Minor.
This commit is contained in:
parent
8fd87d4e69
commit
70961e5772
@ -362,35 +362,37 @@
|
||||
/* Graham Asher and Alexei Podtelezhnikov. The trick is to optimize */
|
||||
/* a rather common case when everything fits within 32-bits. */
|
||||
/* */
|
||||
/* We compute 'a*b+c/2', then divide it by 'c'. (positive values) */
|
||||
/* We compute 'a*b+c/2', then divide it by 'c' (all positive values). */
|
||||
/* */
|
||||
/* The product of two positive numbers never exceeds the square of */
|
||||
/* their mean. Therefore, we always avoid the overflow by imposing */
|
||||
/* its mean values. Therefore, we always avoid the overflow by */
|
||||
/* imposing */
|
||||
/* */
|
||||
/* ( a + b ) / 2 <= sqrt( X - c/2 ) */
|
||||
/* (a + b) / 2 <= sqrt(X - c/2) , */
|
||||
/* */
|
||||
/* where X = 2^32 - 1, the maximun unsigned 32-bit value, and using */
|
||||
/* unsigned arithmetic. Now we replace sqrt with a linear function */
|
||||
/* that is smaller or equal in the entire range of c from 0 to X/2; */
|
||||
/* it should be equal to sqrt(X) and sqrt(3X/4) at the termini. */
|
||||
/* Substituting the linear solution and explicit numbers we get */
|
||||
/* where X = 2^32 - 1, the maximum unsigned 32-bit value, and using */
|
||||
/* unsigned arithmetic. Now we replace `sqrt' with a linear function */
|
||||
/* that is smaller or equal for all values of c in the interval */
|
||||
/* [0;X/2]; it should be equal to sqrt(X) and sqrt(3X/4) at the */
|
||||
/* endpoints. Substituting the linear solution and explicit numbers */
|
||||
/* we get */
|
||||
/* */
|
||||
/* a + b <= 131071.99 - c / 122291.84 */
|
||||
/* a + b <= 131071.99 - c / 122291.84 . */
|
||||
/* */
|
||||
/* In practice we should use a faster and even stronger inequality */
|
||||
/* In practice, we should use a faster and even stronger inequality */
|
||||
/* */
|
||||
/* a + b <= 131071 - (c >> 16) */
|
||||
/* a + b <= 131071 - (c >> 16) */
|
||||
/* */
|
||||
/* or, alternatively, */
|
||||
/* */
|
||||
/* a + b <= 129895 - (c >> 17) */
|
||||
/* a + b <= 129895 - (c >> 17) . */
|
||||
/* */
|
||||
/* FT_MulFix, on the other hand, is optimized for a small value of */
|
||||
/* the first argument, when the second argument can be much larger. */
|
||||
/* This can be achieved by scaling the second argument and the limit */
|
||||
/* in the above inequalities. For example, */
|
||||
/* in the above inequalities. For example, */
|
||||
/* */
|
||||
/* a + (b >> 8) <= (131071 >> 4) */
|
||||
/* a + (b >> 8) <= (131071 >> 4) */
|
||||
/* */
|
||||
/* should work well to avoid the overflow. */
|
||||
/* */
|
||||
|
Loading…
Reference in New Issue
Block a user