows_error::init(int err_code, string_view format_str,
|
|
format_args args) {
|
|
error_code_ = err_code;
|
|
memory_buffer buffer;
|
|
internal::format_windows_error(buffer, err_code, vformat(format_str, args));
|
|
std::runtime_error& base = *this;
|
|
base = std::runtime_error(to_string(buffer));
|
|
}
|
|
|
|
FMT_FUNC void internal::format_windows_error(internal::buffer<char>& out,
|
|
int error_code,
|
|
string_view message) FMT_NOEXCEPT {
|
|
FMT_TRY {
|
|
wmemory_buffer buf;
|
|
buf.resize(inline_buffer_size);
|
|
for (;;) {
|
|
wchar_t* system_message = &buf[0];
|
|
int result = FormatMessageW(
|
|
FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, FMT_NULL,
|
|
error_code, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), system_message,
|
|
static_cast<uint32_t>(buf.size()), FMT_NULL);
|
|
if (result != 0) {
|
|
utf16_to_utf8 utf8_message;
|
|
if (utf8_message.convert(system_message) == ERROR_SUCCESS) {
|
|
writer w(out);
|
|
w.write(message);
|
|
w.write(": ");
|
|
w.write(utf8_message);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
if (GetLastError() != ERROR_INSUFFICIENT_BUFFER)
|
|
break; // Can't get error message, report error code instead.
|
|
buf.resize(buf.size() * 2);
|
|
}
|
|
}
|
|
FMT_CATCH(...) {}
|
|
format_error_code(out, error_code, message);
|
|
}
|
|
|
|
#endif // FMT_USE_WINDOWS_H
|
|
|
|
FMT_FUNC void format_system_error(internal::buffer<char>& out, int error_code,
|
|
string_view message) FMT_NOEXCEPT {
|
|
FMT_TRY {
|
|
memory_buffer buf;
|
|
buf.resize(inline_buffer_size);
|
|
for (;;) {
|
|
char* system_message = &buf[0];
|
|
int result = safe_strerror(error_code, system_message, buf.size());
|
|
if (result == 0) {
|
|
writer w(out);
|
|
w.write(message);
|
|
w.write(": ");
|
|
w.write(system_message);
|
|
return;
|
|
}
|
|
if (result != ERANGE)
|
|
break; // Can't get error message, report error code instead.
|
|
buf.resize(buf.size() * 2);
|
|
}
|
|
}
|
|
FMT_CATCH(...) {}
|
|
format_error_code(out, error_code, message);
|
|
}
|
|
|
|
FMT_FUNC void internal::error_handler::on_error(const char* message) {
|
|
FMT_THROW(format_error(message));
|
|
}
|
|
|
|
FMT_FUNC void report_system_error(int error_code,
|
|
fmt::string_view message) FMT_NOEXCEPT {
|
|
report_error(format_system_error, error_code, message);
|
|
}
|
|
|
|
#if FMT_USE_WINDOWS_H
|
|
FMT_FUNC void report_windows_error(int error_code,
|
|
fmt::string_view message) FMT_NOEXCEPT {
|
|
report_error(internal::format_windows_error, error_code, message);
|
|
}
|
|
#endif
|
|
|
|
FMT_FUNC void vprint(std::FILE* f, string_view format_str, format_args args) {
|
|
memory_buffer buffer;
|
|
internal::vformat_to(buffer, format_str,
|
|
basic_format_args<buffer_context<char>::type>(args));
|
|
fwrite_fully(buffer.data(), 1, buffer.size(), f);
|
|
}
|
|
|
|
FMT_FUNC void vprint(std::FILE* f, wstring_view format_str, wformat_args args) {
|
|
wmemory_buffer buffer;
|
|
internal::vformat_to(buffer, format_str, args);
|
|
fwrite_fully(buffer.data(), sizeof(wchar_t), buffer.size(), f);
|
|
}
|
|
|
|
FMT_FUNC void vprint(string_view format_str, format_args args) {
|
|
vprint(stdout, format_str, args);
|
|
}
|
|
|
|
FMT_FUNC void vprint(wstring_view format_str, wformat_args args) {
|
|
vprint(stdout, format_str, args);
|
|
}
|
|
|
|
FMT_END_NAMESPACE
|
|
|
|
#ifdef _MSC_VER
|
|
# pragma warning(pop)
|
|
#endif
|
|
|
|
#endif // FMT_FORMAT_INL_H_
|