glibc/sysdeps/x86_64/multiarch/memcmp-evex-movbe.S

505 lines
14 KiB
ArmAsm
Raw Normal View History

/* memcmp/wmemcmp optimized with 256-bit EVEX instructions.
Copyright (C) 2021-2024 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include <isa-level.h>
#if ISA_SHOULD_BUILD (4)
/* memcmp/wmemcmp is implemented as:
1. Use ymm vector compares when possible. The only case where
vector compares is not possible for when size < CHAR_PER_VEC
and loading from either s1 or s2 would cause a page cross.
2. For size from 2 to 7 bytes on page cross, load as big endian
with movbe and bswap to avoid branches.
3. Use xmm vector compare when size >= 4 bytes for memcmp or
size >= 8 bytes for wmemcmp.
4. Optimistically compare up to first 4 * CHAR_PER_VEC one at a
to check for early mismatches. Only do this if its guaranteed the
work is not wasted.
5. If size is 8 * VEC_SIZE or less, unroll the loop.
6. Compare 4 * VEC_SIZE at a time with the aligned first memory
area.
7. Use 2 vector compares when size is 2 * CHAR_PER_VEC or less.
8. Use 4 vector compares when size is 4 * CHAR_PER_VEC or less.
9. Use 8 vector compares when size is 8 * CHAR_PER_VEC or less.
When possible the implementation tries to optimize for frontend in the
following ways:
Throughput:
1. All code sections that fit are able to run optimally out of the
LSD.
2. All code sections that fit are able to run optimally out of the
DSB
3. Basic blocks are contained in minimum number of fetch blocks
necessary.
Latency:
1. Logically connected basic blocks are put in the same
cache-line.
2. Logically connected basic blocks that do not fit in the same
cache-line are put in adjacent lines. This can get beneficial
L2 spatial prefetching and L1 next-line prefetching. */
# include <sysdep.h>
# ifndef MEMCMP
# define MEMCMP __memcmp_evex_movbe
# endif
# ifndef VEC_SIZE
# include "x86-evex256-vecs.h"
# endif
# ifdef USE_AS_WMEMCMP
# define VMOVU_MASK vmovdqu32
# define CHAR_SIZE 4
# define VPCMP vpcmpd
# define VPCMPEQ vpcmpeqd
# define VPTEST vptestmd
# define USE_WIDE_CHAR
# else
# define VMOVU_MASK vmovdqu8
# define CHAR_SIZE 1
# define VPCMP vpcmpub
# define VPCMPEQ vpcmpeqb
# define VPTEST vptestmb
# endif
# include "reg-macros.h"
# define PAGE_SIZE 4096
# define CHAR_PER_VEC (VEC_SIZE / CHAR_SIZE)
/* Warning!
wmemcmp has to use SIGNED comparison for elements.
memcmp has to use UNSIGNED comparison for elements.
*/
.section SECTION(.text), "ax", @progbits
/* Cache align memcmp entry. This allows for much more thorough
frontend optimization. */
ENTRY_P2ALIGN (MEMCMP, 6)
# ifdef __ILP32__
/* Clear the upper 32 bits. */
movl %edx, %edx
# endif
cmp $CHAR_PER_VEC, %RDX_LP
/* Fall through for [0, VEC_SIZE] as its the hottest. */
ja L(more_1x_vec)
/* Create mask of bytes that are guaranteed to be valid because
of length (edx). Using masked movs allows us to skip checks
for page crosses/zero size. */
mov $-1, %VRAX
bzhi %VRDX, %VRAX, %VRAX
/* NB: A `jz` might be useful here. Page-faults that are
invalidated by predicate execution (the evex mask) can be
very slow. The expectation is this is not the norm so and
"most" code will not regularly call 'memcmp' with length = 0
and memory that is not wired up. */
KMOV %VRAX, %k2
/* Safe to load full ymm with mask. */
VMOVU_MASK (%rsi), %VMM(2){%k2}{z}
/* Slightly different method for VEC_SIZE == 64 to save a bit of
code size. This allows us to fit L(return_vec_0) entirely in
the first cache line. */
# if VEC_SIZE == 64
VPCMPEQ (%rdi), %VMM(2), %k1{%k2}
KMOV %k1, %VRCX
sub %VRCX, %VRAX
# else
VPCMP $4, (%rdi), %VMM(2), %k1{%k2}
KMOV %k1, %VRAX
test %VRAX, %VRAX
# endif
jnz L(return_vec_0)
ret
.p2align 4,, 11
L(return_vec_0):
bsf %VRAX, %VRAX
# ifdef USE_AS_WMEMCMP
movl (%rdi, %rax, CHAR_SIZE), %ecx
xorl %edx, %edx
cmpl (%rsi, %rax, CHAR_SIZE), %ecx
/* NB: no partial register stall here because xorl zero idiom
above. */
setg %dl
leal -1(%rdx, %rdx), %eax
# else
movzbl (%rsi, %rax), %ecx
# if VEC_SIZE == 64
movb (%rdi, %rax), %al
# else
movzbl (%rdi, %rax), %eax
# endif
subl %ecx, %eax
# endif
ret
.p2align 4,, 11
L(more_1x_vec):
/* From VEC to 2 * VEC. No branch when size == VEC_SIZE. */
VMOVU (%rsi), %VMM(1)
/* Use compare not equals to directly check for mismatch. */
VPCMP $4, (%rdi), %VMM(1), %k1
KMOV %k1, %VRAX
/* NB: eax must be destination register if going to
L(return_vec_[0,2]). For L(return_vec_3) destination
register must be ecx. */
test %VRAX, %VRAX
jnz L(return_vec_0)
cmpq $(CHAR_PER_VEC * 2), %rdx
jbe L(last_1x_vec)
/* Check second VEC no matter what. */
VMOVU VEC_SIZE(%rsi), %VMM(2)
VPCMP $4, VEC_SIZE(%rdi), %VMM(2), %k1
KMOV %k1, %VRAX
test %VRAX, %VRAX
jnz L(return_vec_1)
/* Less than 4 * VEC. */
cmpq $(CHAR_PER_VEC * 4), %rdx
jbe L(last_2x_vec)
/* Check third and fourth VEC no matter what. */
VMOVU (VEC_SIZE * 2)(%rsi), %VMM(3)
VPCMP $4, (VEC_SIZE * 2)(%rdi), %VMM(3), %k1
KMOV %k1, %VRAX
test %VRAX, %VRAX
jnz L(return_vec_2)
VMOVU (VEC_SIZE * 3)(%rsi), %VMM(4)
VPCMP $4, (VEC_SIZE * 3)(%rdi), %VMM(4), %k1
KMOV %k1, %VRCX
test %VRCX, %VRCX
jnz L(return_vec_3)
/* Go to 4x VEC loop. */
cmpq $(CHAR_PER_VEC * 8), %rdx
ja L(more_8x_vec)
/* Handle remainder of size = 4 * VEC + 1 to 8 * VEC without any
branches. */
/* Load first two VEC from s2 before adjusting addresses. */
VMOVU -(VEC_SIZE * 4)(%rsi, %rdx, CHAR_SIZE), %VMM(1)
VMOVU -(VEC_SIZE * 3)(%rsi, %rdx, CHAR_SIZE), %VMM(2)
leaq -(4 * VEC_SIZE)(%rdi, %rdx, CHAR_SIZE), %rdi
leaq -(4 * VEC_SIZE)(%rsi, %rdx, CHAR_SIZE), %rsi
/* Wait to load from s1 until addressed adjust due to
unlamination of microfusion with complex address mode. */
/* vpxor will be all 0s if s1 and s2 are equal. Otherwise it
will have some 1s. */
vpxorq (%rdi), %VMM(1), %VMM(1)
vpxorq (VEC_SIZE)(%rdi), %VMM(2), %VMM(2)
VMOVU (VEC_SIZE * 2)(%rsi), %VMM(3)
vpxorq (VEC_SIZE * 2)(%rdi), %VMM(3), %VMM(3)
VMOVU (VEC_SIZE * 3)(%rsi), %VMM(4)
/* Ternary logic to xor (VEC_SIZE * 3)(%rdi) with VEC(4) while
oring with VEC(1). Result is stored in VEC(4). */
vpternlogd $0xde, (VEC_SIZE * 3)(%rdi), %VMM(1), %VMM(4)
/* Or together VEC(2), VEC(3), and VEC(4) into VEC(4). */
vpternlogd $0xfe, %VMM(2), %VMM(3), %VMM(4)
/* Test VEC(4) against itself. Store any CHAR mismatches in k1.
*/
VPTEST %VMM(4), %VMM(4), %k1
/* k1 must go to ecx for L(return_vec_0_1_2_3). */
KMOV %k1, %VRCX
test %VRCX, %VRCX
jnz L(return_vec_0_1_2_3)
/* NB: eax must be zero to reach here. */
ret
.p2align 4,, 9
L(8x_end_return_vec_0_1_2_3):
movq %rdx, %rdi
L(8x_return_vec_0_1_2_3):
/* L(loop_4x_vec) leaves result in `k1` for VEC_SIZE == 64. */
# if VEC_SIZE == 64
KMOV %k1, %VRCX
# endif
addq %rdi, %rsi
L(return_vec_0_1_2_3):
VPTEST %VMM(1), %VMM(1), %k0
KMOV %k0, %VRAX
test %VRAX, %VRAX
jnz L(return_vec_0)
VPTEST %VMM(2), %VMM(2), %k0
KMOV %k0, %VRAX
test %VRAX, %VRAX
jnz L(return_vec_1)
VPTEST %VMM(3), %VMM(3), %k0
KMOV %k0, %VRAX
test %VRAX, %VRAX
jnz L(return_vec_2)
.p2align 4,, 2
L(return_vec_3):
/* bsf saves 1 byte from tzcnt. This keep L(return_vec_3) in one
fetch block and the entire L(*return_vec_0_1_2_3) in 1 cache
line. */
bsf %VRCX, %VRCX
# ifdef USE_AS_WMEMCMP
movl (VEC_SIZE * 3)(%rdi, %rcx, CHAR_SIZE), %eax
xorl %edx, %edx
cmpl (VEC_SIZE * 3)(%rsi, %rcx, CHAR_SIZE), %eax
setg %dl
leal -1(%rdx, %rdx), %eax
# else
movzbl (VEC_SIZE * 3)(%rdi, %rcx), %eax
movzbl (VEC_SIZE * 3)(%rsi, %rcx), %ecx
subl %ecx, %eax
# endif
ret
.p2align 4,, 8
L(return_vec_1):
/* bsf saves 1 byte over tzcnt and keeps L(return_vec_1) in one
fetch block. */
bsf %VRAX, %VRAX
# ifdef USE_AS_WMEMCMP
movl VEC_SIZE(%rdi, %rax, CHAR_SIZE), %ecx
xorl %edx, %edx
cmpl VEC_SIZE(%rsi, %rax, CHAR_SIZE), %ecx
setg %dl
leal -1(%rdx, %rdx), %eax
# else
movzbl VEC_SIZE(%rsi, %rax), %ecx
movzbl VEC_SIZE(%rdi, %rax), %eax
subl %ecx, %eax
# endif
ret
.p2align 4,, 7
L(return_vec_2):
/* bsf saves 1 byte over tzcnt and keeps L(return_vec_2) in one
fetch block. */
bsf %VRAX, %VRAX
# ifdef USE_AS_WMEMCMP
movl (VEC_SIZE * 2)(%rdi, %rax, CHAR_SIZE), %ecx
xorl %edx, %edx
cmpl (VEC_SIZE * 2)(%rsi, %rax, CHAR_SIZE), %ecx
setg %dl
leal -1(%rdx, %rdx), %eax
# else
movzbl (VEC_SIZE * 2)(%rsi, %rax), %ecx
movzbl (VEC_SIZE * 2)(%rdi, %rax), %eax
subl %ecx, %eax
# endif
ret
.p2align 4,, 8
L(more_8x_vec):
/* Set end of s1 in rdx. */
leaq -(VEC_SIZE * 4)(%rdi, %rdx, CHAR_SIZE), %rdx
/* rsi stores s2 - s1. This allows loop to only update one
pointer. */
subq %rdi, %rsi
/* Align s1 pointer. */
andq $-VEC_SIZE, %rdi
/* Adjust because first 4x vec where check already. */
subq $-(VEC_SIZE * 4), %rdi
.p2align 4
L(loop_4x_vec):
VMOVU (%rsi, %rdi), %VMM(1)
vpxorq (%rdi), %VMM(1), %VMM(1)
VMOVU VEC_SIZE(%rsi, %rdi), %VMM(2)
vpxorq VEC_SIZE(%rdi), %VMM(2), %VMM(2)
VMOVU (VEC_SIZE * 2)(%rsi, %rdi), %VMM(3)
vpxorq (VEC_SIZE * 2)(%rdi), %VMM(3), %VMM(3)
VMOVU (VEC_SIZE * 3)(%rsi, %rdi), %VMM(4)
vpternlogd $0xde, (VEC_SIZE * 3)(%rdi), %VMM(1), %VMM(4)
vpternlogd $0xfe, %VMM(2), %VMM(3), %VMM(4)
VPTEST %VMM(4), %VMM(4), %k1
/* If VEC_SIZE == 64 just branch with KTEST. We have free port0
space and it allows the loop to fit in 2x cache lines
instead of 3. */
# if VEC_SIZE == 64
KTEST %k1, %k1
# else
KMOV %k1, %VRCX
test %VRCX, %VRCX
# endif
jnz L(8x_return_vec_0_1_2_3)
subq $-(VEC_SIZE * 4), %rdi
cmpq %rdx, %rdi
jb L(loop_4x_vec)
subq %rdx, %rdi
/* rdi has 4 * VEC_SIZE - remaining length. */
cmpl $(VEC_SIZE * 3), %edi
jge L(8x_last_1x_vec)
/* Load regardless of branch. */
VMOVU (VEC_SIZE * 2)(%rsi, %rdx), %VMM(3)
/* Separate logic as we can only use testb for VEC_SIZE == 64.
*/
# if VEC_SIZE == 64
testb %dil, %dil
js L(8x_last_2x_vec)
# else
cmpl $(VEC_SIZE * 2), %edi
jge L(8x_last_2x_vec)
# endif
vpxorq (VEC_SIZE * 2)(%rdx), %VMM(3), %VMM(3)
VMOVU (%rsi, %rdx), %VMM(1)
vpxorq (%rdx), %VMM(1), %VMM(1)
VMOVU VEC_SIZE(%rsi, %rdx), %VMM(2)
vpxorq VEC_SIZE(%rdx), %VMM(2), %VMM(2)
VMOVU (VEC_SIZE * 3)(%rsi, %rdx), %VMM(4)
vpternlogd $0xde, (VEC_SIZE * 3)(%rdx), %VMM(1), %VMM(4)
vpternlogd $0xfe, %VMM(2), %VMM(3), %VMM(4)
VPTEST %VMM(4), %VMM(4), %k1
/* L(8x_end_return_vec_0_1_2_3) expects bitmask to still be in
`k1` if VEC_SIZE == 64. */
# if VEC_SIZE == 64
KTEST %k1, %k1
# else
KMOV %k1, %VRCX
test %VRCX, %VRCX
# endif
jnz L(8x_end_return_vec_0_1_2_3)
/* NB: eax must be zero to reach here. */
ret
/* Only entry is from L(more_8x_vec). */
.p2align 4,, 6
L(8x_last_2x_vec):
VPCMP $4, (VEC_SIZE * 2)(%rdx), %VMM(3), %k1
KMOV %k1, %VRAX
test %VRAX, %VRAX
jnz L(8x_return_vec_2)
.p2align 4,, 5
L(8x_last_1x_vec):
VMOVU (VEC_SIZE * 3)(%rsi, %rdx), %VMM(1)
VPCMP $4, (VEC_SIZE * 3)(%rdx), %VMM(1), %k1
KMOV %k1, %VRAX
test %VRAX, %VRAX
jnz L(8x_return_vec_3)
ret
/* Not ideally aligned (at offset +9 bytes in fetch block) but
not aligning keeps it in the same cache line as
L(8x_last_1x/2x_vec) so likely worth it. As well, saves code
size. */
.p2align 4,, 4
L(8x_return_vec_2):
subq $VEC_SIZE, %rdx
L(8x_return_vec_3):
bsf %VRAX, %VRAX
# ifdef USE_AS_WMEMCMP
leaq (%rdx, %rax, CHAR_SIZE), %rax
movl (VEC_SIZE * 3)(%rax), %ecx
xorl %edx, %edx
cmpl (VEC_SIZE * 3)(%rsi, %rax), %ecx
setg %dl
leal -1(%rdx, %rdx), %eax
# else
addq %rdx, %rax
movzbl (VEC_SIZE * 3)(%rsi, %rax), %ecx
movzbl (VEC_SIZE * 3)(%rax), %eax
subl %ecx, %eax
# endif
ret
.p2align 4,, 8
L(last_2x_vec):
/* Check second to last VEC. */
VMOVU -(VEC_SIZE * 2)(%rsi, %rdx, CHAR_SIZE), %VMM(1)
VPCMP $4, -(VEC_SIZE * 2)(%rdi, %rdx, CHAR_SIZE), %VMM(1), %k1
KMOV %k1, %VRAX
test %VRAX, %VRAX
jnz L(return_vec_1_end)
/* Check last VEC. */
.p2align 4,, 8
L(last_1x_vec):
VMOVU -(VEC_SIZE * 1)(%rsi, %rdx, CHAR_SIZE), %VMM(1)
VPCMP $4, -(VEC_SIZE * 1)(%rdi, %rdx, CHAR_SIZE), %VMM(1), %k1
KMOV %k1, %VRAX
test %VRAX, %VRAX
jnz L(return_vec_0_end)
ret
/* Don't fully align. Takes 2-fetch blocks either way and
aligning will cause code to spill into another cacheline.
*/
.p2align 4,, 3
L(return_vec_1_end):
/* Use bsf to save code size. This is necessary to have
L(one_or_less) fit in aligning bytes between. */
bsf %VRAX, %VRAX
addl %edx, %eax
# ifdef USE_AS_WMEMCMP
movl -(VEC_SIZE * 2)(%rdi, %rax, CHAR_SIZE), %ecx
xorl %edx, %edx
cmpl -(VEC_SIZE * 2)(%rsi, %rax, CHAR_SIZE), %ecx
setg %dl
leal -1(%rdx, %rdx), %eax
# else
movzbl -(VEC_SIZE * 2)(%rsi, %rax), %ecx
movzbl -(VEC_SIZE * 2)(%rdi, %rax), %eax
subl %ecx, %eax
# endif
ret
.p2align 4,, 2
/* Don't align. Takes 2-fetch blocks either way and aligning
will cause code to spill into another cacheline. */
L(return_vec_0_end):
bsf %VRAX, %VRAX
addl %edx, %eax
# ifdef USE_AS_WMEMCMP
movl -VEC_SIZE(%rdi, %rax, CHAR_SIZE), %ecx
xorl %edx, %edx
cmpl -VEC_SIZE(%rsi, %rax, CHAR_SIZE), %ecx
setg %dl
leal -1(%rdx, %rdx), %eax
# else
movzbl -VEC_SIZE(%rsi, %rax), %ecx
movzbl -VEC_SIZE(%rdi, %rax), %eax
subl %ecx, %eax
# endif
ret
/* evex256: 2-byte until next cache line. evex512: 46-bytes
until next cache line. */
END (MEMCMP)
#endif